JP3653805B2 - Cylindrical substrate coating method and apparatus - Google Patents

Cylindrical substrate coating method and apparatus Download PDF

Info

Publication number
JP3653805B2
JP3653805B2 JP17351695A JP17351695A JP3653805B2 JP 3653805 B2 JP3653805 B2 JP 3653805B2 JP 17351695 A JP17351695 A JP 17351695A JP 17351695 A JP17351695 A JP 17351695A JP 3653805 B2 JP3653805 B2 JP 3653805B2
Authority
JP
Japan
Prior art keywords
base material
cylindrical base
coating
cylindrical
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17351695A
Other languages
Japanese (ja)
Other versions
JPH0924327A (en
Inventor
晃 大平
淳二 氏原
浩彦 関
真生 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP17351695A priority Critical patent/JP3653805B2/en
Publication of JPH0924327A publication Critical patent/JPH0924327A/en
Application granted granted Critical
Publication of JP3653805B2 publication Critical patent/JP3653805B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、垂直方向に縦列して搬送される複数の円筒状基材(ドラム、感光体ドラムともいう)に連続して塗布液を塗布して乾燥した後、順に円筒状基材を分離する円筒状基材の塗布方法および装置に関し、特に、電子写真用の円筒状基材の感光体ドラムの塗布して乾燥した後の分離に関する。
【0002】
【従来の技術】
円筒状基材の外面上へ薄膜で均一に塗布する方法についてはスプレー塗布法、浸漬塗布法、ブレード塗布法、ロール塗布法等の種々の方法がある。特に電子写真感光体ドラムのような薄膜で均一な塗布については生産性の優れた塗布装置が検討されている。しかしながら、従来の円筒状基材への塗布方法及び塗布装置においては、均一な塗布膜が得られなかったり、生産性が悪い等の問題があった。
【0003】
スプレー塗布法では、スプレーガンより噴出した塗布液滴が該エンドレスに形成された連続面を有する円筒状基材の外周面上に到達するまでに溶媒が蒸発するために塗布液滴の固形分濃度が上昇してしまい、それにともない塗布液滴の粘度上昇が起って液滴が面に到達したとき、液滴が面上を充分に広がらないために、或いは乾燥して固形化してしまった粒子が表面に付着するために、塗布表面の平滑性の良いものが得られない。また、円筒状基材への液滴の到達率が100%でなく塗布液のロスがあったり、部分的にも不均一であるため、膜厚制御が非常に困難で、更に高分子溶液等では糸引きを起こす事があるため、使用する溶媒及び樹脂に制限がある。
【0004】
ブレード塗布法、ロール塗布法では、例えば円筒状基材の長さ方向にブレード若しくはロールを配置し、円筒状基材を回転させて塗布を行い円筒状基材を1回転させた後に、ブレード若しくはロールを後退させるものである。しかしながらブレード若しくはロールを後退させる際、塗布液の粘性により、塗布膜厚の一部に他の部分より厚い部分が生じ、均一な塗膜が得られない欠点がある。
【0005】
浸漬塗布法は、上記におけるような塗布液表面の平滑性、塗布膜の均一性の悪い点は改良される。しかし、塗布膜厚の制御が塗布液物性、例えば粘度、表面張力、密度、温度等と塗布速度に支配され、塗布液物性の調整が非常に重要となる。また塗布速度も低いし、塗布液槽を満たすためにはある一定量以上の液量が必要である。さらに重層する場合、下層成分が溶け出し塗布液槽が汚染されやすい等の欠点がある。
【0006】
そこで、特開昭58−189061号公報に記載の如く円形量規制型塗布装置(この中にはスライドホッパー型塗布装置も含まれる)が開発された。このスライドホッパー型塗布装置はエンドレスに形成された連続周面を有する円筒状基材を連続的にその長手方向に移動させながら、その周囲を環状に取り囲み、円筒状基材の外周面に対して塗布液を塗布するものであって、この塗布装置は環状の塗布液溜まり室と、この塗布液溜まり室内の一部に対して外部から塗布液を供給する供給口と、前記塗布液溜まり室の内方に開口する塗布液分配スリットとを有し、このスリットから流出した塗布液を斜め下方に傾斜する塗布液スライド面上に流下させ、塗布液スライド面の下端のホッパー塗布面と円筒状基材との僅かな間隙部分にビードを形成し、円筒状基材の移動に伴ってその外周面に塗布するものである。このスライドホッパー型塗布装置を用いることにより、少ない液量で塗布でき、塗布液が汚染されず、生産性の高い、膜厚制御の容易な塗布が可能となった。
【0007】
上記装置のように円筒状基材を連続して塗布し、乾燥する場合、円筒状基材がその側端面をつき合わせて載み重ねられている状態で、その表面に塗布を行い乾燥すると、重ねられた円筒状基材の側端部は、塗布膜が連結された状態となっている。これを上方に引き離し分離をしている。その後移動して円筒状基材は下端部を載置部材等に置いていた。
【0008】
また、スペーサーを介して円筒状基材を載み重ねた方式で塗布、分離を行う技術が、特開昭61−120662号、同61−120663号、同61−120664号、各公報に示されているが、分離手段で振動を発生すると連続塗布を行っている下方にある円筒状基材を介して振動が伝わり塗布時の塗布膜誤差が増大する。
【0009】
【発明が解決しようとする課題】
このように、塗布液の塗布直後のドラムは塗布液が流下するため、均一に塗られた塗布膜はすぐに乾燥工程に入れ塗布膜をセットする方が圧倒的に良い。
【0010】
しかし、上記のように塗布膜によりドラムが連結されてしまった場合、ドラムを進行方向に隣接する下方のドラムより、速い速度で引き離すとその隣接する下方のドラムまで引き上がってしまう欠点があった。
【0011】
塗布直後に乾燥器を用いて塗布膜を早期にセットする方法は前述の通り塗布膜に対しては大変有利である。しかし、塗布直後のドラムを乾燥器等を用いて積極的に乾燥を行なっても、塗布液の特性や必要膜厚により分離の位置までに十分な乾燥が得られないケースが発生する。乾燥度合いが指触レベルの乾燥に達していない場合は円筒状基材(ドラム)外側を直接保持することができず、分離し排出が困難であった。
【0012】
本発明は、このような課題に鑑みなされたもので、円筒状基材やその塗布部分に振動、位置ずれ、傷や変形等を発生することなく、塗布済み円筒状基材を確実に分離ができる円筒状基材の塗布方法及び装置を提供することを目的としている。
【0013】
【課題を解決するための手段】
上記の目的は下記のような手段により達成される。即ち、
(1)円筒状基材の筒軸を合わせて積み重ねられた前記円筒状基材の外周面上に、垂直塗布手段により塗布液を連続的に塗布し乾燥した後、塗布済の被分離の円筒状基材の内面と隣接して下方にある円筒状基材の内面をそれぞれ把持し、前記被分離の円筒状基材のみに前記円筒状基材の筒軸を中心とした回転トルクを加えつつ上方に引張り力を加えて隣接する下方の円筒状基材と分離し排出する円筒状基材の塗布装置において、前記円筒状基材の筒軸と同方向の上方に引張る垂直力をF2、前記円筒状基材の外周での前記筒軸と直角方向の水平力をF1、作用角をθとしてtanθ=F2/F1とするとき、前記作用角θが10度〜70度であることを特徴とする円筒状基材の塗布装置であり、
(2)円筒状基材の筒軸を合わせて積み重ねられた前記円筒状基材の外周面上に、垂直塗布手段により塗布液を連続的に塗布し乾燥した後、塗布済の被分離の円筒状基材の内面と隣接して下方にある円筒状基材の内面をそれぞれ把持し、前記被分離の円筒状基材のみに前記円筒状基材の筒軸を中心とした回転トルクを加えつつ上方に引張り力を加えて隣接する下方の円筒状基材と分離し排出する円筒状基材の塗布方法において、前記円筒状基材の筒軸と同方向の上方に引張る垂直力をF2、前記円筒状基材の外周での前記筒軸と直角方向の水平力をF1、作用角をθとしてtanθ=F2/F1とするとき、前記作用角θが10度〜70度であることを特徴とする円筒状基材の塗布方法である。
【0014】
【作用】
以上のように構成した作用について説明する。
【0015】
円筒状基材の筒軸を合わせて積み重ねられた前記円筒状基材の外周面上に、塗布手段(垂直塗布手段ともいう)により塗布液を連続的に塗布し乾燥した後、塗布済の被分離の円筒状基材の内面と隣接して下方にある円筒状基材の内面をそれぞれ把持し、前記被分離の円筒状基材のみに前記円筒状基材の筒軸を中心とした回転トルクを加えつつ上方に引張り力を加えて隣接する下方の円筒状基材と分離し排出する円筒状基材の塗布装置において、前記円筒状基材の筒軸と同方向の上方に引張る垂直力をF2、前記円筒状基材の外周での前記筒軸と直角方向の水平力をF1、作用角をθとしてtanθ=F2/F1とするときに、前記作用角θが5度〜85度の範囲としたときには、その結果として、所定の作用角θで分離すると振動や衝撃がなく、下方の円筒状基材(ドラム)に振動等が伝達しない。作用角θが85度より大きいとき、塗布膜を分離するのに垂直方向に大きな力が必要で、このため振動が発生してしまう。また作用角θが5度より小さいとき、水平方向に大きな力が必要で、塗布工程全般に悪い影響を与え、例えば円筒状基材(ドラム)の振動が発生する。好ましくは作用角θ(度)は10度から70度である。
【0016】
前記の円筒状基材の塗布装置において、前記円筒状基材がアルミニウム材ドラムである。その結果として、アルミニウム材を用いた、例えば電子写真用感光体ドラムの塗布と乾燥後、振動や衝撃をあたえないで分離や排出ができる。
【0017】
円筒状基材の筒軸を合わせて積み重ねられた前記円筒状基材の外周面上に、塗布手段(垂直塗布手段ともいう)により塗布液を連続的に塗布し乾燥した後、塗布済の被分離の円筒状基材の内面と隣接して下方にある円筒状基材の内面をそれぞれ把持し、前記被分離の円筒状基材のみに前記円筒状基材の筒軸を中心とした回転トルクを加えつつ上方に引張り力を加えて隣接する下方の円筒状基材と分離し排出する円筒状基材の塗布方法において、前記円筒状基材の筒軸と同方向の上方に引張る垂直力をF2、前記円筒状基材の外周での前記筒軸と直角方向の水平力をF1、作用角をθとしてtanθ=F2/F1とするとき、作用角θが5度〜85度としたときには、その結果として、所定の作用角θで分離すると振動や衝撃がなく、下方の円筒状基材(ドラム)に振動等が伝達しない。作用角θが85度より大きいとき、塗布膜を分離するのに垂直方向に大きな力が必要で、このため振動が発生してしまう。また作用角θが5度より小さいとき、水平方向に大きな力が必要で、塗布工程全般に悪い影響を与え、例えば円筒状基材(ドラム)の振動が発生する。好ましくは作用角θは10度から70度である。
【0018】
【実施例】
以下、図面を用いて本発明の一実施例を説明する。図1は塗布装置の構成を示す斜視図である。図において、10は円筒状基材1を塗布手段の垂直下方の所定位置に供給して上方に押し上げる供給手段、20は供給された円筒状基材1の外周面を把持して筒軸を合わせて積み重ね下から上へ垂直に押し上げて搬送する搬送手段、30は前記円筒状基材1を塗布手段の環状塗布部の中心に位置合わせする位置決め手段、40は前記円筒状基材の外周面上に塗布液を連続的に塗布する塗布手段、50は円筒状基材1上に塗布された塗布液を乾燥させる乾燥手段、60は乾燥されて垂直搬送されてきた積み重ね状の複数の円筒状基材から分離させて1個ずつ取り出し排出させる分離排出手段である。
【0019】
本発明の塗布装置は、上記の各手段を連続して垂直中心線Z−Z上に配置した構成であり、自動的に生産が高精度で達成できる。前記供給手段10は前記円筒状基材1を載置するための複数の取付け部11を備えた可動テーブル12は、該可動テーブル12を回転させて前記搬送手段20へつながる垂直ラインへ送り込む駆動部13、前記搬送手段20により既に上方に把持搬送されている円筒状基材1を積み重なるように上方に押し上げる昇降部14、該昇降部14の上端に設けられた円筒状基材の供給用のハンド部15及び前記駆動部13による回転や昇降部14による押し上げのタイミングを制御する図示しない制御部等から構成されている。なお、前記可動テーブル12上への円筒状基材1の供給は、図示しないロボットハンドルにより行われる。
【0020】
前記供給手段10の上方に設けられた搬送手段20は、円筒状基材1の外周面に圧接離間可能で且つ垂直上下方向に移動可能な2組の把持部21,22を有し、円筒状基材1を位置決めして把持し上方に搬送する機能を有する。以下、上記各手段20,30,40,50,60の詳細は後述する。
【0021】
図2は塗布装置の他の実施例を示す斜視図である。この実施例では、前記搬送手段20の上方の垂直中心線Z−Z上には、位置決め手段30A、塗布手段40A、乾燥手段50Aとから成るユニットA、位置決め手段30B、塗布手段40B、乾燥手段50Bとから成るユニットB、位置決め手段30C、塗布手段40C、乾燥手段50Cとから成るユニットC、を垂直に縦列に配置したものである。最上段には前記分離排出手段60が配置されている。各塗布手段40A,40B,40Cからそれぞれ吐出された塗布液は、円筒状基材1上に多層の塗布層を逐次形成し、各乾燥手段50A,50B,50Cにより乾燥されたのち、分離排出手段60により最上段の円筒状基材1Aは把持されて下方の円筒状基材1Bから分離される。なお、円筒状基材の内部を挟持する分離把持は、特開昭61−120662、特開平4−258960、特開平7−43917に記載されている。特に分離する円筒状基材1Aの下方の円筒状基材1Bを把持しつつ、上の円筒状基材1Aを分離するのが良い。
【0022】
次に、塗布装置の工程について説明する。円筒状基材1は図示されていない供給ロボットにより円筒状基材収納室より可動テーブル12上にある円筒状基材1Aの位置に置かれる。円筒状基材1Aは可動テーブル12の矢印方向の回転により円筒状基材1Bの位置に達する。この時、昇降部(供給アーム)14が下方より上方へ円筒状基材1Bを押し上げ、ハンド部15の位置まで供給される。好ましくは昇降部14による押し上げが完了する時緩衝機構が作用し、円筒状基材1Bとの接合時のショックを無くするのが良い。このようにして円筒状基材1Bが1Cの搬送手段20のところまで運び込まれる。
【0023】
20は搬送手段を示し、把持部(搬送ハンド)21,22により円筒状基材1Cと1Dとの繋ぎ部が把持され、かつ上方に搬送され、位置決め手段30へ至る。30は位置決め手段であり、特開平3−280063号公報に記載されている位置決め手段の他、特願平7−125230号や特願平7−125231号に記載のリング状位置決めが好ましく用いられる。
【0024】
このようにして正確に位置決めされた円筒状基材は塗布手段40へ移行され塗布される。40は垂直型の塗布手段であり、▲1▼スライドホッパー型、▲2▼押し出し型、▲3▼リングコーター型、▲4▼スプレーコーター型等円筒状基材(ドラム)を積み重ねて上方又は下方に相対的に移動する事により塗布するものであれば種類を問わないが、信頼性の高い連続安定塗布が得られる事により▲1▼のスライドホッパー型が好ましく、例えば特開昭58−189061号公報に詳しく記載されている。
【0025】
以上のようにして塗布組成物が円筒状基材1上に塗布される。塗布された円筒状基材1は乾燥手段50に移行される。乾燥手段50は乾燥フード51と吸引式の乾燥器53を重ねて用いても良いし、塗布液の溶媒や液膜厚に応じてフードのみでも良いし、吸引式の乾燥器のみでも良い。これらは特願平5−216495号あるいは特願平5−99559号に記載してある。また、ある塗布液の場合、上記乾燥手段を特別に設けず自然乾燥に任せても良い。
【0026】
その後、分離排出手段60へ移行される。特開平7−43917号公報に詳しく述べられているものが良い。別のものとしては特開昭61−120662号、同61−120664号公報等も良い。なお、分離排出手段については図4で詳しく後述する。
【0027】
図3は上記塗布手段の斜視図である。図に示されるように中心線Z−Zに沿って垂直状に重ね合わせた複数の円筒状基材1A,1B(以下、円筒状基材1と称す)を連続的に矢印方向に上昇移動させ、その周囲を取り囲み、円筒状基材1の外周面に対しスライドホッパー型の塗布手段の塗布に直接係わる部分(ホッパー塗布面)41により塗布液(感光液)が塗布される。なお、円筒状基材1としては中空ドラム例えばアルミニウムドラム、プラスチックドラムのほかシームレスベルト型のものでも良い。前記ホッパー塗布面41には、円筒状基材1側に開口する塗布液流出口42を有する幅狭の塗布液分配スリット(スリットと略称する)43が水平方向に形成されている。このスリット43は環状の塗布液分配室(塗布液溜り室)44に連通し、この環状の塗布液分配室44には図示しない貯留タンク内の塗布液を供給管4を介して供給するようになっている。他方、スリット43の塗布液流出口42の下側には、連続して下方に傾斜し、円筒状基材1の外径寸法よりやや大なる寸法で終端をなすように形成された塗布液スライド面(以下、スライド面と称す)45が形成されている。さらに、このスライド面45終端より下方に延びる唇状部が形成されている。かかる塗布手段40による塗布においては、円筒状基材1を引き上げる過程で、塗布液をスリット43から押し出し、スライド面45に沿って流下させると、スライド面45の終端に至った塗布液は、そのスライド面45の終端と円筒状基材1の外周面との間にビードを形成した後、円筒状基材1の表面に塗布される。スライド面45の終端と円筒状基材1は、ある間隙を持って配置されているため円筒状基材1を傷つける事なく、また性質の異なる層を多層形成させる場合においても、既に塗布された層を損傷することなく塗布できる。
【0028】
一方、供給管4より最も遠い位置で、前記塗布液分配室44の一部には、塗布液分配室44内の泡抜き用の空気抜き部材46が設けられている。塗布液が塗布液分配室44に供給されて塗布液分配スリット43から塗布液流出口42に供給されるとき、開閉弁47を開いて空気抜き部材46より塗布液分配室44内の空気を排出する。
【0029】
前記スライドホッパー型の塗布手段40の下部には、円筒状基材の円周方向を位置決めする位置決め手段30が固定されている。前記円筒状基材1の位置決め装置30の本体には、図示しない複数の給気口と、複数の排気口が穿設されている。該複数の給気口は、図示しない給気ポンプに接続され、空気等の流体が圧送される。該給気口の一端部で円筒状基材1の外周面に対向する側には、吐出口が貫通している。該吐出口は前記円筒状基材1の外周面と所定の間隙を保って対向している。
【0030】
前記塗布手段40の上方には、乾燥フード51と乾燥器53とから成る乾燥手段50が設けられている。
【0031】
図4は、分離排出手段の説明図である。図にように、移動ロボット61及びエアーシリンダー62、上把持子63及び下把持子64により構成される。塗布済の円筒状基材1Aは下方より上方へ向けて押し上げられ、上方向へ移動し図4(a)に示すように分離位置に達する。この時,移動ロボット61が起動し被分離の円筒状基材1Aを移動する。まず、図4(b)に示す位置で下把持子64が被分離の円筒状基材1Aに隣接するドラム1Bを保持する。次いで図4(c)に示す位置で上把持子63が被分離のドラム1Aを保持する。エアーシリンダー62により上把持子63は上方向へ移動して図4(d)に示す位置になる。被分離の円筒状基材1Aから隣接する円筒状基材1Bにまたがる塗布膜が円筒状基材1Aによる回転トルクと引張り力により切り裂かれ図4(d)図に示すように1A、1Bの分離が行われる。分離済のドラム1Aを排出する為に図4(e)に示すように下把持子64は解放状態となる。以降図示しない円筒状基材の載置部材に置かれ、そして次なるドラム1Bの分離の為、移動ロボット61及びエアーシリンダー62が下降し、初期状態の位置図4(a)に戻る。
【0032】
図5は分離排出手段の各種実施例を示す斜視図で、図5(a)は前述の実施例を示す斜視図である。図5(b)は分離排出手段60の他の実施例を示す斜視図である。図5(b)において、上把持子65及び下把持子66は、ほぼ同一構造をなし、前記エアーシリンダー62のエアー圧力により膨張、収縮し円筒状基材1の内周面に3点圧接、離間する環状の弾性部材である。図5(c)は分離排出手段60のさらに他の実施例を示す斜視図である。図5(c)において、上把持子67及び下把持子68は、ほぼ同一構造をなし、前記エアーシリンダー62のエアー圧力により揺動して傘型に起立展開及び収縮し、円筒状基材1の内周面に圧接、離間する環状の揺動部材である。
【0033】
図6は円筒状基材の分離力の説明図である。円筒状基材1Bと円筒状基材1Aとの当接部の分離時にかかる力について説明する。なお、円筒状基材の円周の力が作用点Pにすべて作用したとして説明する。円筒状基材1Bの外周面には円筒状基材1Aよりの回転トルクTがかかり、接線方向に水平力F1が働く、円筒状基材の半径をRとして、F1=T/Rとなる。また垂直方向に働く垂直力をF2とすると、合成力Fは(F12+F220.5、作用角θはtan-1F2/F1となる。円筒状基材1Aと円筒状基材1Bとの当接部のつながった塗布膜はこの合成力Fで切り裂かれて分離される。なお、分離時に発生する振動については、塗布膜の膜厚、膜質、乾燥の程度等により差はあるが、機械的に剛性を高めることにより振動低減を行えるが、塗布中のドラム1がドラム端部の非画像部を通過している時間内に分離操作を行うのが良い。
【0034】
(実施例1)
ここで、実施例の実験例(実施例1という)について説明すると、円筒状基材の導電性支持体としては鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムのドラム支持体を用いた。また、塗布液としては下記記載の▲1▼OCL−1塗布液組成物を用い、乾燥膜厚2.0μmになるように塗布した。
【0035】
▲1▼OCL−1塗布液組成物
シリコーン系微粒子(トスパール103東芝シリコーン社製)
ポリカーボネート(Z−200 三菱瓦斯化学社製)
1,2−ジクロロエタン
上記塗布液組成物(固形分については固形分重量比Z−200:トスパール=100:1に固定)をサンドミルにて3時間分散したもの。
【0036】
実施例1の実験例は図1の装置で連続塗布、乾燥した後に図5(a)の把持子を用いて分離を行い、図6に示す如く水平力F1のベクトルと、垂直力F2のベクトルより形成される作用角θ(度)を変化させ、分離状態を観察した。その結果を表1に示す。
【0037】
【表1】

Figure 0003653805
【0038】
表1に示すように、作用角θ=5〜85度の範囲では、分離は良好であり、振動等が発生せず、ホコリ、ゴミ、キズ等の塗膜欠陥も生じず、塗布性の良好な塗布ドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質かつ高信頼性な製品が可能となった。
【0039】
(実施例2)
さらに、本発明の実施例の実験例(実施例2という)について説明すると、図2の逐次連続塗布装置で塗布、分離を行い、下記の表2に示す如く作用角θを変えた。即ち鏡面加工を施した直径80mm、高さ355mm、283gのアルミニウムドラム支持体上に、下記の如く各々塗布液組成物▲1▼UCL−3▲2▼CGL−3及び▲3▼CTL−2を調製し、スライドホッパー型の塗布装置ユニットA(▲1▼UCL−3用)、同塗布装置のユニットB(▲2▼CGL−3用)、同塗布装置のユニットC(▲3▼CTL−2用)にて、それぞれ乾燥膜厚1.0μm、2.2μm及び23μmになるように3層の逐次重層塗布、分離し、感光体ドラムを作成すると共に分離状態を観察した。
【0040】
Figure 0003653805
上記塗布液組成物(固形分については固形分重量比CGM−3:KR−5240=2:1に固定)をサンドミルを用いて17時間分散したもの。
【0041】
▲3▼CTL−2塗布液組成物
CTM−2 5kg
ポリカーボネート(Z−200 三菱瓦斯化学社製) 5.6kg
1,2−ジクロロエタン 28l
固形分については固形分重量比CTM−1:Z−200=0.89:1に固定した。
【0042】
ここで、上記のCGM−3とCTM−2の化学式を下記に示す。
【0043】
【化1】
Figure 0003653805
【0044】
【化2】
Figure 0003653805
【0045】
その結果を表2に示す。
【0046】
【表2】
Figure 0003653805
【0047】
本発明の如くの作用角θは5〜85度の範囲で、分離は良好であり、振動等が発生せず、ホコリ、ゴミ、キズ等の塗膜欠陥も生ぜず、塗布性の良好なドラムが得られた。しかも長時間、多数本の安定な連続塗布や完全自動化ができるため、ホコリ、ゴミ等が混入せず高品質かつ高信頼性ある製品が可能となった。
【0048】
得られた感光体No.2−1〜No.2−3をコニカ社製U−BIX3035複写機で実写したところ画像ムラ、濃度ムラ、画像欠陥(黒ポチ、白ポチ、ゴミ、スジ)等がなく良好であった。
【0049】
【発明の効果】
以上のように、被分離の円筒状基材に所定の作用角で垂直力と水平力を同時に与え分離するので、円筒状基材に強い力がかからず傷や変形を与えないで確実に分離でき、分離する時の振動や衝撃が下方の円筒状基材に伝達しなくなった。
【図面の簡単な説明】
【図1】塗布装置の構成を示す斜視図である。
【図2】塗布装置の他の実施例を示す斜視図である。
【図3】上記塗布手段の斜視図である。
【図4】分離排出手段の説明図である。
【図5】分離排出手段の各種実施例を示す斜視図である。
【図6】円筒状基材の分離力の説明図である。
【符号の説明】
1,1A,1B,1C,1D 円筒状基材(ドラム,感光体ドラム)
4 供給管
10 供給手段
11 取付け部
12 可動テーブル
13 駆動部
14 昇降部
15 ハンド部
20 搬送手段
21,22 把持部
30,30A,30B,30C 位置決め手段
40,40A,40B,40C 塗布手段(スライドホッパ型の塗布手段)
41 塗布ヘッド(コーター、ホッパー塗布面)
42 塗布液流出口
43 塗布液分配スリット(スリット)
44 塗布液分配室
45 塗布液スライド面(スライド面)
46 空気抜き部材
47 開閉弁
50,50A,50B,50C 乾燥手段
51 乾燥フード
53 乾燥器
60 分離排出手段(分離器)
61 移動ロボット
62 エアーシリンダー
63,65,67 上把持子(上チャック)
64,66,68 下把持子(下チャック)
F 合成力
F1 水平力
F2 垂直力
θ 作用角
P 作用点[0001]
[Industrial application fields]
In the present invention, a cylindrical base material is sequentially separated after a coating liquid is continuously applied to and dried on a plurality of cylindrical base materials (also referred to as drums and photosensitive drums) conveyed in a vertical column. The present invention relates to a cylindrical substrate coating method and apparatus, and more particularly to separation after coating and drying a photosensitive drum of a cylindrical substrate for electrophotography.
[0002]
[Prior art]
There are various methods such as a spray coating method, a dip coating method, a blade coating method, and a roll coating method for uniformly coating the outer surface of the cylindrical substrate with a thin film. In particular, for a uniform coating with a thin film such as an electrophotographic photosensitive drum, a coating apparatus having excellent productivity has been studied. However, the conventional coating method and coating apparatus for a cylindrical substrate have problems that a uniform coating film cannot be obtained and productivity is poor.
[0003]
In the spray coating method, since the solvent evaporates before the coating droplets ejected from the spray gun reach the outer peripheral surface of the cylindrical substrate having a continuous surface formed endlessly, the solid content concentration of the coating droplets When the viscosity of the coated droplet increases and the droplet reaches the surface as a result, the droplet does not spread sufficiently on the surface, or has dried and solidified. Since the film adheres to the surface, the coated surface with good smoothness cannot be obtained. In addition, the reach of the liquid droplets to the cylindrical base material is not 100%, and there is a loss of coating liquid or it is partially non-uniform so that it is very difficult to control the film thickness. However, since stringing may occur, there are limitations on the solvent and resin used.
[0004]
In the blade coating method and the roll coating method, for example, a blade or a roll is disposed in the length direction of the cylindrical base material, the cylindrical base material is rotated, coating is performed, and the cylindrical base material is rotated once. The roll is retracted. However, when the blade or roll is retracted, there is a disadvantage that a part of the coating film thickness is thicker than the other part due to the viscosity of the coating liquid, and a uniform coating film cannot be obtained.
[0005]
In the dip coating method, the smoothness of the coating liquid surface and the poor uniformity of the coating film as described above are improved. However, control of the coating film thickness is governed by coating liquid properties such as viscosity, surface tension, density, temperature, and coating speed, and adjustment of the coating liquid properties is very important. Also, the coating speed is low, and a liquid amount of a certain amount or more is necessary to fill the coating liquid tank. In the case of further layering, there are disadvantages such that the lower layer components are dissolved and the coating solution tank is easily contaminated.
[0006]
Therefore, as described in Japanese Patent Application Laid-Open No. 58-189061, a circular amount regulation type coating apparatus (including a slide hopper type coating apparatus) has been developed. This slide hopper type coating device encircles the circumference of a cylindrical base material having a continuous peripheral surface formed endlessly while continuously moving in the longitudinal direction of the cylindrical base material. The coating apparatus is for applying a coating liquid. The coating apparatus has an annular coating liquid reservoir chamber, a supply port for supplying the coating liquid from the outside to a part of the coating liquid reservoir chamber, and the coating liquid reservoir chamber. A coating liquid distribution slit that opens inward, and the coating liquid that has flowed out of the slit is allowed to flow down on the coating liquid slide surface that is inclined obliquely downward, and the hopper coating surface at the lower end of the coating liquid slide surface and the cylindrical base A bead is formed in a slight gap portion with the material and applied to the outer peripheral surface of the cylindrical base material as the cylindrical base material moves. By using this slide hopper type coating apparatus, coating can be performed with a small amount of liquid, the coating liquid is not contaminated, and high productivity and easy film thickness control can be achieved.
[0007]
When the cylindrical base material is continuously applied and dried as in the above apparatus, when the cylindrical base material is placed on the side end face and stacked and dried, The side end portions of the stacked cylindrical base materials are in a state where the coating films are connected. These are separated upward to separate them. After that, the cylindrical base material was placed on the mounting member or the like at the lower end.
[0008]
In addition, techniques for coating and separating in a manner in which a cylindrical base material is placed on top of each other via a spacer are disclosed in Japanese Patent Application Laid-Open Nos. 61-120661, 61-120663, and 61-120664. However, when vibration is generated by the separating means, the vibration is transmitted through the cylindrical base material under the continuous application, and the coating film error at the time of application increases.
[0009]
[Problems to be solved by the invention]
As described above, since the coating liquid flows down on the drum immediately after the coating of the coating liquid, it is overwhelmingly better to set the coated film by immediately putting it in the drying process.
[0010]
However, when the drum is connected by the coating film as described above, there is a defect that when the drum is pulled away at a higher speed than the lower drum adjacent in the traveling direction, the drum is pulled up to the adjacent lower drum. .
[0011]
The method of setting the coating film at an early stage using a dryer immediately after coating is very advantageous for the coating film as described above. However, even if the drum immediately after coating is actively dried using a drier or the like, there may be a case where sufficient drying cannot be achieved until the separation position due to the characteristics of the coating solution and the required film thickness. When the degree of drying did not reach the dryness of the touch level, the outside of the cylindrical base material (drum) could not be held directly, and it was difficult to separate and discharge.
[0012]
The present invention has been made in view of such problems, and the coated cylindrical substrate can be reliably separated without causing vibration, displacement, scratches or deformation in the cylindrical substrate or its application portion. An object of the present invention is to provide a cylindrical substrate coating method and apparatus that can be used.
[0013]
[Means for Solving the Problems]
The above object can be achieved by the following means. That is,
(1) A coating liquid to be separated is applied onto the outer peripheral surface of the cylindrical base material stacked in alignment with the cylindrical axis of the cylindrical base material by continuously applying and drying the coating liquid by means of vertical application means. While holding the inner surface of the cylindrical base material adjacent to the inner surface of the cylindrical base material and applying rotational torque about the cylindrical axis of the cylindrical base material only to the cylindrical base material to be separated In a cylindrical base material coating apparatus that applies a tensile force upward and separates and discharges from a lower cylindrical base material adjacent thereto, a vertical force that pulls upward in the same direction as the cylindrical axis of the cylindrical base material is F2, When the horizontal force in the direction perpendicular to the cylinder axis on the outer periphery of the cylindrical base material is F1 and the operating angle is θ, tan θ = F2 / F1, and the operating angle θ is 10 degrees to 70 degrees. A cylindrical base material coating device,
(2) A cylinder to be separated after being applied and dried on a peripheral surface of the cylindrical base material stacked with the cylinder axis of the cylindrical base material aligned by a vertical application means and dried. While holding the inner surface of the cylindrical base material adjacent to the inner surface of the cylindrical base material and applying rotational torque about the cylindrical axis of the cylindrical base material only to the cylindrical base material to be separated In the method of applying a cylindrical base material that applies a tensile force upward and separates and discharges it from an adjacent lower cylindrical base material, the vertical force that pulls upward in the same direction as the cylindrical axis of the cylindrical base material is F2, When the horizontal force in the direction perpendicular to the cylinder axis on the outer periphery of the cylindrical base material is F1 and the operating angle is θ, tan θ = F2 / F1, and the operating angle θ is 10 degrees to 70 degrees. It is the coating method of the cylindrical base material to do.
[0014]
[Action]
The effect | action comprised as mentioned above is demonstrated.
[0015]
A coating solution is continuously applied and dried by a coating means (also referred to as a vertical coating means) on the outer peripheral surface of the cylindrical base material stacked with the cylindrical axis of the cylindrical base material aligned. Rotation torque about the cylindrical axis of the cylindrical base material only on the cylindrical base material to be separated only by gripping the inner surface of the cylindrical base material adjacent to the inner surface of the separate cylindrical base material In a cylindrical base material coating device that applies a tensile force upward while applying a pressure to separate and discharge the cylindrical base material from an adjacent lower cylindrical base material, a vertical force that pulls upward in the same direction as the cylindrical axis of the cylindrical base material is applied. F2, when the horizontal force in the direction perpendicular to the cylinder axis on the outer periphery of the cylindrical base material is F1, the working angle is θ, and the tan θ = F2 / F1, the working angle θ is in the range of 5 degrees to 85 degrees. and was the time, as a result, there is no vibration or shock and separated at a predetermined working angle θ Vibration is not transmitted to the lower side of the cylindrical base material (drum). When the operating angle θ is greater than 85 degrees, a large force is required in the vertical direction to separate the coating film, and vibration is generated. When the working angle θ is smaller than 5 degrees, a large force is required in the horizontal direction, which adversely affects the entire coating process, and for example, vibration of a cylindrical base material (drum) occurs . The good Mashiku working angle theta (degrees) is 70 degrees from 10 degrees.
[0016]
In the cylindrical base material coating apparatus, the cylindrical base material is an aluminum drum. As a result, for example, after application and drying of an electrophotographic photosensitive drum using an aluminum material, separation and discharge can be performed without applying vibration or impact.
[0017]
A coating solution is continuously applied and dried by a coating means (also referred to as a vertical coating means) on the outer peripheral surface of the cylindrical base material stacked with the cylindrical axis of the cylindrical base material aligned. Rotation torque about the cylindrical axis of the cylindrical base material only on the cylindrical base material to be separated only by gripping the inner surface of the cylindrical base material adjacent to the inner surface of the separate cylindrical base material In the method of coating a cylindrical base material that applies a tensile force upward while applying and separating and discharging from the adjacent lower cylindrical base material, a vertical force that pulls upward in the same direction as the cylindrical axis of the cylindrical base material is applied. F2, when the horizontal force in the direction perpendicular to the cylinder axis at the outer periphery of the cylindrical base material is F1, the working angle is θ, and tan θ = F2 / F1, when the working angle θ is 5 degrees to 85 degrees , As a result, when separated at a predetermined operating angle θ, there is no vibration or impact, and the lower cylinder Vibration is not transmitted to the base material (drum). When the operating angle θ is greater than 85 degrees, a large force is required in the vertical direction to separate the coating film, and vibration is generated. When the working angle θ is smaller than 5 degrees, a large force is required in the horizontal direction, which adversely affects the entire coating process, and for example, vibration of a cylindrical base material (drum) occurs. Preferably, the operating angle θ is 10 degrees to 70 degrees.
[0018]
【Example】
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing the configuration of the coating apparatus. In the figure, 10 is a supply means for supplying the cylindrical base material 1 to a predetermined position vertically below the coating means and pushing it upward, and 20 is a gripper for gripping the outer peripheral surface of the supplied cylindrical base material 1 and aligning the cylinder axis. Conveying means for vertically pushing up and conveying the stack from below, 30 is a positioning means for aligning the cylindrical substrate 1 with the center of the annular application portion of the applying means, and 40 is on the outer peripheral surface of the cylindrical substrate. Application means for continuously applying the application liquid to the substrate, 50 is a drying means for drying the application liquid applied on the cylindrical substrate 1, and 60 is a plurality of stacked cylindrical substrates that have been dried and vertically conveyed. Separating / discharging means for separating and discharging the material one by one.
[0019]
The coating apparatus of the present invention has a configuration in which each of the above-described means is continuously arranged on the vertical center line ZZ, and automatic production can be achieved with high accuracy. The supply means 10 includes a movable table 12 having a plurality of mounting portions 11 for mounting the cylindrical base material 1, and a drive section that rotates the movable table 12 and sends it to a vertical line connected to the transport means 20. 13. A lifting / lowering unit 14 that pushes upward the cylindrical base material 1 that is already gripped and transported upward by the transport means 20, and a hand for supplying the cylindrical base material provided at the upper end of the lifting / lowering part 14 The controller 15 includes a control unit (not shown) that controls the timing of the rotation by the unit 15 and the driving unit 13 and the push-up timing by the elevating unit 14. The cylindrical substrate 1 is supplied onto the movable table 12 by a robot handle (not shown).
[0020]
The conveying means 20 provided above the supply means 10 has two sets of gripping portions 21 and 22 that can be pressed against and separated from the outer peripheral surface of the cylindrical base material 1 and can be moved vertically and vertically. It has the function of positioning, gripping and transporting the substrate 1 upward. Hereinafter, the details of each of the means 20, 30, 40, 50, 60 will be described later.
[0021]
FIG. 2 is a perspective view showing another embodiment of the coating apparatus. In this embodiment, on the vertical center line ZZ above the conveying means 20, a unit A comprising positioning means 30A, coating means 40A and drying means 50A, positioning means 30B, coating means 40B and drying means 50B. Are arranged in a vertical column. The unit C is composed of a unit B consisting of: positioning unit 30C, coating means 40C, and drying means 50C. The separation and discharge means 60 is disposed on the uppermost stage. The coating liquid discharged from each of the coating means 40A, 40B, and 40C sequentially forms a multilayer coating layer on the cylindrical substrate 1, and is dried by each of the drying means 50A, 50B, and 50C, and then separated and discharged. 60, the uppermost cylindrical substrate 1A is gripped and separated from the lower cylindrical substrate 1B. Separation gripping for holding the inside of the cylindrical base material is described in JP-A-61-120662, JP-A-4-258960, and JP-A-7-43917. In particular, the upper cylindrical substrate 1A is preferably separated while holding the cylindrical substrate 1B below the cylindrical substrate 1A to be separated.
[0022]
Next, the process of the coating apparatus will be described. The cylindrical substrate 1 is placed at the position of the cylindrical substrate 1A on the movable table 12 from the cylindrical substrate storage chamber by a supply robot (not shown). The cylindrical base material 1A reaches the position of the cylindrical base material 1B by the rotation of the movable table 12 in the arrow direction. At this time, the elevating part (supply arm) 14 pushes up the cylindrical base material 1 </ b> B upward from below and is supplied to the position of the hand part 15. Preferably, when the lifting by the elevating unit 14 is completed, the buffer mechanism acts to eliminate the shock at the time of joining with the cylindrical base material 1B. In this way, the cylindrical substrate 1B is carried to the 1C conveying means 20.
[0023]
Denoted at 20 is a conveying means. A connecting portion between the cylindrical base materials 1 </ b> C and 1 </ b> D is gripped by gripping portions (conveying hands) 21 and 22, transported upward, and reaches the positioning means 30. Reference numeral 30 denotes positioning means. In addition to the positioning means described in JP-A-3-280063, ring-shaped positioning described in Japanese Patent Application Nos. 7-125230 and 7-125231 is preferably used.
[0024]
The cylindrical base material accurately positioned in this way is transferred to the application means 40 and applied. Reference numeral 40 denotes a vertical coating means, and (1) slide hopper type, (2) extrusion type, (3) ring coater type, (4) spray coater type, etc. The slide hopper type (1) is preferable because it can be applied by moving relative to the surface, but a highly reliable and stable coating can be obtained. For example, Japanese Patent Laid-Open No. 58-189061 It is described in detail in the publication.
[0025]
The coating composition is applied onto the cylindrical substrate 1 as described above. The coated cylindrical substrate 1 is transferred to the drying means 50. As the drying means 50, the drying hood 51 and the suction dryer 53 may be used in a stacked manner, or only the hood may be used according to the solvent and liquid film thickness of the coating liquid, or only the suction dryer may be used. These are described in Japanese Patent Application No. 5-216495 or Japanese Patent Application No. 5-99559. Further, in the case of a certain coating solution, the drying means may not be provided specially and may be left to natural drying.
[0026]
Thereafter, the process proceeds to the separation and discharge means 60. Those described in detail in JP-A-7-43917 are preferred. As another example, JP-A-61-120662 and JP-A-61-120664 may be used. The separation and discharge means will be described in detail later with reference to FIG.
[0027]
FIG. 3 is a perspective view of the coating means. As shown in the figure, a plurality of cylindrical base materials 1A and 1B (hereinafter referred to as cylindrical base materials 1) superimposed vertically along the center line ZZ are continuously moved upward in the direction of the arrow. The coating solution (photosensitive solution) is applied by a portion (hopper coating surface) 41 that surrounds the periphery and is directly related to the coating of the slide hopper type coating means on the outer peripheral surface of the cylindrical substrate 1. The cylindrical substrate 1 may be a hollow drum, for example, an aluminum drum, a plastic drum, or a seamless belt type. On the hopper coating surface 41, a narrow coating liquid distribution slit (abbreviated as a slit) 43 having a coating liquid outlet 42 opened to the cylindrical substrate 1 side is formed in the horizontal direction. The slit 43 communicates with an annular coating liquid distribution chamber (coating liquid reservoir chamber) 44 so that the coating liquid in a storage tank (not shown) is supplied to the annular coating liquid distribution chamber 44 via the supply pipe 4. It has become. On the other hand, below the coating solution outlet 42 of the slit 43, the coating solution slide is formed so as to continuously incline and end with a dimension slightly larger than the outer diameter of the cylindrical base material 1. A surface (hereinafter referred to as a slide surface) 45 is formed. Further, a lip-shaped portion extending downward from the end of the slide surface 45 is formed. In the application by the application means 40, in the process of pulling up the cylindrical substrate 1, when the application liquid is pushed out from the slit 43 and flows down along the slide surface 45, the application liquid reaching the end of the slide surface 45 is A bead is formed between the end of the slide surface 45 and the outer peripheral surface of the cylindrical substrate 1, and then applied to the surface of the cylindrical substrate 1. Since the end of the slide surface 45 and the cylindrical base material 1 are disposed with a certain gap, the cylindrical base material 1 is not applied to the cylindrical base material 1 even when it is formed in multiple layers without damaging the cylindrical base material 1. Can be applied without damaging the layer.
[0028]
On the other hand, an air vent member 46 for removing bubbles in the coating liquid distribution chamber 44 is provided in a part of the coating liquid distribution chamber 44 at a position farthest from the supply pipe 4. When the coating liquid is supplied to the coating liquid distribution chamber 44 and supplied from the coating liquid distribution slit 43 to the coating liquid outlet 42, the on-off valve 47 is opened and the air in the coating liquid distribution chamber 44 is discharged from the air vent member 46. .
[0029]
Positioning means 30 for positioning the circumferential direction of the cylindrical base material is fixed to the lower portion of the slide hopper type coating means 40. A plurality of air supply ports (not shown) and a plurality of exhaust ports (not shown) are formed in the main body of the positioning device 30 for the cylindrical base material 1. The plurality of air supply ports are connected to an air supply pump (not shown), and fluid such as air is pumped. A discharge port passes through the end of the air supply port that faces the outer peripheral surface of the cylindrical substrate 1. The discharge port faces the outer peripheral surface of the cylindrical substrate 1 with a predetermined gap.
[0030]
Above the coating means 40, a drying means 50 comprising a drying hood 51 and a dryer 53 is provided.
[0031]
FIG. 4 is an explanatory diagram of the separation and discharge means. As shown in the figure, the mobile robot 61, the air cylinder 62, the upper gripper 63, and the lower gripper 64 are included. The coated cylindrical substrate 1A is pushed upward from below and moved upward to reach the separation position as shown in FIG. 4 (a). At this time, the mobile robot 61 is activated to move the cylindrical substrate 1A to be separated. First, the lower gripper 64 holds the drum 1B adjacent to the cylindrical base material 1A to be separated at the position shown in FIG. 4B. Next, the upper gripper 63 holds the drum 1A to be separated at the position shown in FIG. The upper gripper 63 is moved upward by the air cylinder 62 to the position shown in FIG. The coating film extending from the cylindrical base material 1A to be separated to the adjacent cylindrical base material 1B is cut by the rotational torque and tensile force of the cylindrical base material 1A, and 1A and 1B are separated as shown in FIG. 4 (d). Is done. In order to discharge the separated drum 1A, the lower gripper 64 is released as shown in FIG. Thereafter, the mobile robot 61 and the air cylinder 62 are lowered to return to the initial position diagram 4 (a) for separation of the next drum 1B.
[0032]
FIG. 5 is a perspective view showing various embodiments of the separation and discharge means, and FIG. 5A is a perspective view showing the above-described embodiments. FIG. 5B is a perspective view showing another embodiment of the separation / discharge means 60. In FIG. 5B, the upper gripper 65 and the lower gripper 66 have substantially the same structure, and are expanded and contracted by the air pressure of the air cylinder 62, so that the three-point press contact with the inner peripheral surface of the cylindrical substrate 1; An annular elastic member that is spaced apart. FIG. 5C is a perspective view showing still another embodiment of the separation / discharge means 60. In FIG. 5C, the upper gripper 67 and the lower gripper 68 have substantially the same structure, and are swung up and contracted in an umbrella shape by swinging with the air pressure of the air cylinder 62. This is an annular rocking member that is pressed against and separated from the inner peripheral surface of the ring.
[0033]
FIG. 6 is an explanatory diagram of the separation force of the cylindrical base material. The force applied at the time of separation of the contact portion between the cylindrical substrate 1B and the cylindrical substrate 1A will be described. In the following description, it is assumed that the circumferential force of the cylindrical substrate is all applied to the action point P. A rotational torque T from the cylindrical base material 1A is applied to the outer peripheral surface of the cylindrical base material 1B, and a horizontal force F1 is applied in the tangential direction, where R is the radius of the cylindrical base material, and F1 = T / R. If the vertical force acting in the vertical direction is F2, the resultant force F is (F1 2 + F2 2 ) 0.5 and the operating angle θ is tan −1 F2 / F1. The coating film in which the contact portions between the cylindrical base material 1A and the cylindrical base material 1B are connected is torn and separated by this synthetic force F. The vibration generated at the time of separation varies depending on the film thickness, film quality, degree of drying, etc. of the coating film, but vibration can be reduced by mechanically increasing the rigidity. It is preferable to perform the separation operation within the time passing through the non-image part.
[0034]
(Example 1)
Here, an experimental example of the example (referred to as Example 1) will be described. As the conductive support for the cylindrical substrate, an aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g is used. It was. Further, as the coating solution, the following (1) OCL-1 coating solution composition was used and coated so as to have a dry film thickness of 2.0 μm.
[0035]
(1) OCL-1 coating composition silicone fine particles (Tospearl 103 manufactured by Toshiba Silicone Co., Ltd.)
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company)
1,2-dichloroethane The above-mentioned coating liquid composition (solid content: solid content weight ratio Z-200: Tospearl fixed at 100: 1) is dispersed in a sand mill for 3 hours.
[0036]
In the experimental example of Example 1, separation was performed using the gripper of FIG. 5A after continuous application and drying with the apparatus of FIG. 1, and the vector of horizontal force F1 and the vector of vertical force F2 as shown in FIG. The separation angle was observed by changing the working angle θ (degrees) formed. The results are shown in Table 1.
[0037]
[Table 1]
Figure 0003653805
[0038]
As shown in Table 1, when the working angle θ is in the range of 5 to 85 degrees, the separation is good, no vibration is generated, no coating film defects such as dust, dust, and scratches occur, and the coating property is good. A coating drum was obtained. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, a high-quality and highly reliable product without dust or dust can be obtained.
[0039]
(Example 2)
Further, an experimental example (referred to as Example 2) of the embodiment of the present invention will be described. Coating and separation were performed with the sequential continuous coating apparatus of FIG. 2, and the working angle θ was changed as shown in Table 2 below. That is, on the aluminum drum support having a diameter of 80 mm, a height of 355 mm, and 283 g subjected to mirror finishing, the coating liquid compositions (1) UCL-3 (2) CGL-3 and (3) CTL-2 are respectively applied as follows: The slide hopper type coating device unit A (for (1) UCL-3), the coating device unit B (for (2) CGL-3), and the coating device unit C ((3) CTL-2) 3), three layers were successively applied and separated so as to have dry film thicknesses of 1.0 μm, 2.2 μm, and 23 μm, respectively, and a photosensitive drum was prepared and the separated state was observed.
[0040]
Figure 0003653805
Disperse the above coating composition (solid content weight ratio CGM-3: KR-5240 = 2: 1) using a sand mill for 17 hours.
[0041]
(3) CTL-2 coating liquid composition CTM-2 5 kg
Polycarbonate (Z-200 manufactured by Mitsubishi Gas Chemical Company) 5.6kg
1,2-dichloroethane 28 l
About solid content, solid content weight ratio CTM-1: Z-200 = 0.89: 1 was fixed.
[0042]
Here, the chemical formulas of the above-mentioned CGM-3 and CTM-2 are shown below.
[0043]
[Chemical 1]
Figure 0003653805
[0044]
[Chemical formula 2]
Figure 0003653805
[0045]
The results are shown in Table 2.
[0046]
[Table 2]
Figure 0003653805
[0047]
As in the present invention, the working angle θ is in the range of 5 to 85 degrees, the separation is good, the vibration is not generated, the coating film defects such as dust, dust, scratches and the like are not generated, and the drum has good coating properties. was gotten. In addition, since a large number of stable continuous coatings and complete automation can be performed over a long period of time, a product with high quality and high reliability can be obtained without dust and dust.
[0048]
The obtained photoreceptor No. 2-1. When 2-3 was actually photographed with a U-BIX 3035 copying machine manufactured by Konica, it was satisfactory with no image unevenness, density unevenness, image defects (black spots, white spots, dust, streaks) and the like.
[0049]
【The invention's effect】
As described above , vertical force and horizontal force are applied to the cylindrical base material to be separated at a predetermined operating angle at the same time for separation, so that strong force is not applied to the cylindrical base material. Separation was possible, and vibrations and shocks at the time of separation were not transmitted to the lower cylindrical base material.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a coating apparatus.
FIG. 2 is a perspective view showing another embodiment of the coating apparatus.
FIG. 3 is a perspective view of the coating means.
FIG. 4 is an explanatory diagram of separation and discharge means.
FIG. 5 is a perspective view showing various embodiments of separation and discharge means.
FIG. 6 is an explanatory diagram of a separation force of a cylindrical base material.
[Explanation of symbols]
1,1A, 1B, 1C, 1D Cylindrical base material (drum, photosensitive drum)
4 Supply pipe 10 Supply means 11 Mounting portion 12 Movable table 13 Drive portion 14 Lifting portion 15 Hand portion 20 Transport means 21, 22 Grip portions 30, 30A, 30B, 30C Positioning means 40, 40A, 40B, 40C Coating means (slide hopper Mold application means)
41 Coating head (coater, hopper coating surface)
42 Coating liquid outlet 43 Coating liquid distribution slit (slit)
44 Coating solution distribution chamber 45 Coating solution slide surface (slide surface)
46 Air venting member 47 On-off valve 50, 50A, 50B, 50C Drying means 51 Drying hood 53 Dryer 60 Separating and discharging means (separator)
61 Mobile robot 62 Air cylinder 63, 65, 67 Upper gripper (upper chuck)
64, 66, 68 Lower gripper (lower chuck)
F Composite force F1 Horizontal force F2 Vertical force θ Action angle P Action point

Claims (3)

円筒状基材の筒軸を合わせて積み重ねられた前記円筒状基材の外周面上に、垂直塗布手段により塗布液を連続的に塗布し乾燥した後、塗布済の被分離の円筒状基材の内面と隣接して下方にある円筒状基材の内面をそれぞれ把持し、前記被分離の円筒状基材のみに前記円筒状基材の筒軸を中心とした回転トルクを加えつつ上方に引張り力を加えて隣接する下方の円筒状基材と分離し排出する円筒状基材の塗布装置において、前記円筒状基材の筒軸と同方向の上方に引張る垂直力をF2、前記円筒状基材の外周での前記筒軸と直角方向の水平力をF1、作用角をθとしてtanθ=F2/F1とするとき、前記作用角θが10度〜70度であることを特徴とする円筒状基材の塗布装置。On the outer peripheral surface of the cylindrical base material stacked in alignment with the cylindrical axis of the cylindrical base material, the coating liquid is continuously applied by a vertical application means, dried, and then applied to the separated cylindrical base material. The inner surface of the cylindrical base material which is adjacent to the inner surface of the lower portion is gripped and pulled upward while applying rotational torque about the cylindrical axis of the cylindrical base material only to the cylindrical base material to be separated. In a cylindrical base material coating apparatus that applies a force to separate and discharges from a lower cylindrical base material adjacent thereto, a vertical force that pulls upward in the same direction as the cylindrical axis of the cylindrical base material is F2, and the cylindrical base material A cylindrical shape characterized in that when the horizontal force in the direction perpendicular to the cylinder axis at the outer periphery of the material is F1 and the working angle is θ and tan θ = F2 / F1, the working angle θ is 10 ° to 70 °. Substrate coating device. 前記円筒状基材はアルミニウム材ドラムであることを特徴とする請求項1に記載の円筒状基材の塗布装置。  2. The cylindrical base material coating apparatus according to claim 1, wherein the cylindrical base material is an aluminum drum. 円筒状基材の筒軸を合わせて積み重ねられた前記円筒状基材の外周面上に、垂直塗布手段により塗布液を連続的に塗布し乾燥した後、塗布済の被分離の円筒状基材の内面と隣接して下方にある円筒状基材の内面をそれぞれ把持し、前記被分離の円筒状基材のみに前記円筒状基材の筒軸を中心とした回転トルクを加えつつ上方に引張り力を加えて隣接する下方の円筒状基材と分離し排出する円筒状基材の塗布方法において、前記円筒状基材の筒軸と同方向の上方に引張る垂直力をF2、前記円筒状基材の外周での前記筒軸と直角方向の水平力をF1、作用角をθとしてtanθ=F2/F1とするとき、前記作用角θが10度〜70度であることを特徴とする円筒状基材の塗布方法。On the outer peripheral surface of the cylindrical base material stacked in alignment with the cylindrical axis of the cylindrical base material, the coating liquid is continuously applied by a vertical application means, dried, and then applied to the separated cylindrical base material. The inner surface of the cylindrical base material which is adjacent to the inner surface of the lower portion is gripped and pulled upward while applying rotational torque about the cylindrical axis of the cylindrical base material only to the cylindrical base material to be separated. In the method of coating a cylindrical base material that separates and discharges from the adjacent lower cylindrical base material by applying a force, a vertical force that pulls upward in the same direction as the cylindrical axis of the cylindrical base material is F2, and the cylindrical base material A cylindrical shape characterized in that when the horizontal force in the direction perpendicular to the cylinder axis at the outer periphery of the material is F1 and the working angle is θ and tan θ = F2 / F1, the working angle θ is 10 ° to 70 °. Application method of substrate.
JP17351695A 1995-07-10 1995-07-10 Cylindrical substrate coating method and apparatus Expired - Fee Related JP3653805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17351695A JP3653805B2 (en) 1995-07-10 1995-07-10 Cylindrical substrate coating method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17351695A JP3653805B2 (en) 1995-07-10 1995-07-10 Cylindrical substrate coating method and apparatus

Publications (2)

Publication Number Publication Date
JPH0924327A JPH0924327A (en) 1997-01-28
JP3653805B2 true JP3653805B2 (en) 2005-06-02

Family

ID=15961981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17351695A Expired - Fee Related JP3653805B2 (en) 1995-07-10 1995-07-10 Cylindrical substrate coating method and apparatus

Country Status (1)

Country Link
JP (1) JP3653805B2 (en)

Also Published As

Publication number Publication date
JPH0924327A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
JP2006043702A (en) Method and apparatus of positioning cylindrical base material
JPH11197570A (en) Coating method and coating applicator
US20020041929A1 (en) Spray-spin coating method
JP3653805B2 (en) Cylindrical substrate coating method and apparatus
JP3610533B2 (en) Apparatus and method for separating and holding a cylindrical substrate
JP3613742B2 (en) Continuous coating apparatus and continuous coating method
JP2004202452A (en) Coating-film forming apparatus and coating-film forming method
JP3709634B2 (en) Continuous coating apparatus and continuous coating method
JP3661256B2 (en) Continuous coating apparatus and continuous coating method
JP3707099B2 (en) Continuous coating apparatus and continuous coating method
JPH0924326A (en) Method for coating cylindrical base material and device therefor
JPH10263450A (en) Method and device for continuous coating
JPH0985157A (en) Separating, discharging and clamping device for cylindrical base material and separating, discharging and clamping method
JPH0924324A (en) Device for separating/discharging/claming cylindrical base material and method therefor
JP3666060B2 (en) Continuous coating and drying apparatus and continuous coating and drying method
JPH0975833A (en) Method for positioning cylindrical base material of apparatus for vertical application, cylindrical base material for vertical application and method for vertical application
JPH1099771A (en) Coating device for cylindrical base material and its coating method
JPH1133473A (en) Continuous coating method and continuos coating applicator
JPH09206658A (en) Device and method for clamping cylindrical base of continuous coating equipment
JPH10277480A (en) Cylindrical substrate and method of continuously coating cylindrical substrate
JPH0957178A (en) Apparatus for separating-discharging continuously coated cylindrical base material and method therefor
JPH10272401A (en) Coating method and coating device
JPH09150095A (en) Apparatus for coating cylindrical base material and coating method
JPH0957171A (en) Applicator for cylindrical base material and coating method
JP3658921B2 (en) Separation / discharge apparatus and separation / discharge method for coated cylindrical substrate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041116

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees