JP3721586B2 - 光検出器 - Google Patents
光検出器 Download PDFInfo
- Publication number
- JP3721586B2 JP3721586B2 JP20422494A JP20422494A JP3721586B2 JP 3721586 B2 JP3721586 B2 JP 3721586B2 JP 20422494 A JP20422494 A JP 20422494A JP 20422494 A JP20422494 A JP 20422494A JP 3721586 B2 JP3721586 B2 JP 3721586B2
- Authority
- JP
- Japan
- Prior art keywords
- photodiode
- electrode
- photodetector
- type semiconductor
- gate electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Description
【産業上の利用分野】
この発明は、光検出器に関し、例えば、高速光検出を行うのに用いて好適なものである。
【0002】
【従来の技術】
従来、フォトダイオードを用いた光検出器として、図18に示すようなものがある。図18に示すように、この光検出器は、フォトダイオードPD´と、このフォトダイオードPD´の出力を増幅するための通常のトランジスタT´(この例ではバイポーラトランジスタ)とにより構成されている。ここで、フォトダイオードPD´のアノードは負荷抵抗RL ´を介して接地されており、そのカソードはフォトダイオードPD´を逆バイアスするための正電圧VPDを供給する正極電源に接続されている。また、トランジスタT´のエミッタは接地されており、そのコレクタは出力抵抗RO ´を介して正電圧VCCを供給する正極電源に接続されている。そして、フォトダイオードPD´のアノードとトランジスタT´のベースとが互いに接続されている。この光検出器においては、トランジスタT´のコレクタから出力電圧Vout が得られる。
【0003】
上述のフォトダイオードPD´としては、pn接合ダイオード、pinダイオード、金属/半導体/金属(MSM)ダイオード、ヘテロ接合ダイオードなどが用いられる。これらのpn接合ダイオード、pinダイオード、MSMダイオードおよびヘテロ接合ダイオードの一例をそれぞれ図19、図20、図21および図22に示す。
【0004】
図19に示すpn接合ダイオードにおいては、n+ 型半導体基板101上にn型半導体層102が積層されており、このn型半導体層102中にp+ 型半導体層103が選択的に設けられている。符号104はSiO2 膜を示す。このSiO2 膜104には、p+ 型半導体層103に対応する部分に開口104aが設けられている。そして、この開口104aの縁の近傍の部分におけるp+ 型半導体層103にp側の電極105がオーミック接触している。また、n+ 型半導体基板101の裏面にはn側の電極106がオーミック接触している。
【0005】
図20に示すpinダイオードにおいては、n+ 型半導体基板201上にi型半導体層202が積層されており、このi型半導体層202中にp+ 型半導体層203が選択的に設けられている。符号204はSiO2 膜を示す。このSiO2 膜204には、p+ 型半導体層203に対応する部分に開口204aが設けられている。そして、この開口204aの縁の近傍の部分におけるp+ 型半導体層203にp側の電極205がオーミック接触している。また、n+ 型半導体基板201の裏面にはn側の電極206がオーミック接触している。
【0006】
図21に示すMSMダイオードにおいては、i型半導体基板301の両主面にそれぞれ電極302および303がショットキー接触している。
【0007】
図22に示すヘテロ接合ダイオードにおいては、p型AlGaAs層401とp型GaAs層402とn型AlGaAs層403とが順次積層され、n型AlGaAs層403およびp型AlGaAs層401にそれぞれn側の電極404およびp側の電極405がオーミック接触している。
【0008】
【発明が解決しようとする課題】
上述の光検出器による光検出の高速化を図るためには、そのフォトダイオードPD´の電極間隔を短くする必要がある。すなわち、図19に示すpn接合ダイオードにおいては電極105および106間の間隔、図20に示すpinダイオードにおいては電極205および206間の間隔、図21に示すMSMダイオードにおいては電極302および303間の間隔および図22に示すヘテロ接合ダイオードにおいては電極404および405間の間隔を短くする必要がある。しかし、このようにフォトダイオードPD´の電極間隔を短くすると、このフォトダイオードPD´の容量C´(図18)が大きくなってしまう。
【0009】
ところで、図18に示すように、上述の光検出器においては、フォトダイオードPD´に負荷抵抗RL ´が直列に接続されているが、この光検出器の増幅回路は従来用いられている通常のトランジスタT´により構成されたものであることから、その雑音特性や閾値特性の限界により、この負荷抵抗RL ´を極端に小さくすることはできない。このため、たとえフォトダイオードPD´の電極間隔を短くしても、有限のC´RL ´値により光検出速度が律速されてしまう。また、この負荷抵抗RL ´を小さくすることができない限り、出力電圧Vout の熱揺らぎも小さくならず、雑音の低減を図ることができない。
【0010】
したがって、この発明の目的は、光検出の高速化を図ることができる光検出器を提供することにある。
この発明の他の目的は、光検出の低雑音化を図ることができる光検出器を提供することにある。
この発明の他の目的は、光検出の低消費電力化を図ることができる光検出器を提供することにある。
この発明の他の目的は、光検出の高感度化を図ることができる光検出器を提供することにある。
【0011】
【課題を解決するための手段】
上記目的を達成するために、この発明による光検出器は、
フォトダイオード(PD)と、二次元電子ガスと空乏層との接合からなる微小トンネル接合(J 1 、J 2 )により構成された単一電子トランジスタ(SET)とを有し、単一電子トランジスタ(SET)を用いてフォトダイオード(PD)の出力を増幅するように構成され、フォトダイオード(PD)のアノードは負荷抵抗(R L )を介して接地されているとともに、フォトダイオード(PD)のカソードは第1の正極電源(V PD )に接続され、単一電子トランジスタ(SET)のドレインは接地されているとともに、単一電子トランジスタ(SET)のソースは出力抵抗(R out )を介して第2の正極電源(V CC )に接続され、フォトダイオード(PD)のアノードと単一電子トランジスタ(SET)のゲートとは容量(C g )または抵抗を介して結合された光検出器であって、
単一電子トランジスタ(SET)においては、半絶縁性半導体基板(51)上に電子供給層としてn型半導体層(52)が積層されたヘテロ接合構造を有し、n型半導体層(52)と半絶縁性半導体基板(51)とのヘテロ接合界面の近傍における半絶縁性半導体基板(51)中に二次元電子ガス(53)が形成され、n型半導体層(52)上に第1のゲート電極(G 1 )、第2のゲート電極(G 2 )、第3のゲート電極(G 3 )、ソース電極(S)およびドレイン電極(D)が設けられ、第1のゲート電極(G 1 )、第2のゲート電極(G 2 )および第3のゲート電極(G 3 )はショットキー電極であってソース電極(S)およびドレイン電極(D)の近傍に二次元電子ガス(53)と空乏層との接合を形成し、ソース電極(S)側に形成された二次元電子ガス(53)と空乏層との接合が第1の微小トンネル接合(J 1 )を構成し、ドレイン電極(D)側に形成された二次元電子ガス(53)と空乏層との接合が第2の微小トンネル接合(J 2 )を構成し、フォトダイオード(PD)は半絶縁性半導体基板(51)の両主面にそれぞれショットキー電極(54、55)が設けられた金属/半導体/金属ダイオードであることを特徴とするものである。
【0012】
ここで、上記の微小トンネル接合により構成された単一電子トランジスタについては、例えばIBM J. RES. DEVELOP. VOL. 32 NO.1 JANUARY 1988 pp.144-158 において論じられている。
【0015】
【作用】
上述のように構成されたこの発明による光検出器によれば、単一電子トランジスタは微小なゲート電圧変化を測定することができるため、フォトダイオードと直列に接続される出力用の負荷抵抗の値を小さくすることができ、これによって光検出の高感度化および高速化を図ることができる。また、単一電子トランジスタ側では帯電効果により熱雑音が抑制されるため、増幅回路側で発生する雑音を低減することができる。さらに、単一電子トランジスタはその基本動作において一個の電子のトンネル効果しか用いないので、極めて低消費電力である。
【0016】
【実施例】
以下、この発明の実施例について図面を参照しながら説明する。
図1はこの発明の一実施例による光検出器を示す回路図である。
【0017】
図1に示すように、この実施例による光検出器は、フォトダイオードPDと、このフォトダイオードPDの出力を増幅するための単一電子トランジスタSETとにより構成されている。このフォトダイオードPDの容量をCで示す。単一電子トランジスタSETは、ドレイン側の微小トンネル接合J1 とソース側の微小トンネル接合J2 とにより構成されている。これらの微小トンネル接合J1 およびJ2 の容量をそれぞれC1 およびC2 とする。
【0018】
フォトダイオードPDのアノードは負荷抵抗RL を介して接地されており、そのカソードはフォトダイオードPDを逆バイアスするための正電圧VPDを供給する正極電源に接続されている。一方、単一電子トランジスタSETのソースは接地されており、そのドレインは出力抵抗Rout を介して正電圧VCCを供給する正極電源に接続されている。そして、フォトダイオードPDのアノードと単一電子トランジスタSETのゲートとが容量Cg を介して互いに接続されている。
【0019】
上述のように構成されたこの実施例による光検出器においては、フォトダイオードPDに光が当たって受光電流が流れたときに負荷抵抗RL の両端に発生する電圧により容量Cg が充電され、この容量Cg を介して単一電子トランジスタSETのゲートにゲート電圧Vg が印加される。そして、この容量Cg に蓄積された電荷量の変化ΔQ=Cg ΔVg を測定することによりゲート電圧Vg の変化ΔVg を測定する。
【0020】
ここで、フォトダイオードPDの出力を増幅するために用いられている単一電子トランジスタSETは、従来のトランジスタの100万倍もの感度で容量Cg に蓄積された電荷量の変化ΔQ=Cg ΔVg を測定することができることが実験的に確かめられている。すなわち、単一電子トランジスタSETは微小なゲート電圧Vg の変化ΔVg を測定することができるため、負荷抵抗RL の値を小さくすることができる。これによって、光検出器の高感度化および高速化を図ることができる。また、単一電子トランジスタSET側では帯電効果により熱雑音が抑制されるので、増幅回路側で発生する雑音を抑制することができる。さらに、単一電子トランジスタSETはその基本動作において一個の電子のトンネル効果しか用いないので、極めて低消費電力である。
【0021】
この実施例においては、上述のようにフォトダイオードPDと単一電子トランジスタSETとは容量結合されている。このときの電圧利得はCg /C1 で与えられるため、微小トンネル接合J1 の容量C1 を十分に小さくしておくことにより、この光検出器の次段に接続される素子を駆動するのに十分な大きさの出力電圧Vout を得ることができる。
【0022】
以上のように、この実施例による光検出器によれば、単一電子トランジスタSETによりフォトダイオードPDの出力を増幅するように構成されているので、従来の通常のトランジスタによりフォトダイオードの出力を増幅する上述の従来の光検出器に比べて、光検出の高速化、高感度化、低雑音化および低消費電力化を図ることができる。
【0023】
なお、この実施例においては、フォトダイオードPDのアノードと単一電子トランジスタSETのゲートとを容量結合しているが、フォトダイオードPDのアノードと単一電子トランジスタSETのゲートとを抵抗結合してもよい。この場合には、Vg =e/2(C1 +C2 )(ただし、eは電気素量)のときに、理想的には無限大の電圧利得が得られる。
【0024】
次に、この実施例による光検出器の具体的な構造例について説明する。
まず、単一電子トランジスタSETが金属/絶縁体接合により構成されたものであり、フォトダイオードPDがpn接合ダイオードである第1の構造例について説明する。
【0025】
図2はこの第1の構造例による光検出器の平面図である。また、図3はこの光検出器におけるフォトダイオードPDの部分の断面図、図4はこの光検出器における単一電子トランジスタSETの部分の拡大断面図である。
【0026】
図2、図3および図4に示すように、この第1の構造例による光検出器においては、n+ 型半導体基板1上にn型半導体層2およびp+ 型半導体層3が順次積層されている。p+ 型半導体層3上には、例えばSiO2 膜、SiN膜、ポリイミド膜のような絶縁膜4が設けられている。
【0027】
フォトダイオードPDの部分における絶縁膜4には、開口4aが設けられている。そして、この開口4aの全体を覆うp側の電極5がp+ 型半導体層3とオーミック接触している。この電極5は、例えばAl、In、Nb、Au、Ptなどの金属から成る。また、この場合、光はこの電極5を透過してフォトダイオードPDにより受光されるので、この電極5の厚さはこの電極5が光に対して透明となるように十分に小さく選ばれ、具体的には数10nm以下に選ばれる。また、n+ 型半導体基板1の裏面にはn側の電極6がオーミック接触している。
【0028】
一方、単一電子トランジスタSETの部分においては、絶縁膜4上にソース電極Sおよびドレイン電極Dが互いに対向して設けられている。そして、これらのソース電極Sおよびドレイン電極Dのそれぞれの一端部と部分的に重なるようにゲート電極Gが形成されている。ここで、少なくともこのゲート電極Gが重なった部分のソース電極Sおよびドレイン電極Dの表面には例えば膜厚が0.数nm〜数nmの絶縁膜7が形成されており、したがってゲート電極Gはこの絶縁膜7を介してソース電極Sおよびドレイン電極Dのそれぞれの一端部と部分的に重なっている。この重なり部の大きさは、典型的には、数100nm×数100nm以下である。この場合、ゲート電極Gとソース電極Sとが絶縁膜7を介して重なった部分およびゲート電極Gとドレイン電極Dとが絶縁膜7を介して重なった部分がそれぞれ図1における微小トンネル接合J1 およびJ2 に対応する。これらのゲート電極G、ソース電極Sおよびドレイン電極Dは、例えばAl、In、Nb、Au、Ptなどの金属から成る。
【0029】
図示は省略するが、必要に応じて、フォトダイオードPDおよび単一電子トランジスタSETを覆うように全面にパッシベーション膜が設けられる。
【0030】
この場合、フォトダイオードPDの電極5の一端部は、単一電子トランジスタSETのゲート電極Gと近接している。そして、パッシベーション膜が設けられない場合には、電極5の一端部とゲート電極Gとの間に空気層がはさまれた構造のキャパシタが形成され、それによってこの電極5とゲート電極Gとが容量結合される。また、パッシベーション膜が設けられる場合には、電極5の一端部とゲート電極Gとの間にこのパッシベーション膜がはさまれた構造のキャパシタが形成され、それによってこの電極5とゲート電極Gとが容量結合される。
【0031】
次に、この第1の構造例による光検出器の製造方法について説明する。
まず、図5に示すように、n+ 型半導体基板1上にn型半導体層2およびp+ 型半導体層3を順次エピタキシャル成長させてpn接合ダイオード構造を形成する。このエピタキシャル成長には、例えば分子線エピタキシー(MBE)法、有機金属化学気相成長(MOCVD)法、有機金属分子線エピタキシー(MOMBE)法、液相エピタキシー(LPE)法などが用いられる。
【0032】
次に、図6に示すように、例えば化学気相成長(CVD)法により全面に絶縁膜4を形成した後、この絶縁膜4を例えばリソグラフィーおよびエッチングによりパターニングしてフォトダイオードPDの受光部に対応する部分に開口4aを形成する。このリソグラフィーには、例えばフォトリソグラフィー法、電子線リソグラフィー法、X線リソグラフィー法などが用いられる。また、エッチングには、ウエットエッチングまたはドライエッチングが用いられる。
【0033】
次に、電極5の形成部にこれに対応する形状の開口を有するレジストパターン(図示せず)をリソグラフィー法により形成した後、Al、In、Nb、Au、Ptなどの金属から成る極めて薄い(数10nm以下)金属薄膜を例えば真空蒸着法により全面に形成する。この後、このレジストパターンをその上に形成された金属薄膜とともに除去する。これによって、図7に示すように、開口4aを覆う電極5が形成される。
【0034】
次に、ソース電極Sおよびドレイン電極Dの形成部にこれらに対応する形状の開口を有するレジストパターン(図示せず)をリソグラフィー法により形成した後、Al、In、Nb、Au、Ptなどの金属から成る金属薄膜を例えば真空蒸着法により全面に形成する。この後、このレジストパターンをその上に形成された金属薄膜とともに除去する。これによって、図8に示すように、絶縁膜4上にソース電極Sおよびドレイン電極Dが形成される。
【0035】
次に、図9に示すように、ソース電極Sおよびドレイン電極Dのそれぞれの一端部の近傍を除いた部分の表面を例えばレジストから成るマスク8で覆った後、このマスク8で覆われていないソース電極Sおよびドレイン電極Dのそれぞれの一端部の表面を酸化する。これによって、図4に示すように、酸化膜から成る絶縁膜7が形成される。この後、マスク8を除去する。なお、この絶縁膜7は、このように酸化により形成するのではなく、例えば、マスク8を形成した後にCVD法などにより形成してもよい。この場合、この絶縁膜7としては、例えばSiO2 膜やSiN膜が用いられる。
【0036】
次に、ゲート電極Gの形成部にこれに対応する形状の開口を有するレジストパターン(図示せず)をリソグラフィー法により形成した後、Al、In、Nb、Au、Ptなどの金属から成る金属薄膜を例えば真空蒸着法により全面に形成する。この後、このレジストパターンをその上に形成された金属薄膜とともに除去する。これによって、図2および図4に示すように、絶縁膜7を介してソース電極Sおよびドレイン電極Dのそれぞれの一端部と重なったゲート電極Gが形成される。
【0037】
この後、フォトダイオードPDの部分におけるn+ 型半導体基板1の裏面にn側の電極6を形成する。
以上により、目的とする光検出器が製造される。
【0038】
次に、第2の構造例による光検出器について説明する。
この第2の構造例による光検出器は、フォトダイオードPDが図10に示すようなpinダイオードであることを除いて、第1の構造例による光検出器と同様な構造を有する。図10において、符号11はn+ 型半導体基板、12はi型半導体層、13はp+ 型半導体層、14は絶縁膜、14aは開口、15はp側の電極、16はn側の電極を示す。ここで、電極15はp+ 型半導体層13にオーミック接触しているとともに、電極16はn+ 型半導体基板11にオーミック接触している。
【0039】
次に、第3の構造例による光検出器について説明する。
この第3の構造例による光検出器は、フォトダイオードPDが図11に示すようなMSMダイオードであることを除いて、第1の構造例による光検出器と同様な構造を有する。図11において、符号21はi型半導体基板、22は絶縁膜、22aは開口、23および24は電極を示す。ここで、電極23および24はi型半導体基板21とショットキー接触している。
【0040】
次に、第4の構造例による光検出器について説明する。
この第4の構造例による光検出器は、フォトダイオードPDが図12に示すようなヘテロ接合ダイオードであることを除いて、第1の構造例による光検出器と同様な構造を有する。図12において、符号31はp型AlGaAs層、32はp型GaAs層、33はn型AlGaAs層、34は絶縁膜、34aは開口、35はn側の電極、36はp側の電極を示す。ここで、電極35はn型AlGaAs層33にオーミック接触しているとともに、電極36はp型AlGaAs層31にオーミック接触している。
【0041】
次に、第5の構造例による光検出器について説明する。上述の第1、第2、第3および第4の構造例による光検出器におけるフォトダイオードPDは縦型構造を有するのに対して、この第5の構造例による光検出器におけるフォトダイオードPDは横型構造を有する。
【0042】
図13に示すように、この第5の構造例による光検出器においては、フォトダイオードPDの部分における絶縁膜4が除去されており、それにより露出されたp+ 型半導体層3上に一対の電極41および42が互いに対向して設けられている。そして、これらの電極41および42とp+ 型半導体層3とにより横型構造のMSMダイオードから成るフォトダイオードPDが構成されている。ここで、電極41には正電圧VPDが印加され、電極42は接地される。この第5の構造例による光検出器のその他の構成は、第1の構造例による光検出器と同様であるので、説明を省略する。ただし、この場合、第1の構造例による光検出器におけるn側の電極6は不要である。
【0043】
この第5の構造例による光検出器を製造するには、例えば、図3に示すようにp+ 型半導体層3までエピタキシャル成長させ、さらにこのp+ 型半導体層3の全面に絶縁膜4を形成した後、この絶縁膜4のうちフォトダイオードPDの形成部の部分を除去する。そして、第1の構造例による光検出器の製造方法において述べたと同様な方法により絶縁膜4上に単一電子トランジスタSETを形成するとともに、p+ 型半導体層3上に電極41および42を形成する。
【0044】
なお、図10に示すようにn+ 型半導体基板11上にi型半導体層12およびp+ 型半導体層13を順次積層し、このp+ 型半導体層13上に電極41および42を設けることによりpinダイオードから成るフォトダイオードPDを構成してもよい。また、図11に示すi型半導体基板21上に電極41および42を設けることによりMSMダイオードから成るフォトダイオードPDを構成してもよい。さらには、n型半導体層上に電極41および42を設けることによりMSMダイオードから成るフォトダイオードPDを構成してもよい。
【0045】
次に、第6の構造例による光検出器について説明する。この第6の構造例による光検出器においては、単一電子トランジスタSETが2次元電子ガス/空乏層接合により構成されたものであり、フォトダイオードPDがMSMダイオードである。
【0046】
図14はこの第6の構造例による光検出器の平面図である。また、図15はこの光検出器における単一電子トランジスタSETの部分の断面図、図16はこの光検出器におけるフォトダイオードPDの部分の断面図を示す。
【0047】
図14、図15および図16に示すように、この第6の構造例による光検出器においては、単一電子トランジスタSET部は、例えば半絶縁性GaAs基板のような半絶縁性半導体基板51上に電子供給層としての例えばn型AlGaAs層のようなn型半導体層52が積層されたヘテロ接合構造を有する。このn型半導体層52と半絶縁性半導体基板51とのヘテロ接合界面の近傍における半絶縁性半導体基板51中には二次元電子ガス53が形成される。そして、このn型半導体層52上にゲート電極G1 、G2 、G3 、ソース電極Sおよびドレイン電極Dが設けられている。ゲート電極G1 、G2 およびG3 は、二次元電子ガス53と空乏層との接合を、図14において一点鎖線で示すような平面形状に形成するためのショットキー電極である。ここで、この一点鎖線で囲まれた部分が二次元電子ガス53が形成されている部分に対応し、それらの外側の部分が空乏層に対応する。ソース電極S側に形成された二次元電子ガス/空乏層接合およびドレイン電極D側に形成された二次元電子ガス/空乏層接合がそれぞれ図1における微小トンネル接合J1 およびJ2 に対応する。
【0048】
この場合、ゲート電極G1 とゲート電極G2 とが最も近接した部分におけるそれらの間の間隔およびゲート電極G1 とゲート電極G3 とが最も近接した部分におけるそれらの間の間隔は、好適には、いずれも例えば数100nm以下に選ばれる。ショットキー電極としてのこれらのゲート電極G1 、G2 およびG3 は、例えばAu、Al、In、Ptなどの金属により形成される。また、ソース電極Sおよびドレイン電極Dは、二次元電子ガス53とオーミック接触するオーミック電極である。オーミック電極としてのこれらのソース電極Sおよびドレイン電極Dは、例えばAu/Ge/Ni、Ti/Pt/Auなどにより形成される。
【0049】
一方、この第6の構造例による光検出器におけるフォトダイオードPD部においては、半絶縁性半導体基板51の両主面にそれぞれ電極54および55が設けられており、これによってMSMダイオードから成るフォトダイオードPDが構成されている。これらの電極54および55はショットキー電極である。ショットキー電極としてのこれらの電極54および55は、例えばAu、Al、In、Ptなどの金属により形成される。
【0050】
この第6の構造例による光検出器においては、MSMダイオードから成るフォトダイオードPDに光が当たることにより生じる電極54の電位変化は、ゲート電極G1 、G2 およびG3 により囲まれた部分に対応する部分の二次元電子ガス53の電位を変化させる。そして、この電位変化が単一電子トランジスタSETにより増幅され、出力電圧Vout が得られる。
【0051】
次に、この第6の構造例による光検出器の製造方法について説明する。
まず、半絶縁性半導体基板51上にMBE法、MOCVD法、MOMBE法、LPE法などによりn型半導体層52をエピタキシャル成長させる。
【0052】
次に、図17に示すように、フォトダイオードPDの形成部の表面を、レジスト、SiO2 、SiNなどから成るマスク56で覆った後、このマスク56を用いてウエットエッチング法またはドライエッチング法により、半絶縁性半導体基板51に達するまでエッチングを行う。これによって、フォトダイオードPDの形成部以外の部分のn型半導体層52が除去される。この後、マスク56を除去する。
【0053】
次に、ソース電極Sおよびドレイン電極Dの形成部にこれらに対応する形状の開口を有するレジストパターン(図示せず)をリソグラフィー法により形成した後、Au/Ge/NiやTi/Pt/Auなどから成る金属薄膜を例えば真空蒸着法により全面に形成する。この後、このレジストパターンをその上に形成された金属薄膜とともに除去する。これによって、ソース電極Sおよびドレイン電極Dが形成される。この後、アニールによるアロイ処理を行うことにより、これらのソース電極Sおよびドレイン電極Dを二次元電子ガス53とオーミック接触させる。
【0054】
次に、ゲート電極G1 、G2 、G3 および電極54の形成部にこれらに対応する形状の開口を有するレジストパターン(図示せず)をリソグラフィー法により形成した後、Au、Al、In、Ptなどから成る金属薄膜を例えば真空蒸着法により全面に形成する。この後、このレジストパターンをその上に形成された金属薄膜とともに除去する。これによって、ゲート電極G1 、G2 、G3 および電極54が形成される。
【0055】
この後、半絶縁性半導体基板51の裏面に例えば真空蒸着法により金属薄膜を形成して電極55を形成する。
以上により、目的とする光検出器が製造される。
【0056】
以上、この発明の一実施例について具体的に説明したが、この発明は、上述の実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
【0057】
例えば、上述の第1の構造例による光検出器においては、フォトダイオードPDとして図3に示すような構造のものを用いているが、このフォトダイオードPDとして図19に示すような構造のものを用いてもよい。また、第2の構造例による光検出器においては、フォトダイオードPDとして図10に示すような構造のものを用いているが、このフォトダイオードPDとして図20に示すような構造のものを用いてもよい。また、第3の構造例による光検出器においては、フォトダイオードPDとして図11に示すような構造のものを用いているが、このフォトダイオードPDとして図21に示すような構造のものを用いてもよい。さらに、第4の構造例による光検出器においては、フォトダイオードPDとして図12に示すような構造のものを用いているが、このフォトダイオードPDとして図22に示すような構造のものを用いてもよい。
【0058】
【発明の効果】
以上説明したように、この発明による光検出器によれば、光検出の高速化、低雑音化、低消費電力化および高感度化を図ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例による光検出器を示す回路図である。
【図2】この発明の一実施例による光検出器の第1の構造例を示す平面図である。
【図3】この発明の一実施例による光検出器の第1の構造例におけるフォトダイオード部の断面図である。
【図4】この発明の一実施例による光検出器の第1の構造例における単一電子トランジスタ部の拡大断面図である。
【図5】この発明の一実施例による光検出器の第1の構造例の製造方法を説明するための断面図である。
【図6】この発明の一実施例による光検出器の第1の構造例の製造方法を説明するための平面図である。
【図7】この発明の一実施例による光検出器の第1の構造例の製造方法を説明するための平面図である。
【図8】この発明の一実施例による光検出器の第1の構造例の製造方法を説明するための平面図である。
【図9】この発明の一実施例による光検出器の第1の構造例の製造方法を説明するための平面図である。
【図10】この発明の一実施例による光検出器の第2の構造例を説明するための断面図である。
【図11】この発明の一実施例による光検出器の第3の構造例を説明するための断面図である。
【図12】この発明の一実施例による光検出器の第4の構造例を説明するための断面図である。
【図13】この発明の一実施例による光検出器の第5の構造例を説明するための平面図である。
【図14】この発明の一実施例による光検出器の第6の構造例を説明するための平面図である。
【図15】この発明の一実施例による光検出器の第6の構造例における単一電子トランジスタ部の断面図である。
【図16】この発明の一実施例による光検出器の第6の構造例におけるフォトダイオード部の断面図である。
【図17】この発明の一実施例による光検出器の第6の構造例の製造方法を説明するための斜視図である。
【図18】従来の光検出器を示す回路図である。
【図19】従来の光検出器の第1の例によるフォトダイオード部の断面図である。
【図20】従来の光検出器の第2の例によるフォトダイオード部の断面図である。
【図21】従来の光検出器の第3の例によるフォトダイオード部の断面図である。
【図22】従来の光検出器の第4の例によるフォトダイオード部の断面図である。
【符号の説明】
PD フォトダイオード
SET 単一電子トランジスタ
J1 、J2 微小トンネル接合
S ソース電極
D ドレイン電極
G、G1 、G2 、G3 ゲート電極
Claims (2)
- フォトダイオードと、二次元電子ガスと空乏層との接合からなる微小トンネル接合により構成された単一電子トランジスタとを有し、上記単一電子トランジスタを用いて上記フォトダイオードの出力を増幅するように構成され、上記フォトダイオードのアノードは負荷抵抗を介して接地されているとともに、上記フォトダイオードのカソードは第1の正極電源に接続され、上記単一電子トランジスタのドレインは接地されているとともに、上記単一電子トランジスタのソースは出力抵抗を介して第2の正極電源に接続され、上記フォトダイオードの上記アノードと上記単一電子トランジスタのゲートとは容量または抵抗を介して結合された光検出器であって、
上記単一電子トランジスタにおいては、半絶縁性半導体基板上に電子供給層としてn型半導体層が積層されたヘテロ接合構造を有し、上記n型半導体層と上記半絶縁性半導体基板とのヘテロ接合界面の近傍における上記半絶縁性半導体基板中に二次元電子ガスが形成され、上記n型半導体層上に第1のゲート電極、第2のゲート電極、第3のゲート電極、ソース電極およびドレイン電極が設けられ、上記第1のゲート電極、上記第2のゲート電極および上記第3のゲート電極はショットキー電極であって上記ソース電極および上記ドレイン電極の近傍に二次元電子ガスと空乏層との接合を形成し、上記ソース電極側に形成された上記二次元電子ガスと上記空乏層との接合が第1の微小トンネル接合を構成し、上記ドレイン電極側に形成された上記二次元電子ガスと上記空乏層との接合が第2の微小トンネル接合を構成し、上記フォトダイオードは上記半絶縁性半導体基板の両主面にそれぞれショットキー電極が設けられた金属/半導体/金属ダイオードであることを特徴とする光検出器。 - 上記半絶縁性半導体基板は半絶縁性GaAs基板であり、上記n型半導体層はn型AlGaAs層であることを特徴とする請求項1記載の光検出器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20422494A JP3721586B2 (ja) | 1994-08-05 | 1994-08-05 | 光検出器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20422494A JP3721586B2 (ja) | 1994-08-05 | 1994-08-05 | 光検出器 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0851232A JPH0851232A (ja) | 1996-02-20 |
JP3721586B2 true JP3721586B2 (ja) | 2005-11-30 |
Family
ID=16486898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20422494A Expired - Fee Related JP3721586B2 (ja) | 1994-08-05 | 1994-08-05 | 光検出器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3721586B2 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4029420B2 (ja) | 1999-07-15 | 2008-01-09 | 独立行政法人科学技術振興機構 | ミリ波・遠赤外光検出器 |
KR100821474B1 (ko) * | 2006-12-20 | 2008-04-11 | 동부일렉트로닉스 주식회사 | 포토 다이오드 저항 측정 방법 및 포토 다이오드 저항 측정장치의 제조 방법 |
JP5066687B2 (ja) * | 2008-09-08 | 2012-11-07 | 日本電信電話株式会社 | 微小伝導領域のインピーダンス測定回路、ならびに微小伝導領域のインピーダンス測定方法 |
US8417070B2 (en) * | 2009-09-30 | 2013-04-09 | Intel Corporation | Waveguide coupled surface plasmon polarition photo detector |
GB2579418A (en) * | 2018-11-30 | 2020-06-24 | Sumitomo Chemical Co | Organic photodetector |
-
1994
- 1994-08-05 JP JP20422494A patent/JP3721586B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0851232A (ja) | 1996-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8076740B2 (en) | Photo detector with a quantum dot layer | |
US8299497B1 (en) | Near-infrared photodetector with reduced dark current | |
Sridhara et al. | Performance enhancement of GaInP/GaAs heterojunction bipolar phototransistors using DC base bias | |
JP3721586B2 (ja) | 光検出器 | |
US8143648B1 (en) | Unipolar tunneling photodetector | |
JPS61129883A (ja) | 光検出装置 | |
JP3108528B2 (ja) | 光位置検出半導体装置 | |
JP3716401B2 (ja) | 量子井戸型光センサ | |
CN109494277B (zh) | 一种长波红外探测器及其制作方法 | |
JP3178072B2 (ja) | 受光素子 | |
JPH08316522A (ja) | Hemt型光検出部を備えた光検出器 | |
JPH05343731A (ja) | 受光素子 | |
JPH08321632A (ja) | 半導体受光素子 | |
JP5218370B2 (ja) | 電流増幅回路及び光検出デバイス | |
JP3036600B2 (ja) | J―fet型トランジスタ装置 | |
JPH07122774A (ja) | 光検出器 | |
JP2758611B2 (ja) | バイポーラトランジスタ素子 | |
JPS61294857A (ja) | バイポ−ラトランジスタの製造方法 | |
JP6563835B2 (ja) | 受光素子 | |
JP2771214B2 (ja) | 半導体装置 | |
JPH0358191B2 (ja) | ||
JPS59181084A (ja) | 半導体レ−ザ装置 | |
JP2854634B2 (ja) | 受光装置 | |
JPH0521832A (ja) | 半導体受光素子 | |
JPH01236670A (ja) | 半導体素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040831 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041101 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20050117 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050308 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050502 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050823 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050905 |
|
LAPS | Cancellation because of no payment of annual fees |