JP3613742B2 - Continuous coating apparatus and continuous coating method - Google Patents

Continuous coating apparatus and continuous coating method Download PDF

Info

Publication number
JP3613742B2
JP3613742B2 JP01671996A JP1671996A JP3613742B2 JP 3613742 B2 JP3613742 B2 JP 3613742B2 JP 01671996 A JP01671996 A JP 01671996A JP 1671996 A JP1671996 A JP 1671996A JP 3613742 B2 JP3613742 B2 JP 3613742B2
Authority
JP
Japan
Prior art keywords
cylindrical base
base material
coating
drying
continuous coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01671996A
Other languages
Japanese (ja)
Other versions
JPH09206660A (en
Inventor
晃 大平
淳二 氏原
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP01671996A priority Critical patent/JP3613742B2/en
Publication of JPH09206660A publication Critical patent/JPH09206660A/en
Application granted granted Critical
Publication of JP3613742B2 publication Critical patent/JP3613742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、エンドレスに形成された連続面を有する円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を均一に連続的に塗布する連続塗布装置及び連続塗布方法に関するものである。
【0002】
【従来の技術】
エンドレスに形成された連続面を有する円筒状基材の外面上への薄膜で均一な塗布に関連してスプレー塗布法、浸漬塗布法、ブレード塗布法、ロール塗布法等の種々の方法が検討されている。特に電子写真感光体ドラムのような薄膜で均一な塗布については生産性の優れた塗布手段を開発すべく検討されている。しかしながら、従来のエンドレスに形成された連続面を有する円筒状基材への塗布手段及び塗布方法においては、均一な塗膜が得られなかったり、生産性が悪い等の短所があった。
【0003】
スプレー塗布法では、スプレーガンより噴出した塗布液滴が該エンドレスに形成された連続面を有する円筒状基材の外周面上に到達するまでに溶媒が蒸発するために塗布液滴の固形分濃度が上昇してしまい、それにともない塗布液滴の粘度上昇が起って液滴が面に到達したとき、液滴が面上を充分に広がらないために、或いは乾燥固化してしまった粒子が表面に付着するために、塗布表面の平滑性の良いものがえられない。また、該連続面を有する円筒状基材への液滴の到達率が100%でなく塗布液のロスがあったり、部分的にも不均一であるため、膜厚コントロールが非常に困難である。更に、高分子溶液等では糸引きを起こす事があるため、使用する溶媒及び樹脂に制限がある。
【0004】
ブレード塗布法、ロール塗布法は例えば円筒状基材の長さ方向にブレード若しくはロールを配置し、該円筒状基材を回転させて塗布を行い円筒状基材を1回転させたのち、ブレード若しくはロールを後退させるものである。しかしながらブレード若しくはロールを後退させる際、塗布液の粘性により、塗布膜厚の一部に他の部分より厚い部分が生じ、均一な塗膜が得られない欠点がある。
【0005】
浸漬塗布法は、上記におけるような塗布液表面の平滑性、塗布膜の均一性の悪い点は改良される。
【0006】
しかし、塗布膜厚の制御が塗布液物性例えば粘度、表面張力、密度、温度等と塗布速度に支配され、塗布液物性の調整が非常に重要となる。また塗布速度も低いし、塗布液槽を満たすためにはある一定量以上の液量が必要である。更に重層する場合、下層成分が溶け出し塗布液槽が汚染されやすい等の欠点がある。
【0007】
そこで特開昭58−189061号公報に記載の如く円形量規制型塗布手段(この中にはスライドホッパー型塗布手段が含まれる)が開発された。このスライドホッパー型塗布手段はエンドレスに形成された連続周面を有する円筒状基材を連続的にその長手方向に移動させながら、その周囲を環状に取り囲み、円筒状基材の外周面に対して塗布液を塗布するものであって、更にこの塗布手段は環状の塗布液溜まり室と、この塗布液溜まり室内の一部に対して外部から塗布液を供給する供給口と、前記塗布液溜まり室の内方に開口する塗布液分配スリットとを有し、このスリットから流出した塗布液を斜め下方に傾斜する塗布液スライド面上に流下させ、塗布液スライド面の下端のホッパー塗布面と円筒状基材との僅かな間隙部分にビードを形成し、円筒状基材の移動に伴ってその外周面に塗布するものである。このスライドホッパー型塗布手段を用いることにより、少ない液量で塗布でき、塗布液が汚染されず、生産性の高い、膜厚制御の容易な塗布が可能となった。
【0008】
【発明が解決しようとする課題】
しかしながら、前記スライドホッパー型塗布手段を用いても、なお、塗布液によっては塗布液膜切れ(ビード切れによるものが多い)や膜厚の変動等の塗布欠陥があり、満足のいくものではない。
【0009】
上記の塗布欠陥を発生させる要因に、▲1▼円筒状基材に直接接触する供給手段や把持搬送手段や分離排出手段等の駆動系からの振動伝達による塗布ムラ、塗布段ムラ発生、▲2▼円筒状基材に均一に塗布液を塗布する塗布手段の振動による膜厚変動等がある。
【0010】
本発明はこのような問題点を解消して、連続塗布された円筒状基材に塗布欠陥がなく、画像ムラ、画像欠陥のない良好な画像を得る塗布手段及び塗布方法を提供することを課題目的とするものである。
【0011】
即ち、本発明の目的は、(1)塗布性が良好、(2)ビード切れが無い、(3)円筒状基材の円周方向や長手方向の膜厚変動が無い、円筒状基材の連続塗布手段及び塗布方法を提供するものである。
【0012】
【課題を解決するための手段】
上記目的は、円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、前記各手段の少なくとも1つの駆動系が防振台上に設置されていることを特徴とする連続塗布装置及び方法によって達成される(請求項1、2)。
【0013】
また上記目的は、少なくとも前記円筒状基材と直接に接触する供給手段、搬送手段及び分離排出手段の各駆動系が防振台上に設置されていることを特徴とする連続塗布装置及び方法によって達成される(請求項3、4)。
【0014】
さらに上記目的は、前記各手段の少なくとも1つの駆動系が能動除振台上に設置されていることを特徴とする連続塗布装置及び方法によって達成される(請求項10、11)。
【0015】
さらにまた上記目的は、前記円筒状基材と直接に接触する供給手段、搬送手段又は分離排出手段の内少なくとも1つの対応する駆動系が能動除振台上に設置されていることを特徴とする連続塗布装置及び方法によって達成される(請求項12、13)。
【0016】
【発明の実施の形態】
以下、図面を用いて本発明の第一の実施の形態を説明する。図1は本発明による連続塗布装置の全体構成を示す斜視図である。図において、10は円筒状基材1を塗布手段の垂直下方の所定位置に供給して上方に押し上げる供給手段、20は供給された円筒状基材1の外周面を把持して筒軸を合わせて積み重ね下から上へ垂直に押し上げて搬送する搬送手段、30は前記円筒状基材1を連続塗布装置の環状塗布部の中心に位置合わせする位置決め手段、40は前記円筒状基材1の外周面上に塗布液を連続的に塗布する塗布手段、50は円筒状基材1上に塗布された塗布液を乾燥させる乾燥手段、60は乾燥されて垂直搬送されてきた積み重ね状の複数の円筒状基材から分離させて1個ずつ取り出し排出させる分離排出手段である。
【0017】
本発明の連続塗布装置は、上記の各手段を連続して垂直中心線Z−Z上に配置した垂直塗布構成であり、人手を要しない完全自動化生産が高精度で達成される。垂直塗布手段とは、▲1▼スライドホッパー型コータ、▲2▼押し出し型コータ、▲3▼リングコータ、▲4▼スプレーコータ等で、円筒状基材を積み重ねて上方又は下方に相対的に移動する事により塗布するもので、方式は問わないが▲1▼が塗布性の信頼性等の点で優れている。
【0018】
即ち、前記供給手段10は前記円筒状基材1を載置するための複数の載置案内部材11を備えた回転テーブル12、該回転テーブル12を回転させて前記搬送手段20へつながる垂直ラインへ送り込む駆動手段13、前記搬送手段20により既に上方に把持搬送されている円筒状基材1を積み重なるように上方に押し上げる昇降部材14、該昇降部材14の上端に設けられた円筒状基材供給用の押し上げ部材15及び前記駆動手段13による回転や昇降部材14による押し上げのタイミングを制御する図示しない制御手段等から構成されている。なお、前記回転テーブル12上への円筒状基材1の供給は、ロボットハンドルにより行われる。
【0019】
前記供給手段10の上方に設けられた搬送手段20は、円筒状基材1の外周面に圧接離間可能で且つ垂直上下方向に移動可能な2組の把持手段21,22を有し、円筒状基材1を位置決めして把持し上方に搬送する機能を有する。30はエアベアリング式位置決め手段、40はスライドホッパー型コーター等の垂直型環状の塗布手段、50は乾燥調整器51,リング式吸引乾燥器53,リング式加熱乾燥器52から成る乾燥手段、60は塗布乾燥されて垂直上方に搬送されてきた積み重ね状の複数の円筒状基材1の最上部から、内径部を把持して分離させて1個ずつ取り出して装置本体外に排出させる分離排出手段である。以下、上記各装置10、20,30,40,50,60の詳細は後述する。
【0020】
図2は本発明による第二の実施の形態である逐次連続塗布装置を示す斜視図である。この実施例では、前記搬送手段20の上方の垂直中心線Z−Z上には、位置決め手段30A、塗布手段40A、乾燥手段50Aとから成るユニットA、位置決め手段30B、塗布手段40B、乾燥手段50Bとから成るユニットB、位置決め手段30C、塗布手段40C、乾燥手段50Cとから成るユニットC、を複数組垂直縦列配置したものである。最上段には前記分離排出手段60が配置されている。各塗布手段40A,40B,40Cからそれぞれ吐出された塗布液は、円筒状基材1上に多層の塗布層を逐次形成し、各乾燥手段50A,50B,50Cにより乾燥される。乾燥済みの最上段の円筒状基材1Aは、分離排出手段60により把持されて下方の円筒状基材1Bから分離されて、機外のパレット上に載置される。図3は本発明による第一の実施の形態の連続塗布装置を示す正面図である。
【0021】
前記エアベアリング式位置決め手段30、環状の塗布手段40、リング状の乾燥手段50は連続塗布装置本体70の所定位置に固定され、通過する円筒状基材1の外周面に近接し非接触である。供給手段10、搬送手段20、分離排出手段60は何れも各駆動源に接続し、円筒状基材1の外周面または内周面に接触して移動可能である。
【0022】
以下、連続塗布装置を構成する供給手段10、搬送手段20、位置決め手段30、塗布手段40、乾燥手段50、分離排出手段60の詳細を説明する。
【0023】
図4は前記供給手段10の斜視図である。塗布処理工程前の複数個の円筒状基材1は予め供給台161に収容されている。自動運搬装置162の移動可能な運搬部材163は、供給台161上の円筒状基材1から1個の円筒状基材1を把持して移動し、前記回転テーブル12上の載置案内部材11内に載置する。該載置案内部材11は、円筒状基材1が遊嵌して収容可能な円形溝11Aを有し、回転テーブル12の回転円周方向に複数個(図示の6箇所)設けられている。該回転テーブル12は駆動手段13のモータM1、ギア列131,132により間欠回転駆動される。1個の円筒状基材1が前記垂直中心線Z−Zの下方に運搬されて停止すると、モータM2の始動によりピニオンギア141及びラックギア142を介して昇降部材14を上昇させる。該昇降部材14の上部には緩衝手段であるコイルバネ143を介して押し上げ部材15が設けられていて、該押し上げ部材15の上昇により載置案内部材11の底部が押し上げられる。
【0024】
図5は供給手段10による円筒状基材1の上昇過程を示す断面図である。図5(a)は、円筒状基材1の上昇開始状態を示す。モータM2の駆動回転により、前記押し上げ部材15が上昇して、載置案内部材11の底部が矢印方向に押し上げられ、円筒状基材1がZ−Z方向に上昇される。図5(b)は、載置案内部材11の上昇終了状態を示す。前記昇降部材14の上昇開始時の速度は、塗布速度の1.5〜5倍の速度で上昇し、該円筒状基材1の先端部が先行して上昇中の円筒状基材1の後端部に、後続する突き当たる直前に、前記塗布速度の1.0〜1.5倍に減速されるように前記モータM2により制御される。また、先に上昇している円筒状基材1の後端部に後続する円筒状基材1の先端部が突き当たるとき、前記昇降部材14が若干上昇動作を続けても、コイルバネ143に吸収され、図1に示すように塗布速度で上昇する複数個の円筒状基材1に対して衝撃を与えることがなく、塗布ムラが発生することはない。
【0025】
図6は搬送手段20の把持手段21,22の斜視図である。先ず上部位置に設けた把持手段21の搬送ハンド211の把持部214と、搬送ハンド212の把持部215は軸213により回転自在に支持され、先に押し上げられて上方に搬送された円筒状基材1と、同様に先に押し上げられた円筒状基材1間を、前記把持部214と把持部215とで段差調整して把持しながら塗布速度と同速度で矢示方向に上昇させる。更に下部位置に設けた把持手段22の搬送ハンド221の把持部224と、搬送ハンド222の把持部225も軸223により回転自在に支持され、円筒状基材1間と、新たに押し上げられた円筒状基材1間を前記把持部224と、把持部225とで段差調整して把持するようにする。そして把持完了後、前記把持手段21と同速度となる塗布速度と同速度で矢示方向に上昇させる。216,226は前記把持部先端に取り付けられ、滑り止めと円筒状基材1周面を保護するための押圧緩衝部材である。
【0026】
次に、図3で把持手段21,22を有する搬送手段20について説明する。搬送手段20は、把持手段21,22に各々設けられ、搬送手段20に対して垂直方向に回転可能に設けられたボールネジ24に嵌合した上下移動部材23を設けた。該上下移動部材23は前記把持手段21,22に連結する。前記ボールネジ24をモータM3,M4と減速ギア列とから成る回転駆動装置を用いて一定速度で回転することにより、上下移動部材23は一定速度、即ち複数の円筒状基材1に塗布液を塗布する塗布速度で把持手段21,22が上昇移動するように構成されている。
【0027】
図7は位置決め手段30と塗布手段40とを示す断面図、図8は塗布手段40の斜視図である。
【0028】
図7に示されるように垂直中心線Z−Zに沿って垂直状に重ね合わせた複数の円筒状基材1A,1B(以下、円筒状基材1と称す)を連続的に矢示方向に上昇移動させ、その周囲を取り囲み、円筒状基材1の外周面に対しスライドホッパー型塗布手段40の塗布に直接係わる部分(ホッパー塗布面)41により塗布液(感光液)Lが塗布される。なお、円筒状基材1としては中空ドラム例えばアルミニウムドラム、プラスチックドラムのほかシームレスベルト型の基材でも良い。前記ホッパー塗布面41には、円筒状基材1側に開口する塗布液流出口42を有する幅狭の塗布液分配スリット(スリットと略称する)43が水平方向に形成されている。このスリット43は環状の塗布液分配室(塗布液溜り室)44に連通し、この環状の塗布液分配室44には、貯留タンク2内の塗布液Lを圧送ポンプ3により供給管4を介して、供給口48から導入して供給するようになっている。他方、スリット43の塗布液流出口42の下側には、連続して下方に傾斜し、円筒状基材1の外径寸法よりやや大なる寸法で終端をなすように形成された塗布液スライド面(以下、スライド面と称す)45が形成されている。更に、このスライド面45終端より下方に延びる唇状部46が形成されている。かかる塗布手段(スライドホッパー型塗布手段)40による塗布においては、円筒状基材1を引き上げる過程で、塗布液Lをスリット43から押し出し、スライド面45に沿って流下させると、スライド面45の終端に至った塗布液は、そのスライド面45の終端と円筒状基材1の外周面との間にビードを形成した後、円筒状基材1の表面に塗布される。スライド面45の終端と円筒状基材1は、ある間隙を持って配置されているため円筒状基材1を傷つける事なく、また性質の異なる層を多層形成させる場合においても、既に塗布された層を損傷することなく塗布できる。
【0029】
一方、前記圧送ポンプ3の塗布液供給部より最も遠い位置で、前記塗布液分配室44の一部には、塗布液分配室44内の泡抜き用の空気抜き手段47が設けられている。貯留タンク2内の塗布液Lが塗布液分配室44に供給されて塗布液分配スリット43から塗布液流出口42に供給されるとき、開閉弁を開いて空気抜き手段47より塗布液分配室44内の空気を排出する。
【0030】
前記塗布手段40の下部には、円筒状基材1の円周方向を位置決めする位置決め手段30が固定されている。前記円筒状基材1の位置決め手段30の本体31には、複数の給気口32と、複数の排気口33が穿設されている。該複数の給気口32は、図示しない給気ポンプに接続され、空気等の流体が圧送される。該給気口32の一端部で円筒状基材1の外周面に対向する側には、吐出口34が貫通している。該吐出口34は前記円筒状基材1の外周面と所定の間隙を保って対向している。該間隙は、30μm〜2mmである。前記吐出口34は直径0.05〜0.5mmの小口径のノズルである。
【0031】
前記給気ポンプから圧送された流体は、複数の給気口32から本体31の内部に導入されて、複数の吐出口34から吐出され、前記円筒状基材1A(1B)の外周面と均一な流体膜層を形成する。吐出後の流体は複数の排気口33から装置外に排出される。
【0032】
なお、位置決め手段30に接続される垂直型塗布手段40としては、スライドホッパー型、押し出し型、リングコーター等の各種装置が用いられる。
【0033】
前記塗布手段40の上方には、乾燥フード51と乾燥器53とから成る乾燥手段50が設けられている。
【0034】
図9は前記塗布手段40と該塗布手段40の上部に設けた乾燥フード51の断面図である。該乾燥フード51は環状の壁面を有し、該壁面には多数の開口51Aが穿設されている。前記円筒状基材1を矢示方向に上昇させ、前記塗布手段40のホッパー塗布面(塗布ヘッド)41で塗布液Lを塗布し、感光層5を形成する。円筒状基材1上に形成された感光層5は前記乾燥フード51内を通過しながら徐々に乾燥される。この乾燥は前記多数の開口51Aより塗布液Lに含まれている溶媒を壁面外に放出することにより行われる。前記のように、塗布手段40により円筒状基材1上に塗布液Lを塗布することにより、形成された感光層5は、塗布直後において乾燥フード51により包囲されており、開口51Aからのみ溶媒が放出されるため、塗布直後における感光層5の乾燥速度は、前記開口51Aの開口面積にほぼ比例する。
【0035】
図10に本発明の乾燥器53の断面図を示す。乾燥器53は、吸引スリット531と吸引チャンバー532と吸引ノズル533とを有する吸引スリット部材534、下部の筒状部材535、上部の筒状部材536がそれぞれ同心に結合されている。そして、複数設けられた吸引ノズル533から吸引を行ない、周方向均一な吸引チャンバー532、周方向均一な吸引スリット531により周方向の均一化がなされた吸引エアーが流れ、更に、吸引スリット部材534、その上下の筒状部材536,535の各内径面と塗布済みの円筒状基材1の外周面との間の空気流の乱れをバッファー空間537で極く僅かにおさえて、538に示す乾燥の為の均一吸引エアーの空気流を作り出している。この乾燥ゾーンに矢印で示すZ方向に塗布済の円筒状基材1を搬送することにより、塗布膜の乾燥を行うものである。
【0036】
以上のようにして塗布及び塗布膜乾燥が行われた円筒状基材(基体ドラム)1を分離する工程を、図11の分離過程の各プロセスの状態図を用いて説明する。
【0037】
分離排出手段60は、垂直移動ロボットステージ61、軸体62、上チャック(上把持子)63、下チャック(下把持子)64、エアーシリンダー65により構成されている。
【0038】
塗布済の円筒状基材1は下方より上方へ向けて積み上げられ、上方向へ移動し図11(a)に示すように分離位置に達する。この時垂直ロボットが起動し被分離円筒状基材1と同軸、等速度で同架された分離装置全体を移動する。まず、図11(b)に示す位置で下把持子64が被分離円筒状基材1Aに隣接する円筒状基材1Bを保持する。次いで図11(c)に示す位置で上把持子63が被分離円筒状基材1Aを保持する。エアーシリンダー65に接続する軸体62により上把持子63は被分離円筒状基材1Aを保持したまま上方向へ移動して図11(d)に示す位置になる。この時、被分離円筒状基材1Aと隣接する円筒状基材1Bにまたがる塗布膜が切り裂かれ図11(d)に示すように円筒状基材1A、1Bの分離が行われる。分離済みの円筒状基材1Aを排出するために図11(e)に示すように下把持子64は解放状態となり、次いで図11(f)に示すように上把持子63が被分離円筒状基材1Aを保持した状態で垂直移動ロボットステージ61が急上昇を行い、隣接する円筒状基材1Bの位置よりはるか上方に配置された分離装置に分離済の円筒状基材1Aを置き、上把持子63が解放となり工程を終了する。そして次なる円筒状基材1Bの分離の為、垂直移動ロボットステージ61が下降しまた軸体62が下降し、初期状態の位置の図11(a)に戻る。
【0039】
再び、図3において、前記回転テーブル12、ギア列131,132、モータM1から成る駆動手段13は、装置本体70の底部に設けた防振台81上に設置されている。また、前記押し上げ部材15を昇降させる昇降部材14も、装置本体70の底部に設けた防振台82上に設置されている。なお、上記駆動手段13と昇降部材14とを一つの防振台上に設置してもよい。また、装置本体70の中間部には、前記把持手段21,22、上下移動部材23、ボールネジ24から成る搬送手段20が、防振台83上に設置されている。さらに、装置本体70の上部には、垂直移動ロボットステージ61、軸体62、上チャック(上把持子)63、下チャック(下把持子)64、エアーシリンダー65により構成されている分離排出手段60が、防振台84上に設置されている。このように、少なくとも前記円筒状基材1に直接に接触する供給手段10、搬送手段20、分離排出手段60の各駆動系を防振台上に設置することにより、駆動系から発生する振動を極めて小さくできる。また、円筒状基材1に直接に接触する供給手段10と搬送手段20とを同一の防振台に設置して、また円筒状基材1に直接に接触する分離排出手段60を別の防振台上に設置する事により振動を効率良く抑えることが出来た。さらに、少なくとも前記円筒状基材1に直接に接触しないが連続塗布装置本体に固定された位置決め手段30、塗布手段40、乾燥手段50を防振台上に設置することにより、装置本体から伝達される振動を遮断するようにしてもよい。
【0040】
前記防振台81,82,83,84を支える防振材料としては金属バネ、コイルバネ、防振ゴム、空気バネ等があり、防振系の固有振動によっても異なるが防振ゴム、空気バネ等が良い。上記防振材料に関しては、「振動工学ハンドブック(養賢堂発行)」、「精密防振ハンドブック」、等に記載されている。
【0041】
従来は、非画像部に振動が起きても良いように、各装置10〜60の作動が非画像部に同期して起きる方法であったが、これでは不十分であると判明した。これら元の振動の振幅は累積され、大きい時には100μmにも達し、段ムラ塗布等の故障となり、ひどい時には塗布手段40のコータ部や位置決め手段30の内面と接触する等の問題が発生した。従って、各振動発生源からの影響を小さくする必要がある。特に、図2に示す3層逐次連続塗布の場合、1層塗布の時と比して振動源は約3倍増え、従って塗布に与える振動はより深刻となる。
【0042】
本発明の防振台設置により、(1)駆動系の振動による塗布ムラ、段ムラが発生しない、(2)画像ムラがなく良好な画像が得られる等の優れた効果が得られた。
【0043】
前記防振台81〜84に代えて、能動除振台を、円筒状基材1に直接に接触する供給手段10、搬送手段20、分離排出手段60の各駆動系に設置することにより、駆動系をから発生する振動を極めて小さくできる。
【0044】
前記能動除振台の一例として、次の能動制御除振機構は、▲1▼圧力容器を具備した空気バネで制振台を支持する、▲2▼制振台本体にレベルセンサと振動センサとを設置する、▲3▼レベルセンサにより検出したレベル変位信号と、振動センサにより検出した床面や機器等の振動源から受けた制振台本体の振動検出信号を180°反転させた反転信号とをレベル変動分加算器に入力して加減算を行う、▲4▼レベル変動分加算器からの加減変動信号に合わせ、駆動回路から駆動信号を出力して制御弁の開閉度合を制御する、▲5▼この制御弁により空気バネの圧力容器内の空気圧を調節することにより精密なレベルコントロールと制振動を行うことができる(特開平1−210634号公報、能動制御精密制振台)。
【0045】
この他、次の方法で行っても良い。
【0046】
1.連続塗布装置が設置された除振台
2.除振台を弾性的に支持する弾性支持手段
3.除振台上に設けたセンサ。このセンサはレベルセンサと振動センサとを兼ねても良いし、別々に設けても良い
4.除振台を駆動するアクチュエータ
5.センサから出力を補償してアクチュエータにフィードバックする位置制御補償及び/又は振動補償手段より構成した。なお、弾性支持手段例えば空気バネをアクチュエータとしても良い。
【0047】
また、円筒状基材1と直接に接触する搬送手段20と供給手段10が同一の能動除振台にあり、又円筒状基材1に直接接触する分離排出手段60を別の能動除振台上に設置する事により振動を効率良く抑えることが出来た。
【0048】
X−Y方向の振幅測定については、例えば、レーザー変位計や渦電流式変位センサー等により非接触に検出することができる。また、Z方向の振幅測定については、例えば、加速度計を用いて振幅を読み取ることにより得られる。
【0049】
【実施例】
以下実施例に沿って説明する。
【0050】
(実施例1)
円筒状基材(導電性支持体)1としては鏡面加工を施した直径40mm、高さ271mmのアルミニウムドラム支持体を用いた。又塗布液としては下記記載の▲1▼CGL−2塗布液組成物を用い、乾燥膜厚2.0μmになるように塗布した。
【0051】
▲1▼CGL−2塗布液組成物
ペリレン顔料(CGM−2) 500g
ブチラール樹脂(エスレックBX−L 積水化学社製) 500g
メチルエチルケトン 24l
上記塗布液組成物(固形分については固形分重量比CGM−2:BX−L=1:1に固定)をサンドミルを用いて20時間分散したもの。
【0052】
【化1】

Figure 0003613742
【0053】
図12(a)に連続塗布装置の正面図を示す。
【0054】
本実施例1では図示のように、供給手段10の昇降手段14の駆動系を防振台82の上に設置し、把持手段21,22、上下移動部材23、ボールネジ24及び駆動系から成る搬送手段20を防振ゴムを介した防振台83の上に設置した。このように構成した連続塗布装置により塗布を行い、得られた塗布済み円筒状基材(塗布ドラム)の目視観察を行った。水平方向、垂直方向の最大振幅は塗布手段40の最近接位で測定を行った。なお円筒状基材1は30本積み重ねた。表1に結果を示す。
【0055】
【表1】
Figure 0003613742
【0056】
本発明の防振台82,83を有する連続塗布装置により、膜厚ムラに起因する色ムラがなく、塗布性の良好な塗布ドラムが得られた。
【0057】
(実施例2)
本実施例2では図12(b)に示すように、垂直移動ロボットステージ61、軸体62、上把持子63、下把持子64、エアーシリンダー65及び駆動手段により構成されている分離排出手段60を防振ゴムを介した防振台84上に設置した以外、防振台82,83を備えたことは実施例1と同じである。得られた結果を表2に示す。
【0058】
【表2】
Figure 0003613742
【0059】
本発明の防振台82,83,84を有する連続塗布装置により、膜厚ムラに起因する色ムラがなく、塗布性の良好な塗布ドラムが得られた。
【0060】
(実施例3)
本実施例3では図12(c)に示すように、供給手段20の回転テーブル12を間欠回転させる駆動系を防振台81上に、エアーベアリングから成る位置決め手段30を防振台85上に、塗布手段40を防振台85上に、乾燥手段50を防振台87上にそれぞれ設置した以外、防振台82,83,84を備えたことは実施例2と同じである。得られた結果を表3に示す。
【0061】
【表3】
Figure 0003613742
【0062】
本発明の防振台81,82,83,84,85,86,87を有する連続塗布装置により、膜厚ムラに起因する色ムラがなく、塗布性の良好な塗布ドラムが得られた。
【0063】
(実施例4)
実施例1の連続塗布装置の代わりに図2の逐次連続塗布装置で塗布を行う。図13のように供給手段10昇降部材14の駆動手段及び供給手段20の把持手段21,22とその上下搬送の駆動装置を防振ゴムを介した同一の防振台88上に設置するとともに、分離排出手段60の駆動系を防振ゴムを介した別の防振台89の上に設置した。このように構成した逐次連続塗布装置により塗布を行った。即ち鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体(円筒状基材)1上に、下記の如く各々塗布液組成物▲1▼UCL−1▲2▼CGL−2及び▲3▼CTL−1を調製し、スライドホッパー型塗布手段7(▲1▼UCL−1用)、7−1(▲2▼CGL−2用)、7−2(▲3▼CTL−1用)にて、それぞれ乾燥膜厚1.0μm、2.2μm及び23μmになるように3層の逐次重層塗布を行い、感光体を作成し目視観察した。なお、円筒状基材1は25本積み重ね、最大振幅は最上部の塗布手段(コーター)40Cとの最近接位ドラムで測定した。得られた結果を表4に示す。
【0064】
【表4】
Figure 0003613742
【0065】
▲1▼UCL−1塗布液組成物
共重合ナイロン樹脂(CM−8000 東レ社製) 30g
メタノール/n−ブタノール=10/1(Vol比) 10l
▲2▼CGL−2塗布液組成物
ペリレン顔料(CGM−2) 500g
ブチラール樹脂(エスレックBX−L 積水化学社製) 500g
メチルエチルケトン 24l
上記塗布液組成物(固形分については固形分重量比CGM−2:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0066】
▲3▼CTL−1塗布液組成物
CTM−1 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については、固形分重量比CTM−1:Z−200=0.89:1に固定した。
【0067】
【化2】
Figure 0003613742
【0068】
本発明の防振台88,89を有する逐次連続塗布装置を用いると、振動が少なく、膜厚ムラ、接触キズ等のない塗布性の良好な塗布ドラムが得られた。得られた感光体No.4−1をコニカ社製U−BIX3035複写機で実写したところ、画像ムラやカブリムラ等の塗布ムラに起因する画像不良はなく、画像欠陥(黒ポチ、白ポチ、ゴミ、スジ等)もなく良好であった。
【0069】
(実施例5)
実施例5〜8は、前記防振台81〜87の代わりに能動除振台を備えた連続塗布装置である。
【0070】
以下、能動除振装置について説明する。連続塗布装置に伝わる振動をできるだけ低い周波数から達成する為に、バネ定数と粘性の小さい支持機構を有する防振台上に設置すれば良い。通常塗布手段中に振動を発生する振動源があり、支持機構のバネ定数と塗布手段及び防振台の質量できまる低周波共振により、全体の振動が大きくなってしまう恐れがあるので、バネ定数及び粘性は小さくできない。このため防振装置は床から伝わる振動の絶縁と装置から発生する振動の兼ね合いより選択されるが、限界があり近年能動除振装置が実用化されている。これは防振台の振動をセンサで検出し、フィードバック機構よりアクチュエータ等で振動制御を行うのが能動式除振装置(能動除振台)である。
【0071】
本発明で用いられる能動式除振装置は、例えば特開平1−210634号公報に記載の如く、除振台の振動をセンサで検出し、制御弁を介して空気バネ内の空気圧を調整する事により振動制御を行う空気圧式能動除振機構を用いても良く、また除振台を弾性的に支持する弾性支持手段、除振台を駆動するアクチュエータ、除振台の振動を検出する振動センサ、振動センサの出力を補償してアクチュエータにフィードバックする振動制御補償手段、除振台の変位を検出する変位センサ及び変位センサの出力を補償してアクチュエータにフィードバックする位置制御補償手段等を有する能動除振装置を用いても良い。
【0072】
本発明で用いられる垂直型連続塗布装置は、円筒状基材1を垂直に積み重ね上方向に搬送させつつ塗布を行うものであるから、本質的に振動の発生や伝達に対しての影響が大きく、根本的な弱点を有する。
【0073】
本発明はこれに鑑みて行われたものであり、能動式除振装置を設置することにより振動の塗布膜への影響を極めて小さく出来、しかも予期せざる外乱の影響をも除くことが出来るものである。又積み重ね円筒状基材の本数を増すことができコスト的にも有利となる他、塗布手段以後の乾燥工程の有効長を従来のものより約2倍以上長くすることができ、急速乾燥による塗膜のちじれ模様の発生をなくすることもできるという長所も見いだされた。
【0074】
導電性支持体(円筒状基材)としては鏡面加工を施した直径40mm、高さ271mmのアルミニウムドラム支持体を用いた。又塗布液としては下記記載の▲1▼CTL−1塗布液組成物を用い、乾燥膜厚24μmになるように塗布した。
【0075】
▲1▼CTL−1塗布液組成物
CTM−1 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については、固形分重量比CTM−1:Z−200=0.89:1に固定した。
【0076】
本実施例5では把持手段21,22、上下移動部材23、ボールネジ24、駆動手段から成る供給手段20を空気バネを介し能動除振台の上に設置した。該能動除振台上にはレベルセンサ及び振動センサがあり、これらセンサからの出力を補償してアクチュエータにフィードバックする位置制御補償、振動補償がなされ、アクチュエータにより能動除振台を駆動する機構になっており、この能動除振台機構を利用し塗布を行った。得られた塗布ドラムの目視観察を行うと共に、図1の塗布手段40の最近接位の円筒状基材1での最大振幅を測定した。なお円筒状基材1は31本積み重ねた。表5に結果を示す。
【0077】
【表5】
Figure 0003613742
【0078】
本発明の能動除振台を有する塗布手段を用いると膜厚ムラ、乾燥ムラに起因する塗布故障がなく、塗布性の良好な塗布ドラムが得られた。
【0079】
(実施例6)
本実施例6では図12(b)に示すように、供給手段10の昇降手段14の駆動系を能動除振台(82)上に、把持手段21,22、上下移動部材23、ボールネジ24及び駆動系から成る搬送手段20を能動除振台(83)上に、分離排出手段60の駆動系を能動除振台(84)上にそれぞれ設置した。各能動除振台(82,83,84)として、実施例5と同じ機構の能動除振装置を用いて、塗布を行った。得られた塗布ドラムの目視観察を行った。振動の振幅測定は実施例5と同じ。なお、円筒状基材1は30本積み重ねた。表6に結果を示す。
【0080】
【表6】
Figure 0003613742
【0081】
本発明の能動除振台を有する連続塗布装置を用いると膜厚ムラ、乾燥ムラに起因する塗布故障がなく、塗布性の良好な塗布ドラムが得られた。
【0082】
(実施例7)
本実施例7では前記供給手段10の昇降部材14の駆動系と、搬送手段20とを第一の能動除振台上に、塗布手段40の駆動系を第二の能動除振台上に、分離排出手段60の駆動系を空気バネを介した第三の能動除振台上にそれぞれ設置した。また、円筒状基材と直接に接触する供給手段10と搬送手段20とが同一の能動除振台にあり、又円筒状基材に直接接触する分離排出手段60を別の能動除振台上に設置する事により振動を効率良く抑えることが出来た。得られた結果を表7に示す。
【0083】
【表7】
Figure 0003613742
【0084】
本発明の能動除振台を有する連続塗布装置を用いると膜厚ムラ、乾燥ムラに起因する塗布故障がなく、塗布性の良好な塗布ドラムが得られた。
【0085】
(実施例8)
実施例5の塗布手段の代わりに図2に示す逐次連続塗布装置で塗布を行った。前記供給手段10の昇降部材14の駆動系と、搬送手段20とを第一の能動除振台上に、分離排出手段60の駆動系を空気バネを介した第二の能動除振台上にそれぞれ設置して、塗布を行った。なお、能動除振台は実施例5と同じ機構である。
【0086】
鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体(円筒状基材)上に、下記の如く各々塗布液組成物▲1▼UCL−1、▲2▼CGL−2及び、▲3▼CTL−1を調製し、スライドホッパー型塗布手段7(▲1▼UCL−1用)、7−1(▲2▼CGL−2用)、7−2(▲3▼CTL−1用)にて、それぞれ乾燥膜厚1.0μm、2.2μm及び23μmになるように3層の逐次重層塗布を行い、感光体を作成した。なお、円筒状基材は23本積み重ね、最上部の塗布手段40Cに最近接する円筒状基材の最大振幅を測定した。結果を表8に示す。
【0087】
【表8】
Figure 0003613742
【0088】
▲1▼UCL−1塗布液組成物
共重合ナイロン樹脂(CM−8000 東レ社製) 30g
メタノール/n−ブタノール=10/1(Vol比) 10l
▲2▼CGL−2塗布液組成物
ペリレン顔料(CGM−2) 500g
ブチラール樹脂(エスレックBX−L 積水化学社製) 500g
メチルエチルケトン 24l
上記塗布液組成物(固形分については固形分重量比CGM−2:BX−L=2:1に固定)をサンドミルを用いて20時間分散したもの。
【0089】
▲3▼CTL−1塗布液組成物
CTM−1 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については、固形分重量比CTM−1:Z−200=0.89:1に固定した。
【0090】
本発明の能動除振台を有する逐次連続塗布装置を用いると、振動が少なく膜厚ムラ、乾燥ムラに起因する塗布故障がなく、塗布性の良好な塗布ドラムが得られた。得られた感光体No.7−1をコニカ社製U−BIX3035複写機で実写したところ画像ムラやカブリムラ等の塗布ムラに起因する画像不良はなく、画像欠陥(黒ポチ、白ポチ、ゴミ、スジ等)もなく良好であった。
【0091】
【発明の効果】
本発明による防振台を設けた連続塗布装置は、(1)駆動系の振動による塗布ムラや段ムラが発生しない、(2)画像ムラがなく良好な画像が得られる等の優れた効果が得られる。また、本発明による能動除振台を設けた連続塗布装置は、(1)振動による塗布ムラ、塗布故障がない、(2)振動による画像ムラ、画像欠陥がない、(3)外力により振動が加えられても影響が少ない、(4)ドラムの積み重ね本数が増やせる等の利点がある。
【図面の簡単な説明】
【図1】本発明による第一の実施の形態の連続塗布装置の全体構成を示す斜視図。
【図2】本発明による第二の実施の形態の逐次連続塗布装置の全体構成を示す斜視図。
【図3】本発明による第一の実施の形態の連続塗布装置を示す正面図。
【図4】供給手段の斜視図。
【図5】供給手段による円筒状基材の上昇過程を示す断面図。
【図6】搬送手段における把持手段の斜視図。
【図7】位置決め手段と塗布手段とを示す断面図。
【図8】塗布手段の斜視図。
【図9】塗布手段と塗布手段の上部に設けた乾燥フードの断面図。
【図10】乾燥器の断面図。
【図11】分離排出手段による分離過程を説明する状態図。
【図12】防振台または能動除振台を備えた連続塗布装置の正面図。
【図13】防振台または能動除振台を備えた逐次連続塗布装置の正面図。
【符号の説明】
1 円筒状基材(塗布ドラム)
10 供給手段
12 回転テーブル
13 駆動手段
14 昇降部材
15 押し上げ部材
20 搬送手段
21,22 把持手段
23 上下移動部材
24 ボールネジ
30 位置決め手段
40 塗布手段(コータ)
50 乾燥手段
60 分離排出手段
70 装置本体
81〜89 防振台または能動除振台
M1,M2,M3,M4 モータ[0001]
BACKGROUND OF THE INVENTION
In the present invention, the cylindrical shafts of a cylindrical base material having a continuous surface formed endlessly are stacked and stacked, and the coating liquid is uniformly and continuously applied onto the outer peripheral surface of the cylindrical base material while being vertically pushed up from the bottom. The present invention relates to a continuous coating apparatus and a continuous coating method.
[0002]
[Prior art]
Various methods such as spray coating, dip coating, blade coating, roll coating, etc. have been studied in relation to uniform coating with a thin film on the outer surface of a cylindrical substrate having a continuous surface formed in an endless manner. ing. In particular, for thin and uniform coating such as an electrophotographic photosensitive drum, studies are being made to develop coating means with excellent productivity. However, the conventional coating means and coating method for a cylindrical base material having a continuous surface formed endlessly have such disadvantages that a uniform coating film cannot be obtained and productivity is poor.
[0003]
In the spray coating method, since the solvent evaporates before the coating droplets ejected from the spray gun reach the outer peripheral surface of the cylindrical substrate having a continuous surface formed endlessly, the solid content concentration of the coating droplets When the viscosity of the coated droplet rises and the droplet reaches the surface, the droplet does not spread sufficiently on the surface, or the particles that have dried and solidified Therefore, it is difficult to obtain a coating with a smooth surface. In addition, it is very difficult to control the film thickness because the arrival rate of liquid droplets on the cylindrical substrate having the continuous surface is not 100%, and there is a loss of coating liquid or is partially non-uniform. . Furthermore, stringing may occur in a polymer solution or the like, so that there are limitations on the solvent and resin used.
[0004]
In the blade coating method and the roll coating method, for example, a blade or a roll is arranged in the length direction of the cylindrical base material, the cylindrical base material is rotated, coating is performed, and the cylindrical base material is rotated once. The roll is retracted. However, when the blade or roll is retracted, there is a disadvantage that a part of the coating film thickness is thicker than the other part due to the viscosity of the coating liquid, and a uniform coating film cannot be obtained.
[0005]
In the dip coating method, the smoothness of the coating liquid surface and the poor uniformity of the coating film as described above are improved.
[0006]
However, the control of the coating film thickness is governed by the coating liquid properties such as viscosity, surface tension, density, temperature, and coating speed, and adjustment of the coating liquid properties is very important. Also, the coating speed is low, and a liquid amount of a certain amount or more is necessary to fill the coating liquid tank. In the case of further layering, there are disadvantages such that the lower layer components are dissolved and the coating solution tank is easily contaminated.
[0007]
Therefore, as described in Japanese Patent Application Laid-Open No. 58-189061, a circular amount regulating type coating means (including a slide hopper type coating means) has been developed. This slide hopper type coating means surrounds a cylindrical base material having a continuous peripheral surface formed in an endless manner while continuously moving the cylindrical base material in the longitudinal direction thereof, and surrounds the outer peripheral surface of the cylindrical base material. A coating liquid is applied, and the coating means further includes an annular coating liquid reservoir chamber, a supply port for supplying the coating liquid from the outside to a part of the coating liquid reservoir chamber, and the coating liquid reservoir chamber A coating liquid distribution slit that opens inward, and the coating liquid that has flowed out of the slit is allowed to flow down on the coating liquid slide surface that is inclined obliquely downward. A bead is formed in a slight gap with the base material, and applied to the outer peripheral surface of the cylindrical base material as the cylindrical base material moves. By using this slide hopper type coating means, coating can be performed with a small amount of liquid, the coating liquid is not contaminated, and high productivity and easy film thickness control can be achieved.
[0008]
[Problems to be solved by the invention]
However, even if the slide hopper type coating means is used, there are coating defects such as coating liquid film breakage (often due to bead breakage) and film thickness fluctuations depending on the coating liquid, which is not satisfactory.
[0009]
Factors causing the above coating defects include: (1) coating unevenness due to vibration transmission from a drive system such as a supply means, a gripping conveyance means, and a separation / discharge means that directly contact the cylindrical base material; ▼ Film thickness variation due to vibration of the coating means for uniformly coating the cylindrical substrate with the coating solution.
[0010]
It is an object of the present invention to provide a coating means and a coating method for solving such problems and obtaining a good image free from image defects and image defects in a continuously coated cylindrical substrate. It is the purpose.
[0011]
That is, the object of the present invention is (1) good coatability, (2) no bead breakage, (3) no change in film thickness in the circumferential direction or longitudinal direction of the cylindrical substrate, A continuous coating means and a coating method are provided.
[0012]
[Means for Solving the Problems]
The object is to apply the coating liquid continuously on the outer peripheral surface of the cylindrical base material while stacking the cylindrical base materials in alignment with each other and pushing up vertically from bottom to top. Supply means for supplying a cylindrical base material, transport means for transporting the cylindrical base material upward, positioning means for aligning a central axis for accurately stacking the cylindrical base materials, and the coated cylindrical shape In a continuous coating apparatus provided with a drying means for drying or drying adjustment of a base material and a separation / discharge means for taking out the cylindrical base material after being applied, at least one drive system of each means is vibration-proof This is achieved by a continuous coating apparatus and method characterized by being installed on a table (claims 1 and 2).
[0013]
The above object is also achieved by a continuous coating apparatus and method in which at least the drive systems of the supply means, the transport means, and the separation / discharge means that are in direct contact with the cylindrical base material are installed on a vibration isolation table. This is achieved (claims 3 and 4).
[0014]
Further, the above object is achieved by a continuous coating apparatus and method in which at least one drive system of each means is installed on an active vibration isolation table (claims 10 and 11).
[0015]
Still further, the above object is characterized in that at least one corresponding drive system of the supply means, the transport means or the separation / discharge means in direct contact with the cylindrical base material is installed on the active vibration isolation table. This is achieved by a continuous coating apparatus and method (claims 12 and 13).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the overall configuration of a continuous coating apparatus according to the present invention. In the figure, 10 is a supply means for supplying the cylindrical base material 1 to a predetermined position vertically below the coating means and pushing it upward, and 20 is a gripper for gripping the outer peripheral surface of the supplied cylindrical base material 1 and aligning the cylinder axis. Conveying means for vertically pushing up and conveying the stack from below, 30 is a positioning means for aligning the cylindrical substrate 1 with the center of the annular application portion of the continuous coating apparatus, and 40 is an outer periphery of the cylindrical substrate 1 Coating means for continuously coating the coating liquid on the surface, 50 is a drying means for drying the coating liquid coated on the cylindrical substrate 1, and 60 is a plurality of stacked cylinders that have been dried and conveyed vertically Separating and discharging means for separating and discharging one by one from the substrate.
[0017]
The continuous coating apparatus of the present invention has a vertical coating configuration in which each of the above-described means is continuously arranged on the vertical center line ZZ, and fully automated production that does not require manual operation is achieved with high accuracy. Vertical coating means are (1) slide hopper type coater, (2) extrusion type coater, (3) ring coater, and (4) spray coater. (1) is excellent in terms of reliability of coating properties and the like.
[0018]
That is, the supply means 10 is a rotary table 12 having a plurality of placement guide members 11 for placing the cylindrical substrate 1, and a vertical line connected to the transport means 20 by rotating the rotary table 12. The driving means 13 for feeding, the lifting / lowering member 14 for pushing up the cylindrical base material 1 already gripped and transported upward by the transport means 20, and the cylindrical base material supply provided at the upper end of the lifting / lowering member 14 And a control means (not shown) for controlling the timing of rotation by the drive member 13 and the drive means 13 and the timing of the lift by the elevating member 14. The cylindrical substrate 1 is supplied onto the rotary table 12 by a robot handle.
[0019]
The conveying means 20 provided above the supply means 10 has two sets of gripping means 21 and 22 that can be pressed against and separated from the outer peripheral surface of the cylindrical base material 1 and can be moved vertically and vertically. It has the function of positioning, gripping and transporting the substrate 1 upward. 30 is an air-bearing positioning means, 40 is a vertical annular coating means such as a slide hopper type coater, 50 is a drying means comprising a drying controller 51, a ring suction dryer 53, and a ring heating dryer 52, and 60 is Separation and discharge means for gripping and separating the inner diameter portions from the uppermost portions of the plurality of stacked cylindrical base materials 1 that have been applied and dried and transported vertically upward, and take them out one by one and discharge them out of the apparatus main body. is there. The details of each of the devices 10, 20, 30, 40, 50, 60 will be described later.
[0020]
FIG. 2 is a perspective view showing a sequential continuous coating apparatus according to a second embodiment of the present invention. In this embodiment, on the vertical center line ZZ above the conveying means 20, a unit A comprising positioning means 30A, coating means 40A and drying means 50A, positioning means 30B, coating means 40B and drying means 50B. A plurality of sets of units B each including a unit B including the positioning unit 30C, the coating unit 40C, and the drying unit 50C are arranged in a vertical column. The separation and discharge means 60 is disposed on the uppermost stage. The coating liquid discharged from each of the coating means 40A, 40B, and 40C sequentially forms a multilayer coating layer on the cylindrical substrate 1, and is dried by each of the drying means 50A, 50B, and 50C. The dried uppermost cylindrical base material 1A is gripped by the separation and discharge means 60, separated from the lower cylindrical base material 1B, and placed on a pallet outside the apparatus. FIG. 3 is a front view showing the continuous coating apparatus according to the first embodiment of the present invention.
[0021]
The air bearing type positioning means 30, the annular coating means 40, and the ring-shaped drying means 50 are fixed at predetermined positions of the continuous coating apparatus main body 70 and are close to and non-contact with the outer peripheral surface of the passing cylindrical base material 1. . The supply means 10, the conveyance means 20, and the separation / discharge means 60 are all connected to each drive source, and can move while contacting the outer peripheral surface or inner peripheral surface of the cylindrical base material 1.
[0022]
Hereinafter, details of the supply unit 10, the conveyance unit 20, the positioning unit 30, the coating unit 40, the drying unit 50, and the separation / discharge unit 60 constituting the continuous coating apparatus will be described.
[0023]
FIG. 4 is a perspective view of the supply means 10. A plurality of cylindrical base materials 1 before the coating process are accommodated in the supply table 161 in advance. The movable conveying member 163 of the automatic conveying device 162 moves by holding one cylindrical substrate 1 from the cylindrical substrate 1 on the supply base 161 and moves on the rotating table 12. Place in. The mounting guide member 11 has a circular groove 11 </ b> A in which the cylindrical base material 1 can be freely fitted and accommodated, and a plurality (six locations in the drawing) are provided in the rotational circumferential direction of the rotary table 12. The rotary table 12 is intermittently driven by the motor M1 of the driving means 13 and the gear trains 131 and 132. When one cylindrical base material 1 is transported below the vertical center line ZZ and stopped, the elevating member 14 is raised via the pinion gear 141 and the rack gear 142 by starting the motor M2. A push-up member 15 is provided on the upper part of the elevating member 14 via a coil spring 143 serving as a buffer means, and the bottom of the placement guide member 11 is pushed up by the raising of the push-up member 15.
[0024]
FIG. 5 is a cross-sectional view showing the ascending process of the cylindrical substrate 1 by the supply means 10. FIG. 5A shows the rising start state of the cylindrical substrate 1. Due to the drive rotation of the motor M2, the push-up member 15 is raised, the bottom of the placement guide member 11 is pushed up in the direction of the arrow, and the cylindrical substrate 1 is raised in the ZZ direction. FIG. 5 (b) shows the rising end state of the placement guide member 11. The speed at the start of the raising of the elevating member 14 is increased by 1.5 to 5 times the coating speed, and the tip of the cylindrical base material 1 precedes the cylindrical base material 1 that is rising. Control is performed by the motor M2 so that the speed is reduced to 1.0 to 1.5 times the coating speed immediately before the end hits the end. Further, when the leading end portion of the cylindrical base material 1 that follows the rear end portion of the cylindrical base material 1 that has been raised first hits, even if the elevating member 14 continues to rise slightly, it is absorbed by the coil spring 143. As shown in FIG. 1, no impact is applied to the plurality of cylindrical base materials 1 that increase at the coating speed, and coating unevenness does not occur.
[0025]
FIG. 6 is a perspective view of the gripping means 21 and 22 of the transport means 20. First, the gripping part 214 of the transporting hand 211 of the gripping means 21 provided at the upper position and the gripping part 215 of the transporting hand 212 are rotatably supported by the shaft 213 and are pushed up first and transported upward. 1 and the cylindrical substrate 1 that has been pushed up in the same manner, the height is increased in the direction indicated by the arrow at the same speed as the application speed while gripping the gripper 214 and gripper 215 while adjusting the level difference. Further, the gripping part 224 of the transporting hand 221 of the gripping means 22 provided at the lower position and the gripping part 225 of the transporting hand 222 are also rotatably supported by the shaft 223, and the cylinder newly pushed up between the cylindrical base materials 1. A step is adjusted between the shaped base materials 1 by the grip portion 224 and the grip portion 225 so as to be gripped. Then, after the gripping is completed, the speed is increased in the direction of the arrow at the same speed as the coating speed that is the same speed as the gripping means 21. 216 and 226 are attached to the tip of the gripping part, and are pressure buffer members for protecting the anti-slip and the circumferential surface of the cylindrical base material 1.
[0026]
Next, the conveying means 20 having the gripping means 21 and 22 will be described with reference to FIG. The conveying means 20 is provided with a vertically moving member 23 fitted to a ball screw 24 provided on each of the gripping means 21 and 22 and provided so as to be rotatable in the vertical direction with respect to the conveying means 20. The up-and-down moving member 23 is connected to the gripping means 21 and 22. By rotating the ball screw 24 at a constant speed using a rotary drive device comprising motors M3 and M4 and a reduction gear train, the vertically moving member 23 applies a coating liquid to the plurality of cylindrical substrates 1 at a constant speed. The gripping means 21 and 22 are configured to move upward at a coating speed.
[0027]
FIG. 7 is a sectional view showing the positioning means 30 and the coating means 40, and FIG. 8 is a perspective view of the coating means 40.
[0028]
As shown in FIG. 7, a plurality of cylindrical base materials 1A and 1B (hereinafter referred to as cylindrical base materials 1) superposed vertically along a vertical center line ZZ are continuously provided in the direction indicated by the arrow. The coating solution (photosensitive solution) L is applied to the outer peripheral surface of the cylindrical base material 1 by a portion (hopper application surface) 41 directly related to the application of the slide hopper type application means 40. The cylindrical substrate 1 may be a hollow drum, for example, an aluminum drum, a plastic drum, or a seamless belt type substrate. On the hopper coating surface 41, a narrow coating liquid distribution slit (abbreviated as a slit) 43 having a coating liquid outlet 42 opened to the cylindrical substrate 1 side is formed in the horizontal direction. The slit 43 communicates with an annular coating liquid distribution chamber (coating liquid reservoir chamber) 44. In the annular coating liquid distribution chamber 44, the coating liquid L in the storage tank 2 is supplied via the supply pipe 4 by the pressure pump 3. Then, it is introduced from the supply port 48 and supplied. On the other hand, below the coating solution outlet 42 of the slit 43, the coating solution slide is formed so as to continuously incline and end with a dimension slightly larger than the outer diameter of the cylindrical base material 1. A surface (hereinafter referred to as a slide surface) 45 is formed. Further, a lip 46 extending downward from the end of the slide surface 45 is formed. In the application by the application means (slide hopper type application means) 40, when the coating liquid L is pushed out from the slit 43 and allowed to flow down along the slide surface 45 in the process of lifting the cylindrical substrate 1, the end of the slide surface 45 is reached. The coating solution that has reached is formed on the surface of the cylindrical substrate 1 after forming a bead between the end of the slide surface 45 and the outer peripheral surface of the cylindrical substrate 1. Since the end of the slide surface 45 and the cylindrical base material 1 are disposed with a certain gap, the cylindrical base material 1 is not applied to the cylindrical base material 1 even when it is formed in multiple layers without damaging the cylindrical base material 1. Can be applied without damaging the layer.
[0029]
On the other hand, an air venting means 47 for removing bubbles in the coating liquid distribution chamber 44 is provided in a part of the coating liquid distribution chamber 44 at a position farthest from the coating liquid supply section of the pressure feed pump 3. When the coating liquid L in the storage tank 2 is supplied to the coating liquid distribution chamber 44 and supplied from the coating liquid distribution slit 43 to the coating liquid outlet 42, the on-off valve is opened and the air venting means 47 opens the coating liquid distribution chamber 44. Exhaust the air.
[0030]
Positioning means 30 for positioning the circumferential direction of the cylindrical substrate 1 is fixed to the lower part of the coating means 40. A plurality of air supply ports 32 and a plurality of exhaust ports 33 are formed in the main body 31 of the positioning means 30 of the cylindrical base material 1. The plurality of air supply ports 32 are connected to an air supply pump (not shown), and fluid such as air is pumped. A discharge port 34 passes through one end of the air supply port 32 that faces the outer peripheral surface of the cylindrical base material 1. The discharge port 34 faces the outer peripheral surface of the cylindrical base material 1 with a predetermined gap. The gap is 30 μm to 2 mm. The discharge port 34 is a small-diameter nozzle having a diameter of 0.05 to 0.5 mm.
[0031]
The fluid pumped from the air supply pump is introduced into the main body 31 from the plurality of air supply ports 32 and discharged from the plurality of discharge ports 34, and is uniform with the outer peripheral surface of the cylindrical substrate 1A (1B). A fluid film layer is formed. The discharged fluid is discharged from the plurality of exhaust ports 33 to the outside of the apparatus.
[0032]
As the vertical type application means 40 connected to the positioning means 30, various devices such as a slide hopper type, an extrusion type, and a ring coater are used.
[0033]
Above the coating means 40, a drying means 50 comprising a drying hood 51 and a dryer 53 is provided.
[0034]
FIG. 9 is a cross-sectional view of the coating means 40 and a drying hood 51 provided on the top of the coating means 40. The dry hood 51 has an annular wall surface, and a plurality of openings 51A are formed in the wall surface. The cylindrical substrate 1 is raised in the direction of the arrow, and the coating liquid L is applied by the hopper coating surface (coating head) 41 of the coating means 40 to form the photosensitive layer 5. The photosensitive layer 5 formed on the cylindrical substrate 1 is gradually dried while passing through the drying hood 51. This drying is performed by releasing the solvent contained in the coating liquid L out of the wall surface through the multiple openings 51A. As described above, the coating layer L is coated on the cylindrical substrate 1 by the coating means 40, and the formed photosensitive layer 5 is surrounded by the drying hood 51 immediately after coating, and the solvent is formed only from the opening 51A. Therefore, the drying speed of the photosensitive layer 5 immediately after coating is substantially proportional to the opening area of the opening 51A.
[0035]
FIG. 10 shows a cross-sectional view of the dryer 53 of the present invention. In the dryer 53, a suction slit member 534 having a suction slit 531, a suction chamber 532, and a suction nozzle 533, a lower cylindrical member 535, and an upper cylindrical member 536 are concentrically coupled. Then, suction is performed from a plurality of suction nozzles 533, suction air that has been made uniform in the circumferential direction by a suction chamber 532 that is uniform in the circumferential direction, and suction slits 531 that is uniform in the circumferential direction flows, and further, a suction slit member 534, The turbulence of the air flow between the inner diameter surfaces of the upper and lower cylindrical members 536 and 535 and the outer peripheral surface of the coated cylindrical base material 1 is suppressed by the buffer space 537, and the drying process shown in 538 is performed. The air flow of uniform suction air is created. The coated film is dried by conveying the coated cylindrical substrate 1 in the Z direction indicated by the arrow to this drying zone.
[0036]
The process of separating the cylindrical substrate (substrate drum) 1 that has been coated and dried as described above will be described with reference to the process diagrams of the separation process of FIG.
[0037]
The separation / discharge unit 60 includes a vertical moving robot stage 61, a shaft body 62, an upper chuck (upper gripper) 63, a lower chuck (lower gripper) 64, and an air cylinder 65.
[0038]
The coated cylindrical base material 1 is stacked upward from below, moves upward, and reaches a separation position as shown in FIG. At this time, the vertical robot is activated to move the entire separation device that is coaxial with the cylindrical substrate 1 to be separated at the same speed. First, the lower gripper 64 holds the cylindrical substrate 1B adjacent to the separated cylindrical substrate 1A at the position shown in FIG. Next, the upper gripper 63 holds the cylindrical substrate 1A to be separated at the position shown in FIG. The shaft 62 connected to the air cylinder 65 causes the upper gripper 63 to move upward while holding the separated cylindrical base material 1A and to the position shown in FIG. 11 (d). At this time, the coating film straddling the cylindrical substrate 1B adjacent to the cylindrical substrate 1A to be separated is cut, and the cylindrical substrates 1A and 1B are separated as shown in FIG. In order to discharge the separated cylindrical substrate 1A, the lower gripper 64 is released as shown in FIG. 11 (e), and then the upper gripper 63 is separated into a cylindrical shape as shown in FIG. 11 (f). The vertical moving robot stage 61 rapidly rises while holding the base material 1A, and the separated cylindrical base material 1A is placed on a separation device arranged far above the position of the adjacent cylindrical base material 1B, and is gripped upward. The child 63 is released and the process ends. Then, for the next separation of the cylindrical substrate 1B, the vertical movement robot stage 61 is lowered and the shaft body 62 is lowered, and the position returns to the initial state shown in FIG.
[0039]
In FIG. 3 again, the driving means 13 including the rotary table 12, the gear trains 131 and 132, and the motor M <b> 1 is installed on a vibration isolation table 81 provided at the bottom of the apparatus main body 70. Further, the elevating member 14 for elevating the push-up member 15 is also installed on a vibration isolator 82 provided at the bottom of the apparatus main body 70. The driving means 13 and the elevating member 14 may be installed on a single vibration isolator. In addition, a conveying means 20 including the gripping means 21 and 22, the up and down moving member 23, and the ball screw 24 is installed on an anti-vibration table 83 at an intermediate portion of the apparatus main body 70. Further, on the upper part of the apparatus main body 70, a separation / discharge means 60 comprising a vertical moving robot stage 61, a shaft body 62, an upper chuck (upper gripper) 63, a lower chuck (lower gripper) 64, and an air cylinder 65. Is installed on the vibration isolation table 84. In this way, vibrations generated from the drive system are provided by installing the drive systems of the supply means 10, the transport means 20, and the separation / discharge means 60 that are in direct contact with the cylindrical base material 1 on the vibration isolation table. Can be very small. Further, the supply means 10 and the conveying means 20 that are in direct contact with the cylindrical base material 1 are installed on the same vibration isolation table, and the separation / discharge means 60 that is in direct contact with the cylindrical base material 1 is provided as another anti-vibration means. By installing it on the shaking table, vibration could be suppressed efficiently. Furthermore, the positioning means 30, the application means 40, and the drying means 50 that are not directly in contact with the cylindrical base material 1 but are fixed to the main body of the continuous coating apparatus are placed on the vibration isolation table, so that they are transmitted from the apparatus main body. You may make it isolate | separate the vibration which is.
[0040]
Anti-vibration materials that support the anti-vibration tables 81, 82, 83, 84 include metal springs, coil springs, anti-vibration rubbers, air springs, etc., and depending on the natural vibration of the anti-vibration system, anti-vibration rubbers, air springs, etc. Is good. The above-mentioned anti-vibration materials are described in “Vibration Engineering Handbook (published by Yokendo)”, “Precision Anti-Vibration Handbook”, and the like.
[0041]
Conventionally, the operation of each of the devices 10 to 60 is synchronized with the non-image portion so that vibration may occur in the non-image portion. However, this has been found to be insufficient. The amplitude of these original vibrations is accumulated, and when it is large, it reaches as much as 100 μm, resulting in a failure such as step uneven coating, and when it is severe, problems such as contact with the coater portion of the coating means 40 and the inner surface of the positioning means 30 occur. Therefore, it is necessary to reduce the influence from each vibration generation source. In particular, in the case of the three-layer sequential continuous coating shown in FIG. 2, the number of vibration sources is increased by about three times compared to the case of single-layer coating, and therefore the vibration applied to the coating becomes more serious.
[0042]
By installing the vibration isolator of the present invention, excellent effects such as (1) no coating unevenness and step unevenness due to vibration of the drive system, and (2) good image without image unevenness were obtained.
[0043]
In place of the vibration isolation tables 81 to 84, an active vibration isolation table is installed in each drive system of the supply means 10, the conveyance means 20, and the separation / discharge means 60 that are in direct contact with the cylindrical substrate 1, thereby driving. The vibration generated from the system can be made extremely small.
[0044]
As an example of the active vibration isolation table, the following active control vibration isolation mechanism is: (1) the vibration suppression table is supported by an air spring provided with a pressure vessel; (2) a level sensor and a vibration sensor on the vibration suppression table main body; (3) A level displacement signal detected by the level sensor, and an inverted signal obtained by inverting the vibration detection signal of the vibration control base body received from the vibration source of the floor or equipment detected by the vibration sensor by 180 ° Is added to the level fluctuation adder, and addition / subtraction is performed. (4) In accordance with the addition / subtraction fluctuation signal from the level fluctuation adder, a drive signal is output from the drive circuit to control the opening / closing degree of the control valve. (5) (2) By controlling the air pressure in the pressure vessel of the air spring with this control valve, precise level control and vibration control can be performed (Japanese Patent Laid-Open No. 1-210634, active control precision vibration control table).
[0045]
In addition, the following method may be used.
[0046]
1. Vibration isolation table with continuous application equipment
2. Elastic support means for elastically supporting the vibration isolation table
3. Sensor provided on the vibration isolation table. This sensor may serve both as a level sensor and a vibration sensor, or may be provided separately.
4). Actuator that drives the vibration isolation table
5. It comprises position control compensation and / or vibration compensation means for compensating the output from the sensor and feeding back to the actuator. An elastic support means such as an air spring may be used as the actuator.
[0047]
Further, the conveying means 20 and the supply means 10 that are in direct contact with the cylindrical base material 1 are in the same active vibration isolation table, and the separation / discharge means 60 that is in direct contact with the cylindrical base material 1 is another active vibration isolation table. By installing it on top, vibration could be suppressed efficiently.
[0048]
The amplitude measurement in the XY direction can be detected in a non-contact manner using, for example, a laser displacement meter or an eddy current displacement sensor. The amplitude measurement in the Z direction can be obtained, for example, by reading the amplitude using an accelerometer.
[0049]
【Example】
Hereinafter, description will be made along the embodiment.
[0050]
Example 1
As the cylindrical substrate (conductive support) 1, a mirror-finished aluminum drum support having a diameter of 40 mm and a height of 271 mm was used. Further, as the coating solution, the following (1) CGL-2 coating solution composition was used and coated so as to have a dry film thickness of 2.0 μm.
[0051]
(1) CGL-2 coating solution composition
Perylene pigment (CGM-2) 500g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 500g
Methyl ethyl ketone 24 l
A composition obtained by dispersing the above coating liquid composition (solid content: solid content weight ratio CGM-2: BX-L = 1: 1) for 20 hours using a sand mill.
[0052]
[Chemical 1]
Figure 0003613742
[0053]
FIG. 12A shows a front view of the continuous coating apparatus.
[0054]
In the first embodiment, as shown in the drawing, the drive system of the lifting / lowering means 14 of the supply means 10 is installed on the vibration isolation table 82, and the conveyance system including the gripping means 21 and 22, the vertically moving member 23, the ball screw 24, and the drive system. The means 20 was installed on the vibration isolator 83 through a vibration isolating rubber. Coating was performed by the continuous coating apparatus configured as described above, and the obtained coated cylindrical base material (coating drum) was visually observed. The maximum amplitude in the horizontal and vertical directions was measured at the closest position of the coating means 40. In addition, 30 cylindrical base materials 1 were stacked. Table 1 shows the results.
[0055]
[Table 1]
Figure 0003613742
[0056]
By the continuous coating apparatus having the vibration isolating stands 82 and 83 of the present invention, a coating drum having good coating properties without color unevenness due to film thickness unevenness was obtained.
[0057]
(Example 2)
In the second embodiment, as shown in FIG. 12 (b), a separation / discharge unit 60 including a vertical moving robot stage 61, a shaft body 62, an upper gripper 63, a lower gripper 64, an air cylinder 65, and a drive unit. The same as the first embodiment except that the anti-vibration tables 82 and 83 are provided on the anti-vibration table 84 through the anti-vibration rubber. The obtained results are shown in Table 2.
[0058]
[Table 2]
Figure 0003613742
[0059]
With the continuous coating apparatus having the vibration isolator 82, 83, 84 of the present invention, a coating drum having good coating properties without color unevenness due to film thickness unevenness was obtained.
[0060]
(Example 3)
In the third embodiment, as shown in FIG. 12C, the drive system for intermittently rotating the rotary table 12 of the supply means 20 is on the vibration isolation table 81, and the positioning means 30 comprising an air bearing is on the vibration isolation table 85. The second embodiment is the same as the second embodiment except that the coating means 40 is provided on the vibration isolation table 85 and the drying means 50 is provided on the vibration isolation table 87, respectively. The obtained results are shown in Table 3.
[0061]
[Table 3]
Figure 0003613742
[0062]
With the continuous coating apparatus having the vibration isolation tables 81, 82, 83, 84, 85, 86, and 87 of the present invention, a coating drum having good coating properties without color unevenness due to film thickness unevenness was obtained.
[0063]
(Example 4)
In place of the continuous coating apparatus of Example 1, coating is performed by the sequential continuous coating apparatus of FIG. As shown in FIG. 13, the driving means of the supply means 10 elevating member 14 and the gripping means 21 and 22 of the supply means 20 and the driving device for conveying the upper and lower sides thereof are installed on the same anti-vibration table 88 through anti-vibration rubber, The drive system of the separation and discharge means 60 was installed on another vibration isolating stand 89 via a vibration isolating rubber. Coating was performed by the sequential continuous coating apparatus configured as described above. That is, on the aluminum drum support (cylindrical base material) 1 having a diameter of 80 mm, a height of 355 mm, and 283 g subjected to mirror finishing, the coating liquid compositions (1) UCL-1 (2) CGL-2 and (3) CTL-1 was prepared and slide hopper type coating means 7 (1) for UCL-1), 7-1 (2) for CGL-2, 7-2 (3) for CTL-1 ), Three successive layers were applied so that the dry film thicknesses were 1.0 μm, 2.2 μm, and 23 μm, respectively, and a photoreceptor was prepared and visually observed. In addition, 25 cylindrical base materials 1 were piled up, and the maximum amplitude was measured with the closest position drum with the application | coating means (coater) 40C of the uppermost part. Table 4 shows the obtained results.
[0064]
[Table 4]
Figure 0003613742
[0065]
(1) UCL-1 coating composition
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 30 g
Methanol / n-butanol = 10/1 (Vol ratio) 10 l
(2) CGL-2 coating composition
Perylene pigment (CGM-2) 500g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 500g
Methyl ethyl ketone 24 l
A composition obtained by dispersing the above coating composition (solid content: solid content weight ratio CGM-2: BX-L = 2: 1) using a sand mill for 20 hours.
[0066]
(3) CTL-1 coating solution composition
CTM-1 5kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 was fixed.
[0067]
[Chemical 2]
Figure 0003613742
[0068]
When a sequential continuous coating apparatus having the vibration isolators 88 and 89 according to the present invention was used, a coating drum having good coating properties with less vibration and no film thickness unevenness or contact scratches was obtained. The obtained photoreceptor No. When 4-1 was photographed with a U-BIX3035 copier manufactured by Konica, there was no image defect due to coating unevenness such as image unevenness or fogging unevenness, and there were no image defects (black spots, white spots, dust, streaks, etc.) Met.
[0069]
(Example 5)
Examples 5 to 8 are continuous coating apparatuses provided with an active vibration isolation table instead of the vibration isolation tables 81 to 87.
[0070]
Hereinafter, the active vibration isolator will be described. In order to achieve vibration transmitted to the continuous coating apparatus from as low a frequency as possible, it may be installed on a vibration isolator having a support mechanism having a small spring constant and viscosity. Usually there is a vibration source that generates vibration in the application means, and there is a possibility that the overall vibration will increase due to the spring constant of the support mechanism and the low frequency resonance created by the mass of the application means and the vibration isolator. And the viscosity cannot be reduced. For this reason, the vibration isolator is selected based on the balance between the insulation of the vibration transmitted from the floor and the vibration generated from the apparatus, but there is a limit and the active vibration isolator has been put into practical use in recent years. This is an active vibration isolator (active vibration isolator) that detects vibration of a vibration isolator with a sensor and controls vibration with an actuator or the like from a feedback mechanism.
[0071]
An active vibration isolator used in the present invention detects vibration of a vibration isolation table with a sensor and adjusts air pressure in an air spring via a control valve, as described in, for example, Japanese Patent Application Laid-Open No. 1-210634. A pneumatic active vibration isolation mechanism that performs vibration control using a vibration isolation device may be used, and elastic support means that elastically supports the vibration isolation table, an actuator that drives the vibration isolation table, a vibration sensor that detects vibration of the vibration isolation table, Active vibration isolation means having vibration control compensation means for compensating the output of the vibration sensor and feeding back to the actuator, a displacement sensor for detecting the displacement of the vibration isolation table, and a position control compensation means for compensating the output of the displacement sensor and feeding back to the actuator An apparatus may be used.
[0072]
Since the vertical continuous coating apparatus used in the present invention performs coating while vertically transporting the cylindrical base material 1 in the upward direction, the influence on the generation and transmission of vibration is essentially large. Have fundamental weaknesses.
[0073]
The present invention has been made in view of this, and by installing an active vibration isolator, the influence of vibration on the coating film can be made extremely small, and the influence of unexpected disturbance can also be eliminated. It is. In addition, the number of stacked cylindrical substrates can be increased, which is advantageous in terms of cost, and the effective length of the drying process after the application means can be increased by about twice or more than the conventional one. An advantage was also found that it was possible to eliminate the occurrence of a tangled pattern on the film.
[0074]
As the conductive support (cylindrical base material), a mirror-finished aluminum drum support having a diameter of 40 mm and a height of 271 mm was used. Further, as the coating solution, the following (1) CTL-1 coating solution composition was used and coated so as to have a dry film thickness of 24 μm.
[0075]
(1) CTL-1 coating composition
CTM-1 5kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 was fixed.
[0076]
In the fifth embodiment, the holding means 21 and 22, the vertically moving member 23, the ball screw 24, and the supplying means 20 including the driving means are installed on the active vibration isolation table via an air spring. A level sensor and a vibration sensor are provided on the active vibration isolation table. Position control compensation and vibration compensation for compensating the output from these sensors and feeding back to the actuator are made, and a mechanism for driving the active vibration isolation table by the actuator is provided. Application was performed using this active vibration isolation table mechanism. While visually observing the obtained coating drum, the maximum amplitude of the cylindrical substrate 1 at the closest position of the coating means 40 of FIG. 1 was measured. In addition, 31 cylindrical substrates 1 were stacked. Table 5 shows the results.
[0077]
[Table 5]
Figure 0003613742
[0078]
When the coating means having the active vibration isolation table of the present invention was used, there was no coating failure due to film thickness unevenness and drying unevenness, and a coating drum with good coating properties was obtained.
[0079]
(Example 6)
In the sixth embodiment, as shown in FIG. 12 (b), the drive system of the raising / lowering means 14 of the supply means 10 is placed on the active vibration isolation table (82), the gripping means 21, 22, the vertically moving member 23, the ball screw 24, The conveying means 20 composed of a drive system was installed on the active vibration isolation table (83), and the drive system of the separation / discharge means 60 was installed on the active vibration isolation table (84). Coating was performed using an active vibration isolation device having the same mechanism as that of Example 5 as each active vibration isolation table (82, 83, 84). The obtained coating drum was visually observed. The vibration amplitude measurement is the same as in Example 5. In addition, 30 cylindrical base materials 1 were stacked. Table 6 shows the results.
[0080]
[Table 6]
Figure 0003613742
[0081]
When the continuous coating apparatus having the active vibration isolation table of the present invention was used, there was no coating failure due to film thickness unevenness and drying unevenness, and a coating drum having good coating properties was obtained.
[0082]
(Example 7)
In the seventh embodiment, the drive system of the elevating member 14 of the supply means 10 and the transport means 20 are on the first active vibration isolation table, and the drive system of the application means 40 is on the second active vibration isolation table. The drive system of the separation / discharge means 60 was installed on a third active vibration isolation table via an air spring. Further, the supply means 10 and the conveying means 20 that are in direct contact with the cylindrical base material are in the same active vibration isolation table, and the separation / discharge means 60 that is in direct contact with the cylindrical base material is placed on another active vibration isolation table. It was possible to suppress vibration efficiently by installing it in The results obtained are shown in Table 7.
[0083]
[Table 7]
Figure 0003613742
[0084]
When the continuous coating apparatus having the active vibration isolation table of the present invention was used, there was no coating failure due to film thickness unevenness and drying unevenness, and a coating drum having good coating properties was obtained.
[0085]
(Example 8)
Instead of the coating means of Example 5, coating was performed using a sequential continuous coating apparatus shown in FIG. The drive system of the elevating member 14 of the supply means 10 and the transport means 20 are on the first active vibration isolation table, and the drive system of the separation and discharge means 60 is on the second active vibration isolation table via an air spring. Each was installed and applied. The active vibration isolation table has the same mechanism as that of the fifth embodiment.
[0086]
On a mirror-finished aluminum drum support (cylindrical base material) having a diameter of 80 mm, a height of 355 mm, and 283 g, the coating liquid compositions {circle around (1)} UCL-1, {circle around (2)} CGL-2, and (3) CTL-1 was prepared and slide hopper type coating means 7 (1) for UCL-1), 7-1 (2) for CGL-2, 7-2 (3) for CTL-1 ), Three layers were successively applied so as to have dry film thicknesses of 1.0 μm, 2.2 μm and 23 μm, respectively, to prepare a photoconductor. 23 cylindrical substrates were stacked, and the maximum amplitude of the cylindrical substrate closest to the uppermost application means 40C was measured. The results are shown in Table 8.
[0087]
[Table 8]
Figure 0003613742
[0088]
(1) UCL-1 coating composition
Copolymer nylon resin (CM-8000, manufactured by Toray Industries, Inc.) 30 g
Methanol / n-butanol = 10/1 (Vol ratio) 10 l
(2) CGL-2 coating composition
Perylene pigment (CGM-2) 500g
Butyral resin (S-REC BX-L manufactured by Sekisui Chemical Co., Ltd.) 500g
Methyl ethyl ketone 24 l
A composition obtained by dispersing the above coating composition (solid content: solid content weight ratio CGM-2: BX-L = 2: 1) using a sand mill for 20 hours.
[0089]
(3) CTL-1 coating composition
CTM-1 5kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 was fixed.
[0090]
When the sequential continuous coating apparatus having the active vibration isolation table of the present invention was used, a coating drum having a good coating property with less vibrations and no coating failure due to uneven film thickness and uneven drying was obtained. The obtained photoreceptor No. When 7-1 was photographed with a U-BIX3035 copier manufactured by Konica, there was no image defect due to coating unevenness such as image unevenness or fogging unevenness, and there were no image defects (black spots, white spots, dust, streaks, etc.). there were.
[0091]
【The invention's effect】
The continuous coating apparatus provided with the anti-vibration table according to the present invention has excellent effects such as (1) no coating unevenness and step unevenness due to vibration of the drive system, and (2) a good image without image unevenness. can get. Moreover, the continuous coating apparatus provided with the active vibration isolation table according to the present invention has (1) no coating unevenness and coating failure due to vibration, (2) no image unevenness and image defect due to vibration, and (3) vibration due to external force. Even if added, there is an effect that there is little influence, and (4) the number of stacked drums can be increased.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an overall configuration of a continuous coating apparatus according to a first embodiment of the present invention.
FIG. 2 is a perspective view showing an overall configuration of a sequential continuous coating apparatus according to a second embodiment of the present invention.
FIG. 3 is a front view showing the continuous coating apparatus according to the first embodiment of the present invention.
FIG. 4 is a perspective view of a supply unit.
FIG. 5 is a cross-sectional view showing a rising process of a cylindrical base material by a supply means.
FIG. 6 is a perspective view of gripping means in the transport means.
FIG. 7 is a cross-sectional view showing positioning means and application means.
FIG. 8 is a perspective view of an application unit.
FIG. 9 is a cross-sectional view of a coating means and a drying hood provided on top of the coating means.
FIG. 10 is a cross-sectional view of a dryer.
FIG. 11 is a state diagram for explaining a separation process by a separation discharge means.
FIG. 12 is a front view of a continuous coating apparatus provided with a vibration isolation table or an active vibration isolation table.
FIG. 13 is a front view of a sequential continuous coating apparatus provided with a vibration isolation table or an active vibration isolation table.
[Explanation of symbols]
1 Cylindrical base material (coating drum)
10 Supply means
12 Rotary table
13 Drive means
14 Lifting member
15 Push-up member
20 Transport means
21, 22 Gripping means
23 Vertical movement member
24 Ball screw
30 Positioning means
40 Application means (coater)
50 Drying means
60 Separation and discharge means
70 Device body
81-89 Vibration isolation table or active vibration isolation table
M1, M2, M3, M4 motor

Claims (18)

円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、前記各手段の少なくとも1つの駆動系が防振台上に設置されていることを特徴とする連続塗布装置。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a continuous coating apparatus comprising a drying means for adjusting drying and a separation / discharge means for taking out the coated cylindrical base material, at least one drive system of each means is installed on a vibration isolation table A continuous coating apparatus characterized by being made. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置により塗布する方法において、前記各手段の少なくとも1つの駆動系が防振台上に設置されている連続塗布装置により塗布することを特徴とする塗布方法。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a method of coating by a continuous coating apparatus including a drying unit for adjusting drying and a separation / discharge unit for taking out the coated cylindrical base material, at least one drive system of each unit is vibration-proof Coating is performed by a continuous coating apparatus installed on a table. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、少なくとも前記円筒状基材と直接に接触する供給手段、搬送手段及び分離排出手段の各駆動系が防振台上に設置されていることを特徴とする連続塗布装置。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a continuous coating apparatus comprising a drying means for adjusting drying and a separation / discharge means for taking out the coated cylindrical base material, at least a supply means that directly contacts the cylindrical base material, a transport means And a continuous application apparatus characterized in that each drive system of the separation and discharge means is installed on a vibration isolation table. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材外の周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置により塗布する方法において、少なくとも前記円筒状基材と直接に接触する供給手段、搬送手段及び分離排出手段の各駆動系が防振台上に設置されている連続塗布装置により塗布することを特徴とする連続塗布方法。The cylindrical substrate is stacked with the cylinder axis aligned, and the coating means continuously applies the coating liquid onto the peripheral surface outside the cylindrical substrate while pushing up vertically from bottom to top, and the cylindrical substrate on the coating means Supply means for supplying the cylindrical base material, transport means for transporting the cylindrical base material upward, positioning means for aligning a central axis for accurately stacking the cylindrical base materials, and the coated cylindrical base material In a method of coating by a continuous coating apparatus having a drying means for drying or drying adjustment and a separation and discharge means for taking out the cylindrical substrate after the coating, at least direct contact with the cylindrical substrate A continuous coating method, wherein each of the drive systems of the supply means, the transport means, and the separation / discharge means is applied by a continuous coating apparatus installed on a vibration isolation table. 前記塗布手段が垂直型塗布手段であることを特徴とする請求項1又は3に記載の連続塗布装置。The continuous coating apparatus according to claim 1, wherein the coating unit is a vertical coating unit. 前記垂直型塗布手段がスライドホッパー型塗布手段であることを特徴とする請求項1記載の連続塗布装置。2. The continuous coating apparatus according to claim 1, wherein the vertical coating unit is a slide hopper type coating unit. 前記手段の駆動系の内少なくとも2つ以上について各々別々の防振台上にあることを特徴とする請求項1又は3に記載の連続塗布装置。The continuous coating apparatus according to claim 1, wherein at least two of the drive systems of the means are on separate vibration isolation tables. 前記手段の駆動系の内少なくとも前記円筒状基材と直接に接触する供給手段と搬送手段の各駆動系が同一の防振台上にあり、分離排出手段の駆動系が別の防振台上に設置されていることを特徴とする請求項3記載の連続塗布装置。Among the drive systems of the means, at least the drive means of the supply means and the transport means that are in direct contact with the cylindrical base material are on the same vibration isolation table, and the drive system of the separation and discharge means is on another vibration isolation table The continuous coating apparatus according to claim 3, wherein the continuous coating apparatus is installed. 複数の塗布手段を有する塗布手段により前記円筒状基材外周面上に複数の塗布層を逐次形成させることを特徴とする請求項1、3、5、6、7、8の何れか1項に記載の連続塗布装置。9. The method according to claim 1, wherein a plurality of coating layers are sequentially formed on the outer circumferential surface of the cylindrical base material by a coating unit having a plurality of coating units. The continuous coating apparatus as described. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、前記各手段の少なくとも1つの駆動系が能動除振台上に設置されていることを特徴とする連続塗布装置。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a continuous coating apparatus including a drying unit for adjusting drying and a separation / discharge unit for taking out the coated cylindrical base material, at least one drive system of each unit is placed on an active vibration isolation table. A continuous coating apparatus characterized by being installed. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置により塗布する方法において、前記各手段の少なくとも1つの駆動系が能動除振台上に設置されている連続塗布装置により塗布することを特徴とする連続塗布方法。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a method of coating by a continuous coating apparatus having a drying means for adjusting the drying and a separation / discharge means for taking out the coated cylindrical substrate, at least one drive system of each means is actively removed. The continuous coating method characterized by applying with the continuous coating apparatus installed on the shaking table. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置において、前記円筒状基材と直接に接触する供給手段、搬送手段又は分離排出手段の内少なくとも1つの対応する駆動系が能動除振台上に設置されていることを特徴とする連続塗布装置。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a continuous coating apparatus comprising a drying means for adjusting drying and a separation / discharge means for taking out the coated cylindrical base material, a supply means, a transport means or a direct contact with the cylindrical base material A continuous coating apparatus characterized in that at least one corresponding drive system of the separation and discharge means is installed on an active vibration isolation table. 円筒状基材の筒軸を合わせて積み重ね、下から上へ垂直に押し上げながら前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、前記塗布手段に円筒状基材を供給する為の供給手段、前記円筒状基材を上方に搬送する為の搬送手段、前記円筒状基材を正確に積み重ねるために中心軸を合わせる位置決め手段、前記塗布された円筒状基材を乾燥又は乾燥調整する為の乾燥手段及び前記塗布された後の円筒状基材を取り出す為の分離排出手段を具備する連続塗布装置により塗布する方法において、前記円筒状基材と直接に接触する供給手段、搬送手段又は分離排出手段の内少なくとも1つの対応する駆動系が能動除振台上に設置されている塗布手段により塗布することを特徴とする連続塗布方法。The cylindrical base material is stacked with the cylinder axis aligned, and is applied vertically to apply the coating liquid onto the outer peripheral surface of the cylindrical base material while pushing it vertically upward, and the cylindrical base material is applied to the application means. Supply means for supplying, conveying means for conveying the cylindrical base material upward, positioning means for aligning a central axis to accurately stack the cylindrical base materials, and drying the coated cylindrical base material Alternatively, in a method of coating by a continuous coating apparatus comprising a drying means for adjusting the drying and a separating and discharging means for taking out the cylindrical substrate after the coating, a supply means that is in direct contact with the cylindrical substrate. A continuous coating method characterized in that at least one corresponding drive system of the conveying means or the separation / discharge means is coated by a coating means installed on an active vibration isolation table. 前記塗布手段が垂直型塗布手段であることを特徴とする請求項10又は12に記載の連続塗布装置。The continuous coating apparatus according to claim 10 or 12, wherein the coating unit is a vertical coating unit. 前記垂直型塗布手段がスライドホッパー型塗布手段であることを特徴とする請求項14記載の連続塗布装置。The continuous coating apparatus according to claim 14, wherein the vertical coating unit is a slide hopper type coating unit. 前記各手段の駆動系の内少なくとも2つ以上について各々別々の能動除振台上にあることを特徴とする請求項10記載の連続塗布装置。The continuous coating apparatus according to claim 10, wherein at least two or more of the drive systems of each means are on separate active vibration isolation tables. 前記各手段の駆動系の内少なくとも前記円筒状基材と直接に接触する供給手段と搬送手段の各駆動系が同一の能動除振台上にあり、分離排出手段の駆動系が別の能動除振台上に設置されていることを特徴とする請求項12記載の連続塗布装置。Of the drive systems of each means, at least the drive systems of the supply means and the transport means that are in direct contact with the cylindrical base material are on the same active vibration isolation table, and the drive system of the separation / discharge means is a separate active drive. The continuous coating apparatus according to claim 12, wherein the continuous coating apparatus is installed on a shaking table. 複数の塗布手段を有する塗布手段により前記円筒状基材の外周面上に複数の塗布層を逐次形成させることを特徴とする請求項10、12、14、15、16、17の何れか1項に記載の連続塗布装置。18. The method according to claim 10, wherein a plurality of coating layers are sequentially formed on an outer peripheral surface of the cylindrical base material by a coating unit having a plurality of coating units. A continuous coating apparatus according to 1.
JP01671996A 1996-02-01 1996-02-01 Continuous coating apparatus and continuous coating method Expired - Fee Related JP3613742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01671996A JP3613742B2 (en) 1996-02-01 1996-02-01 Continuous coating apparatus and continuous coating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01671996A JP3613742B2 (en) 1996-02-01 1996-02-01 Continuous coating apparatus and continuous coating method

Publications (2)

Publication Number Publication Date
JPH09206660A JPH09206660A (en) 1997-08-12
JP3613742B2 true JP3613742B2 (en) 2005-01-26

Family

ID=11924083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01671996A Expired - Fee Related JP3613742B2 (en) 1996-02-01 1996-02-01 Continuous coating apparatus and continuous coating method

Country Status (1)

Country Link
JP (1) JP3613742B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4568419B2 (en) * 2000-11-02 2010-10-27 株式会社ブリヂストン OA roller manufacturing method
JP4764615B2 (en) 2004-05-07 2011-09-07 富士フイルム株式会社 Coating apparatus, coating method, and manufacturing method of web with coating film

Also Published As

Publication number Publication date
JPH09206660A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP2006043702A (en) Method and apparatus of positioning cylindrical base material
EP2052787A2 (en) Coating method and coating apparatus
JP3613742B2 (en) Continuous coating apparatus and continuous coating method
JP3661256B2 (en) Continuous coating apparatus and continuous coating method
US5707449A (en) Ring-shaped coating apparatus
JP2008253867A (en) Coating apparatus
JP2003190870A (en) Method for coating cylindrical body surface and fixation roller formed by the method
EP0347469A1 (en) Method of rotating and transferring hollow cylindrical bodies
JP2009268998A (en) Coating device
JP3707099B2 (en) Continuous coating apparatus and continuous coating method
JP3610533B2 (en) Apparatus and method for separating and holding a cylindrical substrate
JP3653805B2 (en) Cylindrical substrate coating method and apparatus
JP3709634B2 (en) Continuous coating apparatus and continuous coating method
JPH0924326A (en) Method for coating cylindrical base material and device therefor
JP5372824B2 (en) Substrate processing apparatus and substrate processing method
JP3666060B2 (en) Continuous coating and drying apparatus and continuous coating and drying method
JP3694925B2 (en) Cylindrical base material supply apparatus and cylindrical base material supply method
JPH0321371A (en) Coating apparatus and method
JPH10272401A (en) Coating method and coating device
JP4614384B2 (en) Coating method and belt member manufacturing method
JPH1133473A (en) Continuous coating method and continuos coating applicator
JPH10277480A (en) Cylindrical substrate and method of continuously coating cylindrical substrate
JPH10263450A (en) Method and device for continuous coating
JP3635378B2 (en) Cylindrical substrate positioning method and apparatus
JPH0957178A (en) Apparatus for separating-discharging continuously coated cylindrical base material and method therefor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees