JP3707099B2 - Continuous coating apparatus and continuous coating method - Google Patents

Continuous coating apparatus and continuous coating method Download PDF

Info

Publication number
JP3707099B2
JP3707099B2 JP16202195A JP16202195A JP3707099B2 JP 3707099 B2 JP3707099 B2 JP 3707099B2 JP 16202195 A JP16202195 A JP 16202195A JP 16202195 A JP16202195 A JP 16202195A JP 3707099 B2 JP3707099 B2 JP 3707099B2
Authority
JP
Japan
Prior art keywords
coating
base material
cylindrical base
cylindrical
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16202195A
Other languages
Japanese (ja)
Other versions
JPH0910654A (en
Inventor
晃 大平
淳二 氏原
栄一 木島
信昭 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP16202195A priority Critical patent/JP3707099B2/en
Priority to US08/650,090 priority patent/US5707449A/en
Priority to EP96303574A priority patent/EP0744221B1/en
Publication of JPH0910654A publication Critical patent/JPH0910654A/en
Application granted granted Critical
Publication of JP3707099B2 publication Critical patent/JP3707099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、複数の円筒状基材外周面上に塗布液を連続的に塗布する垂直塗布装置及び方法に関し、特に、該円筒状基材を供給、搬送、位置決め、塗布、乾燥、搬出する連続塗布装置及び方法に関する。
【0002】
【従来の技術】
エンドレスに形成された連続面を有する円筒状基材の外面上への薄膜で均一な塗布に関連してスプレー塗布法、浸漬塗布法、ブレード塗布法、ロール塗布法等の種々の方法が検討されている。特に電子写真感光体ドラムのような薄膜で均一な塗布については生産性の優れた塗布装置を開発すべく検討されている。しかしながら、従来のエンドレスに形成された連続面を有する円筒状基材への塗布装置及び塗布方法においては、均一な塗膜が得られなかったり、生産性が悪い等の短所があった。
【0003】
スプレー塗布法では、スプレーガンより噴出した塗布液滴が該エンドレスに形成された連続面を有する円筒状基材の外周面上に到達するまでに溶媒が蒸発するために塗布液滴の固形分濃度が上昇してしまい、それにともない塗布液滴の粘度上昇が起って液滴が面に到達したとき、液滴が面上を充分に広がらないために、或いは乾燥固化してしまった粒子が表面に付着するために、塗布表面の平滑性の良いものがえられない。また、該連続面を有する円筒状基材への液滴の到達率が100%でなく塗布液のロスがあったり、部分的にも不均一であるため、膜厚コントロールが非常に困難である。更に、高分子溶液等では糸引きを起こす事があるため、使用する溶媒及び樹脂に制限がある。
【0004】
ブレード塗布法、ロール塗布法は例えば円筒状基材の長さ方向にブレード若しくはロールを配置し、該円筒状基材を回転させて塗布を行い円筒状基材を1回転させたのち、ブレード若しくはロールを後退させるものである。しかしながらブレード若しくはロールを後退させる際、塗布液の粘性により、塗布膜厚の一部に他の部分より厚い部分が生じ、均一な塗膜が得られない欠点がある。
【0005】
浸漬塗布法は、上記におけるような塗布液表面の平滑性、塗布膜の均一性の悪い点は改良される。
【0006】
しかし、塗布膜厚の制御が塗布液物性例えば粘度、表面張力、密度、温度等と塗布速度に支配され、塗布液物性の調整が非常に重要となる。また塗布速度も低いし、塗布液槽を満たすためにはある一定量以上の液量が必要である。さらに重層する場合、下層成分が溶け出し塗布液槽が汚染されやすい等の欠点がある。
【0007】
そこで特開昭58−189061号公報に記載の如く円形量規制型塗布装置(この中にはスライドホッパー型塗布装置が含まれる)が開発された。このスライドホッパー型塗布装置はエンドレスに形成された連続周面を有する円筒状基材を連続的にその長手方向に移動させながら、その周囲を環状に取り囲み、円筒状基材の外周面に対して塗布液を塗布するものであって、さらにこの塗布装置は環状の塗布液溜まり室と、この塗布液溜まり室内の一部に対して外部から塗布液を供給する供給口と、前記塗布液溜まり室の内方に開口する塗布液分配スリットとを有し、このスリットから流出した塗布液を斜め下方に傾斜する塗布液スライド面上に流下させ、塗布液スライド面の下端のホッパー塗布面と円筒状基材との僅かな間隙部分にビードを形成し、円筒状基材の移動に伴ってその外周面に塗布するものである。このスライドホッパー型塗布装置を用いることにより、少ない液量で塗布でき、塗布液が汚染されず、生産性の高い、膜厚制御の容易な塗布が可能となった。
【0008】
【発明が解決しようとする課題】
しかしながら、前記スライドホッパー型塗布装置を用いてもなお諸問題があり未だ満足のいくものではない。
【0009】
本発明は従来の諸問題を解決するために提案されたものであり、その目的とするところのものは、
(イ)使用塗布液によるビード切れ発生を防止する。
【0010】
(ロ)塗布ムラや膜厚変動等の塗膜欠陥がなく、塗布性を向上する。
【0011】
(ハ)円筒状基材の把持搬送性能を向上し、長期の安定塗布を可能にする。
【0012】
(ニ)円筒状基材の把持搬送性能を安定化し、円筒状基材の変形、損傷を防止する。
【0013】
(ホ)円筒状基材を供給、搬送、位置決め、塗布、乾燥、搬出する生産工程を連続安定生産にすることにより、生産性が向上する。
【0014】
(ヘ)上記工程を連続且つ完全自動化することにより、ゴミやほこり等の異物混入を防止し、高品質な製品を得る。
【0015】
(ト)円筒状基材に振動が発生しても、完成された感光体ドラム上の画像形成に影響を与えないような連続塗布装置を達成する。
【0016】
(チ)円筒状基材に振動が発生しても、振動が同じ位置に集中しないで分散させることにより、重畳されて大きな振動となることを防止する。
【0017】
等の効果が達成される優れた連続塗布装置及び連続塗布方法を提供することにある。
【0018】
【課題を解決するための手段】
(1) 本発明の目的は、円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持段差修正して積み重ねた状態で搬送する段差修正搬送手段、及び、塗布された後の円筒状基材を分離して取り出す分離排出手段を具備する連続塗布装置において、前記円筒状基材の非画像部相当部分に塗布液が当接した時、前記供給手段、段差修正搬送手段及び分離排出手段が前記非画像部相当部分内で時間差作動することを特徴とする連続塗布装置及び連続塗布方法により達成される(請求項1,の発明)。
【0022】
【実施例】
以下、図面を用いて本発明の一実施例を説明する。図1は本発明による連続塗布装置の全体構成を示す斜視図である。図において、10は円筒状基材1を塗布手段の垂直下方の所定位置に供給して上方に押し上げる供給手段、20は供給された円筒状基材1の外周面を把持して筒軸を合わせて積み重ね下から上へ垂直に押し上げて搬送する搬送手段、30は前記円筒状基材1を塗布装置の環状塗布部の中心に位置合わせする位置決め手段、40は前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、50は円筒状基材1上に塗布された塗布液を乾燥させる乾燥手段、60は乾燥されて垂直搬送されてきた積み重ね状の複数の円筒状基材からを分離させて1個ずつ取り出し排出させる分離排出手段である。
【0023】
本発明の連続塗布装置は、上記の各手段を連続して垂直中心線ZZ上に配置した構成であり、人手を要しない完全自動化生産が高精度で達成される。即ち、前記供給手段10は前記円筒状基材1を載置するための複数の取り付け手段11を備えた可動テーブル12は、該可動テーブル12を回転させて前記搬送手段20へつながる垂直ラインへ送り込む駆動手段13、前記搬送手段20により既に上方に把持搬送されている円筒状基材1を積み重なるように上方に押し上げる昇降手段14、該昇降手段14の上端に設けられた円筒状基材供給用のハンド手段15及び前記駆動手段13による回転や昇降手段14による押し上げのタイミングを制御する図示しない制御手段等から構成されている。なお、前記可動テーブル12上への円筒状基材1の供給は、ロボットハンドルにより行われる。
【0024】
前記供給手段10の上方に設けられた搬送手段20は、円筒状基材1の外周面に圧接離間可能で且つ垂直上下方向に移動可能な2組の把持手段21,22を有し、円筒状基材1を位置決めして把持し上方に搬送する機能を有する。以下、上記各手段20,30,40,50,60の詳細は後述する。
【0025】
図2は本発明による連続塗布装置の他の実施例を示す斜視図である。この実施例では、前記搬送手段20の上方の垂直中心線ZZ上に、位置決め手段20、塗布手段30、乾燥手段40から成るユニットA,B,Cを複数組縦列配置したものである。最上段には前記分離排出手段60が配置されている。各塗布手段40A,40B,40Cからそれぞれ吐出された塗布液は、円筒状基材1上に多層の塗布層を逐次形成する。
【0026】
図3は前記搬送手段20の正面図である。互いに相対向する一組の搬送装置本体23A,23Bの内側には、それぞれ垂直上下方向に支持されたボールねじ24A,24Bが設けられている。該各ボールねじ24A,24Bはそれぞれ駆動用モータ25A,25Bにより正逆回転される。各ボールねじ24A,24Bにそれぞれ螺合する昇降部材26A,26Bは、ボールねじ24A,24Bの正逆回転により直進昇降する。該昇降部材26A,26Bにはそれぞれアーム部材27A,27Bが固定され、その各先端部にはそれぞれ前記把持手段21,22が取り付けられた構成になっている。
【0027】
前記搬送装置本体23A,23Bの間には、前記昇降手段14が設置され、該昇降手段14の上端には、円筒状基材供給用のハンド手段15が取り付けられている。該ハンド手段15の上側には順に円筒状基材1D,1C,1B,1Aが積載されている。最上段の円筒状基材1Aは前記分離排出手段60の排出用ハンド61により分離して取り出される。
【0028】
前記塗布手段40は位置決め手段30の上に固定されており、位置決め手段30は図示省略した保持手段により保持されている。位置決め手段30は円筒状基材1を所定の位置に正確に保持する装置であり、例えばエアーベアリング等により非接触保持される。塗布手段40は円筒状基材1(1A,1B,1C,1D)の外周面上に塗布液を均一に塗布するものであり、円筒状基材1A,1B,1C,1Dが前記搬送手段20により把持搬送されるに従って、円筒状基材1A,1B,1C,1D上に順次塗膜が形成される。
【0029】
図4は前記把持手段21,22の斜視図である。上段側の把持手段21は、2個の可動把手211,212と、該可動把手211,212の各揺動中心穴に嵌合して揺動可能に保持する支軸213と、該可動把手211,212の各先端部に形成されたV字形状のハンド部214,215の内側にそれぞれ固定された把持子216とから構成されている。前記可動把手211,212を図示しないピストンシリンダー等の駆動手段により開閉することにより、前記把持子216は円筒状基材の外周面に接離する。図示の把持子216は4箇所または3箇所で円筒状基材1に圧接する。
【0030】
下段側の把持手段22も、上記上段側の把持手段21と同様の構成をなし、221,222は可動把手、223は支軸、224,225はハンド部、226は把持子である。なお、上段側の把持手段21は、円筒状基材1B,1Cの接続位置の各外周面を把持した状態を示し、下段側の把持手段22は円筒状基材1C,1Dの接続位置の各外周面から離間した状態を示す。
【0031】
図5は把持手段21の他の実施例を示す斜視図である。図5(a)は、V字形状のハンド部281,282の内側にそれぞれ固定された把持子280を有し、該ハンド部281,282をそれぞれ前進、後退させることにより、円筒状基材1を4点支持で圧接把持または離間する。図5(b)は、切り欠き円筒形状のハンド部283,284の内側にそれぞれ固定された把持子280を有し、該ハンド部283,284を前進、後退させることにより、円筒状基材1を円筒状外周面支持で圧接把持または離間する。図5(c)は、前記V字形状のハンド部281と平面状のハンド部285の内側にそれぞれ固定された把持子280を有し、該ハンド部281,285をそれぞれ前進、後退させることにより、円筒状基材1を3点支持で圧接把持または離間する。
【0032】
図6は、位置決め手段30と垂直型塗布手段40とを示す断面図、図7は塗布手段40の斜視図である。
【0033】
図6に示されるように中心線Z−Zに沿って垂直状に重ね合わせた複数の円筒状基材1A,1B(以下、円筒状基材1と称す)を連続的に矢示方向に上昇移動させ、その周囲を取り囲み、円筒状基材1の外周面に対しスライドホッパー型塗布装置10の塗布に直接係わる部分(ホッパー塗布面)41により塗布液(感光液)Lが塗布される。なお、円筒状基材1としては中空ドラム例えばアルミニウムドラム、プラスチックドラムのほかシームレスベルト型の基材でも良い。前記ホッパー塗布面41には、円筒状基材1側に開口する塗布液流出口42を有する幅狭の塗布液分配スリット(スリットと略称する)43が水平方向に形成されている。このスリット43は環状の塗布液分配室(塗布液溜り室)44に連通し、この環状の塗布液分配室44には貯留タンク2内の塗布液Lを圧送ポンプ3により供給管4を介して供給するようになっている。他方、スリット43の塗布液流出口42の下側には、連続して下方に傾斜し、円筒状基材1の外径寸法よりやや大なる寸法で終端をなすように形成された塗布液スライド面(以下、スライド面と称す)45が形成されている。さらに、このスライド面45終端より下方に延びる唇状部46が形成されている。かかる塗布手段(スライドホッパー型塗布装置)40による塗布においては、円筒状基材1を引き上げる過程で、塗布液Lをスリット43から押し出し、スライド面45に沿って流下させると、スライド面45の終端に至った塗布液は、そのスライド面45の終端と円筒状基材1の外周面との間にビードを形成した後、円筒状基材1の表面に塗布される。スライド面45の終端と円筒状基材1は、ある間隙を持って配置されているため円筒状基材1を傷つける事なく、また性質の異なる層を多層形成させる場合においても、既に塗布された層を損傷することなく塗布できる。
【0034】
一方、前記圧送ポンプ3の塗布液供給部より最も遠い位置で、前記塗布液分配室44の一部には、塗布液分配室44内の泡抜き用の空気抜き部材46が設けられている。貯留タンク2内の塗布液Lが塗布液分配室44に供給されて塗布液分配スリット43から塗布液流出口42に供給されるとき、開閉弁47を開いて空気抜き部材46より塗布液分配室44内の空気を排出する。
【0035】
前記スライドホッパー型塗布装置40の下部には、円筒状基材の円周方向を位置決めする位置決め手段30が固定されている。前記円筒状基材1の位置決め装置30の本体31には、複数の給気口32と、複数の排気口33が穿設されている。該複数の給気口32は、図示しない給気ポンプに接続され、空気等の流体が圧送される。該給気口32の一端部で円筒状基材1の外周面に対向する側には、吐出口34が貫通している。該吐出口34は前記円筒状基材1の外周面と所定の間隙を保って対向している。該間隙は、20μm〜3mm、好ましくは30μm〜2mmである。この間隙が20μmより小さいと、円筒状基材1の僅かな振れで本体31の内壁に接触して円筒状基材1を傷つけやすい。また、この間隙が3mmより大であると、円筒状基材1の位置決め精度が低下する。前記吐出口34は直径0.01〜1.0mmの小口径のノズルであり、好ましくは0.05〜0.5mmが良い。
【0036】
前記本体31の内壁下部の内周面は、入り口側が広がったテーパー面35になっている。このテーパー面35は、例えば軸方向の長さが50mmで、片側傾斜角が0.5mmの円錐面である。このテーパー面35を設けることにより、円筒状基材1が本体31の内壁に進入するとき、円筒状基材1の先端部が内壁の内周面に接触することを防止している。
【0037】
前記給気ポンプから圧送された流体は、複数の給気口32から本体31の内部に導入されて、複数の吐出口34から吐出され、前記円筒状基材1A(1B)の外周面と均一な流体膜層を形成する。吐出後の流体は複数の排気口33から装置外に排出される。
【0038】
前記吐出口34の開口直径は0.01〜1mm、好ましくは0.05〜0.5mm、例えば0.2〜0.5mmの円形に形成されている。排気口33の開口直径は1.0〜10mm、好ましくは2.0〜8.0mm、例えば3〜5mmの円形に形成されている。
【0039】
前記給給気口23に供給される流体は、空気、不活性ガス例えば窒素ガスが良い。そして該流体は、JIS規格でクラス100以上の清浄な気体が良い。
【0040】
なお、本発明の位置決め装置に接続される垂直塗布装置としては、スライドホッパー型、押し出し型、リングコーター等の各種装置が用いられる。
【0041】
前記塗布手段40の上方には、乾燥フード51と乾燥器53とから成る乾燥手段50が設けられている。
【0042】
図8は前記塗布手段40と該塗布手段40の上部に設けた乾燥フード51の断面図である。該乾燥フード51は環状の壁面を有し、該壁面には多数の開口51Aが穿設されている。前記円筒状基材1を矢示方向に上昇させ、前記塗布手段40のホッパー塗布面(塗布ヘッド)41で塗布液Lを塗布し、感光層5を形成する。円筒状基材1上に形成された感光層5は前記乾燥フード51内を通過しながら徐々に乾燥される。この乾燥は前記多数の開口51より塗布液Lに含まれている溶媒を壁面外に放出することにより行われる。前記のように、塗布手段40により円筒状基材1上に塗布液Lを塗布することにより、形成された感光層5は、塗布直後において乾燥フード51により包囲されており、開口51からのみ溶媒が放出されるため、塗布直後における感光層5の乾燥速度は、前記開口51の開口面積にほぼ比例する。
【0043】
図9は乾燥フードの他の実施例を示す断面図である。この乾燥フード52は前記図8における乾燥フード51(A部)の上部を延長してB部を形成したものである。このA部には複数個の52Aが、B部には複数個の52Bがそれぞれ穿設されている。この乾燥フード52を塗布手段40の上部に設けることにより、円筒状基材1の外周面上に塗布された塗布液Lの溶媒蒸気濃度が制御される。従って塗膜乾燥速度が制御されることで塗膜の均一化を計ることが可能である。また前記のような乾燥フード52を設けることで、ビード部分の溶媒蒸気濃度が高くなるため、急速な乾燥が防止され、ビード切れを防止できる。
【0044】
図10に本発明の乾燥器53の断面図を示す。乾燥器53は吸引スリット531、吸引チャンバー532、吸引ノズル533を有する吸引スリット部材534の下部に筒状部材535、上部に筒状部材536がそれぞれ同心に結合されている。
【0045】
そして、複数設けられた吸引ノズル533から吸引を行ない、周方向均一な吸引チャンバー532、周方向均一な吸引スリット531により周方向の均一化がなされた吸引エアーが流れ、更に、吸引スリット部材534、その上下の筒状部材536,535の各内径面と塗布済みの円筒状基材1の外周面との間の空気流の乱れをバッファー空間537で極く僅かにおさえて、538に示す乾燥の為の均一吸引エアーの空気流を作り出している。
【0046】
この乾燥ゾーンに矢印で示す方向に塗布済の円筒状基材1を搬送することにより、塗布膜の乾燥を行うものである。
【0047】
次に、乾燥手段50の他の実施例として図11に示された排気乾燥装置54について説明する。前記のように円筒状基体1A、1Bに環状のスライドホッパー型塗布装置40にて塗布液(感光液)Lが塗布されて感光層LAが形成される。前記排気乾燥装置54は塗布した直後の感光層LAより蒸発する溶媒を吸引し、更に乾燥を行うもので、前記塗布装置40の直上に設けられている。541は環状に形成された吸引ダクトで、該吸引ダクト541より前記感光層LAに向けて吸引口542が形成されている。前記吸引ダクト541の一部には排気管543が接続され、該排気管543内に設けた排気ファン544により前記感光層LAより蒸発する溶媒を吸引して、強制的に外部に排出し乾燥させる。前記のように塗布装置40にて感光液Lを塗布した直後に、該感光液Lより発生する溶媒蒸気を排気するため円筒状基体1A、1Bに塗布された感光液Lが多量に流下するのを停止させることができる。その際前記排気ファン544による排気風速を0.5〜5m/secで行い、前記吸引口542は前記塗布ヘッド41の位置より300mm以下が望ましい。そして前記感光液L内の溶媒が30%以上蒸発するまで前記円筒状基体1A、1Bを連結状態に保ち、分離した後、感光層LAを完全に乾燥させる。前記のような排気乾燥装置54を作動させることにより、多数の円筒状基体を接続して感光液Lを塗布した場合でも感光層LAの近傍より溶媒を急速に排出出来ると共に、感光液Lによる塗膜の流下を強制的に制御して感光層LAに発生する前記薄膜や液溜りの発生を防止する事も出来る。尚、前記排気ファン544は、吸引ダクト541に複数箇所設けてもよい。
【0048】
以上のようにして塗布及び塗布膜乾燥が行なわれた円筒状基体1A,1B,1C・・・・を分離する方法を図12の分離過程の各プロセスの状態図を用いて説明する。
【0049】
分離排出手段60は垂直移動ロボットステージ61、エアーシリンダー62、上チャック63及び下チャック64により構成される。
【0050】
塗布済みの円筒状基体1は下方より上方へ向けて積み上げられ、上方向へ移動し図12(a)に示すように分離位置に達する。この時垂直ロボットが起動し被分離円筒状基体1Aと同軸,等速度で同架された分離ユニット全体を移動する。
【0051】
まず、図12(b)に示す位置で下チャック64が被分離円筒状基体1Aに隣接する円筒状基体1Bを保持する。次いで図12(c)に示す位置で上チャック63が被分離円筒状基体1Aを保持する。
【0052】
エアーシリンダー62により上チャック63は被分離円筒状基体1Aを保持したまま上方向へ移動して図12(d)に示す位置になる。この時被分離円筒状基体1Aと隣接する円筒状基体1Bにまたがる塗布膜が切り裂かれて図12(d)図に示すように1A,1Bの分離が行なわれる。
【0053】
分離済み円筒状基体1Aを回収する為、図12(e)に示すように下チャック64はアンチャック状態となり、垂直移動ロボットステージ61が急上昇を行い、隣接する円筒状基体1Bの位置よりはるか上方に配置された分離ドラム回収装置に該分離済み円筒状基体1Aを置き(上チャック63がアンチャックになり)行程を終了する。
【0054】
そして次なる円筒状基体1Bの分離動作の為、垂直移動ロボットステージ61が下降し、また、エアーシリンダー62が下降し、初期状態の位置図12(a)に戻る。
【0055】
その他に、被分離円筒状基体1Aと隣接円筒状基体1Bの分離を行なう際に被分離円筒状基体1Aに回転を加えながら円筒状基体1Aを引き上げる方法も有効である。これは、分離される膜に引張り力ではなく、剪断力を加えるものであり、ウェット状態の膜では分離部近傍の塗布膜プロフィールが薄膜化する現象を低減できる。また塗布膜の切断時に発生する膜の小片の飛散が該円筒状基体1内面へ引き込まれることにより、低減する。
【0056】
図13は円筒状基材1の外周面と塗布手段40内面の塗布ヘッド41との距離を周方向に関し均一にするための位置決め手段の他の実施例を示す斜視図である。位置調整手段70は、塗布装置40を支承する架台71、XY軸制御テーブル72、連結部材73、複数個の位置検出器74A,74B,74C,74D、演算器75、コントローラー76とから構成されている。
【0057】
塗布装置40を支承する架台71には塗布装置40の位置調整手段70が設けられる。この位置調整手段70としては、公知のX−Y軸制御テーブルをそのまま採用できる。位置調整手段70は、塗布装置40と連結部材73により連結されており、位置調整手段70のX軸またはY軸の移動が直接塗布装置40のX軸またはY軸の移動として現れるようになっている。
【0058】
他方、円筒状基材1の未塗布位置、この例では塗布装置40の下方位置に、円筒状基材1の外面位置を検出するための位置検出器74A〜74Dが、円筒状基材1の外面に対して離間し、かつ周方向に90度の間隔をもって配設されている。位置検出器74A〜74Dとしては、例えばレーザ変位計または渦電流式変位計が用いられる。かかる各位置検出器74A〜74Dからの円筒状基材1外面との離間距離信号は、演算器75に与えられ、円筒状基材1の中心軸が塗布装置40の中心軸に対してどのように偏位しているかが演算され、この演算結果に基づいて前記両中心軸が一致するように、コントローラー76を介して位置調整手段70に位置修正信号が与えられるよう構成されている。位置演算制御手段とは、この例では、演算器75とコントローラー76とで構成される。また、上記のX軸制御テーブル72を駆動する各サーボモータの出力信号は演算器75に入力され、塗布装置40の現位置信号として与えられる。
【0059】
このように構成された連続塗布装置においては、位置検出器74Aおよび74Cにより与えられる円筒状基材1外周面に対する離間信号差からX軸方向の、位置検出器74Bおよび74Dにより与えられる円筒状基材1外周面に対する離間信号差からY軸方向の偏位がそれぞれ検出され、X軸制御テーブル72を駆動する各サーボモータの出力信号による塗布装置40の現位置とを比較して、塗布装置40の位置を修正する。
【0060】
この場合、円筒状基材1の中心軸と塗布装置40の塗布ヘッド41の中心軸とが一致するよう塗布装置40の位置を調整すると、周方向に関し、円筒状基材1と塗布装置40内面との離間距離が均一化され、塗布膜厚が均一となる。
【0061】
図14は位置調整手段の他の実施例を示し、図14(a)は位置調整手段80の平面図、図14(b)は位置調整手段80の正面図である。
【0062】
図示のように、架台81に支点枢軸82を設け、この枢軸82に第1アーム83を連結し、その一端を塗布装置40の鍔部40aに枢着し、他方、架台81にX軸制御テーブル84をX軸およびY軸方向に移動自在に配置し、このテーブル84に第2アーム85および第3アーム86を枢着し、かつ第3アーム86は第1アーム83と枢着しておく。
【0063】
この例による位置調整手段によれば、X軸制御テーブル84のX軸またはY軸の移動に伴って、塗布装置40を移動させることが可能となる。
【0064】
[実施例]
次に、具体的な実施例により本発明を説明するが、本発明はこれに限定されるものではない。
【0065】
先ず、請求項1〜7の発明に関する実施例を説明する。
【0066】
実施例1
導電性支持体(円筒状基材)1としては鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体を用いた。また、塗布液Lとしては下記記載の▲1▼UCL−1塗布液組成物を用いた。
【0067】
▲1▼UCL−1塗布液組成物(3.0 W/V%ポリマー濃度)
共重合ナイロン樹脂(CM−8000 東レ社製) 3g
メタノール/n−ブタノール=10/1(Vol比) 1000ml
図1により円筒状基材1の連続塗布工程を説明する。円筒状基材1は図示されていない供給ロボットにより円筒状基材1(アルミニウムドラム)収納室より可動テーブル12上にある円筒状基材1の1Aの位置に置かれる。円筒状基材1は可動テーブル11の矢印方向の回転により1Bの位置に達する。この時、昇降手段14の供給アームが下方より上方へ円筒状基材1を押し上げ、ハンド手段15の位置まで供給される。好ましくは供給アームによる押し上げが完了すると同時に緩衝機構が作用し、先行の円筒状基材1の下端と後続の円筒状基材上端との接合時のショックを無くすのが良い。このようにして円筒状基材1A,15が搬送手段20のところまで運び込まれる。
【0068】
円筒状基材1は可動把手21,22により把持されかつ上方に搬送される。把持される場所は円筒状基材1に悪影響が無ければどの場所でもよいが、円筒状基材1A,1Bとの繋ぎ部を把持する事によりドラム間の段差修正がある程度まで行われ好ましいし、上に積み重ねられた円筒状基材1の全重量に抗して強い力で把持するのだからキズや故障の発生を防ぐため、繋ぎ部の非画像部を把持するのが良い。
【0069】
搬送手段20については、図3〜5の説明の項を参照されたい。
【0070】
このようにして図1の搬送手段20により円筒状基材1が上方向へ移行され、位置決め手段30へ至る。位置決め手段30は、特開平3−280063号公報に記載されている位置決め手段の他、図6に示した環状の位置決め手段が好ましく用いられる。
【0071】
このようにして正確に位置決めされた円筒状基材1は図7,図8に示した塗布手段40へ移行され塗布される。40は垂直型塗布装置であり、スライドホッパー型、押し出し型、リングコーター型、スプレーコーター型等、円筒状基材1を積み重ねて上方又は下方に相対的に移動する事により塗布するものであれば種類を問わないが、信頼性の高い連続安定塗布が得られる事によりスライドホッパー型コーターが好ましい。この塗布手段は特開昭58−189061号公報に詳しい。また泡ぬき口やスペーサーを用いるのが良い。また、塗布手段40の位置の微調整の為、公知のX−Y軸可動制御テーブル上に塗布手段を設置するのが良い。また特開平3−21371号公報の如く制御手段を設けても良い。このようにして塗布組成物▲1▼UCL−1が円筒状基材1上に塗布される。
【0072】
塗布された円筒状基材1は乾燥手段50に移行される。50は乾燥手段であり、図8、図9の如くの乾燥フード51(52)と、吸引式乾燥器53とを重ねて用いても良いし、塗布液Lの溶媒や液膜厚に応じて乾燥フード51(52)のみでも良いし、吸引式乾燥器53のみでも良い。
【0073】
円筒状基材1は乾燥処理の後、分離排出手段60へ移行される。分離排出手段60としては特願平5−124270号明細書に詳しく述べられているものが良い。別のものとしては特開昭61−120662号、同61−120664号公報等も良い。
【0074】
分離された円筒状基材1は排出ロボットにより収納室、乾燥室あるいは次の工程に移行される。
【0075】
以上のように本発明の各手段10,20,30,40,50,60を設置することにより、塗布ムラ、膜厚ムラ、キズ、ゴミ、ドラム損傷等の塗膜欠陥がなく、塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質の製品が可能となった。
【0076】
実施例2
図2の逐次連続塗布装置を用い、鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体上に、下記の如く各々塗布液組成物▲1▼UCL−1(3.0W/V%ポリマー濃度)、▲2▼CGL−1、▲3▼CTL−1を調整し、第一のスライドホッパー型塗布装置40A(▲1▼UCL−1用)、第二の塗布装置40B(▲2▼CGL−1用)、第三の塗布装置40C(▲3▼CTL−1用)にて実施例1と同様にして3層の逐次重層塗布を行った。CTL塗布後は分離後乾燥室にて95℃、1時間の本乾燥を行った。このようにして感光体を作成した。
【0077】
▲1▼UCL−1塗布液組成物
共重合ナイロン樹脂(CM−8000 東レ社製) 3g
メタノール/n−ブタノール=10/1(Vol比) 1000ml
▲2▼CGL−1塗布液組成物
フルオレノン型ジスアゾ顔料(CGM−1) 25g
ブチラール樹脂(エスレックBX−L 積水化学社製) 10g
メチルエチルケトン 1430ml
上記塗布液組成物(固形分については固形分重量比CGM−1:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0078】
▲3▼CTL−1塗布液組成物
CTM−1 500g
ポリカーボネート(Z−200 三菱瓦斯化学社製) 560g
1,2−ジクロロエタン 2800ml
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定
【0079】
【化1】

Figure 0003707099
【0080】
【化2】
Figure 0003707099
【0081】
得られた感光体をコニカ社製U−BIX 3035複写機で実写したところ10本目と10000本目も差が無く濃淡ムラ、カブリムラや画像欠陥(黒ポチ、白ポチ、ゴミ、スジ、キズ)等がなく良好であった。
【0082】
次に、請求項8〜13の発明に関する実施例を説明する。
【0083】
実施例3
導電性支持体(円筒状基材)1としては鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体を用いた。また、塗布液としては下記記載のCGL−2塗布液組成物を用いた。
【0084】
CGL−2塗布液組成物
ペリレン顔料(CGM−2) 500g
ブチラール樹脂(エスレックBX−L 積水化学社製) 500g
メチルエチルケトン 24000ml
上記塗布液組成物(固形分については固形分重量比CGM−2:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0085】
【化3】
Figure 0003707099
【0086】
図1において、供給手段10の昇降手段14により押し上げられた円筒状基材1Bの上端が、搬送手段20の把持手段21,22により把持された円筒状基材1Cの下端に接合する位置をH0とする。このH0の位置で円筒状基材1Bと1Cとが接合されると、この位置H0で把持手段22により把持されるとともに位置H1で円筒状基材1Cと1Dとを把持していた把持手段21が解放される。当然H1−H0=D(円筒状基材長)である。
【0087】
このようにして図1の把持手段22により円筒状基材1Dが上方向へ移行される。精度を上げるため位置決め手段30を設けるのがよい。この位置決め手段30は、特開平3−280063号公報に記載されている位置決め手段の他、リング状位置決め装置が好ましく用いられる。
【0088】
このようにして正確に位置決めされた円筒状基材1は垂直型塗布装置40へ移行され塗布される。円筒状基材1に塗布される位置をH2とするとH2−H1=n1×D(n1はn1≧1の整数)の関係がある。本実施例では下記記載のスライドホッパー型塗布装置40でn1=3を採用した。
【0089】
分離排出手段60により分離が開始される位置をH3とすると、H3−H2=n2×D(n2はn2≧3の整数)の関係がある。本実施例の場合n2=10を採用した。分離された円筒状基材1は排出ロボットにより収納室、乾燥室あるいは次の工程に移行される。
【0090】
以上のように本発明の各手段(10〜60)を、各々作動する位置H0,H1,H2,H3(各々円筒状基材長Dの整数倍)に設置することにより、主として接合、把持、塗布、分離の際に生ずる振動、衝撃による塗布ムラ、膜厚ムラ、キズ、ゴミ、ドラム損傷等の塗膜欠陥がなく、塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質の製品が可能となった。
【0091】
実施例4
図2の逐次連続塗布装置を用い、鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体上に、下記の如く各々塗布液組成物▲1▼UCL−1(3.0W/V%ポリマー濃度)、▲2▼CGL−2、▲3▼CTL−1を調整し、スライドホッパー型塗布装置40A(▲1▼UCL−1用)、塗布装置40B(▲2▼CGL−2用)、塗布装置40C(▲3▼CTL−1用)にて実施例3と同様にして3層の逐次重層塗布を行った。CTL塗布後は分離後乾燥室にて95℃、1時間の本乾燥を行った。このようにして感光体を作成した。
【0092】
▲1▼UCL−1塗布液組成物
共重合ナイロン樹脂(CM−8000 東レ社製) 3g
メタノール/n−ブタノール=10/1(Vol比) 1000ml
▲2▼CGL−2塗布液組成物
ペリレン顔料(CGM−2)(前記化3と同じ) 500g
ブチラール樹脂(エスレックBX−L 積水化学社製) 500g
メチルエチルケトン 24000ml
上記塗布液組成物(固形分については固形分重量比CGM−2:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0093】
▲3▼CTL−1塗布液組成物
CTM−1 (前記化2と同じ) 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定得られた感光体をコニカ社製U-BIX 3035複写機で実写したところ10本目と10000本目も差が無く濃淡ムラ、カブリムラや画像欠陥(黒ポチ、白ポチ、ゴミ、スジ、キズ)等がなく良好であった。
【0094】
次に、請求項14〜16の発明に関する実施例を説明する。
【0095】
実施例5
導電性支持体(円筒状基材)1としては鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体を用いた。又塗布液としては下記記載の▲3▼CTL−1塗布液組成物を用いた。
【0096】
▲3▼CTL−1塗布液組成物
CTM−1 (前記化2と同じ) 500g
ポリカーボネート(Z−200 三菱瓦斯化学社製) 560g
1,2−ジクロロエタン 2800ml
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定図1の連続塗布装置を用いた。円筒状基材1Bと円筒状基材1Cとの接合する時刻をT0とする。このようにして円筒状基材1Bが搬送手段20のところまで運び込まれる。円筒状基材1Cは把持手段22により把持されかつ上方に搬送される。ある時刻T0で円筒状基材1Bと円筒状基材1Cとが接合されると、時刻T1で円筒状基材1Cと円筒状基材1Dとを把持してい把持手段22が解放される。
【0097】
このようにして正確に位置決めされた円筒状基材1は垂直型塗布装置40へ移行され塗布される。円筒状基材1に塗布される時刻をT2とする。
【0098】
この後、分離排出手段60へ移行される。分離が開始される時刻をT3とする。分離された円筒状基材1は排出ロボットにより収納室、乾燥室あるいは次の工程に移行される。
【0099】
本発明では時刻T0、T1、T2、T3を同一時刻にした。時刻の許容範囲は塗布速度、円筒状基材長によって異なるが1秒以内、更に好ましくは0.5秒以内に入るようにするのが良い。
【0100】
以上のように本発明の各手段10〜60が同時に作動するよう(T0=T1=T2=T3)設置することにより、主として接合、把持、塗布、分離の際に生ずる振動、衝撃による塗布ムラ、膜厚ムラ、キズ、ゴミ、ドラム損傷等の塗膜欠陥がなく、塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質の製品が可能となった。
【0101】
実施例6
図2の逐次連続塗布装置を用い、鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体上に、下記の如く各々塗布液組成物▲1▼UCL−1(3.0W/V%ポリマー濃度)、▲2▼CGL−4、▲3▼CTL−1を調整し、スライドホッパー型塗布装置40A(▲1▼UCL−1用)、塗布装置40B(▲2▼CGL−4用)、塗布装置40C(▲3▼CTL−1用)にて実施例5と同様にして3層の逐次重層塗布を行った。CTL塗布後は分離後乾燥室にて95℃、1時間の本乾燥を行った。このようにして感光体を作成した。
【0102】
▲1▼UCL−1塗布液組成物
共重合ナイロン樹脂(CM−8000 東レ社製) 2g
メタノール/n−ブタノール=10/1(Vol比) 1000ml
▲2▼CGL−4塗布液組成物
臭素化アンスアンスロン顔料(CGM−4) 200g
ポリカーボネート(パンライトL−1250 帝人化成社製) 100g
1,2−ジクロロエタン 18000ml
上記塗布液組成物(固形分については固形分重量比CGM−4:L−1250=2:1に固定)をサンドミルを用いて25時間分散したもの。
【0103】
▲3▼CTL−1塗布液組成物
CTM−1 (前記化2と同じ) 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定
【0104】
【化4】
Figure 0003707099
【0105】
得られた感光体をコニカ社製U-BIX 3035複写機で実写したところ10本目と10000本目も差が無く濃淡ムラ、カブリムラや画像欠陥(黒ポチ、白ポチ、ゴミ、スジ、キズ)等がなく良好であった。
【0106】
次に、請求項17〜19の発明に関する実施例を説明する。
【0107】
実施例7
導電性支持体(円筒状基材)1としては鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体を用いた。又塗布液としては下記記載の▲1▼OCL−1塗布液組成物を用いた。
【0108】
▲1▼OCL−1塗布液組成物(10W/V%)
シリコーン系微粒子(トスパール103東芝シリコーン社製)
ポリカーボネート(Z−200 三菱瓦斯化学社製)
1,2−ジクロロエタン
上記塗布液組成物(固形分については固形分重量比Z−200:トスパール=100:1に固定)をサンドミルにて3時間分散したもの。
【0109】
円筒状基材1Bと円筒状基材1Cとの接合する時刻をT0とする。ある時刻T0で円筒状基材1Bと円筒状基材1Cとが接合されると、時刻T1で円筒状基材1Cと円筒状基材1Dとを把持していた搬送ハンドが解放される。円筒状基材1に塗布される時刻をT2とする。分離が開始される時刻をT3とする。
【0110】
本発明では塗布速度によって非画像部にかかる時刻幅Wが異なるが、時刻T0,T1,T2,T3を全く同一時刻にせず、時刻幅W内に収めることにより振動の振幅が合成加算されて増大されるのが防げる。本発明では非画像部長は円筒状基材の片側で29mmなので、塗布速度15mm/secの時はWは1.93sec×2=3.87secとなる。
【0111】
以上のように本発明の各手段(10〜60)が非画像部部分内で同一ではなく、時刻幅W内で時間差作動するよう設置することで、主として接合、把持、解放、塗布、分離の際に生ずる振動、衝撃等による塗布ムラ、膜厚ムラを防げる。このように塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質の製品が可能となった。
【0112】
実施例8
図2の逐次連続塗布装置を用い、鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体上に、下記の如く各々塗布液組成物▲1▼UCL−3(3.0W/V%ポリマー濃度)、▲2▼CGL−3、▲3▼CTL−2を調整し、スライドホッパー型塗布装置7(▲1▼UCL−3用)、7−1(▲2▼CGL−3用)、7−2(▲3▼CTL−2用)にて実施例1と同様な作動方法により3層の逐次重層塗布を行った。CTL塗布後は分離後乾燥室にて95℃、1時間の本乾燥を行った。このようにして感光体を作成した。
【0113】
▲1▼UCL−3塗布液組成物
エチレン−酢酸ビニル系共重合体(エルバックス4260 三井デュポンケミカル社製)
トルエン/n−ブタノール=5/1(Vol比)
▲2▼CGL−3塗布液組成物
Y−型チタニルフタロシアニン(CGM−3) 100g
シリコーン樹脂(KR−5240 信越化学社製) 100g
t−酢酸ブチル 10000ml
上記塗布液組成物(固形分については固形分重量比CGM−3:KR−5240=2:1に固定)をサンドミルを用いて17時間分散したもの。
【0114】
▲3▼CTL−2塗布液組成物
CTM−2 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定。
【0115】
【化5】
Figure 0003707099
【0116】
【化6】
Figure 0003707099
【0117】
得られた感光体をコニカ社製U-BIX 3035複写機で実写したところ10本目と10000本目も差が無く濃淡ムラ、カブリムラがなく、しかも画像欠陥(黒ポチ、白ポチ、ゴミ、スジ、キズ)等が見られず良好であった。
【0118】
【発明の効果】
本発明の連続塗布装置及び連続塗布方法によるときは、円筒状基材の供給、把持搬送、位置決め、塗布、乾燥、分離排出の各手段を連続配置して、円筒状基材の非画像領域に塗布液が当接したとき、前記供給手段、搬送手段、分離排出手段が前記非画像領域内で時間差作動するように設定したものであるから、(1)円筒状基材上に形成された塗膜が均一であり、塗布ムラや塗膜欠陥がなく塗布性が良好である、(2)円筒状基材の把持搬送性能を高く、長期安定塗布ができる、(3)円筒状基材の非画像形成領域に各手段を設定することにより連続塗布装置に振動が発生しても、画像形成に影響を与えない(4)前記振動が同じ位置に集中せずに分散するため、振動が重畳されて大きな振幅とはならない等の効果が得られる。
【図面の簡単な説明】
【図1】本発明による連続塗布装置の全体構成を示す斜視図。
【図2】本発明による連続塗布装置の他の実施例を示す斜視図。
【図3】搬送手段の正面図。
【図4】上記搬送手段の把持手段の斜視図。
【図5】上記搬送手段の把持手段の他の実施例を示す斜視図。
【図6】位置決め手段と塗布手段とを示す断面図。
【図7】上記塗布手段の斜視図。
【図8】上記塗布手段と乾燥フードとを示す断面図。
【図9】乾燥フードの他の実施例を示す断面図。
【図10】乾燥器の断面図。
【図11】乾燥手段の他の実施例としての排気乾燥装置の断面図。
【図12】分離排出手段による分離過程を示す状態図。
【図13】位置調整手段の斜視図。
【図14】位置調整手段の他の実施例を示す平面図及び正面図。
【符号の説明】
1,1A,1B,1C,1D 円筒状基材(円筒状ドラム、導電性支持体)
10 供給手段
20 搬送手段
21,22 把持手段
30 位置決め手段
32 給気口
33 排気口
40,40A,40B,40C 垂直型塗布装置(スライドホッパー型塗布装置)
41 塗布ヘッド(コーター、ホッパー塗布面)
50 乾燥手段
51,52 乾燥フード
53 乾燥器
54 排気乾燥装置
60 分離排出手段(分離器)
70,80 位置調整手段
L 塗布液(感光液)[0001]
[Industrial application fields]
The present invention relates to a vertical coating apparatus and method for continuously coating a coating liquid on a plurality of cylindrical base material outer peripheral surfaces, and in particular, continuous feeding, transporting, positioning, coating, drying and unloading of the cylindrical base material. The present invention relates to a coating apparatus and method.
[0002]
[Prior art]
Various methods such as spray coating, dip coating, blade coating, roll coating, etc. have been studied in relation to uniform coating with a thin film on the outer surface of a cylindrical substrate having a continuous surface formed in an endless manner. ing. In particular, for a uniform coating with a thin film such as an electrophotographic photosensitive drum, studies are being made to develop a coating apparatus having excellent productivity. However, the conventional coating apparatus and coating method for a cylindrical substrate having a continuous surface formed endlessly have disadvantages such that a uniform coating film cannot be obtained and productivity is poor.
[0003]
In the spray coating method, since the solvent evaporates before the coating droplets ejected from the spray gun reach the outer peripheral surface of the cylindrical substrate having a continuous surface formed endlessly, the solid content concentration of the coating droplets When the viscosity of the coated droplet rises and the droplet reaches the surface, the droplet does not spread sufficiently on the surface, or the particles that have dried and solidified Therefore, it is difficult to obtain a coating with a smooth surface. In addition, it is very difficult to control the film thickness because the arrival rate of the liquid droplets on the cylindrical substrate having the continuous surface is not 100%, and there is a loss of coating liquid or is partially non-uniform. . Furthermore, stringing may occur in a polymer solution or the like, so that there are limitations on the solvent and resin used.
[0004]
In the blade coating method and the roll coating method, for example, a blade or a roll is arranged in the length direction of the cylindrical base material, the cylindrical base material is rotated, coating is performed, and the cylindrical base material is rotated once. The roll is retracted. However, when the blade or roll is retracted, there is a disadvantage that a part of the coating film thickness is thicker than the other part due to the viscosity of the coating liquid, and a uniform coating film cannot be obtained.
[0005]
In the dip coating method, the smoothness of the coating liquid surface and the poor uniformity of the coating film as described above are improved.
[0006]
However, the control of the coating film thickness is governed by the coating liquid properties such as viscosity, surface tension, density, temperature, and coating speed, and adjustment of the coating liquid properties is very important. Also, the coating speed is low, and a liquid amount of a certain amount or more is necessary to fill the coating liquid tank. In the case of further layering, there are disadvantages such that the lower layer components are dissolved and the coating solution tank is easily contaminated.
[0007]
Therefore, as described in Japanese Patent Application Laid-Open No. 58-189061, a circular amount regulating type coating device (including a slide hopper type coating device) has been developed. This slide hopper type coating device encircles the circumference of a cylindrical base material having a continuous peripheral surface formed endlessly while continuously moving in the longitudinal direction of the cylindrical base material. A coating liquid is applied, and the coating apparatus further includes an annular coating liquid reservoir chamber, a supply port for supplying the coating liquid from the outside to a part of the coating liquid reservoir chamber, and the coating liquid reservoir chamber A coating liquid distribution slit that opens inward, and the coating liquid that has flowed out of the slit is allowed to flow down on the coating liquid slide surface that is inclined obliquely downward. A bead is formed in a slight gap with the base material, and is applied to the outer peripheral surface as the cylindrical base material moves. By using this slide hopper type coating apparatus, coating can be performed with a small amount of liquid, the coating liquid is not contaminated, and high productivity and easy film thickness control can be achieved.
[0008]
[Problems to be solved by the invention]
However, the use of the slide hopper type coating apparatus is still unsatisfactory due to various problems.
[0009]
The present invention has been proposed in order to solve the conventional problems.
(A) Prevents occurrence of bead breakage due to the coating solution used.
[0010]
(B) There are no coating film defects such as coating unevenness and film thickness fluctuation, and the coating property is improved.
[0011]
(C) Improve gripping and conveying performance of the cylindrical base material and enable long-term stable application.
[0012]
(D) The gripping and conveying performance of the cylindrical base material is stabilized, and deformation and damage of the cylindrical base material are prevented.
[0013]
(E) Productivity is improved by making the production process of supplying, transporting, positioning, coating, drying and unloading the cylindrical base material continuous and stable.
[0014]
(F) By continuously and fully automating the above steps, foreign matter such as dust and dust is prevented from being mixed, and a high-quality product is obtained.
[0015]
(G) To achieve a continuous coating apparatus that does not affect the image formation on the completed photosensitive drum even if vibration occurs in the cylindrical substrate.
[0016]
(H) Even if vibration is generated in the cylindrical base material, the vibration is not concentrated on the same position but is dispersed to prevent the vibration from being superimposed and becoming a large vibration.
[0017]
It is an object of the present invention to provide an excellent continuous coating apparatus and a continuous coating method that achieve the above effects.
[0018]
[Means for Solving the Problems]
(1) The present invention Eyes Specifically, the coating means for continuously applying the coating liquid onto the outer peripheral surface of the cylindrical base material while stacking the cylindrical base materials of the cylindrical base material together and vertically pushing up the ring of the annular coating device from bottom to top. , Said Supply means for supplying the cylindrical base material to the coating means, gripping the cylindrical base material Shi Step The Correction do it Stacking In the state Carry Level correction conveyance means, as well as, Separating and discharging means for separating and removing the cylindrical substrate after being applied is provided. In the continuous coating apparatus, when the coating liquid comes into contact with the non-image portion corresponding portion of the cylindrical base material, the supply means, the step correcting and conveying means, and the separation / discharge means are operated with a time difference within the non-image portion corresponding portion. It is achieved by a continuous coating apparatus and a continuous coating method characterized in that 3 Invention).
[0022]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the overall configuration of a continuous coating apparatus according to the present invention. In the figure, 10 is a supply means for supplying the cylindrical base material 1 to a predetermined position vertically below the coating means and pushing it upward, and 20 is a gripper for gripping the outer peripheral surface of the supplied cylindrical base material 1 and aligning the cylinder axis. Conveying means for vertically pushing up and conveying the stack from below, 30 is a positioning means for aligning the cylindrical substrate 1 with the center of the annular application portion of the coating apparatus, and 40 is on the outer peripheral surface of the cylindrical substrate. Application means for continuously applying the application liquid to the substrate, 50 is a drying means for drying the application liquid applied on the cylindrical substrate 1, and 60 is a plurality of stacked cylindrical substrates that have been dried and vertically conveyed. Separating and discharging means for separating materials from one another and discharging them one by one.
[0023]
The continuous coating apparatus of the present invention has a configuration in which each of the above-described means is continuously arranged on the vertical center line ZZ, and fully automated production that does not require manual operation is achieved with high accuracy. That is, the supply means 10 has a movable table 12 having a plurality of attachment means 11 for mounting the cylindrical base material 1, and rotates the movable table 12 to send it to a vertical line connected to the transport means 20. Lifting means 14 for pushing up the cylindrical base material 1 already gripped and conveyed upward by the driving means 13 and the conveying means 20 so as to be stacked, and a cylindrical base material supply provided at the upper end of the elevating means 14 It comprises control means (not shown) for controlling the timing of rotation by the hand means 15 and the driving means 13 and the push-up timing by the elevating means 14. The cylindrical substrate 1 is supplied onto the movable table 12 by a robot handle.
[0024]
The conveying means 20 provided above the supply means 10 has two sets of gripping means 21 and 22 that can be pressed against and separated from the outer peripheral surface of the cylindrical base material 1 and can be moved vertically and vertically. It has the function of positioning, gripping and transporting the substrate 1 upward. Hereinafter, the details of each of the means 20, 30, 40, 50, 60 will be described later.
[0025]
FIG. 2 is a perspective view showing another embodiment of the continuous coating apparatus according to the present invention. In this embodiment, a plurality of sets of units A, B, and C including a positioning means 20, a coating means 30, and a drying means 40 are arranged in a vertical row on a vertical center line ZZ above the conveying means 20. The separation and discharge means 60 is disposed on the uppermost stage. The coating liquid discharged from each of the coating means 40A, 40B, and 40C sequentially forms a multilayer coating layer on the cylindrical substrate 1.
[0026]
FIG. 3 is a front view of the conveying means 20. Ball screws 24 </ b> A and 24 </ b> B supported vertically in the vertical direction are provided inside a pair of conveying device bodies 23 </ b> A and 23 </ b> B that face each other. The ball screws 24A and 24B are rotated forward and backward by driving motors 25A and 25B, respectively. The elevating members 26A and 26B screwed into the ball screws 24A and 24B move up and down linearly by forward and reverse rotation of the ball screws 24A and 24B. Arm members 27A and 27B are fixed to the elevating members 26A and 26B, respectively, and the gripping means 21 and 22 are attached to the respective tip portions.
[0027]
The lifting / lowering means 14 is installed between the transfer apparatus main bodies 23A and 23B, and a cylindrical base material supplying hand means 15 is attached to the upper end of the lifting / lowering means 14. Cylindrical base materials 1D, 1C, 1B, and 1A are sequentially stacked on the upper side of the hand means 15. The uppermost cylindrical substrate 1A is separated and taken out by the discharge hand 61 of the separation and discharge means 60.
[0028]
The application means 40 is fixed on the positioning means 30, and the positioning means 30 is held by a holding means (not shown). The positioning means 30 is a device that accurately holds the cylindrical base material 1 at a predetermined position, and is held in a non-contact manner by, for example, an air bearing. The coating means 40 applies a coating solution uniformly on the outer peripheral surface of the cylindrical substrate 1 (1A, 1B, 1C, 1D), and the cylindrical substrates 1A, 1B, 1C, 1D are transported by the conveying means 20. As the film is gripped and conveyed, the coating films are sequentially formed on the cylindrical substrates 1A, 1B, 1C, and 1D.
[0029]
FIG. 4 is a perspective view of the gripping means 21, 22. The upper gripping means 21 includes two movable handles 211 and 212, a support shaft 213 that fits and swingably holds in each swinging center hole of the movable grips 211 and 212, and the movable handle 211. , 212 are formed from V-shaped hand portions 214, 215 formed at the respective tip portions, and grippers 216 fixed inside. By opening and closing the movable grips 211 and 212 by a driving means such as a piston cylinder (not shown), the gripper 216 is brought into contact with and separated from the outer peripheral surface of the cylindrical base material. The illustrated gripper 216 is in pressure contact with the cylindrical substrate 1 at four or three locations.
[0030]
The lower gripping means 22 has the same configuration as the upper gripping means 21, 221 and 222 are movable handles, 223 are support shafts, 224 and 225 are hand portions, and 226 is a gripper. Note that the upper gripping means 21 indicates a state where the outer peripheral surfaces of the connection positions of the cylindrical base materials 1B and 1C are gripped, and the lower gripping means 22 indicates each of the connection positions of the cylindrical base materials 1C and 1D. The state separated from the outer peripheral surface is shown.
[0031]
FIG. 5 is a perspective view showing another embodiment of the gripping means 21. FIG. 5 (a) has grips 280 fixed inside the V-shaped hand portions 281 and 282, respectively, and the cylindrical base member 1 is moved forward and backward by moving the hand portions 281 and 282, respectively. Is gripped or separated by four-point support. FIG. 5 (b) shows grippers 280 fixed inside the notched cylindrical hand portions 283, 284, respectively, and the hand portions 283, 284 are advanced and retracted to move the cylindrical base material 1. Is pressed against or separated from the cylindrical outer peripheral surface support. FIG. 5 (c) has grips 280 fixed inside the V-shaped hand portion 281 and the planar hand portion 285, respectively, and the hand portions 281 and 285 are moved forward and backward, respectively. The cylindrical base material 1 is pressed and held or separated by three-point support.
[0032]
FIG. 6 is a cross-sectional view showing the positioning means 30 and the vertical application means 40, and FIG. 7 is a perspective view of the application means 40.
[0033]
As shown in FIG. 6, a plurality of cylindrical base materials 1A and 1B (hereinafter referred to as cylindrical base material 1) superimposed vertically along the center line ZZ are continuously raised in the direction of the arrow. The coating solution (photosensitive solution) L is applied by a portion (hopper coating surface) 41 directly surrounding the coating of the slide hopper type coating device 10 on the outer peripheral surface of the cylindrical base material 1. The cylindrical substrate 1 may be a hollow drum, for example, an aluminum drum, a plastic drum, or a seamless belt type substrate. On the hopper coating surface 41, a narrow coating liquid distribution slit (abbreviated as a slit) 43 having a coating liquid outlet 42 opened to the cylindrical substrate 1 side is formed in the horizontal direction. The slit 43 communicates with an annular coating liquid distribution chamber (coating liquid reservoir chamber) 44, and the coating liquid L in the storage tank 2 is fed into the annular coating liquid distribution chamber 44 via the supply pipe 4 by the pressure pump 3. It comes to supply. On the other hand, below the coating solution outlet 42 of the slit 43, the coating solution slide is formed so as to continuously incline and end with a dimension slightly larger than the outer diameter of the cylindrical base material 1. A surface (hereinafter referred to as a slide surface) 45 is formed. Furthermore, a lip 46 extending downward from the end of the slide surface 45 is formed. In the application by the application means (slide hopper type application device) 40, when the coating liquid L is pushed out from the slit 43 and allowed to flow down along the slide surface 45 in the process of pulling up the cylindrical substrate 1, the end of the slide surface 45 is reached. The coating solution that has reached is formed on the surface of the cylindrical substrate 1 after forming a bead between the end of the slide surface 45 and the outer peripheral surface of the cylindrical substrate 1. Since the end of the slide surface 45 and the cylindrical base material 1 are disposed with a certain gap, the cylindrical base material 1 is not applied to the cylindrical base material 1 even when it is formed in multiple layers without damaging the cylindrical base material 1. Can be applied without damaging the layer.
[0034]
On the other hand, an air vent member 46 for removing bubbles in the coating liquid distribution chamber 44 is provided in a part of the coating liquid distribution chamber 44 at a position farthest from the coating liquid supply portion of the pressure feed pump 3. When the coating liquid L in the storage tank 2 is supplied to the coating liquid distribution chamber 44 and supplied from the coating liquid distribution slit 43 to the coating liquid outlet 42, the on-off valve 47 is opened and the coating liquid distribution chamber 44 is opened from the air vent member 46. The air inside is exhausted.
[0035]
Positioning means 30 for positioning the circumferential direction of the cylindrical base material is fixed to the lower portion of the slide hopper type coating device 40. A plurality of air supply ports 32 and a plurality of exhaust ports 33 are formed in the main body 31 of the positioning device 30 for the cylindrical base material 1. The plurality of air supply ports 32 are connected to an air supply pump (not shown), and fluid such as air is pumped. A discharge port 34 passes through one end of the air supply port 32 that faces the outer peripheral surface of the cylindrical base material 1. The discharge port 34 faces the outer peripheral surface of the cylindrical base material 1 with a predetermined gap. The gap is 20 μm to 3 mm, preferably 30 μm to 2 mm. When this gap is smaller than 20 μm, the cylindrical base material 1 is likely to be damaged by coming into contact with the inner wall of the main body 31 by slight vibration of the cylindrical base material 1. Further, when the gap is larger than 3 mm, the positioning accuracy of the cylindrical base material 1 is lowered. The discharge port 34 is a nozzle having a small diameter of 0.01 to 1.0 mm, and preferably 0.05 to 0.5 mm.
[0036]
The inner peripheral surface of the lower part of the inner wall of the main body 31 is a tapered surface 35 having an entrance side widened. The tapered surface 35 is, for example, a conical surface having an axial length of 50 mm and a one-side inclination angle of 0.5 mm. By providing the tapered surface 35, when the cylindrical base material 1 enters the inner wall of the main body 31, the tip of the cylindrical base material 1 is prevented from coming into contact with the inner peripheral surface of the inner wall.
[0037]
The fluid pumped from the air supply pump is introduced into the main body 31 from the plurality of air supply ports 32 and discharged from the plurality of discharge ports 34, and is uniform with the outer peripheral surface of the cylindrical substrate 1A (1B). A fluid film layer is formed. The discharged fluid is discharged from the plurality of exhaust ports 33 to the outside of the apparatus.
[0038]
The discharge port 34 has an opening diameter of 0.01 to 1 mm, preferably 0.05 to 0.5 mm, for example 0.2 to 0.5 mm. The opening diameter of the exhaust port 33 is 1.0 to 10 mm, preferably 2.0 to 8.0 mm, for example, 3 to 5 mm.
[0039]
The fluid supplied to the air supply port 23 is preferably air or an inert gas such as nitrogen gas. The fluid is preferably a clean gas of class 100 or higher according to JIS standards.
[0040]
In addition, various apparatuses, such as a slide hopper type | mold, an extrusion type | mold, a ring coater, are used as a perpendicular | vertical coating apparatus connected to the positioning apparatus of this invention.
[0041]
Above the coating means 40, a drying means 50 comprising a drying hood 51 and a dryer 53 is provided.
[0042]
FIG. 8 is a cross-sectional view of the coating means 40 and a drying hood 51 provided on the top of the coating means 40. The dry hood 51 has an annular wall surface, and a plurality of openings 51A are formed in the wall surface. The cylindrical substrate 1 is raised in the direction of the arrow, and the coating liquid L is applied by the hopper coating surface (coating head) 41 of the coating means 40 to form the photosensitive layer 5. The photosensitive layer 5 formed on the cylindrical substrate 1 is gradually dried while passing through the drying hood 51. This drying is performed by releasing the solvent contained in the coating liquid L from the numerous openings 51 to the outside of the wall surface. As described above, the photosensitive layer 5 formed by applying the coating liquid L onto the cylindrical substrate 1 by the coating means 40 is surrounded by the dry hood 51 immediately after the coating, and the solvent is formed only from the opening 51. Therefore, the drying speed of the photosensitive layer 5 immediately after coating is substantially proportional to the opening area of the opening 51.
[0043]
FIG. 9 is a cross-sectional view showing another embodiment of the dry hood. The dry hood 52 is formed by extending the upper part of the dry hood 51 (A part) in FIG. 8 to form a B part. A plurality of 52A are formed in the A portion, and a plurality of 52B are formed in the B portion. By providing this dry hood 52 on the upper part of the coating means 40, the solvent vapor concentration of the coating liquid L applied on the outer peripheral surface of the cylindrical substrate 1 is controlled. Therefore, it is possible to make the coating film uniform by controlling the coating film drying speed. Further, by providing the drying hood 52 as described above, the solvent vapor concentration in the bead portion is increased, so that rapid drying can be prevented and bead breakage can be prevented.
[0044]
FIG. 10 shows a cross-sectional view of the dryer 53 of the present invention. In the dryer 53, a cylindrical member 535 and a cylindrical member 536 are concentrically coupled to a lower portion of a suction slit member 534 having a suction slit 531, a suction chamber 532, and a suction nozzle 533, respectively.
[0045]
Then, suction is performed from a plurality of suction nozzles 533, suction air that has been made uniform in the circumferential direction by a suction chamber 532 that is uniform in the circumferential direction, and a suction slit 531 that is uniform in the circumferential direction flows, and further, a suction slit member 534, The turbulence of the air flow between the inner diameter surfaces of the upper and lower cylindrical members 536 and 535 and the outer peripheral surface of the coated cylindrical base material 1 is suppressed by the buffer space 537, and the drying process shown in 538 is performed. The air flow of uniform suction air is created.
[0046]
The coated film is dried by conveying the coated cylindrical substrate 1 in the direction indicated by the arrow to the drying zone.
[0047]
Next, an exhaust drying apparatus 54 shown in FIG. 11 will be described as another embodiment of the drying means 50. As described above, the coating solution (photosensitive solution) L is applied to the cylindrical substrates 1A and 1B by the annular slide hopper type coating device 40, thereby forming the photosensitive layer LA. The exhaust drying device 54 sucks the solvent evaporated from the photosensitive layer LA immediately after coating, and further performs drying, and is provided immediately above the coating device 40. Reference numeral 541 denotes an annular suction duct, and a suction port 542 is formed from the suction duct 541 toward the photosensitive layer LA. An exhaust pipe 543 is connected to a part of the suction duct 541, and the solvent evaporating from the photosensitive layer LA is sucked by an exhaust fan 544 provided in the exhaust pipe 543, forcibly discharged outside and dried. . As described above, immediately after the photosensitive solution L is applied by the coating device 40, a large amount of the photosensitive solution L applied to the cylindrical substrates 1A and 1B flows down to exhaust the solvent vapor generated from the photosensitive solution L. Can be stopped. At this time, the exhaust air velocity by the exhaust fan 544 is 0.5 to 5 m / sec, and the suction port 542 is preferably 300 mm or less from the position of the coating head 41. The cylindrical substrates 1A and 1B are kept in a connected state until the solvent in the photosensitive solution L evaporates by 30% or more, and after separation, the photosensitive layer LA is completely dried. By operating the exhaust dryer 54 as described above, even when a large number of cylindrical substrates are connected and the photosensitive solution L is applied, the solvent can be rapidly discharged from the vicinity of the photosensitive layer LA, and coating with the photosensitive solution L can be performed. It is also possible to prevent the occurrence of the thin film and liquid pool generated in the photosensitive layer LA by forcibly controlling the flow of the film. The exhaust fan 544 may be provided at a plurality of locations in the suction duct 541.
[0048]
A method of separating the cylindrical substrates 1A, 1B, 1C,... That have been coated and dried as described above will be described with reference to the state diagrams of the individual separation processes in FIG.
[0049]
The separation / discharge unit 60 includes a vertical moving robot stage 61, an air cylinder 62, an upper chuck 63 and a lower chuck 64.
[0050]
The coated cylindrical substrate 1 is stacked upward from below, moves upward, and reaches a separation position as shown in FIG. At this time, the vertical robot is activated to move the entire separation unit that is coaxial with the cylindrical substrate 1A to be separated at the same speed.
[0051]
First, the lower chuck 64 holds the cylindrical substrate 1B adjacent to the cylindrical substrate 1A to be separated at the position shown in FIG. Next, the upper chuck 63 holds the cylindrical substrate 1A to be separated at the position shown in FIG.
[0052]
The upper chuck 63 is moved upward by the air cylinder 62 while holding the cylindrical substrate 1A to be separated, and reaches the position shown in FIG. At this time, the coating film straddling the cylindrical base body 1B adjacent to the cylindrical base body 1A to be separated is cut, and 1A and 1B are separated as shown in FIG.
[0053]
In order to collect the separated cylindrical substrate 1A, the lower chuck 64 is in an unchucked state as shown in FIG. 12E, and the vertical moving robot stage 61 is rapidly raised, far above the position of the adjacent cylindrical substrate 1B. The separated cylindrical base body 1A is placed on the separation drum collection device arranged in (the upper chuck 63 becomes an unchuck), and the process is completed.
[0054]
Then, for the next separation operation of the cylindrical substrate 1B, the vertical moving robot stage 61 is lowered, and the air cylinder 62 is lowered to return to the initial position diagram 12 (a).
[0055]
In addition, a method of pulling up the cylindrical substrate 1A while rotating the separated cylindrical substrate 1A when separating the separated cylindrical substrate 1A and the adjacent cylindrical substrate 1B is also effective. This applies not a tensile force but a shearing force to the separated film, and the phenomenon that the coating film profile in the vicinity of the separation part becomes thin can be reduced in the wet film. Further, scattering of small pieces of the film generated when the coating film is cut is reduced by being drawn into the inner surface of the cylindrical substrate 1.
[0056]
FIG. 13 is a perspective view showing another embodiment of the positioning means for making the distance between the outer peripheral surface of the cylindrical substrate 1 and the coating head 41 on the inner surface of the coating means 40 uniform in the circumferential direction. The position adjusting means 70 includes a pedestal 71 that supports the coating device 40, an XY axis control table 72, a connecting member 73, a plurality of position detectors 74A, 74B, 74C, and 74D, a calculator 75, and a controller 76. Yes.
[0057]
A position adjustment means 70 of the coating device 40 is provided on the pedestal 71 that supports the coating device 40. As this position adjusting means 70, a known XY axis control table can be employed as it is. The position adjusting means 70 is connected to the coating apparatus 40 by a connecting member 73 so that the movement of the X or Y axis of the position adjusting means 70 appears directly as the movement of the X or Y axis of the coating apparatus 40. Yes.
[0058]
On the other hand, position detectors 74 </ b> A to 74 </ b> D for detecting the outer surface position of the cylindrical base material 1 at the unapplied position of the cylindrical base material 1, that is, the position below the coating device 40 in this example, It is spaced apart from the outer surface and is disposed at an interval of 90 degrees in the circumferential direction. As the position detectors 74A to 74D, for example, a laser displacement meter or an eddy current displacement meter is used. A distance signal from the outer surface of the cylindrical base material 1 from each of the position detectors 74 </ b> A to 74 </ b> D is given to the computing unit 75, and how the central axis of the cylindrical base material 1 is relative to the central axis of the coating apparatus 40. It is configured that a position correction signal is given to the position adjusting means 70 via the controller 76 so that the two central axes coincide with each other based on the calculation result. In this example, the position calculation control means includes a calculator 75 and a controller 76. The output signals of the servo motors that drive the X-axis control table 72 are input to the calculator 75 and provided as the current position signal of the coating device 40.
[0059]
In the continuous coating apparatus configured in this way, the cylindrical bases provided by the position detectors 74B and 74D in the X-axis direction from the separation signal difference with respect to the outer peripheral surface of the cylindrical base material 1 provided by the position detectors 74A and 74C. The deviation in the Y-axis direction is detected from the difference signal difference with respect to the outer peripheral surface of the material 1, and compared with the current position of the coating device 40 by the output signal of each servo motor that drives the X-axis control table 72. Correct the position of.
[0060]
In this case, when the position of the coating device 40 is adjusted so that the central axis of the cylindrical base material 1 coincides with the central axis of the coating head 41 of the coating device 40, the cylindrical base material 1 and the inner surface of the coating device 40 are related to the circumferential direction. And the coating film thickness becomes uniform.
[0061]
FIG. 14 shows another embodiment of the position adjusting means. FIG. 14 (a) is a plan view of the position adjusting means 80, and FIG. 14 (b) is a front view of the position adjusting means 80.
[0062]
As shown in the figure, a fulcrum pivot 82 is provided on the gantry 81, a first arm 83 is connected to the pivot 82, and one end of the fulcrum pivots on the collar 40a of the coating device 40, while the X-axis control table is mounted on the gantry 81. 84 is arranged so as to be movable in the X-axis and Y-axis directions. A second arm 85 and a third arm 86 are pivotally attached to the table 84, and the third arm 86 is pivotally attached to the first arm 83.
[0063]
According to the position adjusting means of this example, it is possible to move the coating apparatus 40 as the X axis or Y axis of the X axis control table 84 moves.
[0064]
[Example]
Next, the present invention will be described with reference to specific examples, but the present invention is not limited thereto.
[0065]
First, the Example regarding the invention of Claims 1-7 is demonstrated.
[0066]
Example 1
As the conductive support (cylindrical base material) 1, a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g was used. As the coating liquid L, (1) UCL-1 coating liquid composition described below was used.
[0067]
(1) UCL-1 coating composition (3.0 W / V% polymer concentration)
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 3g
Methanol / n-butanol = 10/1 (Vol ratio) 1000 ml
The continuous coating process of the cylindrical substrate 1 will be described with reference to FIG. The cylindrical substrate 1 is placed at a position 1A of the cylindrical substrate 1 on the movable table 12 from the cylindrical substrate 1 (aluminum drum) storage chamber by a supply robot (not shown). The cylindrical base material 1 reaches the position 1B by the rotation of the movable table 11 in the arrow direction. At this time, the supply arm of the lifting / lowering means 14 pushes up the cylindrical base material 1 from below to be supplied to the position of the hand means 15. Preferably, the shock absorbing mechanism acts simultaneously with the completion of the push-up by the supply arm, and the shock at the time of joining the lower end of the preceding cylindrical base material 1 and the upper end of the subsequent cylindrical base material is eliminated. In this way, the cylindrical base materials 1A and 15 are carried to the transport means 20.
[0068]
The cylindrical substrate 1 is gripped by the movable handles 21 and 22 and conveyed upward. The place to be gripped may be any place as long as the cylindrical base material 1 is not adversely affected, but it is preferable that the step between the drums is corrected to some extent by gripping the connecting part with the cylindrical base materials 1A and 1B. Since the gripping is performed with a strong force against the total weight of the cylindrical base material 1 stacked on the top, it is preferable to grip the non-image portion of the joint portion in order to prevent the occurrence of scratches and failures.
[0069]
For the conveying means 20, refer to the description section of FIGS.
[0070]
In this way, the cylindrical substrate 1 is moved upward by the conveying means 20 of FIG. As the positioning means 30, in addition to the positioning means described in JP-A-3-280063, the annular positioning means shown in FIG. 6 is preferably used.
[0071]
The cylindrical base material 1 accurately positioned in this way is transferred to the application means 40 shown in FIGS. 7 and 8 and applied. Reference numeral 40 denotes a vertical type coating apparatus, such as a slide hopper type, an extrusion type, a ring coater type, a spray coater type, etc., as long as the cylindrical base material 1 is stacked and applied by moving relatively upward or downward. Regardless of the type, a slide hopper type coater is preferred because a highly reliable continuous stable coating can be obtained. This coating means is detailed in Japanese Patent Application Laid-Open No. 58-189061. It is preferable to use a bubble opening or a spacer. Further, for fine adjustment of the position of the coating means 40, it is preferable to install the coating means on a known XY axis movable control table. Further, a control means may be provided as disclosed in JP-A-3-21371. In this way, the coating composition {circle around (1)} UCL-1 is applied onto the cylindrical substrate 1.
[0072]
The coated cylindrical substrate 1 is transferred to the drying means 50. Reference numeral 50 denotes a drying means. A drying hood 51 (52) as shown in FIGS. 8 and 9 and a suction dryer 53 may be used in an overlapping manner, or depending on the solvent and the liquid film thickness of the coating liquid L. Only the drying hood 51 (52) may be used, or only the suction dryer 53 may be used.
[0073]
The cylindrical substrate 1 is transferred to the separation and discharge means 60 after the drying process. As the separation and discharge means 60, those described in detail in Japanese Patent Application No. 5-124270 are preferable. As another example, JP-A-61-120662 and JP-A-61-120664 may be used.
[0074]
The separated cylindrical base material 1 is transferred to a storage room, a drying room or the next process by a discharge robot.
[0075]
By installing each means 10, 20, 30, 40, 50, 60 of the present invention as described above, there are no coating film defects such as coating unevenness, film thickness unevenness, scratches, dust, drum damage, and the like. A good coating drum was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, high-quality products can be produced without dust and dust.
[0076]
Example 2
The coating liquid composition {circle around (1)} UCL-1 (3.0 W / w) is applied on a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g using the sequential sequential coating apparatus shown in FIG. V% polymer concentration), (2) CGL-1, and (3) CTL-1 are adjusted, the first slide hopper type coating device 40A (1) for UCL-1 and the second coating device 40B (▲ (2) for CGL-1) and 3rd coating apparatus 40C (3) for CTL-1 were applied in the same manner as in Example 1 to apply three layers successively. After the CTL application, main drying was performed at 95 ° C. for 1 hour in a drying chamber after separation. In this way, a photoreceptor was prepared.
[0077]
(1) UCL-1 coating composition
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 3g
Methanol / n-butanol = 10/1 (Vol ratio) 1000 ml
(2) CGL-1 coating composition
Fluorenone type disazo pigment (CGM-1) 25g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 10g
Methyl ethyl ketone 1430ml
A composition obtained by dispersing the coating composition (solid content: solid content weight ratio CGM-1: BX-L = 2: 1) using a sand mill for 20 hours.
[0078]
(3) CTL-1 coating solution composition
CTM-1 500g
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 560 g
1,2-dichloroethane 2800ml
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 is fixed.
[0079]
[Chemical 1]
Figure 0003707099
[0080]
[Chemical formula 2]
Figure 0003707099
[0081]
When the obtained photoconductor was photographed with a U-BIX 3035 copier manufactured by Konica, there was no difference between the 10th and the 10,000th, and there was no unevenness of light, uneven fog, image defects (black spots, white spots, dust, streaks, scratches), etc. It was very good.
[0082]
Next, embodiments relating to the inventions of claims 8 to 13 will be described.
[0083]
Example 3
As the conductive support (cylindrical base material) 1, a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g was used. Moreover, the following CGL-2 coating liquid composition was used as a coating liquid.
[0084]
CGL-2 coating solution composition
Perylene pigment (CGM-2) 500g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 500g
Methyl ethyl ketone 24000ml
A composition obtained by dispersing the above coating composition (solid content: solid content weight ratio CGM-2: BX-L = 2: 1) using a sand mill for 20 hours.
[0085]
[Chemical 3]
Figure 0003707099
[0086]
In FIG. 1, the position where the upper end of the cylindrical base material 1B pushed up by the elevating means 14 of the supply means 10 is joined to the lower end of the cylindrical base material 1C gripped by the gripping means 21, 22 of the transport means 20 is H0. And When the cylindrical base materials 1B and 1C are joined at the position H0, the gripping means 21 gripped by the gripping means 22 at the position H0 and grips the cylindrical base materials 1C and 1D at the position H1. Is released. Naturally, H1−H0 = D (cylindrical base material length).
[0087]
In this way, the cylindrical substrate 1D is moved upward by the gripping means 22 of FIG. Positioning means 30 is preferably provided to increase accuracy. As the positioning means 30, a ring-shaped positioning device is preferably used in addition to the positioning means described in JP-A-3-280063.
[0088]
The cylindrical base material 1 accurately positioned in this way is transferred to the vertical coating device 40 and applied. Assuming that the position applied to the cylindrical substrate 1 is H2, there is a relationship of H2−H1 = n1 × D (n1 is an integer of n1 ≧ 1). In this example, n1 = 3 was adopted in the slide hopper type coating apparatus 40 described below.
[0089]
Assuming that the position where separation is started by the separation discharge means 60 is H3, there is a relationship of H3−H2 = n2 × D (n2 is an integer of n2 ≧ 3). In this embodiment, n2 = 10 was adopted. The separated cylindrical base material 1 is transferred to a storage room, a drying room or the next process by a discharge robot.
[0090]
As described above, the means (10 to 60) of the present invention are mainly joined, held, and gripped by installing them at the respective operating positions H0, H1, H2, and H3 (each an integral multiple of the cylindrical substrate length D). There was no coating film defect such as coating unevenness due to vibration and impact generated during coating and separation, film thickness unevenness, scratches, dust, and drum damage, and a coating drum with good coating properties was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, high-quality products can be produced without dust and dust.
[0091]
Example 4
The coating liquid composition {circle around (1)} UCL-1 (3.0 W / w) is applied on an aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g using a sequential continuous coating apparatus of FIG. (V% polymer concentration), (2) CGL-2, (3) CTL-1 are adjusted, slide hopper type coating device 40A (1) for UCL-1 and coating device 40B (2) for CGL-2 ), 3 layers of successive multilayer coating were performed in the same manner as in Example 3 using a coating apparatus 40C (3) for CTL-1. After the CTL application, main drying was performed at 95 ° C. for 1 hour in a drying chamber after separation. In this way, a photoreceptor was prepared.
[0092]
(1) UCL-1 coating composition
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 3g
Methanol / n-butanol = 10/1 (Vol ratio) 1000 ml
(2) CGL-2 coating composition
Perylene pigment (CGM-2) (same as the chemical formula 3) 500 g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 500g
Methyl ethyl ketone 24000ml
A composition obtained by dispersing the above coating composition (solid content: solid content weight ratio CGM-2: BX-L = 2: 1) using a sand mill for 20 hours.
[0093]
(3) CTL-1 coating solution composition
CTM-1 (same as the chemical formula 2) 5kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
Regarding the solid content, the photoconductor obtained by fixing the solid content weight ratio CTM-1: Z-200 = 0.89: 1 was photographed with a U-BIX 3035 copier manufactured by Konica, and there was a difference between the 10th and the 10,000th. There were no shading unevenness, fogging unevenness, and image defects (black spots, white spots, dust, streaks, scratches) and the like, which were good.
[0094]
Next, examples relating to the inventions of claims 14 to 16 will be described.
[0095]
Example 5
As the conductive support (cylindrical base material) 1, a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g was used. As the coating solution, the following (3) CTL-1 coating solution composition was used.
[0096]
(3) CTL-1 coating solution composition
CTM-1 (same as the chemical formula 2) 500g
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 560 g
1,2-dichloroethane 2800ml
For the solid content, the solid coating weight ratio CTM-1: Z-200 = 0.89: 1 was used. The time at which the cylindrical base material 1B and the cylindrical base material 1C are joined is T0. In this way, the cylindrical base material 1B is carried to the transport means 20. The cylindrical substrate 1C is gripped by the gripping means 22 and conveyed upward. When the cylindrical base material 1B and the cylindrical base material 1C are joined at a certain time T0, the gripping means 22 that grips the cylindrical base material 1C and the cylindrical base material 1D is released at the time T1.
[0097]
The cylindrical base material 1 accurately positioned in this way is transferred to the vertical coating device 40 and applied. The time applied to the cylindrical substrate 1 is T2.
[0098]
Thereafter, the separation / discharge means 60 is performed. Let T3 be the time when separation starts. The separated cylindrical base material 1 is transferred to a storage room, a drying room or the next process by a discharge robot.
[0099]
In the present invention, the times T0, T1, T2, and T3 are set to the same time. The allowable time range varies depending on the coating speed and the length of the cylindrical base material, but it should be within 1 second, more preferably within 0.5 seconds.
[0100]
As described above, by installing each of the means 10 to 60 of the present invention so as to operate simultaneously (T0 = T1 = T2 = T3), vibration generated mainly during joining, gripping, application, separation, application unevenness due to impact, There was no coating film defect such as film thickness unevenness, scratches, dust, and drum damage, and a coating drum with good coating properties was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, high-quality products can be produced without dust and dust.
[0101]
Example 6
The coating liquid composition {circle around (1)} UCL-1 (3.0 W / w) is applied on a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g using the sequential sequential coating apparatus shown in FIG. (V% polymer concentration), (2) CGL-4, (3) CTL-1 is adjusted, slide hopper type coating device 40A (1) for UCL-1 and coating device 40B (2) for CGL-4 ), Three layers of successive multilayer coating were performed in the same manner as in Example 5 using a coating apparatus 40C (for (3) CTL-1). After the CTL application, main drying was performed at 95 ° C. for 1 hour in a drying chamber after separation. In this way, a photoreceptor was prepared.
[0102]
(1) UCL-1 coating composition
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 2g
Methanol / n-butanol = 10/1 (Vol ratio) 1000 ml
(2) CGL-4 coating solution composition
Brominated Anthanthrone Pigment (CGM-4) 200g
Polycarbonate (Panlite L-1250 manufactured by Teijin Chemicals Ltd.) 100g
1,2-dichloroethane 18000ml
A composition obtained by dispersing the above coating liquid composition (solid content: solid content weight ratio CGM-4: L-1250 = 2: 1) using a sand mill for 25 hours.
[0103]
(3) CTL-1 coating solution composition
CTM-1 (same as the chemical formula 2) 5kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 is fixed.
[0104]
[Formula 4]
Figure 0003707099
[0105]
When the obtained photoconductor was photographed with a U-BIX 3035 copier manufactured by Konica, there was no difference between the 10th and the 10,000th, and there was no unevenness in lightness, fogging, image defects (black spots, white spots, dust, streaks, scratches), etc. It was very good.
[0106]
Next, examples relating to the inventions of claims 17 to 19 will be described.
[0107]
Example 7
As the conductive support (cylindrical base material) 1, a mirror-finished aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g was used. As the coating solution, (1) OCL-1 coating solution composition described below was used.
[0108]
(1) OCL-1 coating composition (10 W / V%)
Silicone fine particles (Tospearl 103 manufactured by Toshiba Silicone)
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company)
1,2-dichloroethane
A composition obtained by dispersing the coating liquid composition (solid content: solid content weight ratio Z-200: Tospearl = 100: 1) in a sand mill for 3 hours.
[0109]
The time at which the cylindrical base material 1B and the cylindrical base material 1C are joined is T0. When the cylindrical base material 1B and the cylindrical base material 1C are joined at a certain time T0, the transport hand that holds the cylindrical base material 1C and the cylindrical base material 1D at the time T1 is released. The time applied to the cylindrical substrate 1 is T2. Let T3 be the time when separation starts.
[0110]
In the present invention, the time width W applied to the non-image portion varies depending on the coating speed, but the times T0, T1, T2, and T3 are not set at the same time, but are kept within the time width W, so that the amplitude of vibration is combined and increased. Can be prevented. In the present invention, since the non-image portion length is 29 mm on one side of the cylindrical base material, W is 1.93 sec × 2 = 3.87 sec when the coating speed is 15 mm / sec.
[0111]
As described above, the means (10 to 60) of the present invention are not the same in the non-image portion, but are installed so as to operate with a time difference within the time width W, so that the joining, gripping, releasing, applying, and separating are mainly performed. It is possible to prevent coating unevenness and film thickness unevenness caused by vibration, impact, etc. Thus, a coating drum having good coating properties was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, high-quality products can be produced without dust and dust.
[0112]
Example 8
The coating liquid composition {circle around (1)} UCL-3 (3.0 W / 3.0 mm) was applied on an aluminum drum support having a diameter of 80 mm, a height of 355 mm and a thickness of 283 g using the sequential continuous coating apparatus shown in FIG. V% polymer concentration), (2) CGL-3, (3) Adjust CTL-2, slide hopper type coating device 7 (1) for UCL-3, 7-1 (2) for CGL-3 ), 7-2 ((3) for CTL-2), three layers were successively applied in the same manner as in Example 1. After the CTL application, main drying was performed at 95 ° C. for 1 hour in a drying chamber after separation. In this way, a photoreceptor was prepared.
[0113]
(1) UCL-3 coating solution composition
Ethylene-vinyl acetate copolymer (ELBACS 4260, made by Mitsui DuPont Chemical)
Toluene / n-butanol = 5/1 (Vol ratio)
(2) CGL-3 coating solution composition
Y-type titanyl phthalocyanine (CGM-3) 100 g
Silicone resin (KR-5240, manufactured by Shin-Etsu Chemical Co., Ltd.) 100g
t-Butyl acetate 10,000ml
Disperse the above coating composition (solid content weight ratio CGM-3: KR-5240 = 2: 1) using a sand mill for 17 hours.
[0114]
(3) CTL-2 coating composition
CTM-2 5kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 is fixed.
[0115]
[Chemical formula 5]
Figure 0003707099
[0116]
[Chemical 6]
Figure 0003707099
[0117]
When the obtained photoreceptor was photographed with a U-BIX 3035 copier manufactured by Konica, there was no difference between the 10th and the 10000th image, there was no shading unevenness and fogging unevenness, and image defects (black spots, white spots, dust, streaks, scratches) ) Etc. were not seen and it was favorable.
[0118]
【The invention's effect】
The present invention Ream Continuous application equipment and Biren When using the continuous coating method, the cylindrical base material supply, gripping conveyance, positioning, coating, drying, separating and discharging are continuously arranged, When the coating liquid comes into contact with the non-image area of the cylindrical base material, the supply means, the transport means, and the separation / discharge means are set to operate in a time difference within the non-image area. Because (1) The coating film formed on the cylindrical substrate is uniform, and there is no coating unevenness or coating film defect and the coating property is good. (2) Gripping and conveying performance of cylindrical substrate The high Long-term stable application, (3) Cylindrical substrate Even if vibration occurs in the continuous coating device by setting each means in the non-image forming area, it does not affect image formation , (4) Since the vibrations are dispersed without concentrating at the same position, there is an effect that the vibrations are not superimposed and do not have a large amplitude. can get.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the overall configuration of a continuous coating apparatus according to the present invention.
FIG. 2 is a perspective view showing another embodiment of the continuous coating apparatus according to the present invention.
FIG. 3 is a front view of a conveying unit.
FIG. 4 is a perspective view of a gripping unit of the transport unit.
FIG. 5 is a perspective view showing another embodiment of the gripping means of the transport means.
FIG. 6 is a cross-sectional view showing positioning means and application means.
FIG. 7 is a perspective view of the application unit.
FIG. 8 is a cross-sectional view showing the coating means and a drying hood.
FIG. 9 is a cross-sectional view showing another embodiment of the dry hood.
FIG. 10 is a cross-sectional view of a dryer.
FIG. 11 is a cross-sectional view of an exhaust drying apparatus as another embodiment of the drying means.
FIG. 12 is a state diagram showing a separation process by the separation and discharge means.
FIG. 13 is a perspective view of position adjusting means.
FIG. 14 is a plan view and a front view showing another embodiment of the position adjusting means.
[Explanation of symbols]
1,1A, 1B, 1C, 1D Cylindrical base material (cylindrical drum, conductive support)
10 Supply means
20 Transport means
21, 22 Gripping means
30 Positioning means
32 Air supply port
33 Exhaust port
40, 40A, 40B, 40C Vertical type coating device (slide hopper type coating device)
41 Coating head (coater, hopper coating surface)
50 Drying means
51,52 Dry food
53 Dryer
54 Exhaust dryer
60 Separation and discharge means (separator)
70, 80 Position adjustment means
L Coating solution (photosensitive solution)

Claims (3)

円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持段差修正して積み重ねた状態で搬送する段差修正搬送手段、及び、塗布された後の円筒状基材を分離して取り出す分離排出手段を具備する連続塗布装置において、
前記円筒状基材の非画像部相当部分に塗布液が当接した時、前記供給手段、段差修正搬送手段及び分離排出手段が前記非画像部相当部分内で時間差作動することを特徴とする連続塗布装置。
Stacking together the cylindrical axis of the cylindrical base material, coating means for continuously applying a coating liquid onto the outer peripheral surface of the cylindrical base material while pushing up perpendicularly upward through the ring of the cyclic application device from below, the coating supply means for supplying a cylindrical base material means a step modifying transporting means for transporting in a state of stacked fix the step by gripping the cylindrical base material, and the cylindrical substrate after it has been applied In a continuous coating apparatus provided with a separation discharge means for separating and taking out ,
When the coating liquid comes into contact with the non-image portion equivalent portion of the cylindrical base material, the supply means, the step correction conveying means, and the separation / discharge means operate in a time difference manner within the non-image portion equivalent portion. Coating device.
前記塗布手段がスライドホッパー型塗布装置であることを特徴とする請求項1記載の連続塗布装置。The continuous coating apparatus according to claim 1 , wherein the coating unit is a slide hopper type coating apparatus. 円筒状基材の筒軸を合わせて積み重ね、環状塗布装置の環中を下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給するための供給手段、前記円筒状基材を把持し段差を修正して積み重ねた状態で搬送する段差修正搬送手段、及び、塗布された後の円筒状基材を分離して取り出す分離排出手段を有する塗布装置で円筒状基材を塗布する連続塗布方法において、The coating means for continuously applying the coating liquid onto the outer peripheral surface of the cylindrical base material while stacking the cylindrical base materials in alignment with each other and pushing up the ring of the annular coating device vertically from bottom to top Supplying means for supplying a cylindrical base material to the means, step correction transporting means for gripping the cylindrical base material, correcting the level difference and transporting it in a stacked state, and a cylindrical base material after being applied In a continuous coating method in which a cylindrical substrate is coated with a coating apparatus having a separation discharge means for separating and taking out,
前記円筒状基材の非画像部相当部分に塗布液が当接した時、前記供給手段、段差修正搬送手段及び分離排出手段が前記非画像部部分内で時間差作動することを特徴とする連続塗布方法。Continuous application, wherein the supply means, the step correction conveying means, and the separation / discharge means operate in a time-difference manner in the non-image portion when the coating solution contacts the non-image portion equivalent portion of the cylindrical substrate. Method.
JP16202195A 1995-05-23 1995-06-28 Continuous coating apparatus and continuous coating method Expired - Fee Related JP3707099B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP16202195A JP3707099B2 (en) 1995-06-28 1995-06-28 Continuous coating apparatus and continuous coating method
US08/650,090 US5707449A (en) 1995-05-23 1996-05-17 Ring-shaped coating apparatus
EP96303574A EP0744221B1 (en) 1995-05-23 1996-05-20 Ring-shaped coating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16202195A JP3707099B2 (en) 1995-06-28 1995-06-28 Continuous coating apparatus and continuous coating method

Publications (2)

Publication Number Publication Date
JPH0910654A JPH0910654A (en) 1997-01-14
JP3707099B2 true JP3707099B2 (en) 2005-10-19

Family

ID=15746562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16202195A Expired - Fee Related JP3707099B2 (en) 1995-05-23 1995-06-28 Continuous coating apparatus and continuous coating method

Country Status (1)

Country Link
JP (1) JP3707099B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588297A (en) * 2014-11-21 2015-05-06 安徽省库仑动力自动化科技有限公司 Method for surface solidification by adoption of annular rail robot

Also Published As

Publication number Publication date
JPH0910654A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
KR100387407B1 (en) Development processing method and liquid processing method
JP2006043702A (en) Method and apparatus of positioning cylindrical base material
US7419316B2 (en) Developing treatment apparatus
JP3707099B2 (en) Continuous coating apparatus and continuous coating method
JP3709634B2 (en) Continuous coating apparatus and continuous coating method
JP3610533B2 (en) Apparatus and method for separating and holding a cylindrical substrate
JP3666060B2 (en) Continuous coating and drying apparatus and continuous coating and drying method
JP3661256B2 (en) Continuous coating apparatus and continuous coating method
JP3613742B2 (en) Continuous coating apparatus and continuous coating method
JP3653805B2 (en) Cylindrical substrate coating method and apparatus
JPH10263450A (en) Method and device for continuous coating
JPH10277480A (en) Cylindrical substrate and method of continuously coating cylindrical substrate
JPH0957178A (en) Apparatus for separating-discharging continuously coated cylindrical base material and method therefor
JPH02132444A (en) Coating device for coating semiconductor wafer with liquid
JPH0957171A (en) Applicator for cylindrical base material and coating method
JPH1133473A (en) Continuous coating method and continuos coating applicator
JPH0975833A (en) Method for positioning cylindrical base material of apparatus for vertical application, cylindrical base material for vertical application and method for vertical application
JP2000005684A (en) Method for coating cylindrical base and coating device therefor
JP3694925B2 (en) Cylindrical base material supply apparatus and cylindrical base material supply method
JPH0924324A (en) Device for separating/discharging/claming cylindrical base material and method therefor
JPH1099771A (en) Coating device for cylindrical base material and its coating method
JP3588727B2 (en) Method and apparatus for positioning cylindrical substrate
JP3658921B2 (en) Separation / discharge apparatus and separation / discharge method for coated cylindrical substrate
JP3622159B2 (en) Cylindrical substrate coating method and apparatus
JPH0985158A (en) Clamping conveyor, feeder and method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees