JP3693007B2 - Electronic component mounting method - Google Patents

Electronic component mounting method Download PDF

Info

Publication number
JP3693007B2
JP3693007B2 JP2001354518A JP2001354518A JP3693007B2 JP 3693007 B2 JP3693007 B2 JP 3693007B2 JP 2001354518 A JP2001354518 A JP 2001354518A JP 2001354518 A JP2001354518 A JP 2001354518A JP 3693007 B2 JP3693007 B2 JP 3693007B2
Authority
JP
Japan
Prior art keywords
resin
electronic component
substrate
electrode
component mounting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001354518A
Other languages
Japanese (ja)
Other versions
JP2003158154A (en
Inventor
忠彦 境
俊和 松尾
憲 前田
省二 酒見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001354518A priority Critical patent/JP3693007B2/en
Publication of JP2003158154A publication Critical patent/JP2003158154A/en
Application granted granted Critical
Publication of JP3693007B2 publication Critical patent/JP3693007B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11822Applying permanent coating, e.g. in-situ coating by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13563Only on parts of the surface of the core, i.e. partial coating
    • H01L2224/13564Only on the bonding interface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品を基板に実装する電子部品実装方法に関するものである。
【0002】
【従来の技術】
フリップチップなど半導体素子に接続用電極であるバンプが設けられた電子部品の実装方法として、バンプを基板の電極に半田接合する方法が広く用いられている。この実装方法において、バンプと基板との半田接合部を補強する目的で電子部品と基板との間に補強樹脂部を設けることが行われる。この補強樹脂部の形成は、半田接合後に電子部品と基板との間に補強用の樹脂を注入することによって行うか、もしくは電子部品の搭載に先立って実装位置全面に予め補強用樹脂を塗布する方法が用いられていた。
【0003】
後者の場合には、補強用樹脂としてバンプ表面の半田酸化膜を除去する能力を有する活性成分を含む熱硬化性の樹脂が用いられ、電子部品搭載後に基板をリフローにより加熱してバンプと電極とを半田接合するとともに、樹脂を熱硬化させて樹脂補強部を形成するようにしていた。このとき、活性成分を含む樹脂を用いることにより、樹脂がバンプと電極との接合界面に進入しても半田接合を阻害することがなく、半田接合と補強樹脂部形成が同一工程で行え、工程が簡略されるという利点がある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記補強用樹脂を予め塗布する方法では、電子部品と基板との空間が樹脂でほぼ完全に充填されるので、リフロー工程において発生するボイドに起因して電子部品が持ち上げられるという不具合が生じやすい。すなわち、リフローにおいて基板が加熱されると基板に含まれた水分や有機成分がガス化して基板の上面から補強用樹脂内に進入し、内部で空孔状のボイドを形成する。
【0005】
このボイドが温度上昇によって電子部品と基板との間でさらに成長すると電子部品が下方から持ち上げられ、バンプと電極との間に隙間を生じて正常な半田接合が阻害される。このように、補強用樹脂を予め塗布する従来の電子部品実装方法には、基板から発生した気体が補強用樹脂内にボイドを形成することに起因して、実装不良を生じるという問題点があった。
【0006】
そこで本発明は、補強用樹脂を予め塗布して補強樹脂部形成工程を簡略化するとともに、基板から発生した気体に起因する実装不良を防止することができる電子部品実装方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項記載の電子部品実装方法は、電子部品に設けられた接続用電極を基板の電極に半田接合することにより電子部品を基板に実装する電子部品実装方法であって、前記基板の上面に設定された電子部品固着点に熱硬化性の第1の樹脂を供給する第1の樹脂供給工程と、前記電子部品の接続用電極に酸化膜除去能力を有する第2の樹脂を供給する第2の樹脂供給工程と、第2の樹脂供給工程後の前記電子部品を第1の樹脂供給工程後の基板に搭載して前記接続用電極を前記第2の樹脂を介して基板の電極に着地させる部品搭載工程と、部品搭載工程後の基板を加熱することにより接続用電極を前記電極に半田接合するとともに前記第1の樹脂を熱硬化させる加熱工程とを含み、前記第1の樹脂供給工程および第2の樹脂供給工程において部品搭載工程後の基板と電子部品との間に脱気用隙間が確保されるように第1の樹脂および第2の樹脂を供給することにより、前記加熱工程において基板から発生する気体を前記脱気用隙間から外部へ排出する。
【0012】
請求項記載の電子部品実装方法は、請求項記載の電子部品実装方法であって、前記第2の樹脂は熱硬化性樹脂であり、第2の樹脂が熱硬化することにより、電子部品の接続用電極と基板の電極との半田接合部を補強する樹脂補強部が形成される。
【0013】
請求項記載の電子部品実装方法は、請求項記載の電子部品実装方法であって、前記第2の樹脂は、半田接合用のフラックスである。
【0014】
本発明によれば、補強用の熱硬化性樹脂を予め基板上に供給する樹脂供給工程において部品搭載工程後の基板と電子部品との間に脱気用隙間が確保されるように熱硬化性樹脂を供給することにより、加熱工程において基板から発生する気体を脱気用隙間から外部へ排出することができ、基板から発生した気体に起因する実装不良を防止することができる。
【0015】
【発明の実施の形態】
(実施の形態1)
図1、図2は本発明の実施の形態1の電子部品実装方法の工程説明図である。図1(a)において、電子部品1の下面(バンプ形成面)には接続用電極としてのバンプ2が、半田を形成材料として設けられている。図1(a)は、バンプ2に樹脂を塗布するための樹脂供給工程を示しており、電子部品1は樹脂塗布部5上に位置している。樹脂塗布部5は樹脂6の塗膜が形成された樹脂転写容器5aを備えており、樹脂転写容器5aに対して電子部品1を上下動させることにより、バンプ2の下面側に所定量の樹脂6が転写により供給される。樹脂6は、エポキシ樹脂などの熱硬化性樹脂を主成分とする基剤に、酸化膜除去能力を有する活性成分を含有させたものである。
【0016】
この樹脂供給工程における樹脂供給量は、電子部品1が後工程で基板3に搭載された状態で、基板3の上面と電子部品1の下面との間を過度に密封してリフロー時に基板3から放出されるガスの外部への排出を阻害しないよう、かつ樹脂6が熱硬化した後の補強効果が確保されるための下限量以上となるよう、調整される。供給量の調整は、樹脂転写容器5aに形成される樹脂6の塗膜の厚みを調整、もしくは塗膜に対する電子部品1の下降高さを調整することにより行われる。要は、樹脂6がバンプ形成面全面に付着しないようにすればよく、好ましくはバンプ2にのみ樹脂6を付着させる。
【0017】
図1(b)、(c)は、樹脂供給工程後の電子部品1を基板3に搭載する部品搭載工程を示している。ここでは、バンプ2を基板3の上面に形成された電極4に位置合わせして電子部品1を基板3に対して下降させて、バンプ2を樹脂6を介して電極4に着地させる。これにより、バンプ2の下面に転写された樹脂6は電極4に付着しさらに電極4を覆った形で基板3の上面に拡がるが、このとき樹脂6の供給量が上述のように管理されることから、樹脂6は基板3の上面と電子部品1の下面との間を充填するには至らない。
【0018】
次いで基板3はリフロー装置に送られ、ここで図1(d)に示すように部品搭載工程後の基板3を加熱する加熱工程が行われる。この加熱により、バンプ2が溶融して電極4に半田接合される。この半田接合において、バンプ2の表面に生成した酸化膜は酸化膜除去能力を有する樹脂6によって除去されることから、接合性のよい良好な半田接合が行われる。またこのとき樹脂6の熱硬化反応が並行して進行し、バンプ2と電極4との半田接合部を周囲から包み込んで補強する。なお、このリフロー時においては、樹脂6の硬化は完全硬化まで至る必要はなく、半硬化の状態でよい。
【0019】
上記加熱工程において、基板3の内部に含有されていた有機成分や水分が加熱によりガス化して表面から放出されるが、上述のように基板3の上面と電子部品1の下面との間の隙間は樹脂6によって充填された状態とはなっておらず、これらのガス(気体)を外部に排出するための脱気用隙間がバンプとバンプの間に確保されている。このためこれらのガスが樹脂6の内部に気泡状態で閉じこめられることによるボイドが発生してもある程度の大きさまで成長すると脱気用隙間と連通して消滅する。
【0020】
従って、樹脂を電子部品と基板との間に充填した状態で半田接合する従来の電子部品実装においてこのようなボイドに起因して発生していた不具合、すなわち電子部品がボイドによって持ち上げられて、バンプが電極から浮き上がってしまうことによる半田接合不良が発生しない。
【0021】
次にこの加熱工程後の基板3は樹脂封止工程に送られる。なお、この樹脂封止はより高い補強効果を確保するために行われるものであり、求められる補強レベルによっては必ずしも行う必要はない。図2(a)に示すように、電子部品1の下面と基板3の上面の間の隙間には、ディスペンサ7によって補強用樹脂8が注入される。そして図2(b)に示すように、基板3と電子部品1との間を完全に補強用樹脂8によって充填した後、図2(c)に示すように基板3は再度加熱される。この加熱によって補強用樹脂8が熱硬化することにより、電子部品1と基板3との間が樹脂封止される。そしてこの加熱で樹脂6も完全硬化し、バンプ2と電極4との半田接合部の周囲を強固に補強する。
【0022】
上記方法により実現される電子部品実装構造においては、樹脂6中の活性成分の酸化膜除去能力によりバンプ2と電極4との半田接合性が確保される。また半田接合後に樹脂6が熱硬化することにより半田接合部を補強するとともに、基板3と電子部品1との間を封止した補強用樹脂8によって、実装後において基板3と電子部品1との間に発生する熱応力を緩和することができ、信頼性に優れた実装構造が実現される。
【0023】
さらに樹脂6は活性成分を含有していることから、従来の電子部品実装において半田接合に際して必要とされたフラックスの塗布を行う必要がない。そして樹脂6中の活性成分は、熱効果過程において硬化剤として大部分が消費され、また活性成分の残留分も硬化した樹脂中に閉じこめられるため、実装後に回路パターンが活性成分によって腐食するマイグレーションの発生がない。従って、フラックスを用いる従来の方法において必要とされた洗浄処理が不要となる。また前述の樹脂封止工程を省略する場合には、半田接合と補強樹脂部の形成が同一工程で完了することになり、工程の簡略化・低コスト化が実現される。
【0024】
なお、補強用樹脂8を硬化させるための加熱温度は、基板3から新たなガスが発生するのを抑制するために、半田接合時の加熱温度よりも低くすることが望ましいが、半田接合時の加熱で基板3からの脱ガスが十分行われる場合は、半田接合時の加熱温度以上で加熱して硬化させてよい。
【0025】
(実施の形態2)
図3は本発明の実施の形態2の電子部品実装方法の工程説明図である。本実施の形態2は、実施の形態1と同様の電子部品1を基板3に実装するに際し、樹脂6を予め基板3の電極4上に供給するようにしたものである。
【0026】
図3(a)において、基板3の電極4上には実施の形態1に示すものと同様の樹脂6が供給される。この樹脂供給工程における樹脂供給量も、実施の形態1と同様に調整され、電子部品1が後工程で基板に搭載された状態で、基板上面と電子部品1の下面との間を過度に密封してリフロー時に基板3から放出されるガスの外部への排出を阻害しないよう、かつ樹脂6が熱硬化した後の補強効果が確保されるための下限量以上となるよう設定されている。
【0027】
図3(b)、(c)は、樹脂供給工程後の基板3に対して電子部品1を搭載する部品搭載工程を示しており、電子部品1を下降させることによりバンプ2は樹脂6を介して電極4に着地する。これにより、バンプ2の下面に転写された樹脂6は電極4に付着しさらに電極4を覆った形で基板3の上面に拡がるが、このとき樹脂6の供給量が上述のように管理されることから、樹脂6は基板3の上面と電子部品1の下面との間を充填するには至らない。すなわち、バンプとバンプの間には脱気用隙間が確保される。
【0028】
次いで基板3はリフロー装置に送られ、ここで図3(d)に示すように部品搭載工程後の基板3を加熱する加熱工程が行われる。この加熱により、実施の形態1と同様にバンプ2が溶融して電極4に半田接合される。この加熱工程においても実施の形態1と同様に基板3から放出されるガスを外部に排出するための脱気用隙間が確保されてため、このようなボイドに起因する不具合が発生しない。この後、加熱工程後の基板3は実施の形態1と同様に、図2に示す樹脂封止工程に送られ、同様に補強用樹脂8による樹脂封止が行われる。
【0029】
なお、補強用樹脂8を硬化させるための加熱温度は、基板3から新たなガスが発生するのを抑制するために、半田接合時の加熱温度よりも低くすることが望ましいが、半田接合時の加熱で基板3からの脱ガスが十分行われる場合は、半田接合時の加熱温度以上で加熱して硬化させてよい。そしてこのようにして実現される実装構造も、実施の形態1と同様の特性を備えている。
【0030】
(実施の形態3)
図4は本発明の実施の形態3の電子部品実装方法の工程説明図である。本実施の形態3は、実施の形態1、2と同様の電子部品1の基板3への実装において、電子部品1と基板3との間を樹脂封止する代わりに、補強樹脂によって電子部品1と基板3とを局部的に固着させることによって補強効果を得るものである。
【0031】
図4(a)において、基板3の電極4のうち、最外縁に位置する電極4上には予め熱硬化性の補強用樹脂9(第1の樹脂)が供給される(第1の樹脂供給工程)。最外縁の電極4は、電子部品1を基板3に固着させるために基板3の上面に設定された電子部品固着点となっている。また電子部品1のバンプ2には、実施の形態1の図1(a)に示す樹脂供給と同様に、酸化膜除去能力を有する熱硬化性の樹脂6(第2の樹脂)が供給される(第2の樹脂供給工程)。
【0032】
この第1の樹脂供給工程における補強用樹脂9の供給量および第2の樹脂供給工程における樹脂6の供給量も、実施の形態1、2と同様に、電子部品1が後工程で基板3に搭載された状態で、基板3の上面と電子部品1の下面との間を過度に密封してリフロー時に基板3から放出されるガスの外部への排出を阻害しないよう、かつ樹脂6が熱硬化した後の補強効果が確保されるための下限量以上となるよう調整される。
【0033】
図4(b)、(c)は、第1の樹脂供給工程後の基板3に対して第2の樹脂供給工程後の電子部品1を搭載する部品搭載工程を示しており、電子部品1を下降させることによりバンプ2は樹脂6を介して電極4に着地する。このとき下面に樹脂6が塗布されたバンプ2は、最外縁の電極4においては補強用樹脂9中に埋入した状態で電極4に着地する。この搭載状態において、樹脂6、補強用樹脂9の供給量が上述のように管理されることから、樹脂6や補強用樹脂9は基板3の上面と電子部品1の下面との間を充填するには至らない。
【0034】
次いで基板3はリフロー装置に送られ、ここで図4(d)に示すように部品搭載工程後の基板3を加熱する加熱工程が行われる。この加熱により、実施の形態1、2と同様にバンプ2が溶融して電極4に半田接合される。この半田接合とともに樹脂6と補強用樹脂9がともに熱硬化し、熱硬化した樹脂6がバンプ2と電極4との半田接合部を周囲から補強する樹脂補強部が形成されるとともに、熱硬化した補強用樹脂9が電子部品1の本体部を基板3に直接固着する。この加熱工程においても実施の形態1、2と同様に基板3から放出されるガスを外部に排出するための脱気用隙間が確保されてため、このようなボイドに起因する不具合が発生しない。
【0035】
なお、上記実施の形態3において、バンプ2の下面に樹脂6を供給する代わりに、活性作用を有するフラックスを塗布するようにしてもよい。これにより、バンプ2と電極4との半田接合においてバンプ2の酸化膜がフラックスにより除去され、良好な半田接合性が確保される。この例では、バンプ2と電極4との半田接合部を周囲から補強する効果はないが、電子部品1は補強用樹脂9によって基板3に直接固着されていることから、十分な補強強度を有する実装構造となっている。
【0036】
また、上記実施の形態1、2、3において、接続用電極として半田を形成材料とするバンプ2が設けられた電子部品1を対象とした例を示したが、本発明は半田バンプ形式の電極に限定されず、電子部品1と基板3との間に隙間を保った形で半田接合によって実装する形態であれば、その他の形状の接続用電極を用いた場合にあっても本発明を適用することができる。
【0037】
【発明の効果】
本発明によれば、補強用の熱硬化性樹脂を予め基板上に供給する樹脂供給工程において部品搭載工程後の基板と電子部品との間に脱気用隙間が確保されるように熱硬化性樹脂を供給するようにしたので、加熱工程において基板から発生する気体を脱気用隙間から外部へ排出することができ、基板から発生した気体に起因する実装不良を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1の電子部品実装方法の工程説明図
【図2】本発明の実施の形態1の電子部品実装方法の工程説明図
【図3】本発明の実施の形態2の電子部品実装方法の工程説明図
【図4】本発明の実施の形態3の電子部品実装方法の工程説明図
【符号の説明】
1 電子部品
2 バンプ
3 基板
4 電極
6 樹脂
8、9 補強用樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component mounting method for mounting an electronic component on a substrate.
[0002]
[Prior art]
As a mounting method of an electronic component in which a bump as a connection electrode is provided on a semiconductor element such as a flip chip, a method of soldering a bump to an electrode on a substrate is widely used. In this mounting method, a reinforcing resin portion is provided between the electronic component and the substrate for the purpose of reinforcing the solder joint portion between the bump and the substrate. The reinforcing resin portion is formed by injecting a reinforcing resin between the electronic component and the substrate after soldering, or by applying a reinforcing resin in advance to the entire mounting position prior to mounting the electronic component. The method was used.
[0003]
In the latter case, a thermosetting resin containing an active component having the ability to remove the solder oxide film on the bump surface is used as the reinforcing resin, and after mounting the electronic components, the substrate is heated by reflow to form the bumps and electrodes. In addition, the resin is thermally cured and the resin reinforcing portion is formed. At this time, by using a resin containing an active component, even if the resin enters the bonding interface between the bump and the electrode, the solder bonding is not hindered, and the solder bonding and the reinforcing resin portion can be formed in the same process. Has the advantage of being simplified.
[0004]
[Problems to be solved by the invention]
However, in the method of applying the reinforcing resin in advance, since the space between the electronic component and the substrate is almost completely filled with the resin, there is a problem that the electronic component is lifted due to a void generated in the reflow process. Cheap. That is, when the substrate is heated in reflow, moisture and organic components contained in the substrate are gasified and enter the reinforcing resin from the upper surface of the substrate to form void-like voids therein.
[0005]
When the void further grows between the electronic component and the substrate due to the temperature rise, the electronic component is lifted from below, and a gap is formed between the bump and the electrode, thereby preventing normal solder bonding. As described above, the conventional electronic component mounting method in which the reinforcing resin is applied in advance has a problem in that mounting defects occur due to the gas generated from the substrate forming voids in the reinforcing resin. It was.
[0006]
Accordingly, an object of the present invention is to provide an electronic component mounting method that can preliminarily apply a reinforcing resin to simplify the reinforcing resin portion forming process and prevent mounting defects caused by gas generated from a substrate. And
[0011]
[Means for Solving the Problems]
The electronic component mounting method according to claim 1 is an electronic component mounting method for mounting an electronic component on a substrate by soldering a connection electrode provided on the electronic component to an electrode of the substrate, on the upper surface of the substrate. A first resin supplying step of supplying a thermosetting first resin to the set electronic component fixing point, and a second resin supplying a second resin having an oxide film removing capability to the connection electrode of the electronic component The electronic component after the second resin supply step and the electronic component after the second resin supply step are mounted on the substrate after the first resin supply step, and the connection electrode is landed on the electrode of the substrate via the second resin. A component mounting step, and a heating step of soldering the connection electrode to the electrode by heating the substrate after the component mounting step and thermosetting the first resin, the first resin supplying step, Part in the second resin supply process By supplying the first resin and the second resin so as to ensure a degassing gap between the substrate and the electronic component after the mounting process, the gas generated from the substrate in the heating process is degassed. Discharge to the outside through the clearance.
[0012]
The electronic component mounting method according to claim 2 is the electronic component mounting method according to claim 1 , wherein the second resin is a thermosetting resin, and the second resin is thermally cured, whereby the electronic component is mounted. A resin reinforcing portion is formed to reinforce the solder joint between the connecting electrode and the substrate electrode.
[0013]
Electronic component mounting method according to claim 3 is an electronic component mounting method according to claim 1, wherein the second resin is a flux for solder bonding.
[0014]
According to the present invention, in the resin supply process in which the reinforcing thermosetting resin is supplied onto the substrate in advance, the thermosetting property is ensured so that a deaeration gap is ensured between the substrate and the electronic component after the component mounting process. By supplying the resin, the gas generated from the substrate in the heating step can be discharged to the outside through the deaeration gap, and mounting defects due to the gas generated from the substrate can be prevented.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
1 and 2 are process explanatory diagrams of the electronic component mounting method according to the first embodiment of the present invention. In FIG. 1A, bumps 2 as connection electrodes are provided on the lower surface (bump formation surface) of an electronic component 1 with solder as a forming material. FIG. 1A shows a resin supply process for applying a resin to the bump 2, and the electronic component 1 is located on the resin application part 5. The resin application unit 5 includes a resin transfer container 5a on which a coating film of the resin 6 is formed. By moving the electronic component 1 up and down with respect to the resin transfer container 5a, a predetermined amount of resin is formed on the lower surface side of the bump 2. 6 is supplied by transfer. The resin 6 is obtained by adding an active component having an ability to remove an oxide film to a base mainly composed of a thermosetting resin such as an epoxy resin.
[0016]
The resin supply amount in this resin supply process is such that the electronic component 1 is mounted on the substrate 3 in a subsequent process and the space between the upper surface of the substrate 3 and the lower surface of the electronic component 1 is excessively sealed and the substrate 3 is reflowed. Adjustment is made so as not to hinder the discharge of the released gas to the outside and to be equal to or more than the lower limit amount for ensuring the reinforcing effect after the resin 6 is thermally cured. The supply amount is adjusted by adjusting the thickness of the coating film of the resin 6 formed on the resin transfer container 5a or by adjusting the descending height of the electronic component 1 with respect to the coating film. In short, it is sufficient that the resin 6 does not adhere to the entire bump forming surface, and the resin 6 is preferably attached only to the bump 2.
[0017]
FIGS. 1B and 1C show a component mounting process for mounting the electronic component 1 on the substrate 3 after the resin supply process. Here, the bump 2 is aligned with the electrode 4 formed on the upper surface of the substrate 3, the electronic component 1 is lowered with respect to the substrate 3, and the bump 2 is landed on the electrode 4 through the resin 6. Thereby, the resin 6 transferred to the lower surface of the bump 2 adheres to the electrode 4 and further spreads on the upper surface of the substrate 3 so as to cover the electrode 4. At this time, the supply amount of the resin 6 is managed as described above. Therefore, the resin 6 does not fill between the upper surface of the substrate 3 and the lower surface of the electronic component 1.
[0018]
Next, the substrate 3 is sent to a reflow apparatus, where a heating step for heating the substrate 3 after the component mounting step is performed as shown in FIG. By this heating, the bump 2 is melted and soldered to the electrode 4. In this solder bonding, the oxide film formed on the surface of the bump 2 is removed by the resin 6 having an oxide film removing capability, so that good solder bonding with good bondability is performed. At this time, the thermosetting reaction of the resin 6 proceeds in parallel, and the solder joint between the bump 2 and the electrode 4 is wrapped around and reinforced from the periphery. At the time of this reflow, the resin 6 does not need to be completely cured, and may be in a semi-cured state.
[0019]
In the heating step, organic components and moisture contained in the substrate 3 are gasified by heating and released from the surface. As described above, the gap between the upper surface of the substrate 3 and the lower surface of the electronic component 1 Is not filled with the resin 6, and a deaeration gap for discharging these gases to the outside is secured between the bumps. For this reason, even if a void is generated by confining these gases inside the resin 6 in the form of bubbles, if the gas grows to a certain size, it disappears in communication with the deaeration gap.
[0020]
Therefore, in the conventional electronic component mounting in which the resin is soldered between the electronic component and the substrate in a state where it is soldered, a defect occurred due to such a void, that is, the electronic component is lifted by the void, and the bump Does not cause poor solder joints due to floating from the electrodes.
[0021]
Next, the substrate 3 after this heating step is sent to a resin sealing step. In addition, this resin sealing is performed in order to ensure a higher reinforcement effect, and does not necessarily need to be performed depending on the required reinforcement level. As shown in FIG. 2A, the reinforcing resin 8 is injected by the dispenser 7 into the gap between the lower surface of the electronic component 1 and the upper surface of the substrate 3. As shown in FIG. 2B, after the space between the substrate 3 and the electronic component 1 is completely filled with the reinforcing resin 8, the substrate 3 is heated again as shown in FIG. The reinforcing resin 8 is thermally cured by this heating, so that the resin component is sealed between the electronic component 1 and the substrate 3. By this heating, the resin 6 is also completely cured, and the periphery of the solder joint portion between the bump 2 and the electrode 4 is strongly reinforced.
[0022]
In the electronic component mounting structure realized by the above method, the solder bonding property between the bump 2 and the electrode 4 is ensured by the ability of the active component in the resin 6 to remove the oxide film. Further, the resin 6 is thermally cured after the solder bonding, so that the solder joint is reinforced, and the reinforcing resin 8 that seals between the substrate 3 and the electronic component 1 is used to connect the substrate 3 and the electronic component 1 after mounting. Thermal stress generated between them can be relaxed, and a highly reliable mounting structure is realized.
[0023]
Furthermore, since the resin 6 contains an active component, it is not necessary to apply a flux required for solder joining in conventional electronic component mounting. The active component in the resin 6 is mostly consumed as a curing agent in the thermal effect process, and the residual component of the active component is confined in the cured resin, so that the circuit pattern is corroded by the active component after mounting. There is no occurrence. Therefore, the cleaning process required in the conventional method using a flux becomes unnecessary. Further, when the above-described resin sealing step is omitted, the solder bonding and the formation of the reinforcing resin portion are completed in the same step, so that the process can be simplified and the cost can be reduced.
[0024]
Note that the heating temperature for curing the reinforcing resin 8 is preferably lower than the heating temperature at the time of solder bonding in order to suppress the generation of new gas from the substrate 3. When the degassing from the substrate 3 is sufficiently performed by heating, it may be cured by heating at a temperature equal to or higher than the heating temperature at the time of solder bonding.
[0025]
(Embodiment 2)
FIG. 3 is a process explanatory diagram of the electronic component mounting method according to the second embodiment of the present invention. In the second embodiment, when the same electronic component 1 as in the first embodiment is mounted on the substrate 3, the resin 6 is supplied in advance onto the electrodes 4 of the substrate 3.
[0026]
In FIG. 3A, the same resin 6 as that shown in the first embodiment is supplied onto the electrode 4 of the substrate 3. The resin supply amount in this resin supply process is also adjusted in the same manner as in the first embodiment, and the electronic component 1 is mounted on the substrate in a subsequent process, and the space between the upper surface of the substrate and the lower surface of the electronic component 1 is excessively sealed. Thus, the amount of gas released from the substrate 3 during reflow is not hindered to the outside, and is set to be equal to or more than the lower limit for ensuring the reinforcing effect after the resin 6 is thermally cured.
[0027]
FIGS. 3B and 3C show a component mounting process in which the electronic component 1 is mounted on the substrate 3 after the resin supply process, and the bump 2 passes through the resin 6 by lowering the electronic component 1. And land on the electrode 4. Thereby, the resin 6 transferred to the lower surface of the bump 2 adheres to the electrode 4 and further spreads on the upper surface of the substrate 3 so as to cover the electrode 4. At this time, the supply amount of the resin 6 is managed as described above. Therefore, the resin 6 does not fill between the upper surface of the substrate 3 and the lower surface of the electronic component 1. That is, a deaeration gap is secured between the bumps.
[0028]
Next, the substrate 3 is sent to a reflow apparatus, where a heating step for heating the substrate 3 after the component mounting step is performed as shown in FIG. By this heating, the bump 2 is melted and soldered to the electrode 4 as in the first embodiment. Also in this heating step, a deaeration gap for discharging the gas released from the substrate 3 to the outside is ensured as in the first embodiment, so that a problem due to such a void does not occur. Thereafter, the substrate 3 after the heating step is sent to the resin sealing step shown in FIG. 2 similarly to the first embodiment, and the resin sealing with the reinforcing resin 8 is similarly performed.
[0029]
Note that the heating temperature for curing the reinforcing resin 8 is preferably lower than the heating temperature at the time of solder bonding in order to suppress the generation of new gas from the substrate 3. When the degassing from the substrate 3 is sufficiently performed by heating, it may be cured by heating at a temperature equal to or higher than the heating temperature at the time of solder bonding. The mounting structure realized in this way also has the same characteristics as those of the first embodiment.
[0030]
(Embodiment 3)
FIG. 4 is a process explanatory diagram of the electronic component mounting method according to the third embodiment of the present invention. In the third embodiment, in mounting the electronic component 1 on the substrate 3 as in the first and second embodiments, instead of resin-sealing between the electronic component 1 and the substrate 3, the electronic component 1 is made of reinforcing resin. And the substrate 3 are locally fixed to obtain a reinforcing effect.
[0031]
4A, a thermosetting reinforcing resin 9 (first resin) is supplied in advance onto the electrode 4 located on the outermost edge among the electrodes 4 of the substrate 3 (first resin supply). Process). The outermost electrode 4 is an electronic component fixing point set on the upper surface of the substrate 3 in order to fix the electronic component 1 to the substrate 3. Similarly to the resin supply shown in FIG. 1A of the first embodiment, a thermosetting resin 6 (second resin) having an oxide film removal capability is supplied to the bumps 2 of the electronic component 1. (Second resin supply step).
[0032]
Similarly to the first and second embodiments, the supply amount of the reinforcing resin 9 in the first resin supply step and the supply amount of the resin 6 in the second resin supply step are the same as those of the first and second embodiments. In a mounted state, the resin 6 is thermally cured so that the space between the upper surface of the substrate 3 and the lower surface of the electronic component 1 is not excessively sealed to prevent the discharge of gas released from the substrate 3 during reflow. It adjusts so that it may become more than the lower limit amount for ensuring the reinforcement effect after doing.
[0033]
4B and 4C show a component mounting process for mounting the electronic component 1 after the second resin supply process on the substrate 3 after the first resin supply process. By lowering, the bump 2 is landed on the electrode 4 through the resin 6. At this time, the bump 2 having the lower surface coated with the resin 6 lands on the electrode 4 while being embedded in the reinforcing resin 9 in the outermost electrode 4. In this mounted state, since the supply amounts of the resin 6 and the reinforcing resin 9 are managed as described above, the resin 6 and the reinforcing resin 9 fill the space between the upper surface of the substrate 3 and the lower surface of the electronic component 1. It does not lead to.
[0034]
Next, the substrate 3 is sent to a reflow apparatus, where a heating step of heating the substrate 3 after the component mounting step is performed as shown in FIG. By this heating, the bump 2 is melted and soldered to the electrode 4 as in the first and second embodiments. The resin 6 and the reinforcing resin 9 are both thermoset together with the solder bonding, and the thermoset resin 6 forms a resin reinforcing portion that reinforces the solder joint portion between the bump 2 and the electrode 4 from the periphery, and is thermoset. The reinforcing resin 9 directly fixes the main body of the electronic component 1 to the substrate 3. Also in this heating step, a degassing gap for discharging the gas released from the substrate 3 to the outside is ensured as in the first and second embodiments, so that a problem due to such voids does not occur.
[0035]
In the third embodiment, instead of supplying the resin 6 to the lower surface of the bump 2, a flux having an active action may be applied. Thereby, the oxide film of the bump 2 is removed by the flux in the solder joint between the bump 2 and the electrode 4, and a good solder joint property is secured. In this example, there is no effect of reinforcing the solder joint portion between the bump 2 and the electrode 4 from the surroundings, but the electronic component 1 has a sufficient reinforcing strength because it is directly fixed to the substrate 3 by the reinforcing resin 9. It has a mounting structure.
[0036]
Further, in the first, second, and third embodiments, the example in which the electronic component 1 provided with the bump 2 made of solder as the connection electrode is shown, but the present invention is an electrode of the solder bump type. The present invention is not limited to this, and the present invention can be applied even when connection electrodes having other shapes are used as long as they are mounted by solder bonding in a form that maintains a gap between the electronic component 1 and the substrate 3. can do.
[0037]
【The invention's effect】
According to the present invention, in the resin supply process in which the thermosetting resin for reinforcement is supplied onto the substrate in advance, the thermosetting is ensured so that a deaeration gap is secured between the substrate and the electronic component after the component mounting process. Since the resin is supplied, the gas generated from the substrate in the heating process can be discharged to the outside through the deaeration gap, and mounting defects due to the gas generated from the substrate can be prevented.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of an electronic component mounting method according to a first embodiment of the present invention. FIG. 2 is a process explanatory diagram of an electronic component mounting method according to a first embodiment of the present invention. FIG. 4 is a process explanatory diagram of the electronic component mounting method according to the second embodiment of the present invention.
1 Electronic component 2 Bump 3 Substrate 4 Electrode 6 Resin 8, 9 Resin for reinforcement

Claims (3)

電子部品に設けられた接続用電極を基板の電極に半田接合することにより電子部品を基板に実装する電子部品実装方法であって、前記基板の上面に設定された電子部品固着点に熱硬化性の第1の樹脂を供給する第1の樹脂供給工程と、前記電子部品の接続用電極に酸化膜除去能力を有する第2の樹脂を供給する第2の樹脂供給工程と、第2の樹脂供給工程後の前記電子部品を第1の樹脂供給工程後の基板に搭載して前記接続用電極を前記第2の樹脂を介して基板の電極に着地させる部品搭載工程と、部品搭載工程後の基板を加熱することにより接続用電極を前記電極に半田接合するとともに前記第1の樹脂を熱硬化させる加熱工程とを含み、前記第1の樹脂供給工程および第2の樹脂供給工程において部品搭載工程後の基板と電子部品との間に脱気用隙間が確保されるように第1の樹脂および第2の樹脂を供給することにより、前記加熱工程において基板から発生する気体を前記脱気用隙間から外部へ排出することを特徴とする電子部品実装方法。An electronic component mounting method for mounting an electronic component on a substrate by soldering a connection electrode provided on the electronic component to an electrode on the substrate, wherein the electronic component fixing point set on the upper surface of the substrate is thermosetting A first resin supply step of supplying the first resin, a second resin supply step of supplying a second resin having an oxide film removing ability to the connection electrode of the electronic component, and a second resin supply A component mounting step of mounting the electronic component after the process on the substrate after the first resin supply step and landing the connection electrode on the electrode of the substrate through the second resin, and a substrate after the component mounting step A heating step of soldering the connection electrode to the electrode by heating and heat-curing the first resin, and after the component mounting step in the first resin supply step and the second resin supply step Between PCB and electronic components By supplying the first resin and the second resin so as to ensure a deaeration gap, the gas generated from the substrate in the heating step is discharged to the outside from the deaeration gap. Electronic component mounting method. 前記第2の樹脂は熱硬化性樹脂であり、第2の樹脂が熱硬化することにより、電子部品の接続用電極と基板の電極との半田接合部を補強する樹脂補強部が形成されることを特徴とする請求項記載の電子部品実装方法。The second resin is a thermosetting resin, and when the second resin is thermoset, a resin reinforcing portion that reinforces the solder joint between the connection electrode of the electronic component and the electrode of the substrate is formed. The electronic component mounting method according to claim 1 . 前記第2の樹脂は、半田接合用のフラックスであることを特徴とする請求項記載の電子部品実装方法。The second resin, the electronic component mounting method according to claim 1, characterized in that it is a flux for solder bonding.
JP2001354518A 2001-11-20 2001-11-20 Electronic component mounting method Expired - Fee Related JP3693007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001354518A JP3693007B2 (en) 2001-11-20 2001-11-20 Electronic component mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001354518A JP3693007B2 (en) 2001-11-20 2001-11-20 Electronic component mounting method

Publications (2)

Publication Number Publication Date
JP2003158154A JP2003158154A (en) 2003-05-30
JP3693007B2 true JP3693007B2 (en) 2005-09-07

Family

ID=19166369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001354518A Expired - Fee Related JP3693007B2 (en) 2001-11-20 2001-11-20 Electronic component mounting method

Country Status (1)

Country Link
JP (1) JP3693007B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006109407A1 (en) 2005-04-06 2006-10-19 Matsushita Electric Industrial Co., Ltd. Flip chip mounting method and bump forming method
JP5482605B2 (en) * 2010-09-27 2014-05-07 パナソニック株式会社 Electronic component mounting method
WO2012160817A1 (en) * 2011-05-26 2012-11-29 パナソニック株式会社 Method for mounting electronic component, device for mounting electronic component, and system for mounting electronic component
JP6135892B2 (en) * 2012-01-25 2017-05-31 パナソニックIpマネジメント株式会社 Electronic component mounting method and electronic component mounting line
JP6135891B2 (en) * 2012-01-25 2017-05-31 パナソニックIpマネジメント株式会社 Electronic component mounting method and electronic component mounting line
JP6130417B2 (en) * 2015-02-26 2017-05-17 株式会社タムラ製作所 Electronic component joining method, and solder composition and pretreatment agent used in the method
JP6130422B2 (en) * 2015-03-24 2017-05-17 株式会社タムラ製作所 Electronic component joining method, and solder composition and pretreatment agent used in the method
JP6883728B2 (en) * 2016-12-21 2021-06-09 パナソニックIpマネジメント株式会社 Electronic component mounting device and electronic component mounting method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08288638A (en) * 1995-04-11 1996-11-01 Toshiba Corp Method for soldering semiconductor device
JP3839579B2 (en) * 1998-03-19 2006-11-01 株式会社住友金属エレクトロデバイス Chip mounting method
JP2001007158A (en) * 1999-06-25 2001-01-12 Fujitsu Ltd Method of joining solder bump, and solder bump joining body
JP2001284382A (en) * 2000-03-28 2001-10-12 Nec Corp Solder bump forming method, flip-chip mounting method and mounting structure
JP3836349B2 (en) * 2001-09-27 2006-10-25 株式会社東芝 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2003158154A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
JP3367886B2 (en) Electronic circuit device
US8809122B2 (en) Method of manufacturing flip chip package
JP2012079876A (en) Method of manufacturing electronic device, and electronic device
KR20070067007A (en) Semiconductor device
JP3693007B2 (en) Electronic component mounting method
JP3608536B2 (en) Electronic component mounting method
JP2007059767A (en) Substrate with electronic component mounted thereon employing underfill material and its manufacturing method
US20060079029A1 (en) Flexible circuit board processing method
JP2006351559A (en) Wiring board and structure for mounting semiconductor chip on wiring board
JP2008277823A (en) Flip-chip package and manufacturing method for the same
JP2005340448A (en) Semiconductor device, its manufacturing method, circuit board, and electronic apparatus
JP3708478B2 (en) Electronic component mounting method
JP4200273B2 (en) Mounting board manufacturing method
JP2005340450A (en) Semiconductor device, its manufacturing method, circuit board, and electronic apparatus
JP3890814B2 (en) Electronic component mounting method
KR20120062434A (en) Semiconductor package and method for manufacturing the same
JP4381795B2 (en) Electronic component mounting method
JP3417281B2 (en) How to mount electronic components with bumps
JP3646500B2 (en) Electronic circuit equipment
JPH0831871A (en) Interface sealing film used for surface mount electronic device and surface mount structure
JP3722096B2 (en) Mounting board manufacturing method
JPH11274235A (en) Semiconductor device and producing method therefor
JP3894095B2 (en) Electronic component mounting method
JP2001085471A (en) Method of mounting electronic component
JPH11345918A (en) Method for mounting semiconductor device and mounted body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees