JP3722096B2 - Mounting board manufacturing method - Google Patents

Mounting board manufacturing method Download PDF

Info

Publication number
JP3722096B2
JP3722096B2 JP2002203810A JP2002203810A JP3722096B2 JP 3722096 B2 JP3722096 B2 JP 3722096B2 JP 2002203810 A JP2002203810 A JP 2002203810A JP 2002203810 A JP2002203810 A JP 2002203810A JP 3722096 B2 JP3722096 B2 JP 3722096B2
Authority
JP
Japan
Prior art keywords
mounting
substrate
electrode
solder
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002203810A
Other languages
Japanese (ja)
Other versions
JP2004047774A (en
Inventor
俊和 松尾
忠彦 境
憲 前田
誠一 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002203810A priority Critical patent/JP3722096B2/en
Publication of JP2004047774A publication Critical patent/JP2004047774A/en
Application granted granted Critical
Publication of JP3722096B2 publication Critical patent/JP3722096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a mounted substrate capable of preventing mounting-related defects due to voids inside the active resin adhesive in the manufacturing of a double-sided substrate wherein an active resin adhesive is used. <P>SOLUTION: In this method for manufacturing a mounted substrate wherein the first side and the second side of a substrate are mounted with electronic components, respectively, a soldering paste containing an active thermosetting resin having a thermosetting temperature T3 which is higher than a solder melting point T2 is applied, but only to the second side to be processed at a later stage. This active soldering paste is heated only in a second reflow for the second side, and this prevents mounting-related defects due to voids inside the active resin adhesive. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品を基板に実装して実装基板を製造する実装基板の製造方法に関するものである。
【0002】
【従来の技術】
半導体チップなどの電子部品の実装方法として、半田接合による方法が広く用いられている。この半田接合の方式として、熱硬化性の樹脂接着材を部品搭載前に予め基板の電極上に塗布する方法が採用されるようになっている。この方法では、電子部品の半田バンプを電極上に着地させた後に基板を加熱することにより、半田バンプと電極との半田接合と樹脂接着材の熱硬化とを同一加熱工程にて行う。この方法によれば、補強用のアンダーフィル樹脂形成工程を独立した工程として設ける必要がないという利点を有している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記樹脂接着材を用いた電子部品の実装方式を、表裏両面に電子部品が実装される両面実装基板に対して適用する場合においては、以下に説明するような不都合が生じる場合があった。上述のように、この実装方式では、半田バンプと電極との半田接合と樹脂接着材の熱硬化を同一加熱工程にて行うようにしているため、両面実装において先に実装が行われた第1面上の電子部品については、第1面側を対象とした第1加熱工程において樹脂が加熱された後、第2面側を対象とした第2加熱工程において再度加熱される。
【0004】
このとき、第1面側の電子部品の樹脂接着材の内部に、第1加熱工程において基板から発生したガスによってボイドが形成されている場合には、このボイドが再加熱されることによる不具合が生じやすい。例えば、ボイド中のガスが再加熱によって膨張することによる樹脂の剥離や、ボイドが接合部に近接して生じている場合に、接合部の半田が再加熱時に溶融してこのボイド内に流入する結果接合部の導通不良などが生じることがある。そしてこのような不具合によって、実装品質の低下を招く場合があった。
【0005】
そこで本発明は、樹脂接着材を用いて両面実装基板を対象として行われる実装基板の製造において、樹脂接着材内部のボイドに起因して生じる実装不具合を防止することができる実装基板の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の実装基板の製造方法は、基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、部品実装工程において先に実装対象となる第1面に、熱硬化性樹脂を含まない半田接合用ペーストを供給する第1ペースト供給工程と、ペースト供給後の第1面に電子部品を搭載して電子部品の接続用電極を第1面に設けられた第1電極に着地させる第1搭載工程と、第1搭載工程後の前記基板を加熱して前記接続用電極を前記第1電極に半田接合する第1加熱工程と、第1面の実装が完了した基板の第2面に前記熱硬化性樹脂を含む半田接合用ペーストを供給する第2ペースト供給工程と、ペースト供給後の第2面に電子部品を搭載して電子部品の接続用電極を第2面に設けられた第2電極に着地させる第2搭載工程と、第2搭載工程後の前記基板を加熱して前記接続用電極もしくは前記第2電極に予め供給された接合用半田部を溶融させて接続用電極を第2電極に半田接合するとともに前記熱硬化性樹脂の熱硬化を開始させる第2加熱工程とを含む。
【0007】
請求項2記載の実装基板の製造方法は、請求項1記載の実装基板の製造方法であって、前記第1加熱工程において、前記第2加熱工程における加熱温度以上まで基板を昇温させる。
【0008】
請求項3記載の実装基板の製造方法は、請求項1記載の実装基板の製造方法であって、部品実装工程において後に実装対象となる前記第2面を、熱硬化性樹脂を含む半田接合用ペーストが供給される第2ペースト供給面として予め設定しておき、基板設計時の電子部品配置において、前記熱硬化性樹脂を用いた実装方式が適用される電子部品を優先的に第2面に配置する。
【0009】
請求項4記載の実装基板の製造方法は、請求項1記載の実装基板の製造方法であって、前記基板の第1面と第2面の表裏各面にそれぞれ実装される電子部品の種類と数量を対比し、熱硬化性樹脂を用いた実装方式が適用可能な電子部品の割合が多い方の面を、部品実装工程において後に実装対象となる第2面に設定する。
【0010】
本発明によれば、後に実装対象となる第2面のみに熱硬化性樹脂を種類として含む半田接合用ペーストを供給し、この半田接合用ペーストの加熱を第2面を対象とする第2加熱工程の1回のみに限定することにより、樹脂接着材内部のボイドに起因して生じる実装不具合を防止することができる。
【0011】
【発明の実施の形態】
次に本発明の実施の形態を図面を参照して説明する。図1、図2は本発明の一実施の形態の実装基板の製造方法の工程説明図、図3は本発明の一実施の形態の実装基板の製造方法におけるリフロー工程の温度プロファイルを示すグラフである。本実施の形態では、両面に電極が形成された基板に電子部品を半田接合により実装して実装基板を製造する工程を示している。
【0012】
図1(a)において、1は両面実装用の基板であり、基板1の第1面1a(図1において上面)および第1面の裏側の第2面1b(図1において下面)には、それぞれ第1電極としての電極2,第2電極としての電極3が形成されている。第1面1aは、基板1の表裏両面に電子部品を実装して実装基板を製造する過程において、先に実装対象となる面である。
【0013】
図1(a)に示すように、第1面1aに形成された第1電極である電極2上には、半田接合用ペーストであるクリーム半田4が印刷により供給される(第1ペースト供給工程)。クリーム半田4は、ペースト状のフラックス中に半田粒子を含有させたものであり、半田接合のみを目的とした接合材料であることから、後述する樹脂接着材6に含まれるような熱硬化性性樹脂を含まない構成となっている。
【0014】
次いで図1(b)に示すように、クリーム半田供給後の第1面1aには、両端部に接続用電極としての端子5aが設けられた電子部品5が搭載され(第1搭載工程)、これにより端子5aがクリーム半田4を介して電極上に着地する。そしてこの後、基板1は第1面1aを対象とした第2面リフローのためにリフロー工程に送られ。ここで所定の加熱プロファイルにしたがって加熱される(第1加熱工程)。
【0015】
この第1面リフローにおける加熱プロファイルについて、図3を参照して説明する。加熱が開始されると、基板1は半田融点温度T2よりも低い予熱温度T1まで加熱され、この温度で所定時間保持される。そして予熱の後、温度がさらに上昇して半田融点温度T2を超えることにより、クリーム半田4中の半田成分が溶融しこの溶融半田を介して端子5aが電極2の上面に半田接合される。半田融点温度は、Sn/Pb系の半田では183℃,Sn/Ag系では220℃である。この半田接合において、端子5aの表面に生成した酸化膜はクリーム半田4中のフラックス成分によって除去されることから、良好な接合性が確保される。
【0016】
この後、加熱温度はさらに上昇し、耐熱温度T4(約250℃)よりも低い温度に設定される最高加熱温度Taに到達する。そして所定時間この温度を保持した後、温度は徐々に下降する。ここで最高加熱温度Taを、後述する第2面リフローにおける最高加熱温度Tbよりも高く設定すると、第1面リフロー時の加熱によって、基板1内に含まれている水分や有機ガスを、極力基板表面から放出できるので好ましい。この場合、最高加熱温度Taは230℃〜240℃程度となる。なお、第1面リフロー時は、電子部品5の下面にはガスが通過する空間があるので、樹脂接着材内部のボイドに起因する実装不具合は生じない。
【0017】
この第1面1aへの実装に引き続き、第2面1bを対象とした実装が行われる。すなわち、図2(a)に示すように、第2面1bの電極3の周囲には、半田接合用ペーストである樹脂接着材6がディスペンサ7によって電極3を覆って供給される(第2ペースト供給工程)。樹脂接着材6は、エポキシ樹脂などの熱硬化性樹脂を主成分とする基剤に、酸化膜除去能力を有する活性成分を含有させることにより、電子部品の下面を封止して補強する接着機能に加えて、半田接合時に半田表面の酸化膜を除去して半田接合性を向上させるフラックスとしての機能を兼ねさせたものである。この樹脂接着材6は、含有する活性成分によって半田バンプ表面の酸化膜を除去することから別途フラックスを塗布する必要がなく、フラックスを用いた従来方法において必要とされたリフロー後の洗浄工程を省略できるという利点を有している。
【0018】
ここでは、基剤の熱硬化温度として、実装に使用される半田の融点温度よりも高い熱硬化温度を有するものを用いている。なお、本実施の形態でいう熱硬化温度とは、樹脂材料の硬化反応の測定に使用される示差走査熱量測定(DSC)により求められた温度である。すなわち、10mgの試料を昇温レートが10℃/分の条件で加熱する過程において得られる熱量と温度との関係を、縦軸に熱量、横軸に温度をとってプロットしてグラフ化すると山形の曲線が形成される。そしてこの山形の曲線の高温側の斜面における変曲点から接線を引き、この接線が横軸が交わる温度を求めて熱硬化温度とする。
【0019】
次いで図2(c)に示すように、樹脂接着材供給後の第2面1bには、下面に接続用電極としての半田バンプ9が設けられた電子部品8が搭載され(第2搭載工程)、これにより半田バンプ9は樹脂接着材6を介して電極3上に着地する。この際、電子部品8の下面は樹脂接着材6によりほぼ完全に充填される。そしてこの後、基板1は第2面1bを対象とした第2面リフローのためにリフロー工程に送られここで所定の加熱プロファイルにしたがって加熱される(第2加熱工程)。
【0020】
この第2面リフローにおける加熱プロファイルは、図3に示すように第1面リフローとほぼ同様であり、温度が上昇して半田融点温度T2を超えることにより、半田バンプ9が溶融しこの溶融半田を介して端子5aが電極3と半田接合される。ここでは半田バンプ9が、電子部品8を基板1と接続する接続用電極であるとともに、この接続用電極に供給される接合用半田部とを兼ねたものとなっている。この半田接合において、電極3の表面に第1リフロー時の加熱によって酸化膜が生成されている場合においても、樹脂接着材6中の活性成分によって酸化膜が除去され、良好な半田接合性が確保される。
【0021】
この後、加熱温度はさらに上昇し、熱硬化温度T3よりも高く耐熱温度T4よりも低い温度に設定される最高加熱温度Tbに到達する。そして所定時間この温度を保持した後、温度は徐々に下降する。ここで最高加熱温度Tbは、前述のように第1面リフローにおける最高加熱温度Taよりも低くなっている。
【0022】
またこの加熱により、樹脂接着材6の熱硬化反応が並行して進行するが、樹脂接着材6の熱硬化温度T3は、半田バンプ9の半田融点温度T2よりも高いことから、半田バンプ9が溶融した溶融半田が電極2の表面を濡らす際には樹脂接着材6はまだ熱硬化を開始していない状態にある。したがって樹脂接着材6中における溶融半田の流動が確保され、半田バンプ9と電極3とのセルフアライメントが阻害されることがない。
【0023】
そして溶融半田が電極3と接合された後、加熱が継続されて温度が上昇する。次いで熱硬化温度T3を超えて最高加熱温度Tまで昇温し、この温度が所定時間保持された後に降温過程に移行する。この加熱過程において、温度が熱硬化温度T3以上に保持される時間tの間、樹脂接着材6の熱硬化が急速に進行する。これにより、第面1への電子部品5の実装が終了する。
【0024】
上記第2面リフローにおいて、上述のように既に第1面リフローによって高温で加熱されていることから、基板1の内部に含有されていた有機成分や水分は大部分が加熱によりガス化して表面から放出されており、樹脂接着材6中にこれらのガスが閉じこめられることによるボイドの発生が少ない。またボイドが発生した場合にあっても、樹脂接着材6がこの後さらに高温に加熱されることがないことから、ボイドが再加熱されることによって発生する不具合、例えば、ボイド中のガスが再加熱によって膨張することによる樹脂の剥離や、ボイドが接合部に近接して生じている場合に接合部の半田が再加熱時に溶融してこのボイド内に流入する結果生じる接合部の導通不良などの発生がない。
【0025】
上記実施の形態に示す実装基板の製造方法は、生産においては次に示すような2通りの態様で適用される。第1の態様は、両面に電子部品が実装される実装基板の設計段階において、実装対象となる電子部品への前述の樹脂接着材4の適用可否を考慮した上で、電子部品の第1面、第2面への振り分けを決定するものである。
【0026】
すなわち、基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板を設計する際には、部品実装工程において後に実装対象となる第2面を、前述の樹脂接着材6を含む半田接合用ペーストが供給される第2ペースト供給面として予め設定する。そして、基板設計時の電子部品配置において、熱硬化性樹脂を用いた実装方式が適用される電子部品を優先的に第2面に配置する。基板設計時にこのような方針で電子部品配置を行うことにより、後に実装対象となる第2面に樹脂接着材6を用いる電子部品が集中して配置される。したがって使用された樹脂接着材6が2回の熱硬化過程を経る事態が発生しない。
【0027】
これに対し、基板設計過程において上述のような考慮がなされていない基板については、以下のような取り扱いがなされる。まず、両面実装基板の電子部品配置が提示されたならば、基板の表裏各面にそれぞれ実装される電子部品の種類と数量を対比する。そして樹脂接着材6を用いた実装方式が適用可能な電子部品の割合が多い方の面を、部品実装工程において後に実装対象となる第2面に設定し、このような電子部品には樹脂接着材6を用いた実装方式を適用する。
【0028】
そして第2面のその他の電子部品および第1面の電子部品には全てクリーム半田を用いた実装方法など、樹脂接着材6を用いない実装方法を適用する。これにより、後に実装対象となる第2面にのみ、樹脂接着材6を用いる電子部品が配置され、したがって使用された樹脂接着材6が2回の熱硬化過程を経る事態が発生しない。
【0029】
【発明の効果】
本発明によれば、後に実装対象となる第2面のみに半田の酸化膜を除去する活性作用を有し熱硬化性樹脂を種類として含む半田接合用ペーストを供給し、この半田接合用ペーストの加熱を、第2面を対象とする第2加熱工程の1回のみに限定するようにしたので、樹脂接着材内部のボイドに起因して生じる実装不具合を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の実装基板の製造方法の工程説明図
【図2】本発明の一実施の形態の実装基板の製造方法の工程説明図
【図3】本発明の一実施の形態の実装基板の製造方法におけるリフロー工程の温度プロファイルを示すグラフ
【符号の説明】
1 基板
1a 第1面
1b 第2面
2、3 電極
4 クリーム半田
5 電子部品
5a 端子
6 樹脂接着材
8 電子部品
9 半田バンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mounting board manufacturing method for manufacturing a mounting board by mounting electronic components on the board.
[0002]
[Prior art]
As a method for mounting an electronic component such as a semiconductor chip, a solder bonding method is widely used. As a soldering method, a method in which a thermosetting resin adhesive is applied on the electrodes of the substrate in advance before mounting the components is adopted. In this method, the solder bump of the electronic component is landed on the electrode and then the substrate is heated, so that the solder bonding between the solder bump and the electrode and the thermosetting of the resin adhesive are performed in the same heating process. This method has an advantage that it is not necessary to provide the reinforcing underfill resin forming step as an independent step.
[0003]
[Problems to be solved by the invention]
However, in the case where the electronic component mounting method using the resin adhesive is applied to a double-sided mounting board on which electronic components are mounted on both the front and back surfaces, there may be inconveniences as described below. . As described above, in this mounting method, the solder bonding between the solder bump and the electrode and the thermosetting of the resin adhesive are performed in the same heating process. The electronic component on the surface is heated again in the second heating step for the second surface side after the resin is heated in the first heating step for the first surface side.
[0004]
At this time, when a void is formed inside the resin adhesive of the electronic component on the first surface side by the gas generated from the substrate in the first heating step, there is a problem that the void is reheated. Prone to occur. For example, when the gas in the void is peeled off due to expansion by reheating, or when the void is generated close to the joint, the solder in the joint melts during reheating and flows into the void. As a result, poor conduction at the junction may occur. In addition, due to such a problem, there is a case where the mounting quality is deteriorated.
[0005]
Therefore, the present invention provides a mounting substrate manufacturing method capable of preventing a mounting defect caused by a void inside the resin adhesive in manufacturing a mounting substrate performed on a double-sided mounting substrate using a resin adhesive. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The method of manufacturing a mounting board according to claim 1 is a manufacturing method of a mounting board for manufacturing a mounting board in which electronic components are respectively mounted on a first surface of the substrate and a second surface on the back side of the first surface. A first paste supplying step of supplying a solder bonding paste not including a thermosetting resin to the first surface to be mounted first in the mounting step, and mounting an electronic component on the first surface after supplying the paste A first mounting step for landing a connection electrode for a component on the first electrode provided on the first surface, and heating the substrate after the first mounting step to solder the connection electrode to the first electrode A first heating step, a second paste supplying step of supplying a solder bonding paste containing the thermosetting resin to the second surface of the substrate on which mounting of the first surface is completed, and electrons on the second surface after supplying the paste A component is mounted and the connection electrode for the electronic component is provided on the second surface. A second mounting step for landing on the second electrode, and the substrate after the second mounting step is heated to melt the connection electrode or the bonding solder portion supplied in advance to the second electrode. And a second heating step for starting thermosetting of the thermosetting resin.
[0007]
A mounting substrate manufacturing method according to a second aspect is the mounting substrate manufacturing method according to the first aspect, wherein, in the first heating step, the substrate is heated to a temperature equal to or higher than a heating temperature in the second heating step.
[0008]
The mounting board manufacturing method according to claim 3 is the mounting board manufacturing method according to claim 1, wherein the second surface to be mounted later in the component mounting process is for solder bonding including a thermosetting resin. The second paste supply surface to which the paste is supplied is set in advance, and the electronic component to which the mounting method using the thermosetting resin is applied is preferentially used as the second surface in the electronic component arrangement at the time of board design. Deploy.
[0009]
The mounting substrate manufacturing method according to claim 4 is the mounting substrate manufacturing method according to claim 1 , wherein the types of electronic components respectively mounted on the front and back surfaces of the first surface and the second surface of the substrate are as follows: The surface where the proportion of electronic components to which the mounting method using the thermosetting resin can be applied is compared is set as the second surface to be mounted later in the component mounting process.
[0010]
According to the present invention, the solder bonding paste containing the thermosetting resin as a kind is supplied only to the second surface to be mounted later, and the heating of the solder bonding paste is performed for the second surface. By limiting to only one step, it is possible to prevent a mounting failure caused by a void inside the resin adhesive.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIGS. 1 and 2 are process explanatory views of a mounting substrate manufacturing method according to an embodiment of the present invention, and FIG. 3 is a graph showing a temperature profile of a reflow process in the mounting substrate manufacturing method according to an embodiment of the present invention. is there. In this embodiment, a process of manufacturing a mounting substrate by mounting electronic components on a substrate having electrodes formed on both sides by solder bonding is shown.
[0012]
In FIG. 1A, reference numeral 1 denotes a substrate for double-sided mounting. On the first surface 1a (upper surface in FIG. 1) of the substrate 1 and the second surface 1b on the back side of the first surface (lower surface in FIG. 1), An electrode 2 as a first electrode and an electrode 3 as a second electrode are formed. The first surface 1a is a surface to be mounted first in the process of manufacturing a mounting substrate by mounting electronic components on both front and back surfaces of the substrate 1.
[0013]
As shown in FIG. 1A, a cream solder 4 as a solder bonding paste is supplied by printing on an electrode 2 as a first electrode formed on the first surface 1a (first paste supplying step). ). The cream solder 4 contains solder particles in a paste-like flux and is a bonding material intended only for solder bonding. Therefore, the thermosetting property as included in the resin adhesive 6 described later is used. The resin is not included.
[0014]
Next, as shown in FIG. 1 (b), on the first surface 1a after the supply of the cream solder, electronic components 5 having terminals 5a as connection electrodes provided on both ends are mounted (first mounting step). As a result, the terminal 5 a is landed on the electrode 2 via the cream solder 4. Thereafter, the substrate 1 is sent to the reflow process for the second surface reflow intended for the first surface 1a. Here, heating is performed according to a predetermined heating profile (first heating step).
[0015]
The heating profile in the first surface reflow will be described with reference to FIG. When heating is started, the substrate 1 is heated to a preheating temperature T1 lower than the solder melting point temperature T2, and held at this temperature for a predetermined time. Then, after preheating, when the temperature further rises and exceeds the solder melting point temperature T2, the solder component in the cream solder 4 is melted, and the terminal 5a is soldered to the upper surface of the electrode 2 through the molten solder. The solder melting point temperature is 183 ° C. for Sn / Pb solder and 220 ° C. for Sn / Ag solder. In this solder bonding, since the oxide film formed on the surface of the terminal 5a is removed by the flux component in the cream solder 4, good bonding properties are ensured.
[0016]
Thereafter, the heating temperature further rises and reaches a maximum heating temperature Ta set to a temperature lower than the heat resistant temperature T4 (about 250 ° C.). After maintaining this temperature for a predetermined time, the temperature gradually decreases. Here, when the maximum heating temperature Ta is set higher than the maximum heating temperature Tb in the second surface reflow described later, moisture and organic gas contained in the substrate 1 are reduced as much as possible by heating during the first surface reflow. It is preferable because it can be released from the surface. In this case, the maximum heating temperature Ta is about 230 ° C to 240 ° C. When the first surface is reflowed, there is a space through which gas passes on the lower surface of the electronic component 5, so that mounting defects due to voids inside the resin adhesive do not occur.
[0017]
Subsequent to mounting on the first surface 1a, mounting on the second surface 1b is performed. That is, as shown in FIG. 2A, around the electrode 3 on the second surface 1b, a resin adhesive 6 that is a solder bonding paste is supplied so as to cover the electrode 3 by the dispenser 7 (second paste). Supply process). The resin adhesive 6 is an adhesive function that seals and reinforces the lower surface of an electronic component by containing an active component having an oxide film removing ability in a base material mainly composed of a thermosetting resin such as an epoxy resin. In addition to this, the oxide film on the surface of the solder is removed at the time of soldering to serve as a flux that improves solderability. Since the resin adhesive 6 removes the oxide film on the surface of the solder bump by the active component contained therein, it is not necessary to apply a separate flux, and the cleaning process after reflow required in the conventional method using the flux is omitted. It has the advantage of being able to.
[0018]
Here, the base has a thermosetting temperature higher than the melting point of the solder used for mounting. In addition, the thermosetting temperature as used in this Embodiment is the temperature calculated | required by the differential scanning calorimetry (DSC) used for the measurement of the hardening reaction of a resin material. That is, if the relationship between the amount of heat and temperature obtained in the process of heating a 10 mg sample at a temperature rising rate of 10 ° C./min is plotted and plotted with the amount of heat on the vertical axis and the temperature on the horizontal axis, Is formed. Then, a tangent line is drawn from the inflection point on the slope on the high temperature side of this mountain-shaped curve, and the temperature at which this tangent line intersects the horizontal axis is determined as the thermosetting temperature.
[0019]
Next, as shown in FIG. 2C, an electronic component 8 having a solder bump 9 as a connection electrode provided on the lower surface is mounted on the second surface 1b after the resin adhesive is supplied (second mounting step). Thus, the solder bump 9 is landed on the electrode 3 through the resin adhesive 6. At this time, the lower surface of the electronic component 8 is almost completely filled with the resin adhesive 6. And after this, the substrate 1 is sent to the reflow process for the second surface reflow intended for the second surface 1b, wherein the heating according to a predetermined heating profile are (second heating step).
[0020]
The heating profile in the second surface reflow is substantially the same as that in the first surface reflow as shown in FIG. 3. When the temperature rises and exceeds the solder melting point temperature T2, the solder bump 9 is melted and the molten solder is removed. The terminal 5a is solder-bonded to the electrode 3 through the via. Here, the solder bumps 9 serve as connection electrodes for connecting the electronic component 8 to the substrate 1 and also serve as bonding solder portions supplied to the connection electrodes. In this solder bonding, even when an oxide film is generated on the surface of the electrode 3 by heating at the time of the first reflow, the oxide film is removed by the active component in the resin adhesive 6 to ensure good solderability. Is done.
[0021]
Thereafter, the heating temperature further rises and reaches a maximum heating temperature Tb set to a temperature higher than the thermosetting temperature T3 and lower than the heat-resistant temperature T4. After maintaining this temperature for a predetermined time, the temperature gradually decreases. Here, the maximum heating temperature Tb is lower than the maximum heating temperature Ta in the first surface reflow as described above.
[0022]
Further, this heating causes the thermosetting reaction of the resin adhesive 6 to proceed in parallel. However, since the thermosetting temperature T3 of the resin adhesive 6 is higher than the solder melting temperature T2 of the solder bump 9, the solder bump 9 When the molten solder that has melted wets the surface of the electrode 2, the resin adhesive 6 has not yet started thermosetting. Therefore, the flow of the molten solder in the resin adhesive 6 is ensured, and the self-alignment between the solder bump 9 and the electrode 3 is not hindered.
[0023]
Then, after the molten solder is joined to the electrode 3, the heating is continued and the temperature rises. Then the temperature was raised to a maximum heating temperature T b exceeds the thermosetting temperature T3, the process proceeds to temperature lowering process after the temperature has been maintained for a predetermined time. In this heating process, the thermosetting of the resin adhesive 6 proceeds rapidly during the time t during which the temperature is maintained at the thermosetting temperature T3 or higher. Thereby, mounting of the electronic component 5 on the second surface 1 b is completed.
[0024]
In the second surface reflow, since it has already been heated at a high temperature by the first surface reflow as described above, most of the organic components and moisture contained in the substrate 1 are gasified by heating from the surface. It is discharged, and the generation of voids due to the confinement of these gases in the resin adhesive 6 is small. In addition, even when a void is generated, the resin adhesive 6 is not further heated to a higher temperature thereafter, so that a problem that occurs when the void is reheated, for example, the gas in the void is regenerated. Such as peeling of resin due to expansion due to heating, and poor conduction of the joint resulting from melting the solder at the time of reheating when voids are generated in the vicinity of the joint. There is no occurrence.
[0025]
The manufacturing method of the mounting substrate described in the above embodiment is applied in the following two ways in production. In the first aspect, in the design stage of the mounting substrate on which the electronic components are mounted on both sides, the first surface of the electronic component is taken into consideration in consideration of the applicability of the resin adhesive 4 to the electronic component to be mounted. The distribution to the second surface is determined.
[0026]
That is, when designing a mounting board for manufacturing a mounting board in which electronic components are mounted on the first surface of the substrate and the second surface on the back side of the first surface, the second target to be mounted later in the component mounting process. The surface is set in advance as a second paste supply surface to which the soldering paste including the resin adhesive 6 is supplied. And in the electronic component arrangement | positioning at the time of board design, the electronic component to which the mounting system using a thermosetting resin is applied is preferentially arrange | positioned on a 2nd surface. By arranging electronic components according to such a policy at the time of designing the board, electronic components using the resin adhesive 6 are concentratedly arranged on the second surface to be mounted later. Therefore, the situation where the used resin adhesive 6 goes through two thermosetting processes does not occur.
[0027]
On the other hand, the following handling is performed about the board | substrate which is not considered as mentioned above in the board | substrate design process. First, when the electronic component arrangement of the double-sided mounting board is presented, the type and quantity of the electronic parts mounted on the front and back surfaces of the board are compared. Then, the surface with the higher proportion of electronic components to which the mounting method using the resin adhesive 6 can be applied is set as a second surface to be mounted later in the component mounting process, and the resin bonding is performed on such electronic components. A mounting method using the material 6 is applied.
[0028]
A mounting method that does not use the resin adhesive 6 such as a mounting method using cream solder is applied to the other electronic components on the second surface and the electronic components on the first surface. As a result, the electronic component using the resin adhesive 6 is disposed only on the second surface to be mounted later, and thus the situation where the used resin adhesive 6 undergoes two thermosetting processes does not occur.
[0029]
【The invention's effect】
According to the present invention, a solder bonding paste having an active action of removing a solder oxide film only on a second surface to be mounted later and including a thermosetting resin as a type is supplied. Since the heating is limited to one time of the second heating process for the second surface, mounting defects caused by voids inside the resin adhesive can be prevented.
[Brief description of the drawings]
FIG. 1 is a process explanatory diagram of a mounting substrate manufacturing method according to an embodiment of the present invention. FIG. 2 is a process explanatory diagram of a mounting substrate manufacturing method according to an embodiment of the present invention. Graph showing temperature profile of reflow process in manufacturing method of mounting substrate of embodiment
DESCRIPTION OF SYMBOLS 1 Board | substrate 1a 1st surface 1b 2nd surface 2, 3 Electrode 4 Cream solder 5 Electronic component 5a Terminal 6 Resin adhesive 8 Electronic component 9 Solder bump

Claims (4)

基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、部品実装工程において先に実装対象となる第1面に、熱硬化性樹脂を含まない半田接合用ペーストを供給する第1ペースト供給工程と、ペースト供給後の第1面に電子部品を搭載して電子部品の接続用電極を第1面に設けられた第1電極に着地させる第1搭載工程と、第1搭載工程後の前記基板を加熱して前記接続用電極を前記第1電極に半田接合する第1加熱工程と、第1面の実装が完了した基板の第2面に前記熱硬化性樹脂を含む半田接合用ペーストを供給する第2ペースト供給工程と、ペースト供給後の第2面に電子部品を搭載して電子部品の接続用電極を第2面に設けられた第2電極に着地させる第2搭載工程と、第2搭載工程後の前記基板を加熱して前記接続用電極もしくは前記第2電極に予め供給された接合用半田部を溶融させて接続用電極を第2電極に半田接合するとともに前記熱硬化性樹脂の熱硬化を開始させる第2加熱工程とを含むことを特徴とする実装基板の製造方法。A mounting substrate manufacturing method for manufacturing a mounting substrate in which electronic components are respectively mounted on a first surface of a substrate and a second surface on the back side of the first surface, the first surface being a mounting target first in the component mounting step In addition, a first paste supplying step of supplying a solder bonding paste that does not contain a thermosetting resin, and an electronic component is mounted on the first surface after the paste is supplied, and an electrode for connecting the electronic component is provided on the first surface. A first mounting step of landing on the first electrode, a first heating step of heating the substrate after the first mounting step and soldering the connection electrode to the first electrode, and mounting of the first surface A second paste supplying step of supplying a solder bonding paste containing the thermosetting resin to the second surface of the completed substrate, and mounting an electronic component on the second surface after supplying the paste to provide an electrode for connecting the electronic component Second mounting step of landing on the second electrode provided on the second surface Then, the substrate after the second mounting step is heated to melt the connecting electrode or the bonding solder portion supplied in advance to the second electrode to solder the connecting electrode to the second electrode and to perform the thermosetting. And a second heating step for initiating thermosetting of the functional resin. 前記第1加熱工程において、前記第2加熱工程における加熱温度以上まで基板を昇温させることを特徴とする請求項1記載の実装基板の製造方法。The method for manufacturing a mounting substrate according to claim 1, wherein in the first heating step, the substrate is heated to a temperature equal to or higher than a heating temperature in the second heating step. 部品実装工程において後に実装対象となる前記第2面を、熱硬化性樹脂を含む半田接合用ペーストが供給される第2ペースト供給面として予め設定しておき、基板設計時の電子部品配置において、前記熱硬化性樹脂を用いた実装方式が適用される電子部品を優先的に第2面に配置することを特徴とする請求項1記載の実装基板の製造方法。 The second surface comprising a mounting object after the component mounting process, set in advance as the second paste supply plane solder bonding paste containing a thermosetting resin is supplied in an electronic component arrangement of a board design, The method for manufacturing a mounting board according to claim 1, wherein electronic components to which a mounting method using the thermosetting resin is applied are preferentially arranged on the second surface. 前記基板の第1面と第2面の表裏各面にそれぞれ実装される電子部品の種類と数量を対比し、熱硬化性樹脂を用いた実装方式が適用可能な電子部品の割合が多い方の面を、部品実装工程において後に実装対象となる第2面に設定することを特徴とする請求項1記載の実装基板の製造方法。Compare the type and quantity of electronic components mounted on the front and back surfaces of the first and second surfaces of the board, respectively, and the proportion of electronic components to which the mounting method using a thermosetting resin can be applied is larger. 2. The method of manufacturing a mounting board according to claim 1, wherein the surface is set as a second surface to be mounted later in the component mounting process.
JP2002203810A 2002-07-12 2002-07-12 Mounting board manufacturing method Expired - Fee Related JP3722096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203810A JP3722096B2 (en) 2002-07-12 2002-07-12 Mounting board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203810A JP3722096B2 (en) 2002-07-12 2002-07-12 Mounting board manufacturing method

Publications (2)

Publication Number Publication Date
JP2004047774A JP2004047774A (en) 2004-02-12
JP3722096B2 true JP3722096B2 (en) 2005-11-30

Family

ID=31709582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203810A Expired - Fee Related JP3722096B2 (en) 2002-07-12 2002-07-12 Mounting board manufacturing method

Country Status (1)

Country Link
JP (1) JP3722096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4905339B2 (en) * 2007-12-10 2012-03-28 パナソニック株式会社 Manufacturing method of electronic component mounting board

Also Published As

Publication number Publication date
JP2004047774A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US6189771B1 (en) Method of forming solder bump and method of mounting the same
JP5363789B2 (en) Optical semiconductor device
US7833831B2 (en) Method of manufacturing an electronic component and an electronic device
JP4200325B2 (en) Solder bonding paste and solder bonding method
JPH11214441A (en) Mounting method for electronic part with bump
JP2001332583A (en) Method of mounting semiconductor chip
US7750484B2 (en) Semiconductor device with flip-chip connection that uses gallium or indium as bonding material
KR100771644B1 (en) Method of manufacturing an electronic component
JP4200273B2 (en) Mounting board manufacturing method
JP2009283628A (en) Method for mounting semiconductor element
TW200819012A (en) Mounting structure
JP2009277777A (en) Solder ball loading method and member for mounting electronic component
JP3722096B2 (en) Mounting board manufacturing method
JP3693007B2 (en) Electronic component mounting method
US20050035184A1 (en) Method of soldering semiconductor part and mounted structure of semiconductor part
TWI334752B (en) Manufacturing method of circuit device
JPH09246319A (en) Flip chip mounting method
JPH11186324A (en) Packaging method of electronic component with bumps
JP3266414B2 (en) Solder supply method
JP2002176248A (en) Bonding material of electronic device and method and structure for mounting electronic device
JP3705152B2 (en) Method of forming solder bump
JP2001156441A (en) Method for repairing csp/bga
JP2000176678A (en) Cream solder and packaging product using it
US20100230152A1 (en) Method of soldering electronic component, and electronic component
JP2008098210A (en) Method for forming projected electrode, method for manufacturing semiconductor device, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees