JP3709634B2 - Continuous coating apparatus and continuous coating method - Google Patents

Continuous coating apparatus and continuous coating method Download PDF

Info

Publication number
JP3709634B2
JP3709634B2 JP32691896A JP32691896A JP3709634B2 JP 3709634 B2 JP3709634 B2 JP 3709634B2 JP 32691896 A JP32691896 A JP 32691896A JP 32691896 A JP32691896 A JP 32691896A JP 3709634 B2 JP3709634 B2 JP 3709634B2
Authority
JP
Japan
Prior art keywords
coating
base material
cylindrical base
cylindrical
gripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32691896A
Other languages
Japanese (ja)
Other versions
JPH10165877A (en
Inventor
晃 大平
淳二 氏原
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP32691896A priority Critical patent/JP3709634B2/en
Publication of JPH10165877A publication Critical patent/JPH10165877A/en
Application granted granted Critical
Publication of JP3709634B2 publication Critical patent/JP3709634B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、複数の円筒状基材外周面上に塗布液を連続的に塗布する垂直塗布装置及び方法に関し、特に、該円筒状基材を供給、搬送、位置決め、塗布、乾燥、搬出する連続塗布装置及び連続塗布方法に関する。
【0002】
【従来の技術】
エンドレスに形成された連続面を有する円筒状基材の外面上への薄膜で均一な塗布に関連してスプレー塗布法、浸漬塗布法、ブレード塗布法、ロール塗布法等の種々の方法が検討されている。特に電子写真感光体ドラムのような薄膜で均一な塗布については生産性の優れた塗布装置を開発すべく検討されている。しかしながら、従来のエンドレスに形成された連続面を有する円筒状基材への塗布装置及び塗布方法においては、均一な塗膜が得られなかったり、生産性が悪い等の短所があった。
【0003】
スプレー塗布法では、スプレーガンより噴出した塗布液滴が該エンドレスに形成された連続面を有する円筒状基材の外周面上に到達するまでに溶媒が蒸発するために塗布液滴の固形分濃度が上昇してしまい、それにともない塗布液滴の粘度上昇が起って液滴が面に到達したとき、液滴が面上を充分に広がらないために、或いは乾燥固化してしまった粒子が表面に付着するために、塗布表面の平滑性の良いものがえられない。また、該連続面を有する円筒状基材への液滴の到達率が100%でなく塗布液のロスがあったり、部分的にも不均一であるため、膜厚コントロールが非常に困難である。更に、高分子溶液等では糸引きを起こす事があるため、使用する溶媒及び樹脂に制限がある。
【0004】
ブレード塗布法、ロール塗布法は例えば円筒状基材の長さ方向にブレード若しくはロールを配置し、該円筒状基材を回転させて塗布を行い円筒状基材を1回転させたのち、ブレード若しくはロールを後退させるものである。しかしながらブレード若しくはロールを後退させる際、塗布液の粘性により、塗布膜厚の一部に他の部分より厚い部分が生じ、均一な塗膜が得られない欠点がある。
【0005】
浸漬塗布法は、上記におけるような塗布液表面の平滑性、塗布膜の均一性の悪い点は改良される。
【0006】
しかし、塗布膜厚の制御が塗布液物性例えば粘度、表面張力、密度、温度等と塗布速度に支配され、塗布液物性の調整が非常に重要となる。また塗布速度も低いし、塗布液槽を満たすためにはある一定量以上の液量が必要である。さらに重層する場合、下層成分が溶け出し塗布液槽が汚染されやすい等の欠点がある。
【0007】
そこで特開昭58−189061号公報に記載の如く円形量規制型塗布装置(この中にはスライドホッパー型塗布装置が含まれる)が開発された。このスライドホッパー型塗布装置はエンドレスに形成された連続周面を有する円筒状基材を連続的にその長手方向に移動させながら、その周囲を環状に取り囲み、円筒状基材の外周面に対して塗布液を塗布するものであって、さらにこの塗布装置は環状の塗布液溜まり室と、この塗布液溜まり室内の一部に対して外部から塗布液を供給する供給口と、前記塗布液溜まり室の内方に開口する塗布液分配スリットとを有し、このスリットから流出した塗布液を斜め下方に傾斜する塗布液スライド面上に流下させ、塗布液スライド面の下端のホッパー塗布面と円筒状基材との僅かな間隙部分にビードを形成し、円筒状基材の移動に伴ってその外周面に塗布するものである。このスライドホッパー型塗布装置を用いることにより、少ない液量で塗布でき、塗布液が汚染されず、生産性の高い、膜厚制御の容易な塗布が可能となった。
【0008】
なお、円筒状基材の外周面を把持搬送する手段は特開平3−21371号公報及び特開平4−53955号公報に、位置決め手段は特開平3−274568号公報及び特開平3−280063号公報に、乾燥手段は特開平6−308747号公報及び特開平7−64306号公報にそれぞれ開示されている。
【0009】
【発明が解決しようとする課題】
しかしながら、前記スライドホッパー型塗布装置を用いてもなお諸問題があり未だ満足のいくものではない。
【0010】
本発明は従来の諸問題を解決するために提案されたものであり、その目的とするところのものは、
(イ)使用塗布液による塗膜が均一であり、塗布ムラや膜厚変動等の塗膜欠陥がなく、塗布性を向上する。
【0011】
(ロ)円筒状基材の把持搬送性能を向上し、長期の安定塗布を可能にする。
【0012】
(ハ)円筒状基材の把持搬送性能を安定化し、円筒状基材の変形や損傷を防止する。
【0013】
(ニ)円筒状基材を供給、搬送、位置決め、塗布、乾燥、搬出する生産工程を連続安定生産にすることにより、生産性が向上する。
【0014】
(ホ)上記工程を連続且つ完全自動化することにより、ゴミやほこり等の異物混入を防止し、高品質な製品を得る。
【0015】
(ヘ)円筒状基材の把持時に振動が発生しても、塗布手段に振動が伝わることを防止することにより、塗布ムラや膜厚変動等の塗膜欠陥がなく、塗布性を向上する。
【0016】
等の効果が達成される優れた連続塗布装置及び連続塗布方法を提供することにある。
【0017】
【課題を解決するための手段】
(1) 本発明の連続塗布装置は、円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持段差修正して積み重ねしながら搬送する把持搬送手段、前記環状塗布装置の環状の中心に前記円筒状基材の中心を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、前記位置決め手段が作動している時に、前記位置決め手段と前記把持搬送手段との間に、該把持搬送手段に把持されていない前記円筒状基材を少なくとも1つ存在させることを特徴とするものである(請求項1の発明)。
【0018】
(2) 本発明の連続塗布方法は、円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持段差修正して積み重ねしながら搬送する把持搬送手段、前記環状塗布装置の環状の中心に前記円筒状基材の中心を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段により塗布される連続塗布方法において、前記位置決め手段が作動している時に、前記位置決め手段と前記把持搬送手段との間に、該把持搬送手段に把持されていない円筒状基材を少なくとも1つ存在させることを特徴とするものである。(請求項6の発明)。
【0019】
【発明の実施の形態】
以下、図面を用いて本発明の一実施例を説明する。図1は本発明による連続塗布装置の全体構成を示す斜視図である。図において、10は円筒状基材1を塗布手段の垂直下方の所定位置に供給して上方に押し上げる供給手段、20は供給された円筒状基材1の外周面を把持して筒軸を合わせて積み重ね下から上へ垂直に押し上げて搬送する把持搬送手段、30は前記円筒状基材1を塗布装置の環状塗布部の中心に位置合わせする位置決め手段、40は前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、50は円筒状基材1上に塗布された塗布液を乾燥させる乾燥手段、60は乾燥されて垂直搬送されてきた積み重ね状の複数の円筒状基材から分離させて1個ずつ取り出し排出させる分離排出手段である。
【0020】
本発明の連続塗布装置は、上記の各手段を連続して垂直中心線ZZ上に配置した構成であり、人手を要しない完全自動化生産が高精度で達成される。即ち、前記供給手段10は前記円筒状基材1を載置するための複数の取り付け手段11を備えた可動テーブル12、該可動テーブル12を回転させて前記把持搬送手段20へつながる垂直ラインへ送り込む駆動手段13、前記把持搬送手段20により既に上方に把持搬送されている円筒状基材1を積み重なるように上方に押し上げる昇降手段14、該昇降手段14の上端に設けられた円筒状基材供給用のハンド手段15及び前記駆動手段13による回転や昇降手段14による押し上げのタイミングを制御する図示しない制御手段等から構成されている。なお、前記可動テーブル12上への円筒状基材1の供給は、ロボットハンドルにより行われる。
【0021】
前記供給手段10の上方に設けられた把持搬送手段20は、円筒状基材1の外周面に圧接離間可能で且つ垂直上下方向に移動可能な2組の把持手段21,22を有し、円筒状基材1を位置決めして把持し上方に搬送する機能を有する。以下、上記各手段20,30,40,50,60の詳細は後述する。
【0022】
図2は本発明による連続塗布装置の他の実施例を示す斜視図である。この実施例では、前記把持搬送手段20の上方の垂直中心線ZZ上に、位置決め手段30、塗布手段40、乾燥手段50から成るユニットA,B,Cを複数組縦列配置したものである。最上段には前記分離排出手段60が配置されている。各塗布手段40A,40B,40Cからそれぞれ吐出された塗布液は、円筒状基材1上に多層の塗布層を逐次形成する。
【0023】
図3は前記把持搬送手段20の正面図である。互いに相対向する一組の搬送装置本体23A,23Bの内側には、それぞれ垂直上下方向に支持されたボールねじ24A,24Bが設けられている。該各ボールねじ24A,24Bはそれぞれ駆動用モータ25A,25Bにより正逆回転される。各ボールねじ24A,24Bにそれぞれ螺合する昇降部材26A,26Bは、ボールねじ24A,24Bの正逆回転により直進昇降する。該昇降部材26A,26Bにはそれぞれアーム部材27A,27Bが固定され、その各先端部にはそれぞれ前記把持手段21,22が取り付けられた構成になっている。
【0024】
前記搬送装置本体23A,23Bの間には、前記昇降手段14が設置され、該昇降手段14の上端には、円筒状基材供給用のハンド手段15が取り付けられている。該ハンド手段15の上側には順に円筒状基材1D,1C,1B,1Aが積載されている。最上段の円筒状基材1Aは前記分離排出手段60の排出用ハンド61により分離して取り出される。
【0025】
前記塗布手段40は位置決め手段30の上に固定されており、位置決め手段30は図示省略した保持手段により保持されている。位置決め手段30は円筒状基材1を所定の位置に正確に保持する装置であり、例えばエアーベアリング等により非接触保持される。塗布手段40は円筒状基材1(1A,1B,1C,1D)の外周面上に塗布液を均一に塗布するものであり、円筒状基材1A,1B,1C,1Dが前記把持搬送手段20により把持搬送されるに従って、円筒状基材1A,1B,1C,1D上に順次塗膜が形成される。
【0026】
図4は前記把持手段21,22の斜視図である。上段側の把持手段21は、2個の可動把手211,212と、該可動把手211,212の各揺動中心穴に嵌合して揺動可能に保持する支軸213と、該可動把手211,212の各先端部に形成されたV字形状のハンド部214,215の内側にそれぞれ固定された把持子216とから構成されている。前記可動把手211,212を図示しないピストンシリンダー等の駆動手段により開閉することにより、前記把持子216は円筒状基材の外周面に接離する。図示の把持子216は4箇所または3箇所で円筒状基材1に圧接する。
【0027】
下段側の把持手段22も、上記上段側の把持手段21と同様の構成をなし、221,222は可動把手、223は支軸、224,225はハンド部、226は把持子である。なお、上段側の把持手段21は、円筒状基材1B,1Cの接続位置の各外周面を把持した状態を示し、下段側の把持手段22は円筒状基材1C,1Dの接続位置の各外周面から離間した状態を示す。
【0028】
前記上段側の把持手段21の把持子216は、図示の円筒状基材1B,1Cの端面間の接続部(繋ぎ部)K1付近の外周面を把持するのが好ましい。また、下段側の把持手段22の把持子226は、円筒状基材1C,1Dの端面間の接続部(繋ぎ部)K2付近の外周面を把持するのが好ましい。前記接続部K1付近の外周面及びK2付近の外周面は、感光体ドラムの非画像形成領域である。
【0029】
図5は把持手段21の他の実施例を示す斜視図である。図5(a)は、V字形状のハンド部281,282の内側にそれぞれ固定された把持子280を有し、該ハンド部281,282をそれぞれ前進、後退させることにより、円筒状基材1を4点支持で圧接把持または離間する。図5(b)は、切り欠き円筒形状のハンド部283,284の内側にそれぞれ固定された把持子280を有し、該ハンド部283,284を前進、後退させることにより、円筒状基材1を円筒状外周面支持で圧接把持または離間する。図5(c)は、前記V字形状のハンド部281と平面状のハンド部285の内側にそれぞれ固定された把持子280を有し、該ハンド部281,285をそれぞれ前進、後退させることにより、円筒状基材1を3点支持で圧接把持または離間する。
【0030】
図6は、位置決め手段30と垂直型塗布手段40とを示す断面図、図7は塗布手段40の斜視図である。
【0031】
図6に示されるように中心線Z−Zに沿って垂直状に重ね合わせた複数の円筒状基材1A,1B(以下、円筒状基材1と称す)を連続的に矢示方向に上昇移動させ、その周囲を取り囲み、円筒状基材1の外周面に対しスライドホッパー型の塗布手段10の塗布に直接係わる部分(ホッパー塗布面)41により塗布液(感光液)Lが塗布される。なお、円筒状基材1としては中空ドラム例えばアルミニウムドラム、プラスチックドラムのほかシームレスベルト型の基材でも良い。
【0032】
前記ホッパー塗布面41には、円筒状基材1側に開口する塗布液流出口42を有する幅狭の塗布液分配スリット(スリットと略称する)43が水平方向に形成されている。このスリット43は環状の塗布液分配室(塗布液溜り室)44に連通し、この環状の塗布液分配室44には貯留タンク2内の塗布液Lを圧送ポンプ3により供給管4を介して供給するようになっている。
【0033】
他方、スリット43の塗布液流出口42の下側には、連続して下方に傾斜し、円筒状基材1の外径寸法よりやや大なる寸法で終端をなすように形成された塗布液スライド面(以下、スライド面と称す)45が形成されている。さらに、このスライド面45終端より下方に延びる唇状部46が形成されている。
【0034】
かかる塗布手段(スライドホッパー型塗布装置)40による塗布においては、円筒状基材1を引き上げる過程で、塗布液Lをスリット43から押し出し、スライド面45に沿って流下させると、スライド面45の終端に至った塗布液は、そのスライド面45の終端と円筒状基材1の外周面との間にビードを形成した後、円筒状基材1の表面に塗布される。
【0035】
スライド面45の終端と円筒状基材1は、ある間隙を持って配置されているため円筒状基材1を傷つける事なく、また性質の異なる層を多層形成させる場合においても、既に塗布された層を損傷することなく塗布できる。
【0036】
一方、前記圧送ポンプ3の塗布液供給部より最も遠い位置で、前記塗布液分配室44の一部には、塗布液分配室44内の泡抜き用の空気抜き部材46が設けられている。貯留タンク2内の塗布液Lが塗布液分配室44に供給されて塗布液分配スリット43から塗布液流出口42に供給されるとき、開閉弁47を開いて空気抜き部材46より塗布液分配室44内の空気を排出する。
【0037】
前記スライドホッパー型塗布装置40の下部には、円筒状基材の円周方向を位置決めする位置決め手段30が固定されている。前記円筒状基材1の位置決め装置30の本体31には、複数の給気口32と、複数の排気口33が穿設されている。該複数の給気口32は、図示しない給気ポンプに接続され、空気等の流体が圧送される。該給気口32の一端部で円筒状基材1の外周面に対向する側には、吐出口34が貫通している。該吐出口34は前記円筒状基材1の外周面と所定の間隙を保って対向している。該間隙は、20μm〜3mm、好ましくは30μm〜2mmである。この間隙が20μmより小さいと、円筒状基材1の僅かな振れで本体31の内壁に接触して円筒状基材1を傷つけやすい。また、この間隙が3mmより大であると、円筒状基材1の位置決め精度が低下する。前記吐出口34は直径0.01〜1.0mmの小口径のノズルであり、好ましくは0.05〜0.5mmが良い。
【0038】
前記本体31の内壁下部の内周面は、入り口側が広がったテーパー面35になっている。このテーパー面35は、例えば軸方向の長さが50mmで、片側傾斜角が0.5mmの円錐面である。このテーパー面35を設けることにより、円筒状基材1が本体31の内壁に進入するとき、円筒状基材1の先端部が内壁の内周面に接触することを防止している。
【0039】
前記給気ポンプから圧送された流体は、複数の給気口32から本体31の内部に導入されて、複数の吐出口34から吐出され、前記円筒状基材1A(1B)の外周面と均一な流体膜層を形成する。吐出後の流体は複数の排気口33から装置外に排出される。
【0040】
前記吐出口34の開口直径は0.01〜1mm、好ましくは0.05〜0.5mm、例えば0.2〜0.5mmの円形に形成されている。排気口33の開口直径は1.0〜10mm、好ましくは2.0〜8.0mm、例えば3〜5mmの円形に形成されている。
【0041】
前記給気口32に供給される流体は、空気、不活性ガス例えば窒素ガスが良い。そして該流体は、JIS規格でクラス100以上の清浄な気体が良い。
【0042】
なお、本発明の位置決め装置に接続される垂直塗布装置としては、スライドホッパー型、押し出し型、リングコーター等の各種装置が用いられる。
【0043】
図8は、本発明による把持搬送手段20と位置決め手段30の相対位置関係を示す断面図である。
【0044】
図8(a)は、2個のハンド部214,215の内側にそれぞれ固定された把持子216を有する上段側の把持手段21が、円筒状基材1D,1Eの端面間の接続部(繋ぎ部)K付近の外周面を把持した状態を示す。また、2個のハンド部224,225の内側にそれぞれ固定された把持子226を有する下段側の把持手段22は、円筒状基材1Eの下端付近の外周面を把持するため待機している。
【0045】
前記上段側の把持手段21に把持された円筒状基材1Dの上端面の上部には、円筒状基材1Cが、更にその上方には円筒状基材1B,1Aが自重で載置されている。把持手段21に把持された前記円筒状基材1Dの上に載置されている円筒状基材1Cの上端側は、前記位置決め手段30に未だ進入していない状態にあり、その円筒面には外力が加えられていない状態である。
【0046】
前記把持搬送手段20の上段側の把持手段21の上面と、位置決め手段30の入口部下面との間隔D1内には、外力の加えられていない長さD0の円筒状基材1Cが少なくとも1個存在する。
【0047】
円筒状基材1Bは、流体吐出口を有するリング状の位置決め手段30により位置決めされている。通常、把持の中心と位置決めの中心をいつも一致させるのは極めて困難(ドラムの寸法や精度にバラツキがあるため)なため、外部把持されていない円筒状基材を少なくとも1つ以上有することにより、位置決め手段の修正が行いやすくなる。
【0048】
前記上段側の把持手段21による把持及び把持解除時や、昇降駆動時に発生した振動により、把持された円筒状基材1Dから伝達された振動は、前記外力の加えられていない円筒状基材1Cに吸収されて、位置決め中の円筒状基材1Bや、塗布中の円筒状基材1Aには伝達されない。なお円筒状基材1Aはリング状の塗布手段40により塗布液が塗布されている。
【0049】
図8(b)は、上段側の把持手段21が、円筒状基材1Dの円筒面の上端側付近で、円筒状基材1Cとの繋ぎ部Kの下方の位置を把持した状態を示す。また、下段側の把持手段22は、円筒状基材1Dの下端付近の外周面を把持するため待機している。
【0050】
前記上段側の把持手段21の上面と、位置決め手段30の入口部下面との間隔D2内には、外力の加えられていない長さD0の円筒状基材(1C)が少なくとも1個存在する。このような円筒状基材の把持方法においても、前記上段側の把持手段21による把持及び把持解除時や、昇降駆動時に発生した振動により、把持された円筒状基材1Dから伝達された振動は、前記外力の加えられていない円筒状基材1Cに吸収されて、位置決め中の円筒状基材1Bや、塗布中の円筒状基材1Aには伝達されない。
【0051】
前記塗布手段40の上方には、乾燥フード51と乾燥器53とから成る乾燥手段50が設けられている。
【0052】
図9は前記塗布手段40と該塗布手段40の上部に設けた乾燥フード51の断面図である。該乾燥フード51は環状の壁面を有し、該壁面には多数の開口51Aが穿設されている。前記円筒状基材1を矢示方向に上昇させ、前記塗布手段40のホッパー塗布面(塗布ヘッド)41で塗布液Lを塗布し、感光層5を形成する。円筒状基材1上に形成された感光層5は前記乾燥フード51内を通過しながら徐々に乾燥される。この乾燥は前記多数の開口51Aより塗布液Lに含まれている溶媒を壁面外に放出することにより行われる。
【0053】
前記のように、塗布手段40により円筒状基材1上に塗布液Lを塗布することにより、形成された感光層5は、塗布直後において乾燥フード51により包囲されており、開口51Aからのみ溶媒が放出されるため、塗布直後における感光層5の乾燥速度は、前記開口51Aの開口面積にほぼ比例する。
【0054】
図10は乾燥フードの他の実施例を示す断面図である。この乾燥フード52は前記図9における乾燥フード51(A部)の上部を延長してB部を形成したものである。このA部には複数個の52Aが、B部には複数個の52Bがそれぞれ穿設されている。この乾燥フード52を塗布手段40の上部に設けることにより、円筒状基材1の外周面上に塗布された塗布液Lの溶媒蒸気濃度が制御される。従って塗膜乾燥速度が制御されることで塗膜の均一化を計ることが可能である。また前記のような乾燥フード52を設けることで、ビード部分の溶媒蒸気濃度が高くなるため、急速な乾燥が防止され、ビード切れを防止できる。
【0055】
図11に本発明の乾燥器53の断面図を示す。乾燥器53は吸引スリット531、吸引チャンバー532、吸引ノズル533を有する吸引スリット部材534の下部に筒状部材535、上部に筒状部材536がそれぞれ同心に結合されている。
【0056】
そして、複数設けられた吸引ノズル533から吸引を行ない、周方向均一な吸引チャンバー532、周方向均一な吸引スリット531により周方向の均一化がなされた吸引エアーが流れ、更に、吸引スリット部材534、その上下の筒状部材536,535の各内径面と塗布済みの円筒状基材1の外周面との間の空気流の乱れをバッファー空間537で極く僅かにおさえて、538に示す乾燥の為の均一吸引エアーの空気流を作り出している。
【0057】
この乾燥ゾーンに矢印で示す方向に塗布済の円筒状基材1を搬送することにより、塗布膜の乾燥を行うものである。
【0058】
次に、乾燥手段50の他の実施例として図12に示された排気乾燥装置54について説明する。前記のように円筒状基体1A、1Bに環状のスライドホッパー型塗布装置40にて塗布液(感光液)Lが塗布されて感光層LAが形成される。前記排気乾燥装置54は塗布した直後の感光層LAより蒸発する溶媒を吸引し、更に乾燥を行うもので、前記塗布装置40の直上に設けられている。541は環状に形成された吸引ダクトで、該吸引ダクト541より前記感光層LAに向けて吸引口542が形成されている。前記吸引ダクト541の一部には排気管543が接続され、該排気管543内に設けた排気ファン544により前記感光層LAより蒸発する溶媒を吸引して、強制的に外部に排出し乾燥させる。
【0059】
前記のように塗布装置40にて感光液Lを塗布した直後に、該感光液Lより発生する溶媒蒸気を排気するため円筒状基体1A、1Bに塗布された感光液Lが多量に流下するのを停止させることができる。その際、前記排気ファン544による排気風速を0.5〜5m/secで行い、前記吸引口542は前記塗布ヘッド41の位置より300mm以下が望ましい。そして前記感光液L内の溶媒が30%以上蒸発するまで前記円筒状基体1A、1Bを連結状態に保ち、分離した後、感光層LAを完全に乾燥させる。前記のような排気乾燥装置54を作動させることにより、多数の円筒状基体を接続して感光液Lを塗布した場合でも感光層LAの近傍より溶媒を急速に排出出来ると共に、感光液Lによる塗膜の流下を強制的に制御して感光層LAに発生する前記薄膜や液溜りの発生を防止する事も出来る。尚、前記排気ファン544は、吸引ダクト541に複数箇所設けてもよい。
【0060】
以上のようにして塗布及び塗布膜乾燥が行なわれた円筒状基体1A,1B,1C〜・・・・を分離する方法を図13の分離過程の各プロセスの状態図を用いて説明する。
【0061】
分離排出手段60は垂直移動ロボットステージ61、エアーシリンダー62、上チャック63及び下チャック64により構成される。
【0062】
塗布済みの円筒状基体1は下方より上方へ向けて積み上げられ、上方向へ移動し、図13(a)に示すように分離位置に達する。この時垂直ロボットが起動し被分離円筒状基体1Aと同軸,等速度で同架された分離ユニット全体を移動する。
【0063】
まず、図13(b)に示す位置で下チャック64が被分離円筒状基体1Aに隣接する円筒状基体1Bを保持する。次いで図13(c)に示す位置で上チャック63が被分離円筒状基体1Aを保持する。
【0064】
エアーシリンダー62により上チャック63は被分離円筒状基体1Aを保持したまま上方向へ移動して図13(d)に示す位置になる。この時被分離円筒状基体1Aと隣接する円筒状基体1Bにまたがる塗布膜が切り裂かれて図13(d)図に示すように1A,1Bの分離が行なわれる。
【0065】
分離済み円筒状基体1Aを回収する為、図13(e)に示すように下チャック64はアンチャック状態となり、垂直移動ロボットステージ61が急上昇を行い、隣接する円筒状基体1Bの位置よりはるか上方に配置された分離ドラム回収装置に該分離済み円筒状基体1Aを置き(上チャック63がアンチャックになり)行程を終了する。
【0066】
そして次なる円筒状基体1Bの分離動作の為、垂直移動ロボットステージ61が下降し、また、エアーシリンダー62が下降し、初期状態の位置図13(a)に戻る。
【0067】
その他に、被分離円筒状基体1Aと隣接円筒状基体1Bの分離を行なう際に被分離円筒状基体1Aに回転を加えながら円筒状基体1Aを引き上げる方法も有効である。これは、分離される膜に引張り力ではなく、剪断力を加えるものであり、ウェット状態の膜では分離部近傍の塗布膜プロフィールが薄膜化する現象を低減できる。また塗布膜の切断時に発生する膜の小片の飛散が該円筒状基体1内面へ引き込まれることにより、低減する。
【0068】
[実施例]
次に、具体的な実施例により本発明を説明するが、本発明はこれに限定されるものではない。
【0069】
実施例1
導電性支持体(円筒状基材)1としては鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体を用いた。また、塗布液Lとしては下記記載の▲1▼UCL−1塗布液組成物を用いた。
【0070】
▲1▼UCL−1塗布液組成物(3.0 W/V%ポリマー濃度)
共重合ナイロン樹脂(CM−8000 東レ社製) 3g
メタノール/n−ブタノール=10/1(Vol比) 1000ml
図1により円筒状基材1の連続塗布工程を説明する。円筒状基材1は図示されていない供給ロボットにより円筒状基材1(アルミニウムドラム)収納室より可動テーブル12上にある円筒状基材1の1Fの位置に置かれる。円筒状基材1Fは可動テーブル11の矢印方向の回転により1Eの位置に達する。この時、昇降手段14の供給アームが下方より上方へ円筒状基材1Eを押し上げ、ハンド手段15の位置まで供給される。好ましくは供給アームによる押し上げが完了すると同時に緩衝機構が作用し、先行の円筒状基材1Dの下端と後続の円筒状基材1Eの上端との接合時のショックを無くすのが良い。このようにして円筒状基材1E,1Fが順次、把持搬送手段20のところまで運び込まれる。
【0071】
円筒状基材1Dは可動把手21,22により把持されかつ上方に搬送される。把持される場所は円筒状基材1Dに悪影響が無ければどの場所でもよいが、円筒状基材1D,1Cとの繋ぎ部(接続部)Kを把持する事により円筒状基材1D,1C間の段差修正がある程度まで行われ好ましいし、上に積み重ねられた円筒状基材1Cの全重量に抗して強い力で把持するのだからキズや故障の発生を防ぐため、繋ぎ部Kの非画像部を把持するのが良い。
【0072】
把持搬送手段20については、図3〜5の説明の項を参照されたい。
【0073】
このようにして図1の把持搬送手段20により円筒状基材1Dが上方向へ移行され、位置決め手段30へ至る。位置決め手段30は、特開平3−280063号公報に記載されている位置決め手段の他、図6に示した環状の位置決め手段が好ましく用いられる。本実施例では、把持手段と位置決め手段との間に、2個分のドラム長を採用した。
【0074】
このようにして正確に位置決めされた円筒状基材1は図6、図7に示した塗布手段40へ移行され塗布される。40は垂直型の塗布手段であり、スライドホッパー型、押し出し型、リングコーター型、スプレーコーター型等、円筒状基材1を積み重ねて上方又は下方に相対的に移動する事により塗布するものであれば種類を問わないが、信頼性の高い連続安定塗布が得られる事によりスライドホッパー型コーターが好ましい。この塗布手段は特開昭58−189061号公報に詳しい。また泡ぬき口やスペーサーを用いるのが良い。また、塗布手段40の位置の微調整の為、公知のX−Y軸可動制御テーブル上に塗布手段を設置するのが良い。また特開平3−21371号公報の如く制御手段を設けても良い。このようにして塗布組成物▲1▼UCL−1が円筒状基材1上に塗布される。
【0075】
塗布された円筒状基材1は乾燥手段50に移行される。50は乾燥手段であり、図9、図10の如くの乾燥フード51(52)と、吸引式乾燥器53とを重ねて用いても良いし、塗布液Lの溶媒や液膜厚に応じて乾燥フード51(52)のみでも良いし、吸引式乾燥器53のみでも良い。
【0076】
円筒状基材1は乾燥処理の後、分離排出手段60へ移行される。分離排出手段60としては特願平5−124270号明細書に詳しく述べられているものが良い。別のものとしては特開昭61−120662号、同61−120664号公報等も良い。
【0077】
分離された円筒状基材1は排出ロボットにより収納室、乾燥室あるいは次の工程に移行される。
【0078】
以上のように▲1▼UCL−1が塗布される。得られたドラムをNo.1−1(実施例)及び1−2(比較例)とする。比較例は把持手段と位置決め手段との間に外部把持されていないドラムが無い場合である。
【0079】
この上に下記▲2▼CGL−1塗布液組成物からなるCGLを、UCL−1と同様にし乾燥膜厚0.7μのCGLを塗布した。
【0080】
▲2▼CGL−1塗布液組成物
フルオレノン型ジスアゾ顔料(CGM−1) 25g
ブチラール樹脂(エスレックBX−L 積水化学社製) 10g
メチルエチルケトン 1430ml
上記塗布液組成物(固形分については固形分重量比CGM−1:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0081】
【化1】

Figure 0003709634
【0082】
更にこの上に下記▲3▼CTL−1塗布液組成物を上記UCL−1と同様に26μになるように塗布した。
【0083】
▲3▼CTL−1塗布液組成物
CTM−1 500g
ポリカーボネート(Z−200 三菱瓦斯化学社製) 560g
1,2−ジクロロエタン 2800ml
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定。
【0084】
【化2】
Figure 0003709634
【0085】
得られた感光体ドラムの膜厚変動は中央部のD0/2(D0=ドラム長)以内の部分に於いても、±0.55μ以内であった。これに反し比較例のドラムは位置決め手段の入口でぶつかりキズを生じた。このように垂直型塗布機は振動に対し極めて敏感に作用する。
【0086】
得られた感光体ドラムをコニカ社製U−BIX 3035複写機で、10本目と1000本目のドラムについて実写したところ、1000コピー後の画像を評価をしたところ両者の差は無く、濃淡ムラ、カブリムラや画像欠陥(黒ポチ、白ポチ、ゴミ、スジ、キズ)等がなく良好であった。比較例ドラムNo.1−2では、衝突キズによる画像欠陥が多発している。
【0087】
このように外部把持されていない円筒状基材1が最上部の把持手段21(外部チャック)から位置決め手段30まで2個長設けることにより、主として接合、把持、塗布、分離の際に生ずる振動、衝撃による塗布ムラ、膜厚ムラ、キズ、ゴミ、ドラム損傷等の塗膜欠陥がなく、塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質の製品が可能となった。
【0088】
この理由としては、たとえ外部把持や位置決めを注意深く行ったとしても、円筒状基材の寸法のバラツキのため、垂直に搬送できず少し傾きのあるものがあったり、最上部の把持手段(外部チャック)から位置決め手段30まで外部把持されてないドラムが無い時は、位置決め手段と衝突したり、柔らかいアルミニウム製円筒状基材自体や円筒状基材間の接続部Kで振動が吸収されず、塗布時振動が残り塗布ムラ、段ムラ等を生じる。
【0089】
以上のように本発明の各手段10,20,30,40,50,60を設置することにより、塗布ムラ、膜厚ムラ、キズ、ゴミ、ドラム損傷等の塗膜欠陥がなく、塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質の製品が可能となった。
【0090】
実施例2
図2の逐次連続塗布装置を用い、鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体上に、下記の如く各々塗布液組成物▲1▼UCL−1(3.0W/V%ポリマー濃度)、▲2▼CGL−1、▲3▼CTL−1を調整し、第一のスライドホッパー型塗布装置40A(▲1▼UCL−1用)、第二の塗布装置40B(▲2▼CGL−1用)、第三の塗布装置40C(▲3▼CTL−1用)にて実施例1と同様にして3層の逐次重層塗布を行った。なお、乾燥膜厚としてはUCL−1は0.3μm、CGL−2は0.5μm、CTL−1は27μmとした。また、本逐次塗布の場合、把持手段21と位置決め手段30との間に存在する円筒状基材の数を3本とした(図8(a)参照)。
【0091】
▲1▼UCL−1塗布液組成物
共重合ナイロン樹脂(CM−8000 東レ社製) 3g
メタノール/n−ブタノール=10/1(Vol比) 1000ml
▲2▼CGL−2塗布液組成物
ペリレン顔料(CGM−2) 500g
ブチラール樹脂(エスレックBX−L 積水化学社製) 500g
メチルエチルケトン 24000ml
上記塗布液組成物(固形分については固形分重量比CGM−2:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0092】
【化3】
Figure 0003709634
【0093】
▲3▼CTL−1塗布液組成物
CTM−1 (前記化2と同じ) 500g
ポリカーボネート(Z−200 三菱瓦斯化学社製) 560g
1,2−ジクロロエタン 2800ml
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定得られた感光体ドラムの膜厚変動は中央部のD0/2(D0=ドラム長)以内の部分に於いては、±0.64μ以内であった。
【0094】
得られた感光体をコニカ社製U−BIX 3035複写機で、10本目と1000本目のドラムについて実写したところ、1000コピー後の画像を評価をしたところ両者の差は無く、濃淡ムラ、カブリムラや画像欠陥(黒ポチ、白ポチ、ゴミ、スジ、キズ)等がなく良好であった。
【0095】
【発明の効果】
本発明の第1発明の連続塗布装置及び第2発明の連続塗布方法によるときは、円筒状基材の供給、把持搬送、位置決め、塗布、乾燥、分離排出の各手段を連続配置して、上記手段の各工程を連続処理することを可能にするもであるから、以下の優れた効果を奏する。
【0096】
(1)円筒状基材上に形成された塗膜が均一であり、塗布ムラや塗膜欠陥がなく塗布性が良好である。
【0097】
(2)円筒状基材の把持搬送性能をが高く、長期安定塗布ができる。
【0098】
(3)円筒状基材の変形や損傷を受けることなく確実に保持できる。
【0099】
(4)連続安定生産が可能となり、生産性が向上する。
【0100】
(5)連続かつ完全自動化が達成されたからゴミやほこり等の異物が混入せず高品質な製品が得られる。
【0101】
(6)円筒状基材の把持時に振動が発生しても、塗布手段に振動が伝わることを防止することにより、塗布ムラや膜厚変動等の塗膜欠陥がなく、塗布性ガ向上する。
【図面の簡単な説明】
【図1】本発明による連続塗布装置の全体構成を示す斜視図。
【図2】本発明による連続塗布装置の他の実施例を示す斜視図。
【図3】把持搬送手段の正面図。
【図4】上記把持搬送手段の把持手段の斜視図。
【図5】上記把持搬送手段の把持手段の他の実施例を示す斜視図。
【図6】位置決め手段と塗布手段とを示す断面図。
【図7】上記塗布手段の斜視図。
【図8】本発明による把持搬送手段と位置決め手段の相対位置関係を示す断面図。
【図9】上記塗布手段と乾燥フードとを示す断面図。
【図10】乾燥フードの他の実施例を示す断面図。
【図11】乾燥器の断面図。
【図12】乾燥手段の他の実施例としての排気乾燥装置の断面図。
【図13】分離排出手段による分離過程を示す状態図。
【符号の説明】
1,1A,1B,1C,1D,1E 円筒状基材(導電性支持体)
10 供給手段
20 把持搬送手段
21,22 把持手段
30 位置決め手段
40,40A,40B,40C 塗布手段
41 塗布ヘッド(コーター、ホッパー塗布面)
50 乾燥手段
51,52 乾燥フード
53 乾燥器
54 排気乾燥装置
60 分離排出手段(分離器)
0 円筒状基材の長さ(ドラム長)
D1,D2 把持手段と位置決め手段間の間隔
K,K1,K2 接続部(繋ぎ部)
L 塗布液(感光液)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vertical coating apparatus and method for continuously coating a coating liquid on a plurality of cylindrical base material outer peripheral surfaces, and in particular, continuous feeding, transporting, positioning, coating, drying and unloading of the cylindrical base material. The present invention relates to a coating apparatus and a continuous coating method.
[0002]
[Prior art]
Various methods such as spray coating, dip coating, blade coating, roll coating, etc. have been studied in relation to uniform coating with a thin film on the outer surface of a cylindrical substrate having a continuous surface formed in an endless manner. ing. In particular, for a uniform coating with a thin film such as an electrophotographic photosensitive drum, studies are being made to develop a coating apparatus having excellent productivity. However, the conventional coating apparatus and coating method for a cylindrical substrate having a continuous surface formed endlessly have disadvantages such that a uniform coating film cannot be obtained and productivity is poor.
[0003]
In the spray coating method, since the solvent evaporates before the coating droplets ejected from the spray gun reach the outer peripheral surface of the cylindrical substrate having a continuous surface formed endlessly, the solid content concentration of the coating droplets When the viscosity of the coated droplet rises and the droplet reaches the surface, the droplet does not spread sufficiently on the surface, or the particles that have dried and solidified Therefore, it is difficult to obtain a coating with a smooth surface. In addition, it is very difficult to control the film thickness because the arrival rate of the liquid droplets on the cylindrical substrate having the continuous surface is not 100%, and there is a loss of coating liquid or is partially non-uniform. . Furthermore, stringing may occur in a polymer solution or the like, so that there are limitations on the solvent and resin used.
[0004]
In the blade coating method and the roll coating method, for example, a blade or a roll is arranged in the length direction of the cylindrical base material, the cylindrical base material is rotated, coating is performed, and the cylindrical base material is rotated once. The roll is retracted. However, when the blade or roll is retracted, there is a disadvantage that a part of the coating film thickness is thicker than the other part due to the viscosity of the coating liquid, and a uniform coating film cannot be obtained.
[0005]
In the dip coating method, the smoothness of the coating liquid surface and the poor uniformity of the coating film as described above are improved.
[0006]
However, the control of the coating film thickness is governed by the coating liquid properties such as viscosity, surface tension, density, temperature, and coating speed, and adjustment of the coating liquid properties is very important. Also, the coating speed is low, and a liquid amount of a certain amount or more is necessary to fill the coating liquid tank. In the case of further layering, there are disadvantages such that the lower layer components are dissolved and the coating solution tank is easily contaminated.
[0007]
Therefore, as described in Japanese Patent Application Laid-Open No. 58-189061, a circular amount regulating type coating device (including a slide hopper type coating device) has been developed. This slide hopper type coating device encircles the circumference of a cylindrical base material having a continuous peripheral surface formed endlessly while continuously moving in the longitudinal direction of the cylindrical base material. A coating liquid is applied, and the coating apparatus further includes an annular coating liquid reservoir chamber, a supply port for supplying the coating liquid from the outside to a part of the coating liquid reservoir chamber, and the coating liquid reservoir chamber A coating liquid distribution slit that opens inward, and the coating liquid that has flowed out of the slit is allowed to flow down on the coating liquid slide surface that is inclined obliquely downward. A bead is formed in a slight gap with the base material, and is applied to the outer peripheral surface as the cylindrical base material moves. By using this slide hopper type coating apparatus, coating can be performed with a small amount of liquid, the coating liquid is not contaminated, and high productivity and easy film thickness control can be achieved.
[0008]
Incidentally, means for gripping and transporting the outer peripheral surface of the cylindrical base material are disclosed in JP-A-3-21371 and JP-A-4-53955, and positioning means are disclosed in JP-A-3-274568 and JP-A-3-280063. Further, drying means are disclosed in JP-A-6-308747 and JP-A-7-64306, respectively.
[0009]
[Problems to be solved by the invention]
However, the use of the slide hopper type coating apparatus is still unsatisfactory due to various problems.
[0010]
The present invention has been proposed in order to solve the conventional problems.
(A) The coating film by the used coating liquid is uniform, and there are no coating film defects such as coating unevenness and film thickness fluctuation, thereby improving coating properties.
[0011]
(B) Improves gripping and conveying performance of the cylindrical base material and enables long-term stable application.
[0012]
(C) Stabilize the gripping and conveying performance of the cylindrical base material and prevent deformation and damage of the cylindrical base material.
[0013]
(D) Productivity is improved by making the production process of supplying, transporting, positioning, coating, drying and unloading the cylindrical base material continuous and stable.
[0014]
(E) By continuously and fully automating the above steps, foreign matter such as dust and dust is prevented from being mixed, and a high-quality product is obtained.
[0015]
(F) Even if vibration is generated during gripping of the cylindrical base material, by preventing the vibration from being transmitted to the coating means, there are no coating film defects such as coating unevenness and film thickness fluctuation, and coating properties are improved.
[0016]
It is an object of the present invention to provide an excellent continuous coating apparatus and a continuous coating method that achieve the above effects.
[0017]
[Means for Solving the Problems]
(1) The continuous coating apparatus of the present invention is formed by aligning the cylindrical axes of the cylindrical base material and stacking the coating liquid on the outer peripheral surface of the cylindrical base material while vertically pushing up the ring of the annular coating apparatus from bottom to top. Coating means for continuously coating the coating means, supply means for supplying the cylindrical base material to the coating means, gripping and transport means for transporting the cylindrical base material while correcting and stacking the cylindrical base material, and the annular coating device Positioning means for aligning the center of the cylindrical base material with the center of the ring, means for drying or drying adjustment of the coated cylindrical base material, and separation and discharge means for taking out the cylindrical base material after the application In the continuous coating apparatus provided, when the positioning unit is operating , at least one cylindrical base material that is not gripped by the gripping and transporting unit is present between the positioning unit and the gripping and transporting unit. thing (Invention of claim 1).
[0018]
(2) In the continuous coating method of the present invention, the cylindrical base materials are aligned and stacked, and the coating liquid is applied onto the outer peripheral surface of the cylindrical base material while vertically pushing up the ring of the annular coating device from bottom to top. Coating means for continuously coating the coating means, supply means for supplying the cylindrical base material to the coating means, gripping and transport means for transporting the cylindrical base material while correcting and stacking the cylindrical base material, and the annular coating device Positioning means for aligning the center of the cylindrical base material with an annular center, means for drying or drying adjustment of the coated cylindrical base material, and separation / discharge means for taking out the cylindrical base material after being applied In the continuous coating method to be applied, when the positioning means is operating , at least one cylindrical base material not gripped by the gripping and transporting means is present between the positioning means and the gripping and transporting means. This It is characterized by. (Invention of Claim 6).
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the overall configuration of a continuous coating apparatus according to the present invention. In the figure, 10 is a supply means for supplying the cylindrical base material 1 to a predetermined position vertically below the coating means and pushing it upward, and 20 is a gripper for gripping the outer peripheral surface of the supplied cylindrical base material 1 and aligning the cylinder axis. Gripping and conveying means for vertically pushing up and conveying the stack from below, 30 is a positioning means for aligning the cylindrical base material 1 with the center of the annular application portion of the coating apparatus, and 40 is an outer peripheral surface of the cylindrical base material Application means for continuously applying the application liquid on the upper surface, 50 is a drying means for drying the application liquid applied on the cylindrical substrate 1, and 60 is a plurality of stacked cylindrical shapes that have been dried and vertically conveyed. Separating and discharging means for separating and discharging one by one from the substrate.
[0020]
The continuous coating apparatus of the present invention has a configuration in which each of the above-described means is continuously arranged on the vertical center line ZZ, and fully automated production that does not require manual operation is achieved with high accuracy. That is, the supply means 10 is moved to a movable table 12 having a plurality of attachment means 11 for placing the cylindrical base material 1, and the movable table 12 is rotated and sent to a vertical line connected to the gripping and conveying means 20. Lifting means 14 for pushing up the cylindrical base material 1 already gripped and transported upward by the gripping and transporting means 20, and a cylindrical base material supply provided at the upper end of the lifting and lowering means 14. Control means for controlling the rotation by the hand means 15 and the drive means 13 and the push-up timing by the elevating means 14. The cylindrical substrate 1 is supplied onto the movable table 12 by a robot handle.
[0021]
The gripping and conveying means 20 provided above the supply means 10 has two sets of gripping means 21 and 22 that can be pressed against and separated from the outer peripheral surface of the cylindrical base material 1 and can move vertically and vertically. The substrate 1 has a function of positioning, gripping, and transporting upward. Hereinafter, the details of each of the means 20, 30, 40, 50, 60 will be described later.
[0022]
FIG. 2 is a perspective view showing another embodiment of the continuous coating apparatus according to the present invention. In this embodiment, a plurality of sets of units A, B, and C each including a positioning unit 30, a coating unit 40, and a drying unit 50 are arranged on a vertical center line ZZ above the gripping and conveying unit 20. The separation and discharge means 60 is disposed on the uppermost stage. The coating liquid discharged from each of the coating means 40A, 40B, and 40C sequentially forms a multilayer coating layer on the cylindrical substrate 1.
[0023]
FIG. 3 is a front view of the gripping and conveying means 20. Ball screws 24 </ b> A and 24 </ b> B supported vertically in the vertical direction are provided inside a pair of conveying device bodies 23 </ b> A and 23 </ b> B that face each other. The ball screws 24A and 24B are rotated forward and backward by driving motors 25A and 25B, respectively. The elevating members 26A and 26B screwed into the ball screws 24A and 24B move up and down linearly by forward and reverse rotation of the ball screws 24A and 24B. Arm members 27A and 27B are fixed to the elevating members 26A and 26B, respectively, and the gripping means 21 and 22 are attached to the respective tip portions.
[0024]
The lifting / lowering means 14 is installed between the transfer apparatus main bodies 23A and 23B, and a cylindrical base material supplying hand means 15 is attached to the upper end of the lifting / lowering means 14. Cylindrical base materials 1D, 1C, 1B, and 1A are sequentially stacked on the upper side of the hand means 15. The uppermost cylindrical substrate 1A is separated and taken out by the discharge hand 61 of the separation and discharge means 60.
[0025]
The application means 40 is fixed on the positioning means 30, and the positioning means 30 is held by a holding means (not shown). The positioning means 30 is a device that accurately holds the cylindrical base material 1 at a predetermined position, and is held in a non-contact manner by, for example, an air bearing. The coating means 40 uniformly coats the coating liquid on the outer peripheral surface of the cylindrical substrate 1 (1A, 1B, 1C, 1D), and the cylindrical substrates 1A, 1B, 1C, 1D A coating film is sequentially formed on the cylindrical base materials 1A, 1B, 1C, and 1D as it is gripped and conveyed by the cylinder 20.
[0026]
FIG. 4 is a perspective view of the gripping means 21, 22. The upper gripping means 21 includes two movable handles 211 and 212, a support shaft 213 that fits and swingably holds in each swinging center hole of the movable grips 211 and 212, and the movable handle 211. , 212 are formed from V-shaped hand portions 214, 215 formed at the respective tip portions, and grippers 216 fixed inside. By opening and closing the movable grips 211 and 212 by a driving means such as a piston cylinder (not shown), the gripper 216 is brought into contact with and separated from the outer peripheral surface of the cylindrical base material. The illustrated gripper 216 is in pressure contact with the cylindrical substrate 1 at four or three locations.
[0027]
The lower gripping means 22 has the same configuration as the upper gripping means 21, 221 and 222 are movable handles, 223 are support shafts, 224 and 225 are hand portions, and 226 is a gripper. Note that the upper gripping means 21 indicates a state where the outer peripheral surfaces of the connection positions of the cylindrical base materials 1B and 1C are gripped, and the lower gripping means 22 indicates each of the connection positions of the cylindrical base materials 1C and 1D. The state separated from the outer peripheral surface is shown.
[0028]
The gripper 216 of the gripping means 21 on the upper side preferably grips the outer peripheral surface in the vicinity of the connecting portion (connecting portion) K1 between the end surfaces of the illustrated cylindrical base materials 1B and 1C. Moreover, it is preferable that the gripping element 226 of the lower-side gripping means 22 grips the outer peripheral surface in the vicinity of the connecting portion (connecting portion) K2 between the end surfaces of the cylindrical base materials 1C and 1D. The outer peripheral surface near the connecting portion K1 and the outer peripheral surface near K2 are non-image forming regions of the photosensitive drum.
[0029]
FIG. 5 is a perspective view showing another embodiment of the gripping means 21. FIG. 5 (a) has grips 280 fixed inside the V-shaped hand portions 281 and 282, respectively, and the cylindrical base member 1 is moved forward and backward by moving the hand portions 281 and 282, respectively. Is gripped or separated by four-point support. FIG. 5 (b) shows grippers 280 fixed inside the notched cylindrical hand portions 283, 284, respectively, and the hand portions 283, 284 are advanced and retracted to move the cylindrical base material 1. Is pressed against or separated from the cylindrical outer peripheral surface support. FIG. 5 (c) has grips 280 fixed inside the V-shaped hand portion 281 and the planar hand portion 285, respectively, and the hand portions 281 and 285 are moved forward and backward, respectively. The cylindrical base material 1 is pressed and held or separated by three-point support.
[0030]
FIG. 6 is a cross-sectional view showing the positioning means 30 and the vertical application means 40, and FIG. 7 is a perspective view of the application means 40.
[0031]
As shown in FIG. 6, a plurality of cylindrical base materials 1A and 1B (hereinafter referred to as cylindrical base material 1) superimposed vertically along the center line ZZ are continuously raised in the direction of the arrow. The coating solution (photosensitive solution) L is applied by a portion (hopper coating surface) 41 directly surrounding the coating of the slide hopper type coating means 10 on the outer peripheral surface of the cylindrical substrate 1. The cylindrical substrate 1 may be a hollow drum, for example, an aluminum drum, a plastic drum, or a seamless belt type substrate.
[0032]
On the hopper coating surface 41, a narrow coating liquid distribution slit (abbreviated as a slit) 43 having a coating liquid outlet 42 opened to the cylindrical substrate 1 side is formed in the horizontal direction. The slit 43 communicates with an annular coating liquid distribution chamber (coating liquid reservoir chamber) 44, and the coating liquid L in the storage tank 2 is fed into the annular coating liquid distribution chamber 44 via the supply pipe 4 by the pressure pump 3. It comes to supply.
[0033]
On the other hand, below the coating solution outlet 42 of the slit 43, the coating solution slide is formed so as to continuously incline and end with a dimension slightly larger than the outer diameter of the cylindrical base material 1. A surface (hereinafter referred to as a slide surface) 45 is formed. Furthermore, a lip 46 extending downward from the end of the slide surface 45 is formed.
[0034]
In the application by the application means (slide hopper type application device) 40, when the coating liquid L is pushed out from the slit 43 and allowed to flow down along the slide surface 45 in the process of pulling up the cylindrical substrate 1, the end of the slide surface 45 is reached. The coating solution that has reached is formed on the surface of the cylindrical substrate 1 after forming a bead between the end of the slide surface 45 and the outer peripheral surface of the cylindrical substrate 1.
[0035]
Since the end of the slide surface 45 and the cylindrical base material 1 are disposed with a certain gap, the cylindrical base material 1 is not applied to the cylindrical base material 1 even when it is formed in multiple layers without damaging the cylindrical base material 1. Can be applied without damaging the layer.
[0036]
On the other hand, an air vent member 46 for removing bubbles in the coating liquid distribution chamber 44 is provided in a part of the coating liquid distribution chamber 44 at a position farthest from the coating liquid supply portion of the pressure feed pump 3. When the coating liquid L in the storage tank 2 is supplied to the coating liquid distribution chamber 44 and supplied from the coating liquid distribution slit 43 to the coating liquid outlet 42, the on-off valve 47 is opened and the coating liquid distribution chamber 44 is opened from the air vent member 46. The air inside is exhausted.
[0037]
Positioning means 30 for positioning the circumferential direction of the cylindrical base material is fixed to the lower portion of the slide hopper type coating device 40. A plurality of air supply ports 32 and a plurality of exhaust ports 33 are formed in the main body 31 of the positioning device 30 for the cylindrical base material 1. The plurality of air supply ports 32 are connected to an air supply pump (not shown), and fluid such as air is pumped. A discharge port 34 passes through one end of the air supply port 32 that faces the outer peripheral surface of the cylindrical base material 1. The discharge port 34 faces the outer peripheral surface of the cylindrical base material 1 with a predetermined gap. The gap is 20 μm to 3 mm, preferably 30 μm to 2 mm. When this gap is smaller than 20 μm, the cylindrical base material 1 is likely to be damaged by coming into contact with the inner wall of the main body 31 by slight vibration of the cylindrical base material 1. Further, when the gap is larger than 3 mm, the positioning accuracy of the cylindrical base material 1 is lowered. The discharge port 34 is a nozzle having a small diameter of 0.01 to 1.0 mm, and preferably 0.05 to 0.5 mm.
[0038]
The inner peripheral surface of the lower part of the inner wall of the main body 31 is a tapered surface 35 having an entrance side widened. The tapered surface 35 is, for example, a conical surface having an axial length of 50 mm and a one-side inclination angle of 0.5 mm. By providing the tapered surface 35, when the cylindrical base material 1 enters the inner wall of the main body 31, the tip of the cylindrical base material 1 is prevented from coming into contact with the inner peripheral surface of the inner wall.
[0039]
The fluid pumped from the air supply pump is introduced into the main body 31 from the plurality of air supply ports 32 and discharged from the plurality of discharge ports 34, and is uniform with the outer peripheral surface of the cylindrical substrate 1A (1B). A fluid film layer is formed. The discharged fluid is discharged from the plurality of exhaust ports 33 to the outside of the apparatus.
[0040]
The discharge port 34 has an opening diameter of 0.01 to 1 mm, preferably 0.05 to 0.5 mm, for example 0.2 to 0.5 mm. The opening diameter of the exhaust port 33 is 1.0 to 10 mm, preferably 2.0 to 8.0 mm, for example, 3 to 5 mm.
[0041]
The fluid supplied to the air supply port 32 is preferably air or an inert gas such as nitrogen gas. The fluid is preferably a clean gas of class 100 or higher according to JIS standards.
[0042]
In addition, various apparatuses, such as a slide hopper type | mold, an extrusion type | mold, a ring coater, are used as a perpendicular | vertical coating apparatus connected to the positioning apparatus of this invention.
[0043]
FIG. 8 is a sectional view showing the relative positional relationship between the gripping and conveying means 20 and the positioning means 30 according to the present invention.
[0044]
FIG. 8 (a) shows that the upper gripping means 21 having grips 216 fixed inside the two hand portions 214 and 215 is connected to the end portion of the cylindrical base materials 1D and 1E. (Part) The state which hold | gripped the outer peripheral surface of K vicinity is shown. Further, the lower gripping means 22 having gripping elements 226 fixed inside the two hand portions 224 and 225 are on standby to grip the outer peripheral surface near the lower end of the cylindrical base material 1E.
[0045]
The cylindrical base material 1C is placed on the upper end surface of the cylindrical base material 1D gripped by the upper gripping means 21, and the cylindrical base materials 1B and 1A are placed under its own weight on the upper side. Yes. The upper end side of the cylindrical base material 1C placed on the cylindrical base material 1D gripped by the gripping means 21 has not yet entered the positioning means 30, and the cylindrical surface has The external force is not applied.
[0046]
Wherein the upper surface of the gripping means 21 of the upper side of the grip transport unit 20, within the distance D1 of the inlet lower surface of the positioning means 30, the cylindrical substrate 1C length D 0 that no added external force is at least 1 There are.
[0047]
The cylindrical substrate 1B is positioned by a ring-shaped positioning means 30 having a fluid discharge port. Usually, it is extremely difficult to always match the center of gripping with the center of positioning (due to variations in drum dimensions and accuracy), so by having at least one cylindrical base that is not externally gripped, It becomes easy to correct the positioning means.
[0048]
The vibration transmitted from the gripped cylindrical base material 1D due to vibration generated when gripping and releasing the grip by the grip means 21 on the upper stage side or when driving up and down is applied to the cylindrical base material 1C to which the external force is not applied. And is not transmitted to the cylindrical substrate 1B being positioned or the cylindrical substrate 1A being applied. The cylindrical substrate 1A is coated with a coating solution by a ring-shaped coating means 40.
[0049]
FIG. 8B shows a state where the upper gripping means 21 grips the position below the connecting portion K with the cylindrical substrate 1C in the vicinity of the upper end side of the cylindrical surface of the cylindrical substrate 1D. Further, the lower holding means 22 stands by to hold the outer peripheral surface near the lower end of the cylindrical substrate 1D.
[0050]
At least one cylindrical base material (1C) having a length D 0 to which no external force is applied is present in the distance D2 between the upper surface of the upper gripping means 21 and the lower surface of the inlet portion of the positioning means 30. . In such a cylindrical base material gripping method, vibrations transmitted from the gripped cylindrical base material 1D due to vibrations generated during gripping and releasing by the upper gripping means 21 and when driving up and down are also performed. It is absorbed by the cylindrical base material 1C to which no external force is applied and is not transmitted to the cylindrical base material 1B being positioned or the cylindrical base material 1A being applied.
[0051]
Above the coating means 40, a drying means 50 comprising a drying hood 51 and a dryer 53 is provided.
[0052]
FIG. 9 is a cross-sectional view of the coating means 40 and a drying hood 51 provided on the top of the coating means 40. The dry hood 51 has an annular wall surface, and a plurality of openings 51A are formed in the wall surface. The cylindrical substrate 1 is raised in the direction of the arrow, and the coating liquid L is applied by the hopper coating surface (coating head) 41 of the coating means 40 to form the photosensitive layer 5. The photosensitive layer 5 formed on the cylindrical substrate 1 is gradually dried while passing through the drying hood 51. This drying is performed by releasing the solvent contained in the coating liquid L out of the wall surface through the multiple openings 51A.
[0053]
As described above, the coating layer L is coated on the cylindrical substrate 1 by the coating means 40, and the formed photosensitive layer 5 is surrounded by the drying hood 51 immediately after coating, and the solvent is formed only from the opening 51A. Therefore, the drying speed of the photosensitive layer 5 immediately after coating is substantially proportional to the opening area of the opening 51A.
[0054]
FIG. 10 is a cross-sectional view showing another embodiment of the dry hood. The dry hood 52 is formed by extending the upper part of the dry hood 51 (A part) in FIG. 9 to form a B part. A plurality of 52A are formed in the A portion, and a plurality of 52B are formed in the B portion. By providing this dry hood 52 on the upper part of the coating means 40, the solvent vapor concentration of the coating liquid L applied on the outer peripheral surface of the cylindrical substrate 1 is controlled. Therefore, it is possible to make the coating film uniform by controlling the coating film drying speed. Further, by providing the drying hood 52 as described above, the solvent vapor concentration in the bead portion is increased, so that rapid drying can be prevented and bead breakage can be prevented.
[0055]
FIG. 11 shows a cross-sectional view of the dryer 53 of the present invention. In the dryer 53, a cylindrical member 535 and a cylindrical member 536 are concentrically coupled to a lower portion of a suction slit member 534 having a suction slit 531, a suction chamber 532, and a suction nozzle 533, respectively.
[0056]
Then, suction is performed from a plurality of suction nozzles 533, suction air that has been made uniform in the circumferential direction by a suction chamber 532 that is uniform in the circumferential direction, and a suction slit 531 that is uniform in the circumferential direction flows, and further, a suction slit member 534, The turbulence of the air flow between the inner diameter surfaces of the upper and lower cylindrical members 536 and 535 and the outer peripheral surface of the coated cylindrical base material 1 is suppressed by the buffer space 537, and the drying process shown in 538 is performed. The air flow of uniform suction air is created.
[0057]
The coated film is dried by conveying the coated cylindrical substrate 1 in the direction indicated by the arrow to the drying zone.
[0058]
Next, an exhaust drying apparatus 54 shown in FIG. 12 will be described as another embodiment of the drying means 50. As described above, the coating solution (photosensitive solution) L is applied to the cylindrical substrates 1A and 1B by the annular slide hopper type coating device 40, thereby forming the photosensitive layer LA. The exhaust drying device 54 sucks the solvent evaporated from the photosensitive layer LA immediately after coating, and further performs drying, and is provided immediately above the coating device 40. Reference numeral 541 denotes an annular suction duct, and a suction port 542 is formed from the suction duct 541 toward the photosensitive layer LA. An exhaust pipe 543 is connected to a part of the suction duct 541, and the solvent evaporating from the photosensitive layer LA is sucked by an exhaust fan 544 provided in the exhaust pipe 543, forcibly discharged outside and dried. .
[0059]
As described above, immediately after the photosensitive solution L is applied by the coating device 40, a large amount of the photosensitive solution L applied to the cylindrical substrates 1A and 1B flows down to exhaust the solvent vapor generated from the photosensitive solution L. Can be stopped. At this time, the exhaust air velocity by the exhaust fan 544 is 0.5 to 5 m / sec, and the suction port 542 is preferably 300 mm or less from the position of the coating head 41. The cylindrical substrates 1A and 1B are kept in a connected state until the solvent in the photosensitive solution L evaporates by 30% or more, and after separation, the photosensitive layer LA is completely dried. By operating the exhaust dryer 54 as described above, even when a large number of cylindrical substrates are connected and the photosensitive solution L is applied, the solvent can be rapidly discharged from the vicinity of the photosensitive layer LA, and coating with the photosensitive solution L can be performed. It is also possible to prevent the occurrence of the thin film and liquid pool generated in the photosensitive layer LA by forcibly controlling the flow of the film. The exhaust fan 544 may be provided at a plurality of locations in the suction duct 541.
[0060]
A method of separating the cylindrical substrates 1A, 1B, 1C,... That have been coated and dried as described above will be described with reference to the state diagrams of the individual separation processes in FIG.
[0061]
The separation / discharge unit 60 includes a vertical moving robot stage 61, an air cylinder 62, an upper chuck 63 and a lower chuck 64.
[0062]
The coated cylindrical substrate 1 is stacked upward from below, moves upward, and reaches a separation position as shown in FIG. At this time, the vertical robot is activated to move the entire separation unit that is coaxial with the cylindrical substrate 1A to be separated at the same speed.
[0063]
First, the lower chuck 64 holds the cylindrical substrate 1B adjacent to the cylindrical substrate 1A to be separated at the position shown in FIG. Next, the upper chuck 63 holds the cylindrical substrate 1A to be separated at the position shown in FIG.
[0064]
With the air cylinder 62, the upper chuck 63 moves upward while holding the cylindrical substrate 1A to be separated, and reaches the position shown in FIG. At this time, the coating film straddling the cylindrical substrate 1B adjacent to the cylindrical substrate 1A to be separated is torn, and 1A and 1B are separated as shown in FIG. 13 (d).
[0065]
In order to recover the separated cylindrical substrate 1A, the lower chuck 64 is in an unchucked state as shown in FIG. 13E, and the vertical moving robot stage 61 is rapidly raised, far above the position of the adjacent cylindrical substrate 1B. The separated cylindrical base body 1A is placed on the separation drum collection device arranged in (the upper chuck 63 becomes an unchuck), and the process is completed.
[0066]
Then, for the next separation operation of the cylindrical substrate 1B, the vertical moving robot stage 61 is lowered, and the air cylinder 62 is lowered to return to the initial position diagram 13 (a).
[0067]
In addition, a method of pulling up the cylindrical substrate 1A while rotating the separated cylindrical substrate 1A when separating the separated cylindrical substrate 1A and the adjacent cylindrical substrate 1B is also effective. This applies not a tensile force but a shearing force to the separated film, and the phenomenon that the coating film profile in the vicinity of the separation part becomes thin can be reduced in the wet film. Further, scattering of small pieces of the film generated when the coating film is cut is reduced by being drawn into the inner surface of the cylindrical substrate 1.
[0068]
[Example]
Next, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.
[0069]
Example 1
As the conductive support (cylindrical base material) 1, a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g was used. As the coating liquid L, (1) UCL-1 coating liquid composition described below was used.
[0070]
(1) UCL-1 coating composition (3.0 W / V% polymer concentration)
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 3g
Methanol / n-butanol = 10/1 (Vol ratio) 1000 ml
The continuous coating process of the cylindrical substrate 1 will be described with reference to FIG. The cylindrical substrate 1 is placed at a position 1F of the cylindrical substrate 1 on the movable table 12 from the cylindrical substrate 1 (aluminum drum) storage chamber by a supply robot (not shown). The cylindrical base material 1F reaches the position 1E by the rotation of the movable table 11 in the arrow direction. At this time, the supply arm of the lifting / lowering means 14 pushes up the cylindrical base material 1 </ b> E upward from below and is supplied to the position of the hand means 15. Preferably, the shock absorbing mechanism acts simultaneously with completion of the push-up by the supply arm, and the shock at the time of joining the lower end of the preceding cylindrical base 1D and the upper end of the subsequent cylindrical base 1E is eliminated. In this way, the cylindrical base materials 1E and 1F are sequentially carried to the gripping and conveying means 20.
[0071]
The cylindrical substrate 1D is gripped by the movable handles 21 and 22 and conveyed upward. The place to be gripped may be any place as long as the cylindrical base material 1D is not adversely affected. However, the gripping portion (connection part) K between the cylindrical base materials 1D and 1C is held between the cylindrical base materials 1D and 1C. In order to prevent the occurrence of scratches and malfunctions, the non-image of the connecting portion K is preferable because the step is corrected to a certain extent and is held with a strong force against the total weight of the cylindrical base material 1C stacked thereon. It is better to grip the part.
[0072]
For the gripping and conveying means 20, refer to the description section of FIGS.
[0073]
In this way, the cylindrical substrate 1D is moved upward by the gripping and conveying means 20 of FIG. As the positioning means 30, in addition to the positioning means described in JP-A-3-280063, the annular positioning means shown in FIG. 6 is preferably used. In this embodiment, two drum lengths are employed between the gripping means and the positioning means.
[0074]
The cylindrical base material 1 accurately positioned in this way is transferred to the application means 40 shown in FIGS. 6 and 7 and applied. Reference numeral 40 denotes a vertical application means, such as a slide hopper type, an extrusion type, a ring coater type, or a spray coater type, which is applied by stacking the cylindrical base materials 1 and moving them relatively upward or downward. Any type of slide hopper type coater is preferable because it provides a highly reliable continuous stable coating. This coating means is detailed in Japanese Patent Application Laid-Open No. 58-189061. It is preferable to use a bubble opening or a spacer. Further, for fine adjustment of the position of the coating means 40, it is preferable to install the coating means on a known XY axis movable control table. Further, a control means may be provided as disclosed in JP-A-3-21371. In this way, the coating composition {circle around (1)} UCL-1 is applied onto the cylindrical substrate 1.
[0075]
The coated cylindrical substrate 1 is transferred to the drying means 50. Reference numeral 50 denotes a drying means, and a drying hood 51 (52) as shown in FIGS. 9 and 10 and a suction dryer 53 may be used in an overlapping manner, or depending on the solvent and liquid film thickness of the coating liquid L. Only the drying hood 51 (52) may be used, or only the suction dryer 53 may be used.
[0076]
The cylindrical substrate 1 is transferred to the separation and discharge means 60 after the drying process. As the separation and discharge means 60, those described in detail in Japanese Patent Application No. 5-124270 are preferable. As another example, JP-A-61-120662 and JP-A-61-120664 may be used.
[0077]
The separated cylindrical base material 1 is transferred to a storage room, a drying room or the next process by a discharge robot.
[0078]
(1) UCL-1 is applied as described above. The obtained drum was No. It shall be 1-1 (Example) and 1-2 (Comparative example). In the comparative example, there is no drum that is not externally gripped between the gripping means and the positioning means.
[0079]
On top of this, CGL comprising the following (2) CGL-1 coating solution composition was applied in the same manner as UCL-1, with a dry film thickness of 0.7 μm.
[0080]
(2) CGL-1 coating solution composition fluorenone type disazo pigment (CGM-1) 25 g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 10g
Methyl ethyl ketone 1430ml
A composition obtained by dispersing the coating composition (solid content: solid content weight ratio CGM-1: BX-L = 2: 1) using a sand mill for 20 hours.
[0081]
[Chemical 1]
Figure 0003709634
[0082]
Further, the following (3) CTL-1 coating solution composition was coated on the coating so as to have a thickness of 26 μm as in the case of UCL-1.
[0083]
(3) CTL-1 coating liquid composition CTM-1 500 g
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 560 g
1,2-dichloroethane 2800ml
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 is fixed.
[0084]
[Chemical formula 2]
Figure 0003709634
[0085]
Thickness variation of the resulting photosensitive drum even in a portion within D of the central portion 0/2 (D 0 = drum length) was within ± 0.55. On the other hand, the drum of the comparative example collided at the entrance of the positioning means and was scratched. As described above, the vertical coater is extremely sensitive to vibration.
[0086]
The obtained photoconductor drum was photographed on the 10th and 1000th drums with a U-BIX 3035 copier manufactured by Konica, and the image after 1000 copies was evaluated. And image defects (black spots, white spots, dust, streaks, scratches) and the like were good. Comparative drum No. In 1-2, image defects due to collision scratches frequently occur.
[0087]
By providing two cylindrical bases 1 that are not externally gripped from the uppermost gripping means 21 (external chuck) to the positioning means 30, vibrations that occur mainly during joining, gripping, application, and separation, A coating drum having good coating properties without coating film defects such as coating unevenness due to impact, film thickness unevenness, scratches, dust, and drum damage was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, high-quality products can be produced without dust and dust.
[0088]
The reason for this is that even if external gripping and positioning are carefully performed, there are some cases where the cylindrical substrate cannot be transported vertically due to variation in dimensions, and there is a slight inclination, or the uppermost gripping means (external chuck) When there is no drum that is not gripped externally from the positioning means 30 to the positioning means 30, it collides with the positioning means, and the vibration is not absorbed by the soft aluminum cylindrical base material itself or the connecting portion K between the cylindrical base materials. Oscillations remain and cause uneven coating and unevenness of steps.
[0089]
By installing each means 10, 20, 30, 40, 50, 60 of the present invention as described above, there are no coating film defects such as coating unevenness, film thickness unevenness, scratches, dust, drum damage, and the like. A good coating drum was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, high-quality products can be produced without dust and dust.
[0090]
Example 2
The coating liquid composition {circle around (1)} UCL-1 (3.0 W / w) is applied on a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g using the sequential sequential coating apparatus shown in FIG. V% polymer concentration), (2) CGL-1, and (3) CTL-1 are adjusted, the first slide hopper type coating device 40A (1) for UCL-1 and the second coating device 40B (▲ (2) for CGL-1) and 3rd coating apparatus 40C (3) for CTL-1 were applied in the same manner as in Example 1 to apply three layers successively. The dry film thickness was 0.3 μm for UCL-1, 0.5 μm for CGL-2, and 27 μm for CTL-1. In the case of this sequential application, the number of cylindrical base materials existing between the gripping means 21 and the positioning means 30 is set to three (see FIG. 8A).
[0091]
(1) UCL-1 coating liquid composition copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 3 g
Methanol / n-butanol = 10/1 (Vol ratio) 1000 ml
(2) CGL-2 coating solution composition perylene pigment (CGM-2) 500 g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 500g
Methyl ethyl ketone 24000ml
A composition obtained by dispersing the above coating composition (solid content: solid content weight ratio CGM-2: BX-L = 2: 1) using a sand mill for 20 hours.
[0092]
[Chemical 3]
Figure 0003709634
[0093]
(3) CTL-1 coating liquid composition CTM-1 (same as the chemical formula 2) 500 g
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 560 g
1,2-dichloroethane 2800ml
The solids weight ratio between solids CTM-1: Z-200 = 0.89: fixed obtained photosensitive drum 1 thickness variation D 0/2 (D 0 = drum length) of the central portion within the In the portion, it was within ± 0.64 μm.
[0094]
When the obtained photoconductor was photographed on the 10th and 1000th drums with a U-BIX 3035 copier manufactured by Konica, the image after 1000 copies was evaluated, and there was no difference between them. There were no image defects (black spots, white spots, dust, streaks, scratches) and the like, and it was good.
[0095]
【The invention's effect】
When the continuous coating apparatus according to the first invention of the present invention and the continuous coating method of the second invention are used, the cylindrical base material supply, gripping and conveying, positioning, coating, drying, and separating / discharging units are continuously arranged, and Since each step of the means can be continuously processed, the following excellent effects are obtained.
[0096]
(1) The coating film formed on the cylindrical substrate is uniform, and there is no coating unevenness or coating film defect, and the coating property is good.
[0097]
(2) The gripping and conveying performance of the cylindrical base material is high, and long-term stable application can be performed.
[0098]
(3) It can hold | maintain reliably, without receiving a deformation | transformation and damage of a cylindrical base material.
[0099]
(4) Continuous and stable production is possible and productivity is improved.
[0100]
(5) Since continuous and complete automation has been achieved, foreign substances such as dust and dirt are not mixed, and a high-quality product can be obtained.
[0101]
(6) Even if vibration is generated during gripping of the cylindrical base material, by preventing the vibration from being transmitted to the coating means, there is no coating film defect such as coating unevenness and film thickness variation, and coating properties are improved.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the overall configuration of a continuous coating apparatus according to the present invention.
FIG. 2 is a perspective view showing another embodiment of the continuous coating apparatus according to the present invention.
FIG. 3 is a front view of gripping and conveying means.
FIG. 4 is a perspective view of the gripping means of the gripping and transporting means.
FIG. 5 is a perspective view showing another embodiment of the gripping means of the gripping and transporting means.
FIG. 6 is a cross-sectional view showing positioning means and application means.
FIG. 7 is a perspective view of the application unit.
FIG. 8 is a cross-sectional view showing the relative positional relationship between the gripping and conveying means and the positioning means according to the present invention.
FIG. 9 is a cross-sectional view showing the coating means and a drying hood.
FIG. 10 is a sectional view showing another embodiment of a dry hood.
FIG. 11 is a cross-sectional view of a dryer.
FIG. 12 is a cross-sectional view of an exhaust drying apparatus as another embodiment of the drying means.
FIG. 13 is a state diagram showing a separation process by the separation discharge means.
[Explanation of symbols]
1,1A, 1B, 1C, 1D, 1E Cylindrical base material (conductive support)
DESCRIPTION OF SYMBOLS 10 Supply means 20 Grip conveyance means 21, 22 Grip means 30 Positioning means 40, 40A, 40B, 40C Application means 41 Application head (coater, hopper application surface)
50 Drying means 51, 52 Drying hood 53 Dryer 54 Exhaust drying device 60 Separation discharge means (separator)
D 0 Length of cylindrical substrate (drum length)
D1, D2 Distances K, K1, K2 between gripping means and positioning means
L Coating solution (photosensitive solution)

Claims (6)

円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持段差修正して積み重ねしながら搬送する把持搬送手段、前記環状塗布装置の環状の中心に前記円筒状基材の中心を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、
前記位置決め手段が作動している時に、前記位置決め手段と前記把持搬送手段との間に、該把持搬送手段に把持されていない前記円筒状基材を少なくとも1つ存在させることを特徴とする連続塗布装置。
The coating means for continuously applying the coating liquid on the outer peripheral surface of the cylindrical base material while stacking the cylindrical shafts of the cylindrical base material together and vertically pushing up the ring of the annular coating device from bottom to top. Supply means for supplying a cylindrical base material to the means, gripping and transport means for transporting the cylindrical base material while correcting and stacking the cylindrical base material, and the center of the cylindrical base material at the annular center of the annular coating device In a continuous coating apparatus comprising positioning means for aligning, a means for drying or drying adjustment of the coated cylindrical base material, and a separation and discharge means for taking out the cylindrical base material after coating,
When the positioning means is operating , at least one cylindrical base material not gripped by the gripping and transporting means is present between the positioning means and the gripping and transporting means. apparatus.
前記塗布手段がスライドホッパー型塗布装置であることを特徴とする請求項1に記載の連続塗布装置。  The continuous coating apparatus according to claim 1, wherein the coating unit is a slide hopper type coating apparatus. 前記位置決め手段が円筒状基材の外周面に流体を吹き付ける吐出口を有するリング状位置決め装置であることを特徴とする請求項1または2に記載の連続塗布装置。  3. The continuous coating apparatus according to claim 1, wherein the positioning unit is a ring-shaped positioning device having a discharge port that sprays fluid onto an outer peripheral surface of a cylindrical base material. 前記把持搬送手段は円筒状基材間の繋ぎ部を外部把持する装置であることを特徴とする請求項1に記載の連続塗布装置。  The continuous coating apparatus according to claim 1, wherein the gripping and conveying unit is a device that externally grips a joint portion between cylindrical substrates. 前記塗布手段が複数個あり、前記円筒状基材に外周面に複数の塗布層を逐次形成させることを特徴とする請求項1または2に記載の連続塗布装置。  3. The continuous coating apparatus according to claim 1, wherein there are a plurality of the coating units, and a plurality of coating layers are sequentially formed on the outer peripheral surface of the cylindrical base material. 円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持段差修正して積み重ねしながら搬送する把持搬送手段、前記環状塗布装置の環状の中心に前記円筒状基材の中心を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段により塗布される連続塗布方法において、
前記位置決め手段が作動している時に、前記位置決め手段と前記把持搬送手段との間に、該把持搬送手段に把持されていない円筒状基材を少なくとも1つ存在させることを特徴とする連続塗布方法。
The coating means for continuously applying the coating liquid on the outer peripheral surface of the cylindrical base material while stacking the cylindrical shafts of the cylindrical base material together and vertically pushing up the ring of the annular coating device from bottom to top. Supply means for supplying a cylindrical base material to the means, gripping and transport means for transporting the cylindrical base material while correcting and stacking the cylindrical base material, and the center of the cylindrical base material at the annular center of the annular coating device In a continuous coating method applied by positioning means for aligning, means for drying or drying adjustment of the coated cylindrical base material, and separation and discharge means for taking out the cylindrical base material after coating,
A continuous coating method characterized in that at least one cylindrical base material not gripped by the gripping and transporting means is present between the positioning means and the gripping and transporting means when the positioning means is operating. .
JP32691896A 1996-12-06 1996-12-06 Continuous coating apparatus and continuous coating method Expired - Fee Related JP3709634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32691896A JP3709634B2 (en) 1996-12-06 1996-12-06 Continuous coating apparatus and continuous coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32691896A JP3709634B2 (en) 1996-12-06 1996-12-06 Continuous coating apparatus and continuous coating method

Publications (2)

Publication Number Publication Date
JPH10165877A JPH10165877A (en) 1998-06-23
JP3709634B2 true JP3709634B2 (en) 2005-10-26

Family

ID=18193218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32691896A Expired - Fee Related JP3709634B2 (en) 1996-12-06 1996-12-06 Continuous coating apparatus and continuous coating method

Country Status (1)

Country Link
JP (1) JP3709634B2 (en)

Also Published As

Publication number Publication date
JPH10165877A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
JP2006043702A (en) Method and apparatus of positioning cylindrical base material
KR100387407B1 (en) Development processing method and liquid processing method
JPH11197570A (en) Coating method and coating applicator
JP3709634B2 (en) Continuous coating apparatus and continuous coating method
JP3707099B2 (en) Continuous coating apparatus and continuous coating method
US4972569A (en) Method for rotatingly transferring hollow cylindrical articles
JP3610533B2 (en) Apparatus and method for separating and holding a cylindrical substrate
JP3666060B2 (en) Continuous coating and drying apparatus and continuous coating and drying method
JPH10277480A (en) Cylindrical substrate and method of continuously coating cylindrical substrate
JPH10263450A (en) Method and device for continuous coating
JP3661256B2 (en) Continuous coating apparatus and continuous coating method
JP3613742B2 (en) Continuous coating apparatus and continuous coating method
JP3653805B2 (en) Cylindrical substrate coating method and apparatus
JPH0957171A (en) Applicator for cylindrical base material and coating method
JPH1133473A (en) Continuous coating method and continuos coating applicator
JPH0924326A (en) Method for coating cylindrical base material and device therefor
JPH0957178A (en) Apparatus for separating-discharging continuously coated cylindrical base material and method therefor
JPH09150095A (en) Apparatus for coating cylindrical base material and coating method
JPH0985157A (en) Separating, discharging and clamping device for cylindrical base material and separating, discharging and clamping method
JPH1099771A (en) Coating device for cylindrical base material and its coating method
JPH0975833A (en) Method for positioning cylindrical base material of apparatus for vertical application, cylindrical base material for vertical application and method for vertical application
JPH09206658A (en) Device and method for clamping cylindrical base of continuous coating equipment
JP2000005684A (en) Method for coating cylindrical base and coating device therefor
JPH0924324A (en) Device for separating/discharging/claming cylindrical base material and method therefor
JP3658921B2 (en) Separation / discharge apparatus and separation / discharge method for coated cylindrical substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees