JP3732669B2 - 二重窓wdm光ファイバ通信 - Google Patents

二重窓wdm光ファイバ通信 Download PDF

Info

Publication number
JP3732669B2
JP3732669B2 JP03962699A JP3962699A JP3732669B2 JP 3732669 B2 JP3732669 B2 JP 3732669B2 JP 03962699 A JP03962699 A JP 03962699A JP 3962699 A JP3962699 A JP 3962699A JP 3732669 B2 JP3732669 B2 JP 3732669B2
Authority
JP
Japan
Prior art keywords
fiber
dispersion
wavelength
window
wdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03962699A
Other languages
English (en)
Other versions
JPH11281840A (ja
Inventor
エフ. ジュディ アーサー
カイリッシュ ディヴィッド
ブラッドフィールド クマー レイモンド
ウエイン ピーカム ディヴィッド
アルフレッド リード ウィリアム
Original Assignee
ルーセント テクノロジーズ インコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=21824596&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3732669(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ルーセント テクノロジーズ インコーポレーテッド filed Critical ルーセント テクノロジーズ インコーポレーテッド
Publication of JPH11281840A publication Critical patent/JPH11281840A/ja
Application granted granted Critical
Publication of JP3732669B2 publication Critical patent/JP3732669B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03661Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only
    • G02B6/03666Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 4 layers only arranged - + - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02223Dual window fibres, i.e. characterised by dispersion properties around 1550 nm and in at least another wavelength window, e.g. 1310 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02228Dispersion flattened fibres, i.e. having a low dispersion variation over an extended wavelength range
    • G02B6/02238Low dispersion slope fibres
    • G02B6/02242Low dispersion slope fibres having a dispersion slope <0.06 ps/km/nm2
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02214Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
    • G02B6/02219Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
    • G02B6/02266Positive dispersion fibres at 1550 nm
    • G02B6/02271Non-zero dispersion shifted fibres, i.e. having a small positive dispersion at 1550 nm, e.g. ITU-T G.655 dispersion between 1.0 to 10 ps/nm.km for avoiding nonlinear effects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03627Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - +
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/2912Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing
    • H04B10/2916Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form characterised by the medium used for amplification or processing using Raman or Brillouin amplifiers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03605Highest refractive index not on central axis
    • G02B6/03611Highest index adjacent to central axis region, e.g. annular core, coaxial ring, centreline depression affecting waveguiding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/258Distortion or dispersion compensation treating each wavelength or wavelength band separately

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Lasers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【本発明の分野】
シリカを基本とする光ファイバの1310nmないし1550nmの透明窓内の同時波長分割多重動作。
【0002】
【従来技術】
多くの顕著な開発が結びつき、今日の光ファイバ通信システムが生じた。波長分割多重(WDM)システムにより、100GHz間隔の4つのチャネルで、2.5Gb/秒のチャネル当りのビットレートが得られ、それは個々のエルビウムファイバ増幅器(EDFA)により、全WDMチャネルセットの同時増幅が可能な十分狭いスペクトル帯を構成する。それぞれが100kmないしそれ以上の長さのいくつかの増幅器長が組合され、500kmないしそれ以上の距離でのみ、端子が必要となる。
【0003】
ある種のアナログ動作は残存するが、新しい設計はディジタル伝送を強調し、そのため容量は通常ビットレートで議論される。容量に対する基本的な制約により、個々のビットが広がり、それは色分散、すなわちパルスを作るスペクトルの異なる波長成分に対する異なる波長依存群速度により生じることが、認識された。ビットレートあるいは端子間の距離(スパン)に対する分散の制約は、隣接したビット位置間の重なりが生じるのに十分な程度に対応する。色分散は最小のスペクトル放射帯幅のレーザ源を用いることにより、小さくなる。ファイバの観点からは、シリカ・・・光ファイバが作られる基本材料・・・の自然の材料分散ゼロ点は、その1310nm透明窓内で起るという事実により、そのようなシステム波長における動作が強調される。
【0004】
この段階で、1310nm動作システムは損失により制限され、そのためファイバの減衰が減少すると、スパン長は増すことができる。1550nm窓は損失を減少させたが、今度はその領域における波長の著しい分散により、分散により制限されるシステムが生じることが認識された。この場合、考えられるビットレートに対する損失の減少及び分散を減すための手法の信号研究によるスパン長についての利点を妨げる。1550nm窓での動作に対する要望は、新しいファイバ設計・・・“分散シフトファイバ”(DSF)により満された。このファイバは2つの相対する効果の組合せ・・・自然に生じるシリカ“材料分散”と“波長分散”との組合せに依存する。適切なファイバの設計により、波長分散の大きさが、より大きな波長における材料分散の正の依存性を打ち消し、分散ゼロ点を1310nmから1550nmに“移動”させることができる。この目的が達成され、DSFが複雑な長距離システム用に、移動しないファイバ(USF)に置き代った。
【0005】
容量を増加させたいという要望は、大きくWDM動作に向けられ、その多チャネル動作は今や低損失1550nm窓にある。同時に、競合する努力は容量を増加させる手段として、両方の窓での同時動作の可能性に依存した。色分散がビットレートへの基本的な制約であることを認識し、その波長での分散をゼロにすることにより、1550nmでの動作を可能にするDSFの普遍的な成功を認識して、努力は両方の波長で同時に分散をゼロにする試みの形をとった。結果は分散を平坦化したファイバ(DFF)で、それはDSFに類似で、導波路分散と材料分散が交差することに依存するが、今度は1つが各窓の中にあるという2つの交差を必要とする。
【0006】
1550nm窓内に通過帯域をもつEDFAが出現したことにより、システムの動作をこの領域に移動させる重要さが増した。WDMセットの要素チャネルを同時に増幅するのに十分な幅の通過帯域を有する増幅器は、最初の実用的なWDM動作を提供した。(すべての報告によると、この増幅器は好ましくあり続けるであろうが、研究によって、別の希土類ドープデバイスとラマン効果に基く増幅器にも、入り込んだ。エレクトロン・レターズ(Elc. Lett.)第32巻,第23号,2164−2165頁(1996年11月7日)を参照のこと)
【0007】
次の段階は真に明らかに、DSFの優勢を実効的に終らせ、DFFを確実に二重窓動作させることである。
【0008】
トルーウェーブ(True Wave(登録商標))ファイバは“非ゼロ分散”ファイバ(NZF)に与えられた一商品名で、現在の用途に対し、大きくDSFに置き代ってきた。米国特許第5,327,516号は最初に、DSFは予想される高容量WDM動作を妨げることを述べている。その理由は、まさに同じくゼロになった色分散が、高容量単一チャネル動作に対し推められることにある。DSFシステムにおける容量の可能性にあわせる上で、WDMの欠点の基本的な理由として、4波混合(4WM)を同定している。非線形効果である4WMは、隣接したチャネルのパルス間の相互作用により、それは信号の和と差を誘導し、2つの相互作用するチャネルのパワーレベルを下る。それは通常のシステムにおいて特に、影響があり、一定のチャネル間隔が得られ(“均一間隔チャネル”)、その場合そのような疑似信号の波長は、WDMセットの他のチャネルのキャリヤ波長と一致し、信号対雑音比に重畳されたり、減少したりする。次に、NZFを小さく、しかし厳密さを要する色分散で置き代えることを提案している。1550nmのシステム波長での長距離動作用として、そのシステム波長における指定された分散は、考えられるチャネル当りのビットレートを可能にするようなパルススペクトルの成分間で、十分低いことが示される。同時に、十分な分散が導入され、WDMセットのチャネル間で周期的な位相打ち消しが生じ、4WMにより転送される信号の大きさが減少する。(4WMは相互作用する要素チャネル中に、同時にビットが存在することを必要とし、疑似信号の大きさが増大すると、位相があった時間が増す。チャネル間の分散は相互作用時間を制限し、従って疑似4WM信号のしだいに増加する大きさに、制限を置く。)
【0009】
この技術は発展を続けてきた。広がった伝送帯域に充填を置き、量的には小さいが、増幅は従来のEDFAにより満されている。ラマン増幅又は希土類ドーパントに基くが、エルビウムの代りにプラセオジムを用いた増幅(たとえばプラセオジムドープフッ化物ファイバ増幅器)は、1310nm窓内で動作するWDM動作を確実に満すことを示す。別のものも研究された。たとえばエルビウムドープフッ化物ガラスは1550nm窓内の増幅帯に改善された利得平坦化を示す。
【0010】
長距離光通信システムの利点が、短距離通信でも価値を持ち続ける可能性があることは、広く認識されている。“全光通信網”への傾向は、地域アクセス及び首都システム用に、銅に置き代ると期待される。そのようなシステムにおける要件は、非常に大きなWDMセット、恐らく100又はそれ以上のチャネルにより、長距離システムにそのような大きな容量が見られる前に、満されるであろう。
【0011】
【本発明の要約】
ここで“首都光波ファイバ”(MWF)とここで呼ぶ新しいシリカを基本とするファイバは、たとえば首都システムのような所望の考えられる多数の近接したチャネルを有する媒体及び短距離システム中での二重窓WDM動作を可能にする。“二重窓NZF”とみなすのが適切であるが、それは両方の透明窓中のシステム波長において、分散値を与え、それは許容しうるチャネル当りのビットレートとWDMチャネル内の4WMによる疑似信号の許容しうる低蓄積値の両方に必要な厳密さを要する範囲内にある。2つの寄与は信頼すべきものである。第1は分散ゼロ点を1310nm及び1550nm動作窓の中間の位置に移動させることであり、第2は両方の窓の広い波長領域内の所望の分散の大きさを保つために、波長対分散曲線の傾きを減少させることである。結果はいずれかの窓に適するように修正でき、相対する符号の分散の絶対値は平衡させることができる。機構は平均的な当業者には容易に理解され、容易に実施される。
【0012】
MWFの設計要件は、現在の商業生産により、容易に満される。たとえば、修正化学気相堆積(MCVD)(米国特許第4,217,027号)では、そのプロセスで得られる設計上の柔軟性を利用している。独立に作製されるオーバークラッド管は、それからNZFファイバが引かれる合成プリフォームの形成中のMCVDコアロッドと用いるのが便利で、MWFにも有利である。
【0013】
少くともたとえば端子間が300kmのシステムといった中程度の長さのシステムにおいては、MWFは二重窓動作が確実に再現することを表わしている。他の他の開発とともに、得られたシステムは1310及び1550nm窓の両方の中で同時に多くのチャネルWDM動作をし、現在得られない容量まで、システム容量を提供する。新しいファイバはそれぞれが≧2.5Gb/秒で動作する100又はそれ以上のチャネルを有する動作能力を提供する。
【0014】
最初に使用する可能性のある首都システムにおいて、ノード(たとえば光増幅器を含むが、追加/削除を与える)は数十kmの距離で分離され、恐らく8−16ノードが典型的な首都バックボーン環を形成する。MWF設計の原理は、長距離用にも使用できる可能性がある。また、重点は確かにディジタル動作にあるが、このファイバはアナログ動作、すなわちディジタル動作とは別又は同時の動作で、利点を提供する。
【0015】
用語
分散−色分散とよばれ、変更子を用いない場合の線形効果。それにより伝送信号の異なるスペクトル成分は、異なる群速度をもつ。一般に、議論しているファイバ構造において、材料特性(材料分散)及びファイバ設計(波長分散)の組合さった効果に依存する。ディジタルシステムにおいて、基本的に起り、分散はパルスの広がりと容量を制限する原因となる。
【0016】
非線形分散−信号歪で、パワー密度増加の関数として、たとえば4乗というように、直線関係より増加する。4WMはここで扱う非線形分散の顕著な形で、現在のWDMシステムに対する主要な容量制限を成す。
【0017】
分散補償−相対する符号の分散の順次直列に接続したファイバ長により、色分散を減少させること。一般に連結された形をとり、正及び負の分散のファイバの交互になった長さを用いる。(同程度の大きさの分散のファイバを交互にする。)たとえば、米国特許第5,611,016号の平衡のとれたケーブルを用いることによる(それは正及び負の分散ファイバの個々の束を含む。)あるいは、補償は補償すべきファイバに比べ、桁違いの大きさと相対する符号の両方をもつ補償用ファイバの比較的短い長さを用いて行われる。ここで述べる本発明の好ましいシステムは、一般に分散補償はしないが、なお大きなシステム容量に対しては、どの形の補償も除外されない。
【0018】
波長分割多重−単一ファイバ内で多チャネル動作を実現すること。セットのチャネルは個々の増幅器により、同時に増幅できるように、十分接近した間隔をもつ。考えられる間隔は、たとえばセットの隣接したチャネル間で≦100GHzで、”高密度波長分割多重(DWDM)と記述され、“WDM”とよばれる。変更子を用いなければ、DWDMを含むものとされる。ファイバ(MWF)及び本発明のシステムは、1310nm及び1550nm窓のそれぞれの中にある少くとも1つのWDMを支持するように、設計される。変更子を用いなければ、この用語は“荒いWDM”まで含むことは意図しない。
【0019】
荒いWDM−単一ファイバ内で多帯域動作を実現すること。この用語は個々の光増幅器に付随したWDMチャネルセット(又は“帯域”)の結合/分離をさす。そのため、荒いWDMにより、多増幅器に付随した多帯域の結合/経路形成ができる。この用語は別々の窓内の帯域とともに、窓内の多帯域をさす。
【0020】
シリカベースファイバ−シリカが主なガラス形成酸化物である光ファイバ。一般に、ファイバ組成の少くとも90モルパーセント(被覆は除く)を構成する。現在の光ファイバは“シリカベース”である。
【0021】
デルタ(Δ)−屈折率の相対値。ファイバ分布を測定するときに用いられ、外部クラッドからの屈折率の変化の値を外部クラッドの屈折率で割った値。
【0022】
シングルモードファイバ−意図したシステム波長における基本モードである単一モードのみを保持する光ファイバ。本発明のファイバは1310nm窓中での意図した動作の長さより短い波長に引かれた常にシングルモードである。(ファイバが2モードになる“遮断波長”に引かれる。)
【0023】
コア−基本的に誘導するファイバの最も内側の領域。それはクラッドの屈折率より大きな屈折率の材料で構成される。その半径方向の寸法は、ファイバの中心から外部クラッドの屈折率と等しいか小さい屈折率の材料が始まるまでである。理想的なコアは外部クラッドほど低い屈折率の材料は含まないが、MCVDの溝特性のような意図しない変化は、その値まで低下させる可能性がある。
【0024】
外部クラッド−変更子を用いなければ、ファイバの最も外側で主要な部分。コアを規定する屈折率より常に小さい。その屈折率の値は、一般に“デルタ”値の基本として用いられ、半径に対してプロットされ、共通のファイバ分布図ができる。
【0025】
クラッド−通常の用語ではコアの外側のファイバ全体。被覆は含まない。
窓−変更子を用いなければ、伝送媒体、ここでは光ファイバの高透明(又は低減衰)波長領域。将来予測される適切な通信システムで基本的な関心が持たれるシリカを基本とするファイバでは、2つのそのような窓があり、しばしば1310nm及び1550nm窓と同定される。
【0026】
1310nm窓−1310nmを含む窓を規定すると考えられる波長値の範囲。たとえば1260nmないし1360nmというように、システムの要件に依存して、ある程度変る。
【0027】
1550nm窓−1550nmを含む窓を規定すると考えられる波長値の範囲。たとえば1460nmないし1620nmというように、システムの要件に依存して、ある程度変る。
【0028】
動作窓−ほとんどがファイバ設計により規定される特性。システム動作に適した分散及び透明性の両方の波長値範囲。WDM動作の場合、動作窓は低すぎる(4WMの点から)か高すぎる(指定されたビットレート/距離のため)かいずれの分散値も避けなければならない。1310nm及び1550nmの両方に動作窓がある。
【0029】
端子又は端子装置−電気から光へ(E/O変換)又は光から電気へ(O/E変換)変換を可能にする装置。すなわち、ファイバを通して伝送される光信号と変換前又は変換後の電気的アナログ間の変換。端子は送信器又は受信機として動作するシステムの終点にあってよい。あるいは、それは“ファイバスパン”の終点を規定してもよい。その場合、それは順次接続されたファイバスパン間の“中継器”として動作してもよい。それは分散が過度に大きくなったり、S/Nが過度に劣化しないために、必要である。
【0030】
ノード−たとえば光増幅、追加又は削除(追加/削除)又はスペクトル変換のために、信号を送る位置。この用語が首都システムとともに用いられた時、ノードでの信号処理はE/O又はO/E変換を含まない。(“端子”という用語は、この目的のためにも保たれる。)
【0031】
スパン−変更子を用いなければこの用語は端子間のファイバ長を指定する。E/Oをする第1の端子とO/Eをする第2の端子間。スパンは一般に一連の増幅スパンで構成される。
【0032】
増幅スパン−光増幅器により規定されるファイバ長。あるいは、1つの光増幅器と1つの端子で、“ノードスパン”と同意語としてもよい。
【0033】
詳細な記述
一般的説明
基本的な進展は、1310nmと1550nm窓の両方で同時に伝送する中距離、高速、波長分割多割(WDM)に適したファイバである。NZFと同様、新しいファイバは必要な分散をもつ。ここでは両方の窓の領域内で、1ないし8ps/nm−kmの絶対的大きさをもつと指定される。分散の大きさが減少するにつれ、4波混合(4WM)がWDMシステムをより制限するようになる。それが増加するにつれ、ビットレート又は伝播距離に対するその影響が顕著になる。
【0034】
現在一般に入手されるファイバは、二重窓、高速、WDMを満足しない。このことは図1から明らかである。この図は各種の形のファイバについて、波長の関数として、典型的な分散値をプロットしたものである。図は一般的な設計条件に基いたシステム用には適さない領域を表わす“禁制領域”を含む。すなわち、“水ピーク”における−OH吸収によるたとえば0.5dB/km以上の損失が大きすぎる領域10及び−2ないし2ps/nm−kmの範囲の分散が低すぎる領域11である。(図中の分散境界の±2ps/nm−km値は、好ましい極小値とよばれる。システム設計により、±1.5ps/nm−km又は更に±1ps/nm−kmといった極端な分散値のWDMチャネルができる。分散及び水ピークのプロットされた限界は、議論のためで、厳密な限界を示すためのものではない。許容できないと述べる値は、任意でよく、たとえば容量とスパン長間の両立性の結果である。)
【0035】
曲線12からわかるように、非移動シングルモードファイバ(USF)は低すぎる分散を1310nmに有し、WDMを可能にし、高すぎる分散を1550nmに有し、外部分散補償を用いずに、高速伝送を可能にする。同様に、曲線13から、NZF分散は1310nmで大きすぎ、プロットされた具体的な商業生産品(トルーウェーブ)は1540−1480nmの範囲、1550nm窓内の動作に対してさえ、低すぎる分散をもつことがわかる。更に、両方の形のファイバは大きな分散勾配により、それらの動作窓内に制限されている。大きな分散勾配は、1.0−8.0ps/nm−kmの所望の分散範囲内で、比較的狭い波長帯域に、使用可能な帯域を制限する。ただし、一般に単一のWDMチャネルセットに制限されている現在の動作には十分な帯域である。MWF曲線14はその平坦な勾配と約1400nmのゼロ分散波長により、両方の窓内でのWDMが可能である。動作は1310nm窓及び1550nm窓内のNZFで、少くとも両方がUSFと同程度の帯域に及ぶ。曲線15は本発明と関連して考えられるファイバについて、プロットされたものである。すなわち、“移動しているが平坦化されていない”(SUF)もので、MWFでは同じλ0=1400nm交差まで移動しているが、USFの波長勾配対分散特性を保持している。SUFはMWFより制限された全動作範囲をもつが、二重窓能力をもつ。
【0036】
ファイバ設計
MWFには常に要求される現在のファイバにおける−OH吸収による高損失領域内の1310nmないし1550nm窓の中間に、分散ゼロ点を配置することは、容易に実現される。分散ゼロ点を材料分散によってのみ予測される点から離すために、DSF(又は通常のNZF)と同じ機構が用いられる。λ0=1400nmの名目上の波長におけるゼロ分散は、1350nmないし1450nmの通常の範囲の代表で、分散の平衡した値が発生できる。値は両方の窓内で1.0−8.0又は好ましくは2.0−7.0ps/nm−kmで、1310nm窓内では負の符号をもち、1550nm窓では正の符号をもつ。MWFは二重窓NZF設計に適しているとみなされ、新しいファイバは1550nmにおける動作に対するある種のNZF要件を満すことができる。しかし、1310nm窓内で同時に動作させることにより、幾分小さなモード場径が生じ、従って実効的な面積では、最適化され設計された現在のNZFより小さくなる可能性がある。MWFの実効的な面積は、一般に≧42μm2であるが、それらはNZFに典型的な50μm2の値と重なってよく、典型的な場合42−49μm2の範囲内にある。(実効面積の定義については、オプティカル・レターズ(Opt. Lett.)、第19巻,第4号,257−259頁(1994年2月15日)を参照のこと)実効面積が減少するとパワー密度が増し、従って非線形分散の効果が悪化する。1310nm窓内でのシングルモード動作に必要な小さなモード場と平坦化された分散勾配に対する要求との折裏により、非線形効果が生じ、それは首都システムに想定される比較的短距離に対しては、調整可能であるか、最適に設計されたNZFには劣る。
【0037】
MWFにおける分散平坦化に用いられる機構は、これまで用いられた可能性は少い。確かに関連はしているが、それは従来の平坦化された“ファイバ”の原因となる機構とは、異なるとみなされる。所望の両方の窓内でのゼロ分散を実現することは、2つの別々の材料−導波路交差、1つは1310nm及び他方は1550nm、の結果であった。低勾配はゼロ点間で勾配の符号の変化を伴った。
【0038】
透明窓中のシステム波長におけるゼロ分散ではなく、“非ゼロ”分散を得ることには、一般にいずれの窓内でも分散ゼロ点を除き、何らかの長波長交差が1550nm窓内に意図したキャリヤ波長を越えた波長値で必要である。すべてのMWF設計に必要な低分散勾配は、図4に示されるような多層構造の結果である。低屈折率領域41は、特に重要である。分散の低波長依存性(図3の曲線30)は2つのフォノンの補償による。一般に、群遅延は波長とともに増加し、バルクシリカ及び通常のシリカベースファイバ中のシステム波長において、分散勾配を基本的に決る。しかし、また波長が増すにつれ、誘導されるモードはコア領域内に閉じ込められにくくなり、周囲の領域中に広がる。群遅延は波面を横切るモードが経験する遅延の重みづけをした平均値の関数である。従って、より長い波長が低屈折率領域41中により侵透するにつれ、屈折率の平均値が減少し、それにより増加した波長に対する重みづけした平均の遅延時間が減少し、波長増加による遅延の増加を打ち消す(固有の材料特性を打ち消す)。領域41のような低屈折率領域又は“溝”は、MWF中の分散勾配を減すために、指定される。外部クラッドに比べ、溝の屈折率を0.05%、好ましくは0.1%減すことにより、各窓内の所望の非ゼロ分散の本質的な領域(名目値1400nmに配置されたゼロ点の場合)を確実にするのに十分なほど、分散が平坦化される。
【0039】
“環”42すなわち外部クラッド43に比べ屈折率が増した環状領域は、商業的なMWFに含まれることが多い。この屈折率増加領域の基本的な目的は、分散の平坦化ではなく、曲げ損を最小にすることに関してである。一般的な用語で、環及び周囲領域(ここでは外部クラッド43)の境界におけるΔの値である曲げ損は、外部クラッドに対し伝播波面がみる実効的な屈折率により影響を受け、一方平坦化は溝それ自身の特性に基本的に依存し、そのため環の導入により、勾配に重大な影響を及ぼさずに、曲げ損を減すことができる。
【0040】
首都λ波ファイバについての具体的な指定項目が、示されている。
MWF指定表
1550nmにおける減衰 ≦0.25dB/km
1310nmにおける減衰 ≦0.50dB/km
1550nmにおける実効面積 ≧42μm2
コアの偏心率 0.8μmかそれ以下
クラッド直径 125±2.0μm
遮断波長 ≦1250nm
ゼロ分散波長 1350nm−1450nm
1310nmにおける分散 −3.0ないし−8ps/nm−km
1550nmにおける分散 +3.0ないし+8ps/nm−km
1550nmにおける分散勾配 0.01−0.05ps/nm2−km
1310nmにおける微小曲げ損 <0.5dB(1回曲げ,32mm)
1550nmにおける微小曲げ損 <0.05dB(100回曲げ,75mm)
被覆径 245±10μm
保障試験 100kpsi
リール長 2.2,4.4,6.4,8.8,10.8,12.6,19.2km
【0041】
首都光波ファイバについての典型的な分散曲線が、図2に示されている。名目的な分散(実線の曲線20)は、1550nmで約+6ps/nm−kmで、1310nmで−6ps/nm−kmである。現在の技術では、分散のこれらの値により、分散補償の必要なく、約160kmまでのファイバ長に対し、10Gb/秒非ゼロ帰還(NRZ)伝送が可能になり、首都地域に予想される距離での考えられるシステムに適している。中程度のパワーレベル(≦4dBm/チャネル)において、WDMは100GHzの間隔(それぞれ1310nmにおける0.57nm及び1550nmにおける0.80nmに等価)のチャネルに対し約1ps/nm−kmを必要とし、50GHzの間隔(それぞれ1310nmにおける0.29nm及び1550nmにおける0.40nmに等価)に対し、約4ps/nm−kmを必要とする。名目値(破線の曲線21、22)からの±1ps/nm−kmの生産上の変動により、2ないし7ps/nm−kmの範囲の分散が生じる。WDM動作窓(図1から)は100GHzの間隔に対し、1260ないし1360nm及び1460ないし1620nmで、それぞれ210及び194伝送チャネルと等価である。
【0042】
図3の曲線30は1550nm窓内の0.03−0.04ps/nm2−kmのおおよその範囲内の分散勾配値を示す。NZFの0.075ps/nm2−km特性の値と比べ、MWFの勾配が低いことにより、低分散ゼロ点にもかかわらず、1550nm窓内で同程度の動作範囲が可能になる。
【0043】
図4は先の図の基本として役立つ4領域ファイバについての半径方向の位置の関数として、規格化された屈折率差(“デルタ”)を示す。ゲルマニウム−シリカコア40が溝41すなわち、この例ではフッ素ドープシリカから成る屈折率が低い環状領域により、囲まれている。溝を囲んで、今度はこの例ではアンドープシリカから成る外部クラッド領域43内にある屈折率の高いゲルマニウム−シリカ環42がある。コア領域40はMCVD生産ファイバに特徴的な低屈折率中心領域(又は“くぼみ”)44を示す。“MCVDくぼみ”44は機能は果さないが、ファイバの動作を不当に妨げはしない。
【0044】
領域境界における急激な不連続は、実際のファイバ中でのみ発生する。コア領域40から溝41への厳密さを必要とする遷移という点で、屈折率の変化は典型的なMCVDプリフォーム中の0.1ミリメートルより小さい領域内で起り得る。これは2%/mmより大きな絶対値の屈折率勾配に対応する。理想化された分布とそのようなプリフォームから作られた実際のファイバについての測定結果を用いた計算結果が一致したことは、MCVDがこの目的に適していることを示している。
【0045】
しかし、スートプロセスすなわちOVD及びVADを用いて、よく規定されたフッ素ドープ低屈折率層を作製するには、もし設計上の補償をしないなら、標準的なOVD又はVADの修正を必要とする。多孔質のガラス化されていないスート内のフッ素の高い拡散性は、特に問題となる。それにより、ガラス化工程中、領域境界における汚染(デルタ値の低下)が生じ、ガラス化は標準的なOVD又はVADで行われるように、微粒子状全堆積で行われる。溝を構成するフッ素ドープ層の堆積前後に、中間的な全体又は部分的なガラス化工程を導入することにより、問題は軽減される。
【0046】

ファイバの構造、より簡潔には、図1−3のファイバを生じるプリフォームの構造について、図4を参照しながら述べる。プリフォーム分布データは、ファイバ(それについては分布がとられていない)の動作データと一致する。
コア領域40はゲルマニウムをドープしたシリカから成り、中心から約3.5μmの半径まで延びる。ゲルマニウム濃度は半径の関数として、コアデルタの半径方向の変化を生じるように調整され、それはアルファ分布則により、記述される。
【0047】
Δ(γ)=Δ0〔1−(γ/a)α〕
ここで、γはコア内の半径方向の位置、aはコア半径、αは分布形状パラメータ、Δ0は中央のくぼみ44を無視したファイバの中心におけるデルタの値(コアのピーク屈折率値)である。この例の場合のこれらのパラメータの名目的な値は、a=3.5μm、α=5、Δ0=0.55%である。中央のくぼみが存在するのは、つぶす間にMCVD堆積の露出された内部表面から、ゲルマニウムが蒸発したためで、通常のMCVDプロセスには固有である。この領域が存在することは意図したものではないが、その存在は仮定され、最終的なファイバの伝送特性に及ぼす効果は、設計で考慮されている。0.55%のピーク屈折率レベルを達成するのに必要なゲルマニウム濃度は、約7重量パーセントである。MCVD又はOVDにより作製されるプリフォームのコア領域は、典型的な場合、5又はそれ以上の環状層から成り、それぞれが別々の堆積路で作られる。各層のゲルマニウム濃度は、所望の半径方向の屈折率勾配を生じるよう調整される。もし、VADプロセスを用いて作製するなら、軸方向に成長するコア領域を横切る所望の勾配を生じるようバーナーが設計される。
【0048】
溝41はフッ素を低濃度にドープしたシリカである、それは歪を減し、分布を微調整するために、少量のゲルマニウム又は他のドーパントを含んでもよい。図4中の溝について示された−0.24%の一定のデルタ値は、約1.5重量%のフッ素濃度を必要とした。引かれるファイバ中の溝の名目上の幅は、2.5μmである。MCVD(又はOVD)により作製すると、この領域は約4つの(一般に同一の)堆積路から成る。VADにおいて、単一の軸方向に成長した層は、溝領域を形成する。OVD又はVADでよく規定されたフッ素ドープ領域を実現することは、高い多孔質性のスートボール中でのフッ素の拡散のため問題を起しやすい。これまで述べたように、拡散は堆積するとともに、個々の領域を部分的又は全体にガラス化することにより、最小にすることができる。この段階でガラス化は蒸発による損失を減すため、フッ素を含む雰囲気中で行ってもよい。
【0049】
環42は基本的にゲルマニウムをドープしたシリカから成る。+0.07%の名目上のデルタは、約1重量%のゲルマニウム濃度を必要とし、外部クラッドに比べ屈折率の≧0.05%の増加は、モードの広がりを制限し、本質的に曲げ損を減すために、効果的である。環の名目上の幅は、1.5μmである。ここでこの領域はMCVD又はOVDの数堆積層又は単一の軸方向に成長したVAD層に対応する。外部クラッド43はアンドープシリカである。それは全体が標準的な気相輸送ファイバ作製プロセスの1つで堆積させた材料で成ってもよく、部分的に合成プリフォームの一部を形成する外部クラッド管から生成させてもよい。外部クラッドは環42の外径から、典型的な場合、名目上125μmo.d.のファイバの外径まで延びる。
【0050】
表1は図1に示されたMWF14の屈折率分布を指定する9つのパラメータの値を要約したものである。
【0051】
【表1】
Figure 0003732669
“名目値”と印した列中にあげた値は、所望のモード場半径、分散分布及び曲げ損を得るための目標値である。“予想される許容度”と印した列中にあげた値は、分散を名目値前後の±1ps/nm−kmの範囲内に保つために必要な範囲を規定した。
【0052】
表2はMWFのパラメータの値の範囲を示す。示された値は個々のパラメータの最小値及び最大値で、それらをとり入れることが設計上の決りではないことを記憶する必要がある。たとえば、示されたすべてのパラメータの最大値を組合せるか、あるいは最小値を組合せることによって、効果的な設計が得られる可能性は小さい。効果的な設計は、上述の移動と勾配平坦化の両方を満さなければならない。
【0053】
【表2】
Figure 0003732669
一般的に行うことと一致するのは、両方の表及びその他の所にある分布の値のデルタ値に関してである。これを実施することは、2つの点で有用である。すなわち、屈折率の絶対値を測定することは困難である。そのため第一近似として、損失を除いて、ファイバパラメータは屈折率の絶対値ではなく相対値を計る。図4のファイバのアンドープシリカ外部クラッドを、低濃度ドープ材料で置き代えても、他の領域(コア、溝、環)をそれに従って変える限り、すなわちデルタ値を変えない限り、分散勾配には一次近似では影響はない。外部クラッドの屈折率を増加させても、そのような特性にほとんど影響はないが、Δを保つためにコアドーパント濃度を増加させるための要件は、損失を望ましくないレベルまで増加させる可能性がある。たとえば適当なMCVD基板管又は外部クラッド管を用いることにより、MCVDはそのような低濃度ドープ領域を得ることを容易にする。
【0054】
図5A−5B、6A−6B及び7A−7Bは検討した様々な設計と分散の変化を示す。図6A−6Bは図4のファイバの例である(2つの環状領域、すなわち屈折率の低い“溝”61及び屈折率の高い“環”62、中間コア60及び外部クラッド63)。図5A−5Bは単一の環状領域51(溝51)、中間コア50及び外部クラッド52を有するMWF設計を表わす。図7A−7Bはコア70の周囲に3つの環状領域71、72、73を生じる構造に基く。3つの一連の領域は、外部クラッド74に比べ、順次屈折率が低下、増加、低下している。図6A及び7Aの分布は特徴的な“MCVDくぼみ”すなわちくぼんだ領域64及び75を含むが、図5の概略的な分布は含まない。検討には各種の分布、デルタ値の多くのよりゆるやかな変化、追加された領域を含む多くのものが含まれた。一般的に、そのような変化に関する設計上の決りは、一般的な経験と一致する。
【0055】
各種領域の機能について述べてきた。商業的なMWF生産では必然的に少くとも第1の環、すなわち表2に示された少くとも1つの屈折率の“溝”を含むと予想される。この第1の溝領域は、両方の窓で同時にWDM動作させるのに必要な分散平坦化に必要である。第2の環状領域−“環”−は誘導強度を増す(曲げ損を減す)効果をもち、一方平坦化にはほとんど効果をもたないことが示された。平坦化には相対的になお小さな効果しかもたない第3の環は、ファイバ特性を微調整するために用いられてきた。すべての図がプロトタイプの構造のよく規定された領域を示すことが、認識されるであろう。実際の構造は意図的又は意図しない周知の変化を示す可能性があり、知られた効果をもつ。
【0056】
図8は基本被覆82及び第2の被覆82を有する二重被覆MWF80を示す。ファイバ80はコア領域83及びクラッド領域84から成る。クラッドは溝85と外部クラッド86を含むように示されている。
【0057】
図9はエイ・ティ・アンド・ティ・ライトガイド・ケーブル(AT&T Lightguide Cable)1990年12月に述べられている1つの形の商業用ケーブルを示す。それは2つの束90から成り、各束は12のカラーコードファイバ91を含み、周囲の被膜92により、ともに保持されている。個々のファイバ91は図8と同じ一般的な設計によるが、この例ではカラーコードをつけた第3の被膜を含む。完成した構造は、ケーブル充填化合物94、コア管93及びそれぞれ防水テープ95で作られた2つの保護構造及びポリエチレンジャケット96を含み、各構造は鋼ワイヤ97によりおさえられている。
【0058】
図10はアキュリボン(Accu Ribbon)として知られる市販の並列ファイバアレイを示す。商用品は12のファイバ100と母体材料101から成る。
【0059】
図11は平坦アレイ110の形のグループ化されたファイバを含むケーブルを示す。ケーブル充填化合物112で外装111は大ざっぱに満されている。示されている具体的な構造は、防水ケーブルで、導電性シールド113、被覆ステンレススチール保護層114及び接続されたジャケット115を構成する被覆を含む。
【0060】
ファイバ作製
MWF設計は分散勾配を減すような分布にした。最も効果的な平坦化は、急峻な屈折率変化の導入に依存する。1つのファイバ作製プロセスMCVDは、特に有用である。従来のMCVD堆積は、層毎の堆積を可能にし、次の層を堆積させる前に、各層を本質的に固化(ガラス化)することにより、層間でのドーパントの拡散を最小にする。これは通常のスートプロセス、外部気相堆積(OVD)又は気相軸堆積(VAD)のいずれもが目的としたことであるが、良く適合しない。そのようなスートプロセスは、急峻な勾配をより保持できるよう、修正できる。たとえば、周期的に堆積を停止するか、各堆積層又は層グループ毎に固化工程を行うというように、段階的に固化するようにする。一般にMCVDで行われる被覆プロセスも、有用である。将来のMWFは厳しく低濃度ドープされたクラッド管を用いる可能性がある。MCVD支持管は、プリフォーム作製の流れの中でその内部の堆積が行われるが、その後の堆積中、ドーパントの移動に対して抵抗をもつ低濃度ドープ(又はアンドープ)領域を生じさせる可能性がある。先に述べたスートプロセスの変形、内部気相堆積(IVD)は、MCVD支持管の目的をかなえる可能性があると考えられる。
【0061】
システム
首都光波ファイバは二重動作、特に二重窓WDM動作に必要な分散補償の必要なく、NZF又はUSFで高容量システム動作を提供する。連結するか、高分散特性ファイバの使用により、補償することは、原理的には少くとも、NZF又はUSFがその“閉じた”窓の中で動作することを可能にする。しかし、分散補償は費用がかかり、工業的複雑さをつけ加える。特性上MWFファイバと等しくはないが、二重窓動作は容量は小さいが、単純に移動させた(しかし平坦化されていない)ファイバで与えられる。そのようなファイバ、たとえば図1のファイバ15はDSFの分散勾配と似た勾配をもつが、分散平坦化は付随しておらず、たとえばMWFの屈折率が低下した“溝”を有し、その交差は水ピーク内の波長に移動している。そのような“移動しているが平坦化されていないファイバ”(SUF)の可能性のある利用は、上述のシステム中で考えられる。性能の点からはMWFに劣るが、含まれるファイバの作製は少く、費用面の利点が生じる。
【0062】
図12の首都光波システムの例である。概略図は首都バックボーン環120及び121、一般にソネット(SONET)環として構成されるものを含む。環は10−40km長のノードスパン123を規定する8ないし16のノード122を含む。環周囲は典型的な場合、120−200kmである。通常のノード122には、光増幅器及びチャネルをつけ加えるか削除する手段が備っている。指定されたチャネルがノードでつけ加えられるか削除され、一方同時に、他のチャネルは恐らく増幅され、環の中に保持され、次のノードに伝えられる。図は共通のノードを通して接続された2つの環120及び121を示す。動作中、任意のチャネルは任意の特定のノードから他の任意のチャネルへ、あるいは同じ環の上で、又は隣接した環上で伝播できる。設計の経験から、300km程度の最大“波長路”が日常的に導かれた。
【0063】
各ノード122は光線路(“WDM”又は“DWDM”、そのような用語で、現在のWDMに基本的な多重化/デマルチプレクス機能を果す要素をさす。)を含む可能性がある。ノードは追加/削除を行うことを含んでもよい。追加/削除装置には、光ではなく電気信号の局所的な分布が伴い、O/E又はE/O変換の手段を含まなければならない。2つの従来の形の局所的分布が示されている。すなわちアクセス環124とアクセススター125である。光学的な局所的分布が電気的分布に代ることは、予測される。光学的な分布システムは環又はスターの形をとり続ける可能性がある。恐らく、本発明の首都光波ファイバで構成されるであろう。ただし、より低価格のUSFがこの目的に適する可能性はある。図は長距離回路網126及び127で作られた接続を示す。上述のように、長距離用に首都光波ファイバを用いることは、除外されない。しかし、通常の長距離用には、NZFファイバの形が好ましくあり続けると予測される。
【0064】
図13は多段1310/1550nm光増幅器を概略的に表わし、図12の首都バックボーン環のノード中に含まれる増幅器を表わす。図示されている増幅器は、特許請求の範囲に述べられたシステムと用いるのに適し、両方の窓内のWDMチャネルセットを同時に増幅する。図示されている増幅器は、入力ファイバ線130に入る時、2つの帯域、1310帯及び1550帯を最初に分離する。帯域の分離は、“荒いWDM”132とよぶのが適切であるWDM132により行われる。(WDMチャネルセットの近接したチャネルを伴った経路とそれを別けるためにこうよぶ。)1310nm及び1550nm帯は、132で分離され、荒いWDM135がそれらを要素WDMセット中に分離するまで、それぞれファイバ133及び134に沿って、経路を進む。1310nm帯は3つのWDMセット136、137及び138を生じるように示されている。次にそれらは増幅器139、140及び141を通り、荒いWDM140で再結合される。同時に、1550帯は増幅器145、146、147、148においてそれぞれ増幅されるように、WDMセット141、142、143、144に分離され、荒いWDM149により、再結合する。最後に、増幅されたセットはファイバ線150及び151を通って伝播し、荒いWDM152により再結合し、線153を出る。
【0065】
図13の多段増幅器は、現在の技術の観点で設計された。進んだWDM中でのEDFAの重要さは、恐らく12nmであるその最初の利得帯域とWDMセットの要素チャネルを同時に増幅できる能力のためであり、認識されている。現在のEDFAは恐らく35ないし40nmのより大きな帯域をもち、それは自然に生じる利得スペクトルの構造を減す利得平滑化フィルタの使用による。この広がった帯域ですら1550帯全体に対しては不十分で、本発明によって実現され、1460nmから1620nmの160nmの範囲を含む。図に示された構成により、4つの増幅器ができるが、147及び148のみがエルビウムドープファイバで構成される。示された設計は、増幅器145及び146はラマン増幅器で、1550nm帯のより短い波長部分で動作すると仮定している。1310帯のWDMセットも、ラマン増幅器により増幅される。増幅器139、140及び141は3つのサブバンド136−138を伴うよう設計され、これらはともにたとえばMWFで得られる使用可能な1260nm−1360nm窓を表わす。
【0066】
多段の非常に広帯域光増幅器の設計に、かなりの努力が払われてきた。エレクトロニック・レターズ(Elect. Lett.)第33巻,第8号,1997年4月10日、710,711頁のエム・ヤマダ(M.Yamada)らによる論文は、代表的なものである。示されている並列構成は2つのエルビウムドープファイバ増幅器を結びつけ、第1のものは従来のシリカを基本とするガラスを用い、1550nmに中心を置く増幅帯域で動作し、第2のものはエルビウムドープのフッ化物を基本とするガラスを用い、1580nmに中心を置く増幅帯域で動作する。直列接続した構造は、設計者によって、54nmの平坦な増幅帯域をもつとみなされている。
【0067】
1550nm光帯域で80nmの増幅が示されている。ヤン・スン(Yan Sun)らによる論文、1997年第11回集積光学及び光ファイバ通信に関する国際コンファレンス及び第23回光通信に関するヨーロッパコンファレンスプロシーディングズ(Proceedings of the 1997 11thInternational Conference on Integrated Optics and Optical Fibre Communications and 23rd European Conferenceon Optical Communications)IOOC−ECOC’97,(5の中の)第5部、9/22−25/97は、二帯域構成(1570−1600nm“L帯”及び1525nm−1565nm“C帯”)について述べており、二段階を伴う。第1は両方の帯域に共通で、第2段階は並列に別の利得部分をもつ。80nmのその帯域で、この増幅器は100GHzの間隔の提案されたITU標準チャネルを有する100WDMチャネルを伴う。
【0068】
1550nm窓内の2つの短い波長とともに、1310nm窓内で動作するように示されたラマン増幅器は、25−30nmの使用可能な帯域を可能にした(1997年4月22日に承認された米国特許第5,623,508号を参照のこと)。現在の技術のEDFAと同程度に、現在使える1260−1360nmの主要部分の1310nm窓は、三段ラマン増幅器を伴う。
【図面の簡単な説明】
【図1】縦軸に色分散、横軸に波長をとり、MWFを含む各種ファイバ設計の典型的な特性をプロットしたもので、プロットされたデータは両方の窓を含む波長範囲に延びる図である。
【図2】分散と波長の軸で、分散をプロットしたもので、例として示したMWF設計についての名目上の値と名目上の値からの予想される生産上のずれを示す図である。
【図3】図2上でプロットされたファイバについての波長の関数としての分散勾配をプロットした図である。
【図4】デルタ値(Δ)と半径方向の位置を軸に、例1のMWFについて屈折率分布をプロットした図である。
【図5A】別のMWF構造について、屈折率分布と名目上の分散を対でプロットしたもので、それらをともにとると、特定の動作特性を達成するための設計変更を議論する基礎として役立つ図である。
【図5B】別のMWF構造について、屈折率分布と名目上の分散を対でプロットしたもので、それらをともにとると、特定の動作特性を達成するための設計変更を議論する基礎として役立つ図である。
【図6A】別のMWF構造について、屈折率分布と名目上の分散を対でプロットしたもので、それらをともにとると、特定の動作特性を達成するための設計変更を議論する基礎として役立つ図である。
【図6B】別のMWF構造について、屈折率分布と名目上の分散を対でプロットしたもので、それらをともにとると、特定の動作特性を達成するための設計変更を議論する基礎として役立つ図である。
【図7A】別のMWF構造について、屈折率分布と名目上の分散を対でプロットしたもので、それらをともにとると、特定の動作特性を達成するための設計変更を議論する基礎として役立つ図である。
【図7B】別のMWF構造について、屈折率分布と名目上の分散を対でプロットしたもので、それらをともにとると、特定の動作特性を達成するための設計変更を議論する基礎として役立つ図である。
【図8】従来の実施例に従い二重被覆されたMWFの透視図である。
【図9】グループ化した首都光波ファイバを含むケーブル構造の1つの形の透視図である。
【図10】アキュリボン並行ファイバアレイの透視図である。
【図11】いくつかの図10のファイバアレイを含むケーブルの透視図である。
【図12】首都ファイバシステムの概略図である。
【図13】二重窓WDM動作に適合し、図12のシステム中で用いるのに適した多段光増幅器の概略図である。
【符号の説明】
10、11 領域
12、13 曲線
14 曲線、MWF曲線、MWF
15 曲線
20、21、22 曲線
30 曲線
40 コア、コア領域
41 低屈折率領域、溝
42 環
43 クラッド、外部クラッド領域
44 くぼみ
50 コア
51 溝、環状領域
52 クラッド
60 中間コア
61 溝
62 環
63 クラッド
64 領域
70 コア
71、72、73 環状領域
74 クラッド
75 領域
80 MWF、ファイバ
81 基本被覆
82 被覆
83 コア領域
84 クラッド領域
85 溝
86 クラッド
90 束
91 ファイバ
92 被膜
93 コア管
94 ケーブル充填化合物
95 防水テープ
96 ジャケット
97 鋼ワイヤ
100 ファイバ
101 母体材料
110 平坦アレイ
111 外装
112 ケーブル充填化合物
113 シールド
114 保護層
115 ジャケット
120、121 首都バックボーン環、環
122 ノード
123 ノードスパン、ノード
124 アクセス環
125 アクセススター
126、127 回路網
130 ファイバ線
132、134 ファイバ
135 WDM
136、137、138 WDMセット、サブバンド
139 増幅器
140 増幅器、WDM
141 増幅器、WDMセット
142、143、144 WDMセット
145、146、147、148 増幅器
149 WDM
150、151 ファイバ線
152 WDM
153 線

Claims (10)

  1. 波長分割多重システムで用いるのに適した少くとも1つの光ファイバを含み、ファイバはコア及びクラッドを含み、0.25dB/km以下の1550nmにおける減衰を有し、1300nmより小さな遮断波長と、0.06ps/(nm−km)以下の1550nmにおける分散勾配を有し、ファイバは少くとも2.2kmのファイバ長で測定して、正の符号と1.0−8.0ps/nm−kmの範囲の大きさの1550nmにおける色分散の平均値をもつ製品において、
    前記ファイバは、42μm 以上の1550nmにおける実効面積(A eff )を有し、そして1350nmないし1450nmの波長範囲内に分散ゼロ点を有し、少くとも2.2kmのファイバ長で測定して、負の符号と1.0−8.0ps/nm−kmの範囲の大きさの1310nmにおける色分散の平均値をもつことを特徴とする製品。
  2. ファイバは被膜の中に包まれ、クラッドの屈折率は半径方向に測定すると変化し、クラッドは外部クラッド及びコアと外部クラッドの中間の第1の環状領域から成り、第1の環状領域は外部クラッドに比べ屈折率が低い請求項1記載の製品。
  3. クラッドは第1の環状領域に隣接した第2の環状領域を含み、第2の環状領域は外部クラッドに比べ屈折率が高い請求項2記載の製品。
  4. クラッドは第2の環状領域に隣接した第3の環状領域を含み、第3の環状領域は外部クラッドに比べ屈折率が低い請求項3記載の製品。
  5. ファイバは該ファイバに直接接触する基本的な被膜と基本的な被膜の周囲の第2の被膜を含む二重被膜内に包まれている請求項2記載の製品。
  6. 光ファイバの伝送線を含み、伝送線は第1及び第2の端子を接続する少くとも1つのファイバスパンを含み、第1の端子は該ファイバスパン中に導入するため第1のシステム波長の変調された複数のWDMチャネルキャリヤの第1の組を発生し、変調し及び多重化する該第1の手段を含み、第2の端子は該変調された該複数のチャネルキャリヤの第1の組をデマルチプレクスすることを含む機能を果すための第2の手段を含み、該ファイバスパンは光増幅器を含み、ファイバスパンの少くとも90%は、+1.0ないし+8.0ps/nm−kmの範囲の1550nmにおける色分散の平均値と0.25dB/km以下の1550nmにおける平均減衰をもつ非ゼロ分散ファイバから成り、ファイバスパンは少くとも1つの光増幅器を含み、該第1のシステム波長は非ゼロ分散ファイバの第1の低減衰窓内にあり、該第1の窓は1550nmを含む第1の波長帯域からなるWDM光導波システムにおいて、
    前記非ゼロ分散ファイバは、42μm 以上の1550nmにおける実効面積(A eff )を有し、そして1350nmないし1450nmの波長範囲内の分散ゼロ点、−1.0ないし−8.0ps/nm−kmの範囲内の1310nmにおける色分散の平均値及び0.50dB/km以下の1310nmにおける減衰をもち、該第1の端子は前記ファイバスパン中に導入するため第2のシステム波長の変調された複数のWDMチャネルキャリヤの第2の組を発生し、変調し、多重化する第3の手段を含み、該第2の端子は該変調された該複数のチャネルキャリヤの第2の組をデマルチプレクスすることを含む機能を果すための第4の手段を含み、該第2のシステム波長は非ゼロ分散ファイバの第2の低減衰窓内にあり、該第2の窓は1310nmを含む第2の波長帯域からなることを特徴とするシステム。
  7. ファイバスパンは複数のノードスパンを含み、各ノードスパンはファイバノードを相互に接続する一定の長さの非ゼロ分散ファイバを含み、少くともいくつかのノードは、第1及び第2の組の変調された複数のチャネルキャリヤを増幅するための光増幅手段を含み、少くともいくつかのノードは選択された組のキャリヤをつけ加えるか、削除するための手段を含む請求項6記載のシステム。
  8. ファイバスパンは首都バックボーン環の一部である請求項7記載のシステム。
  9. 少くともいくつかのノードには、選択された組のキャリヤを分布させるためのアクセスラインが接続される請求項8記載のシステム。
  10. 前記光増幅手段は第1及び第2の組の変調された複数のチャネルキャリヤ内の少くとも選択されたチャネルを同時に増幅するための多段増幅器を含む請求項7記載のシステム。
JP03962699A 1998-02-18 1999-02-18 二重窓wdm光ファイバ通信 Expired - Lifetime JP3732669B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/025,195 US5905838A (en) 1998-02-18 1998-02-18 Dual window WDM optical fiber communication
US09/025195 1998-02-18

Publications (2)

Publication Number Publication Date
JPH11281840A JPH11281840A (ja) 1999-10-15
JP3732669B2 true JP3732669B2 (ja) 2006-01-05

Family

ID=21824596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03962699A Expired - Lifetime JP3732669B2 (ja) 1998-02-18 1999-02-18 二重窓wdm光ファイバ通信

Country Status (6)

Country Link
US (1) US5905838A (ja)
EP (1) EP0938001B1 (ja)
JP (1) JP3732669B2 (ja)
CA (1) CA2260478C (ja)
DE (1) DE69943364D1 (ja)
TW (1) TW429326B (ja)

Families Citing this family (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10173264A (ja) * 1996-12-09 1998-06-26 Kokusai Denshin Denwa Co Ltd <Kdd> 利得等化装置
US6236496B1 (en) * 1996-12-11 2001-05-22 Nippon Telegraph And Telephone Corporation Optical fiber amplifier and optical amplification method
US6052393A (en) * 1996-12-23 2000-04-18 The Regents Of The University Of Michigan Broadband Sagnac Raman amplifiers and cascade lasers
US6049418A (en) * 1998-02-06 2000-04-11 Lucent Technologies, Inc. Noise figure in optical amplifiers with a split-band architecture
US6602002B1 (en) * 1998-02-20 2003-08-05 Lucent Technologies Inc. High capacity optical transmission arrangement
US6600592B2 (en) 1998-03-24 2003-07-29 Xtera Communications, Inc. S+ band nonlinear polarization amplifiers
US6631028B1 (en) * 1998-03-24 2003-10-07 Xtera Communications, Inc. Broadband amplifier and communication system
US6760148B2 (en) 1998-03-24 2004-07-06 Xtera Communications, Inc. Nonlinear polarization amplifiers in nonzero dispersion shifted fiber
US6597493B2 (en) * 2000-05-05 2003-07-22 The Regents Of The University Of Michigan Nonlinear fiber amplifiers used for a 1430-1530nm low-loss window in optical fibers
US6356384B1 (en) * 1998-03-24 2002-03-12 Xtera Communications Inc. Broadband amplifier and communication system
US6101024A (en) 1998-03-24 2000-08-08 Xtera Communications, Inc. Nonlinear fiber amplifiers used for a 1430-1530nm low-loss window in optical fibers
US6693737B2 (en) 1998-03-24 2004-02-17 Xtera Communications, Inc. Dispersion compensating nonlinear polarization amplifiers
US6396986B1 (en) 1998-04-22 2002-05-28 Corning Incorporated Method of making optical fibers
JP2002514017A (ja) * 1998-05-01 2002-05-14 コーニング インコーポレイテッド 分布増幅をもつ分散制御光導波路及びシステム
US6359725B1 (en) 1998-06-16 2002-03-19 Xtera Communications, Inc. Multi-stage optical amplifier and broadband communication system
US6618192B2 (en) 1998-06-16 2003-09-09 Xtera Communications, Inc. High efficiency raman amplifier
US6335820B1 (en) 1999-12-23 2002-01-01 Xtera Communications, Inc. Multi-stage optical amplifier and broadband communication system
US6574037B2 (en) 1998-06-16 2003-06-03 Xtera Communications, Inc. All band amplifier
FR2780165B1 (fr) * 1998-06-17 2003-06-13 Fort Fibres Optiques Rech Tech Fibre optique munie d'un revetement de protection et procede de fabrication de cette fibre
US6321016B1 (en) * 1998-06-19 2001-11-20 Pirelli Cavi E Sistemi S.P.A. Optical fiber having low non-linearity for WDM transmission
KR100636332B1 (ko) 1998-09-21 2006-10-19 피렐리 카비 에 시스테미 소시에떼 퍼 아찌오니 확장 파장 밴드용의 광파이버
US6151160A (en) * 1998-10-05 2000-11-21 Tyco Submarine Systems Ltd. Broadband Raman pre-amplifier for wavelength division multiplexed optical communication systems
FR2784198B1 (fr) * 1998-10-05 2002-08-30 Cit Alcatel Fibre optique utilisable pour systeme de transmissions a multiplexage en longueur d'onde
KR100642035B1 (ko) * 1998-11-26 2006-11-03 스미토모덴키고교가부시키가이샤 광 파이버 및 이를 포함하는 광 전송 시스템
KR100342711B1 (ko) * 1998-12-17 2002-10-25 엘지전선 주식회사 삼중클래드의분산이동광섬유
CA2355124C (en) 1998-12-18 2011-07-19 Pirelli & C. S.P.A. Optical fiber for metropolitan and access network systems
EP1149479B1 (en) 1998-12-18 2006-03-15 Prysmian Cavi e Sistemi Energia S.r.l. Optical system and method having low loss and non-linear effects
JP4316146B2 (ja) * 1999-02-22 2009-08-19 古河電気工業株式会社 光伝送路およびその光伝送路に用いられる負分散光ファイバおよび光伝送路を用いた光伝送システム
US6385384B1 (en) * 1999-03-15 2002-05-07 Corning Incorporated Glasses containing rare earth fluorides
TW451088B (en) * 1999-04-16 2001-08-21 Sumitomo Electric Industries Optical fiber and optical transmission line including the same
US6317549B1 (en) * 1999-05-24 2001-11-13 Lucent Technologies Inc. Optical fiber having negative dispersion and low slope in the Erbium amplifier region
US6970451B1 (en) * 1999-10-12 2005-11-29 At&T Corp. Smart routers-simple optics: network architecture for IP over WDM
CN1391657A (zh) 1999-11-22 2003-01-15 康宁股份有限公司 有效面积大的色散位移波导光纤
JP2001159722A (ja) * 1999-12-02 2001-06-12 Sumitomo Electric Ind Ltd 多心光ファイバおよび多心光ファイバ製造方法
JP2001166173A (ja) 1999-12-13 2001-06-22 Sumitomo Electric Ind Ltd 光ファイバ
JP2001215346A (ja) * 2000-02-07 2001-08-10 Sumitomo Electric Ind Ltd 光伝送路および光伝送システム
CA2368327A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd Low-dispersion optical fiber and optical transmission system using the low-dispersion optical fiber
JP2007293351A (ja) * 2000-02-25 2007-11-08 Furukawa Electric Co Ltd:The 低分散光ファイバおよびその低分散光ファイバを用いた光伝送システム
US7027698B2 (en) * 2000-03-03 2006-04-11 Pirelli Cavi E Sistemi S.P.A. Optical fiber for WDM transmission
DE10010783A1 (de) * 2000-03-04 2001-09-06 Deutsche Telekom Ag Breitbandige WDM-Faser mit flachem Dispersionsverlauf im zweiten optischen Fenster
JP2002158636A (ja) * 2000-03-29 2002-05-31 Hitachi Ltd 光伝送装置およびその監視システム
US6567208B1 (en) * 2000-04-25 2003-05-20 Sprint Communications Company, L.P. Amplification of a C-band and L-band of a optical signal using a common laser signal
US6433920B1 (en) 2000-04-27 2002-08-13 Jds Uniphase Corporation Raman-based utility optical amplifier
AU2001280556A1 (en) * 2000-07-14 2002-01-30 Tycom (Us) Inc. Method and apparatus to perform hybrid optical amplification
JP2004519701A (ja) 2000-08-16 2004-07-02 コーニング・インコーポレーテッド 大なる実効面積、低分散且つ低分散傾斜を有する光ファイバ
ATE492077T1 (de) * 2000-08-31 2011-01-15 Prysmian Spa Optische übertragungsverbindung mit einem faser mit geringer disperionssteilheit und raman- verstärkung
US6941054B2 (en) * 2000-08-31 2005-09-06 Pirelli S.P.A. Optical transmission link with low slope, raman amplified fiber
JP2002094157A (ja) * 2000-09-19 2002-03-29 Sumitomo Electric Ind Ltd 光増幅器及びそれを用いた光伝送システム
US20020048070A1 (en) * 2000-10-25 2002-04-25 Gabitov Ildar R. System and method for optical fiber telecommunication by simultaneous transmission in two optical windows
JP2002162529A (ja) * 2000-11-28 2002-06-07 Furukawa Electric Co Ltd:The 光ファイバおよびその光ファイバを用いた光通信システム
US6611647B2 (en) * 2000-12-12 2003-08-26 Corning Incorporated Large effective area optical fiber
US20020196430A1 (en) * 2000-12-22 2002-12-26 May Gregory D. Measuring optical signal power in an optical system
US20020150333A1 (en) * 2001-02-17 2002-10-17 Reed William Alfred Fiber devices using grin fiber lenses
US6542665B2 (en) * 2001-02-17 2003-04-01 Lucent Technologies Inc. GRIN fiber lenses
US6760112B2 (en) 2001-02-17 2004-07-06 Lucent Technologies Inc. Grin-fiber lens based optical endoscopes
US20020140942A1 (en) * 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
CA2340848A1 (en) * 2001-03-15 2002-09-15 John D. Mcnicol Dispersion management for long-haul high-speed optical networks
US6532101B2 (en) 2001-03-16 2003-03-11 Xtera Communications, Inc. System and method for wide band Raman amplification
US6810214B2 (en) 2001-03-16 2004-10-26 Xtera Communications, Inc. Method and system for reducing degradation of optical signal to noise ratio
JP4443788B2 (ja) 2001-03-30 2010-03-31 古河電気工業株式会社 光ファイバおよびその光ファイバを用いた光通信システム
JP2002311280A (ja) * 2001-04-16 2002-10-23 Kddi Submarine Cable Systems Inc 光ファイバケーブルの製造方法
US20020163685A1 (en) * 2001-05-01 2002-11-07 Swanson Eric Arthur System and method for routing working and protect paths
JP2003021743A (ja) * 2001-07-09 2003-01-24 Furukawa Electric Co Ltd:The 光ファイバおよび該光ファイバを用いた光伝送システム
JP2003029071A (ja) * 2001-07-16 2003-01-29 Furukawa Electric Co Ltd:The 光ファイバテープ心線およびそれを用いた光ファイバモジュール
US6587259B2 (en) 2001-07-27 2003-07-01 Xtera Communications, Inc. System and method for controlling noise figure
US6927898B2 (en) * 2001-08-15 2005-08-09 Photon-X, Llc Ultra-wide bandwidth optical amplifier
US6556744B1 (en) * 2001-10-12 2003-04-29 Nortel Networks Limited Reduction of dispersion effects in optical transmission fibre systems
JP2003156649A (ja) * 2001-11-19 2003-05-30 Furukawa Electric Co Ltd:The 光ファイバ
US7196840B2 (en) * 2001-11-29 2007-03-27 Broadband Royalty Corporation Amplitude balancing for multilevel signal transmission
US6657777B1 (en) * 2001-12-05 2003-12-02 Cisco Technology, Inc Interleaved lumped raman amplifier structure based on highly nonlinear fibers for densely spaced WDM channels
US6633715B2 (en) * 2001-12-06 2003-10-14 Fitel Usa Corp. Optical fiber having negative dispersion, negative dispersion slope and large effective area
US20030202770A1 (en) * 2002-01-03 2003-10-30 Garito Anthony F. Optical waveguide amplifiers
JP2003279780A (ja) 2002-01-15 2003-10-02 Sumitomo Electric Ind Ltd 光ファイバ、光ファイバテープ、光ケーブル及び光ファイバ付き光コネクタ
JP2003287642A (ja) * 2002-01-22 2003-10-10 Fujikura Ltd 光ファイバ及び光伝送路
US6856744B2 (en) * 2002-02-13 2005-02-15 The Furukawa Electric Co., Ltd. Optical fiber and optical transmission line and optical communication system including such optical fiber
EP1474712A1 (en) 2002-02-15 2004-11-10 Corning Incorporated Low slope dispersion shifted optical fiber
US6819478B1 (en) 2002-03-15 2004-11-16 Xtera Communications, Inc. Fiber optic transmission system with low cost transmitter compensation
US7058311B1 (en) 2002-03-15 2006-06-06 Xtera Communications, Inc. System and method for dispersion compensation in an optical communication system
US6778321B1 (en) 2002-03-15 2004-08-17 Xtera Communications, Inc. Fiber optic transmission system for a metropolitan area network
US7197245B1 (en) 2002-03-15 2007-03-27 Xtera Communications, Inc. System and method for managing system margin
US7116905B2 (en) 2002-03-27 2006-10-03 Fujitsu Limited Method and system for control signaling in an open ring optical network
US7231148B2 (en) * 2002-03-28 2007-06-12 Fujitsu Limited Flexible open ring optical network and method
US7076163B2 (en) * 2002-03-27 2006-07-11 Fujitsu Limited Method and system for testing during operation of an open ring optical network
US6842562B2 (en) * 2002-05-30 2005-01-11 Fujitsu Network Communications, Inc. Optical add/drop node and method
NL1020780C2 (nl) * 2002-06-06 2004-01-06 Draka Fibre Technology Bv Single mode optische vezel, alsmede optisch communicatiesysteem.
JP2004037503A (ja) * 2002-06-28 2004-02-05 Furukawa Electric Co Ltd:The 光ファイバ
CN100367053C (zh) * 2002-06-28 2008-02-06 古河电气工业株式会社 适于波长分割多路复用系统的光纤及其制造方法
US6879434B2 (en) * 2002-07-11 2005-04-12 Fujitsu Network Communications, Inc. Distributed raman amplifier for optical network and method
US20040022509A1 (en) * 2002-07-31 2004-02-05 Pushkar Tandon Non-zero dispersion shifted optical fiber with depressed core having large effective area, low slope and low dispersion
WO2004011975A1 (en) * 2002-07-31 2004-02-05 Corning Incorporated Non-zero dispersion shifted optical fiber having large effective area, low slope and low zero dispersion
WO2004025346A1 (ja) * 2002-09-11 2004-03-25 The Furukawa Electric Co.,Ltd. 低偏波モード分散特性の光ファイバテープ心線及びその心線の動的粘弾性測定法
US20040052486A1 (en) * 2002-09-13 2004-03-18 Fitel Usa Corp. Optical fibers and modules for dispersion compensation with simultaneous raman amplification
US6931176B2 (en) * 2002-11-21 2005-08-16 Tropic Networks Inc. Reconfigurable optical add/drop multiplexer with buried dispersion compensation module
FR2849213B1 (fr) 2002-12-24 2005-03-04 Cit Alcatel Fibre optique
US7103251B2 (en) * 2002-12-31 2006-09-05 Corning Incorporated Dispersion flattened NZDSF fiber
KR100506311B1 (ko) * 2003-01-20 2005-08-05 삼성전자주식회사 광대역 분산 제어 광섬유
KR100575934B1 (ko) * 2003-01-22 2006-05-02 삼성전자주식회사 광섬유
US7209620B2 (en) * 2003-01-23 2007-04-24 Sterlite Optical Technologies Limited Dispersion optimized fiber having higher spot area
US7054059B1 (en) 2003-05-14 2006-05-30 Cisco Technoloy, Inc. Lumped Raman amplification structure for very wideband applications
DE10343615A1 (de) * 2003-09-20 2005-04-14 Marconi Communications Gmbh Netzknoten für ein optisches Nachrichtenübertragungsnetz
US7164833B2 (en) * 2003-09-24 2007-01-16 Fitel U.S.A. Corp. Optical fiber for improved performance in S-, C- and L-bands
US7006742B2 (en) * 2004-07-12 2006-02-28 The Furukawa Electric Co., Ltd. Highly nonlinear optical fiber and highly nonlinear optical fiber module
US7450851B2 (en) * 2004-08-27 2008-11-11 Fujitsu Limited System and method for modularly scalable architecture for optical networks
CN101583891A (zh) * 2005-11-23 2009-11-18 康宁股份有限公司 低衰减非零色散位移光纤
FR2941540B1 (fr) * 2009-01-27 2011-05-06 Draka Comteq France Fibre optique monomode presentant une surface effective elargie
US9825726B2 (en) 2016-01-25 2017-11-21 Tyco Electronics Subsea Communications Llc Efficient optical signal amplification systems and methods
US9967051B2 (en) 2016-01-25 2018-05-08 Tyco Electronics Subsea Communications Llc Efficient optical signal amplification systems and methods
US11561352B2 (en) 2020-04-01 2023-01-24 Mellanox Technologies, Ltd. High density optical I/O inside a data center switch using multi-core fibers
US11630274B2 (en) 2020-04-01 2023-04-18 Mellanox Technologies, Ltd. High-density optical communications using multi-core fiber
US11378765B2 (en) 2020-05-25 2022-07-05 Mellanox Technologies, Ltd. Intra data center and inter data center links using dual-wavelength multimode/singlemode multi-core fiber
US20230384513A1 (en) * 2020-10-22 2023-11-30 Ofs Fitel, Llc Increasing total data capacity in optical transmission systems
US11303379B1 (en) 2020-11-05 2022-04-12 Mellanox Technologies, Ltd. Communication between data centers using a multi-core fiber

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217027A (en) * 1974-02-22 1980-08-12 Bell Telephone Laboratories, Incorporated Optical fiber fabrication and resulting product
US4372647A (en) * 1979-10-08 1983-02-08 Nippon Telegraph & Telephone Public Corporation Single mode optical fibers
US4435040A (en) * 1981-09-03 1984-03-06 Bell Telephone Laboratories, Incorporated Double-clad optical fiberguide
US5327516A (en) * 1993-05-28 1994-07-05 At&T Bell Laboratories Optical fiber for wavelength division multiplexing
CA2139957C (en) * 1994-02-18 1999-02-09 Andrew R. Chraplyvy Multi-channel optical fiber communication system
US5715346A (en) * 1995-12-15 1998-02-03 Corning Incorporated Large effective area single mode optical waveguide
JPH09233053A (ja) * 1995-12-22 1997-09-05 Furukawa Electric Co Ltd:The 光信号伝送方法
US5623508A (en) * 1996-02-12 1997-04-22 Lucent Technologies Inc. Article comprising a counter-pumped optical fiber raman amplifier
US5611016A (en) * 1996-06-07 1997-03-11 Lucent Technologies Inc. Dispersion-balanced optical cable

Also Published As

Publication number Publication date
CA2260478A1 (en) 1999-08-18
CA2260478C (en) 2003-01-21
JPH11281840A (ja) 1999-10-15
EP0938001A1 (en) 1999-08-25
US5905838A (en) 1999-05-18
DE69943364D1 (de) 2011-06-01
TW429326B (en) 2001-04-11
EP0938001B1 (en) 2011-04-20

Similar Documents

Publication Publication Date Title
JP3732669B2 (ja) 二重窓wdm光ファイバ通信
US6009221A (en) Dispersion slope compensating optical fiber
JP3715104B2 (ja) 光ファイバ
AU671729B2 (en) Optical fiber for wavelength division multiplexing
US6490398B2 (en) Dispersion-compensating fiber having a high figure of merit
JP3602152B2 (ja) 分散補償光導波路ファイバ
JP2002514017A (ja) 分布増幅をもつ分散制御光導波路及びシステム
US6654531B2 (en) Dispersion-compensating module
US6941054B2 (en) Optical transmission link with low slope, raman amplified fiber
US6498887B1 (en) Dispersion-compensating fiber having a high relative dispersion slope
Glass et al. Advances in fiber optics
AU5066499A (en) Dispersion compensating fiber
US6625359B1 (en) Dispersion-shifted single-mode optical fiber optimized for high data rates
US6633714B2 (en) Optical fiber for wavelength division multiplex transmission systems
US6233387B1 (en) Broadband pulse-reshaping optical fiber
WO2002019576A2 (en) Optical transmission link with low slope, raman amplified fiber
JP2004226964A (ja) 広帯域分散制御光ファイバ
JP2002182055A (ja) シングルモードファイバのsバンドの波長分散を補償するファイバ
JP2001159721A (ja) 分散補償光ファイバ
KR100433297B1 (ko) 파장분할다중통신용광섬유
EP1341011A1 (en) Dispersion-compensating fiber
JP2003270469A (ja) 高い良度指数を有する分散−補正ファイバ
JP2003075673A (ja) 低非線形単一モード光ファイバ
JP2004286863A (ja) 高次モードを用いた分散補償ファイバ
JP2003207674A (ja) 分散補償光ファイバ

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091021

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101021

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111021

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121021

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131021

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term