JP2004047774A - Method for manufacturing mounted substrate - Google Patents

Method for manufacturing mounted substrate Download PDF

Info

Publication number
JP2004047774A
JP2004047774A JP2002203810A JP2002203810A JP2004047774A JP 2004047774 A JP2004047774 A JP 2004047774A JP 2002203810 A JP2002203810 A JP 2002203810A JP 2002203810 A JP2002203810 A JP 2002203810A JP 2004047774 A JP2004047774 A JP 2004047774A
Authority
JP
Japan
Prior art keywords
mounting
substrate
manufacturing
heating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002203810A
Other languages
Japanese (ja)
Other versions
JP3722096B2 (en
Inventor
Toshikazu Matsuo
松尾 俊和
Tadahiko Sakai
境 忠彦
Ken Maeda
前田 憲
Seiichi Yoshinaga
吉永 誠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002203810A priority Critical patent/JP3722096B2/en
Publication of JP2004047774A publication Critical patent/JP2004047774A/en
Application granted granted Critical
Publication of JP3722096B2 publication Critical patent/JP3722096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a mounted substrate capable of preventing mounting-related defects due to voids inside the active resin adhesive in the manufacturing of a double-sided substrate wherein an active resin adhesive is used. <P>SOLUTION: In this method for manufacturing a mounted substrate wherein the first side and the second side of a substrate are mounted with electronic components, respectively, a soldering paste containing an active thermosetting resin having a thermosetting temperature T3 which is higher than a solder melting point T2 is applied, but only to the second side to be processed at a later stage. This active soldering paste is heated only in a second reflow for the second side, and this prevents mounting-related defects due to voids inside the active resin adhesive. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品を基板に実装して実装基板を製造する実装基板の製造方法に関するものである。
【0002】
【従来の技術】
半導体チップなどの電子部品の実装方法として、半田接合による方法が広く用いられている。この半田接合の方式として、熱硬化性の樹脂接着材を部品搭載前に予め基板の電極上に塗布する方法が採用されるようになっている。この方法では、電子部品の半田バンプを電極上に着地させた後に基板を加熱することにより、半田バンプと電極との半田接合と樹脂接着材の熱硬化とを同一加熱工程にて行う。この方法によれば、補強用のアンダーフィル樹脂形成工程を独立した工程として設ける必要がないという利点を有している。
【0003】
【発明が解決しようとする課題】
しかしながら、上記樹脂接着材を用いた電子部品の実装方式を、表裏両面に電子部品が実装される両面実装基板に対して適用する場合においては、以下に説明するような不都合が生じる場合があった。上述のように、この実装方式では、半田バンプと電極との半田接合と樹脂接着材の熱硬化を同一加熱工程にて行うようにしているため、両面実装において先に実装が行われた第1面上の電子部品については、第1面側を対象とした第1加熱工程において樹脂が加熱された後、第2面側を対象とした第2加熱工程において再度加熱される。
【0004】
このとき、第1面側の電子部品の樹脂接着材の内部に、第1加熱工程において基板から発生したガスによってボイドが形成されている場合には、このボイドが再加熱されることによる不具合が生じやすい。例えば、ボイド中のガスが再加熱によって膨張することによる樹脂の剥離や、ボイドが接合部に近接して生じている場合に、接合部の半田が再加熱時に溶融してこのボイド内に流入する結果接合部の導通不良などが生じることがある。そしてこのような不具合によって、実装品質の低下を招く場合があった。
【0005】
そこで本発明は、樹脂接着材を用いて両面実装基板を対象として行われる実装基板の製造において、樹脂接着材内部のボイドに起因して生じる実装不具合を防止することができる実装基板の製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
請求項1記載の実装基板の製造方法は、基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、部品実装工程において先に実装対象となる第1面に、熱硬化性樹脂を含まない半田接合用ペーストを供給する第1ペースト供給工程と、ペースト供給後の第1面に電子部品を搭載して電子部品の接続用電極を第1面に設けられた第1電極に着地させる第1搭載工程と、第1搭載工程後の前記基板を加熱して前記接続用電極を前記第1電極に半田接合する第1加熱工程と、第1面の実装が完了した基板の第2面に前記熱硬化性樹脂を含む半田接合用ペーストを供給する第2ペースト供給工程と、ペースト供給後の第2面に電子部品を搭載して電子部品の接続用電極を第2面に設けられた第2電極に着地させる第2搭載工程と、第2搭載工程後の前記基板を加熱して前記接続用電極もしくは前記第2電極に予め供給された接合用半田部を溶融させて接続用電極を第2電極に半田接合するとともに前記熱硬化性樹脂の熱硬化を開始させる第2加熱工程とを含む。
【0007】
請求項2記載の実装基板の製造方法は、請求項1記載の実装基板の製造方法であって、前記第1加熱工程において、前記第2加熱工程における加熱温度以上まで基板を昇温させる。
【0008】
請求項3記載の実装基板の製造方法は、基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、部品実装工程において後に実装対象となる第2面を、熱硬化性樹脂を含む半田接合用ペーストが供給される第2ペースト供給面として予め設定しておき、基板設計時の電子部品配置において、前記熱硬化性樹脂を用いた実装方式が適用される電子部品を優先的に第2面に配置する。
【0009】
請求項4記載の実装基板の製造方法は、基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、前記基板の表裏各面にそれぞれ実装される電子部品の種類と数量を対比し、熱硬化性樹脂を用いた実装方式が適用可能な電子部品の割合が多い方の面を、部品実装工程において後に実装対象となる第2面に設定する。
【0010】
本発明によれば、後に実装対象となる第2面のみに熱硬化性樹脂を種類として含む半田接合用ペーストを供給し、この半田接合用ペーストの加熱を第2面を対象とする第2加熱工程の1回のみに限定することにより、樹脂接着材内部のボイドに起因して生じる実装不具合を防止することができる。
【0011】
【発明の実施の形態】
次に本発明の実施の形態を図面を参照して説明する。図1、図2は本発明の一実施の形態の実装基板の製造方法の工程説明図、図3は本発明の一実施の形態の実装基板の製造方法におけるリフロー工程の温度プロファイルを示すグラフである。本実施の形態では、両面に電極が形成された基板に電子部品を半田接合により実装して実装基板を製造する工程を示している。
【0012】
図1(a)において、1は両面実装用の基板であり、基板1の第1面1a(図1において上面)および第1面の裏側の第2面1b(図1において下面)には、それぞれ第1電極としての電極2,第2電極としての電極3が形成されている。第1面1aは、基板1の表裏両面に電子部品を実装して実装基板を製造する過程において、先に実装対象となる面である。
【0013】
図1(a)に示すように、第1面1aに形成された第1電極である電極2上には、半田接合用ペーストであるクリーム半田4が印刷により供給される(第1ペースト供給工程)。クリーム半田4は、ペースト状のフラックス中に半田粒子を含有させたものであり、半田接合のみを目的とした接合材料であることから、後述する樹脂接着材6に含まれるような熱硬化性性樹脂を含まない構成となっている。
【0014】
次いで図1(b)に示すように、クリーム半田供給後の第1面1aには、両端部に接続用電極としての端子5aが設けられた電子部品5が搭載され(第1搭載工程)、これにより端子5aがクリーム半田4を介して電極3上に着地する。そしてこの後、基板1は第1面1aを対象とした第2面リフローのためにリフロー工程に送られ。ここで所定の加熱プロファイルにしたがって加熱される(第1加熱工程)。
【0015】
この第1面リフローにおける加熱プロファイルについて、図3を参照して説明する。加熱が開始されると、基板1は半田融点温度T2よりも低い予熱温度T1まで加熱され、この温度で所定時間保持される。そして予熱の後、温度がさらに上昇して半田融点温度T2を超えることにより、クリーム半田4中の半田成分が溶融しこの溶融半田を介して端子5aが電極2の上面に半田接合される。半田融点温度は、Sn/Pb系の半田では183℃,Sn/Ag系では220℃である。この半田接合において、端子5aの表面に生成した酸化膜はクリーム半田4中のフラックス成分によって除去されることから、良好な接合性が確保される。
【0016】
この後、加熱温度はさらに上昇し、耐熱温度T4(約250℃)よりも低い温度に設定される最高加熱温度Taに到達する。そして所定時間この温度を保持した後、温度は徐々に下降する。ここで最高加熱温度Taを、後述する第2面リフローにおける最高加熱温度Tbよりも高く設定すると、第1面リフロー時の加熱によって、基板1内に含まれている水分や有機ガスを、極力基板表面から放出できるので好ましい。この場合、最高加熱温度Taは230℃〜240℃程度となる。なお、第1面リフロー時は、電子部品5の下面にはガスが通過する空間があるので、樹脂接着材内部のボイドに起因する実装不具合は生じない。
【0017】
この第1面1aへの実装に引き続き、第2面1bを対象とした実装が行われる。すなわち、図2(a)に示すように、第2面1bの電極3の周囲には、半田接合用ペーストである樹脂接着材6がディスペンサ7によって電極3を覆って供給される(第2ペースト供給工程)。樹脂接着材6は、エポキシ樹脂などの熱硬化性樹脂を主成分とする基剤に、酸化膜除去能力を有する活性成分を含有させることにより、電子部品の下面を封止して補強する接着機能に加えて、半田接合時に半田表面の酸化膜を除去して半田接合性を向上させるフラックスとしての機能を兼ねさせたものである。この樹脂接着材6は、含有する活性成分によって半田バンプ表面の酸化膜を除去することから別途フラックスを塗布する必要がなく、フラックスを用いた従来方法において必要とされたリフロー後の洗浄工程を省略できるという利点を有している。
【0018】
ここでは、基剤の熱硬化温度として、実装に使用される半田の融点温度よりも高い熱硬化温度を有するものを用いている。なお、本実施の形態でいう熱硬化温度とは、樹脂材料の硬化反応の測定に使用される示差走査熱量測定(DSC)により求められた温度である。すなわち、10mgの試料を昇温レートが10℃/分の条件で加熱する過程において得られる熱量と温度との関係を、縦軸に熱量、横軸に温度をとってプロットしてグラフ化すると山形の曲線が形成される。そしてこの山形の曲線の高温側の斜面における変曲点から接線を引き、この接線が横軸が交わる温度を求めて熱硬化温度とする。
【0019】
次いで図2(c)に示すように、樹脂接着材供給後の第2面1bには、下面に接続用電極としての半田バンプ9が設けられた電子部品8が搭載され(第2搭載工程)、これにより半田バンプ9は樹脂接着材6を介して電極3上に着地する。この際、電子部品8の下面は樹脂接着材6によりほぼ完全に充填される。そしてこの後、基板1は第2面1bを対象とした第2面リフローのためにリフロー工程に送られ。ここで所定の加熱プロファイルにしたがって加熱される(第2加熱工程)。
【0020】
この第2面リフローにおける加熱プロファイルは、図3に示すように第1面リフローとほぼ同様であり、温度が上昇して半田融点温度T2を超えることにより、半田バンプ9が溶融しこの溶融半田を介して端子5aが電極3と半田接合される。ここでは半田バンプ9が、電子部品8を基板1と接続する接続用電極であるとともに、この接続用電極に供給される接合用半田部とを兼ねたものとなっている。この半田接合において、電極3の表面に第1リフロー時の加熱によって酸化膜が生成されている場合においても、樹脂接着材6中の活性成分によって酸化膜が除去され、良好な半田接合性が確保される。
【0021】
この後、加熱温度はさらに上昇し、熱硬化温度T3よりも高く耐熱温度T4よりも低い温度に設定される最高加熱温度Tbに到達する。そして所定時間この温度を保持した後、温度は徐々に下降する。ここで最高加熱温度Tbは、前述のように第1面リフローにおける最高加熱温度Taよりも低くなっている。
【0022】
またこの加熱により、樹脂接着材6の熱硬化反応が並行して進行するが、樹脂接着材6の熱硬化温度T3は、半田バンプ9の半田融点温度T2よりも高いことから、半田バンプ9が溶融した溶融半田が電極2の表面を濡らす際には樹脂接着材6はまだ熱硬化を開始していない状態にある。したがって樹脂接着材6中における溶融半田の流動が確保され、半田バンプ9と電極3とのセルフアライメントが阻害されることがない。
【0023】
そして溶融半田が電極3と接合された後、加熱が継続されて温度が上昇する。次いで熱硬化温度T3を超えて最高加熱温度Taまで昇温し、この温度が所定時間保持された後に降温過程に移行する。この加熱過程において、温度が熱硬化温度T3以上に保持される時間tの間、樹脂接着材6の熱硬化が急速に進行する。これにより、第1面1aへの電子部品5の実装が終了する。
【0024】
上記第2面リフローにおいて、上述のように既に第1面リフローによって高温で加熱されていることから、基板1の内部に含有されていた有機成分や水分は大部分が加熱によりガス化して表面から放出されており、樹脂接着材6中にこれらのガスが閉じこめられることによるボイドの発生が少ない。またボイドが発生した場合にあっても、樹脂接着材6がこの後さらに高温に加熱されることがないことから、ボイドが再加熱されることによって発生する不具合、例えば、ボイド中のガスが再加熱によって膨張することによる樹脂の剥離や、ボイドが接合部に近接して生じている場合に接合部の半田が再加熱時に溶融してこのボイド内に流入する結果生じる接合部の導通不良などの発生がない。
【0025】
上記実施の形態に示す実装基板の製造方法は、生産においては次に示すような2通りの態様で適用される。第1の態様は、両面に電子部品が実装される実装基板の設計段階において、実装対象となる電子部品への前述の樹脂接着材4の適用可否を考慮した上で、電子部品の第1面、第2面への振り分けを決定するものである。
【0026】
すなわち、基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板を設計する際には、部品実装工程において後に実装対象となる第2面を、前述の樹脂接着材6を含む半田接合用ペーストが供給される第2ペースト供給面として予め設定する。そして、基板設計時の電子部品配置において、熱硬化性樹脂を用いた実装方式が適用される電子部品を優先的に第2面に配置する。基板設計時にこのような方針で電子部品配置を行うことにより、後に実装対象となる第2面に樹脂接着材6を用いる電子部品が集中して配置される。したがって使用された樹脂接着材6が2回の熱硬化過程を経る事態が発生しない。
【0027】
これに対し、基板設計過程において上述のような考慮がなされていない基板については、以下のような取り扱いがなされる。まず、両面実装基板の電子部品配置が提示されたならば、基板の表裏各面にそれぞれ実装される電子部品の種類と数量を対比する。そして樹脂接着材6を用いた実装方式が適用可能な電子部品の割合が多い方の面を、部品実装工程において後に実装対象となる第2面に設定し、このような電子部品には樹脂接着材6を用いた実装方式を適用する。
【0028】
そして第2面のその他の電子部品および第1面の電子部品には全てクリーム半田を用いた実装方法など、樹脂接着材6を用いない実装方法を適用する。これにより、後に実装対象となる第2面にのみ、樹脂接着材6を用いる電子部品が配置され、したがって使用された樹脂接着材6が2回の熱硬化過程を経る事態が発生しない。
【0029】
【発明の効果】
本発明によれば、後に実装対象となる第2面のみに半田の酸化膜を除去する活性作用を有し熱硬化性樹脂を種類として含む半田接合用ペーストを供給し、この半田接合用ペーストの加熱を、第2面を対象とする第2加熱工程の1回のみに限定するようにしたので、樹脂接着材内部のボイドに起因して生じる実装不具合を防止することができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態の実装基板の製造方法の工程説明図
【図2】本発明の一実施の形態の実装基板の製造方法の工程説明図
【図3】本発明の一実施の形態の実装基板の製造方法におけるリフロー工程の温度プロファイルを示すグラフ
【符号の説明】
1 基板
1a 第1面
1b 第2面
2、3 電極
4 クリーム半田
5 電子部品
5a 端子
6 樹脂接着材
8 電子部品
9 半田バンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method of manufacturing a mounting board for manufacturing a mounting board by mounting an electronic component on the board.
[0002]
[Prior art]
As a method for mounting electronic components such as semiconductor chips, a method using solder bonding is widely used. As a method of the solder joining, a method of applying a thermosetting resin adhesive material on electrodes of a substrate in advance before mounting components is adopted. In this method, the substrate is heated after the solder bumps of the electronic component have landed on the electrodes, so that the solder bonding between the solder bumps and the electrodes and the thermosetting of the resin adhesive are performed in the same heating step. According to this method, there is an advantage that it is not necessary to provide a reinforcing underfill resin forming step as an independent step.
[0003]
[Problems to be solved by the invention]
However, in the case where the electronic component mounting method using the resin adhesive is applied to a double-sided mounting board on which electronic components are mounted on both front and rear surfaces, the following inconvenience may occur. . As described above, in this mounting method, the solder bonding between the solder bumps and the electrodes and the thermosetting of the resin adhesive are performed in the same heating step. The electronic components on the surface are heated again in the second heating process for the second surface after the resin is heated in the first heating process for the first surface.
[0004]
At this time, if a void is formed in the resin adhesive of the electronic component on the first surface side by the gas generated from the substrate in the first heating step, a defect due to reheating of the void may occur. Easy to occur. For example, when the gas in the void is separated from the resin by expansion due to reheating, or when a void is generated in the vicinity of the joint, the solder in the joint melts at the time of reheating and flows into the void. As a result, poor conduction at the joint may occur. Then, such a defect may cause a decrease in mounting quality.
[0005]
Therefore, the present invention provides a method of manufacturing a mounting board that can prevent a mounting defect caused by a void inside the resin adhesive in manufacturing of a mounting board performed on a double-sided mounting board using a resin adhesive. The purpose is to provide.
[0006]
[Means for Solving the Problems]
The method for manufacturing a mounting board according to claim 1, wherein the mounting board has electronic components mounted on a first surface and a second surface behind the first surface, respectively. In the mounting step, a first paste supplying step of supplying a solder bonding paste not containing a thermosetting resin to the first surface to be mounted first, and mounting an electronic component on the first surface after the paste is supplied, and A first mounting step of landing the connection electrode of the component on the first electrode provided on the first surface; and heating the substrate after the first mounting step to solder the connection electrode to the first electrode. A first heating step, a second paste supply step of supplying the solder bonding paste containing the thermosetting resin to the second surface of the substrate on which the first surface has been mounted, and an electron supply to the second surface after the paste supply. After mounting the components, the connection electrodes for the electronic components are provided on the second surface. A second mounting step of landing on the second electrode, and heating the substrate after the second mounting step to melt the connection electrode or the bonding solder portion previously supplied to the second electrode, thereby connecting the connection electrode. And a second heating step of starting the thermosetting of the thermosetting resin by soldering to the second electrode.
[0007]
According to a second aspect of the present invention, there is provided the method of manufacturing a mounting board according to the first aspect, wherein the first heating step includes heating the substrate to a temperature equal to or higher than the heating temperature in the second heating step.
[0008]
4. The method of manufacturing a mounting board according to claim 3, wherein the mounting board has electronic components mounted on a first surface of the substrate and a second surface behind the first surface, respectively. In the mounting process, the second surface to be mounted later is set in advance as a second paste supply surface to which a solder bonding paste containing a thermosetting resin is supplied, and in the electronic component arrangement at the time of designing a board, the heat is applied to the second surface. Electronic components to which a mounting method using a curable resin is applied are preferentially arranged on the second surface.
[0009]
5. The method of manufacturing a mounting board according to claim 4, wherein the mounting board has electronic components mounted on a first surface of the substrate and a second surface behind the first surface. Compare the type and quantity of electronic components mounted on each side of the board, and mount the surface with the higher percentage of electronic components to which the mounting method using thermosetting resin can be applied later in the component mounting process Set as the target second surface.
[0010]
According to the present invention, a soldering paste containing a thermosetting resin as a kind is supplied only to the second surface to be mounted later, and the soldering paste is heated by the second heating for the second surface. By limiting the process to only one step, it is possible to prevent a mounting defect caused by a void inside the resin adhesive.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are process explanatory views of a method of manufacturing a mounting board according to one embodiment of the present invention, and FIG. 3 is a graph showing a temperature profile of a reflow process in the manufacturing method of the mounting board of one embodiment of the present invention. is there. In the present embodiment, a process for manufacturing a mounting substrate by mounting electronic components by soldering on a substrate having electrodes formed on both surfaces is shown.
[0012]
In FIG. 1A, reference numeral 1 denotes a substrate for double-sided mounting, and a first surface 1a (upper surface in FIG. 1) of the substrate 1 and a second surface 1b (lower surface in FIG. 1) behind the first surface include: An electrode 2 as a first electrode and an electrode 3 as a second electrode are respectively formed. The first surface 1a is a surface to be mounted first in a process of manufacturing a mounting substrate by mounting electronic components on both front and back surfaces of the substrate 1.
[0013]
As shown in FIG. 1A, a cream solder 4 serving as a solder bonding paste is supplied by printing onto an electrode 2 serving as a first electrode formed on a first surface 1a (first paste supply step). ). The cream solder 4 contains solder particles in a paste-like flux, and is a bonding material intended only for solder bonding. It does not contain resin.
[0014]
Next, as shown in FIG. 1B, on the first surface 1a after the cream solder is supplied, an electronic component 5 having terminals 5a as connection electrodes at both ends is mounted (first mounting step). As a result, the terminal 5a lands on the electrode 3 via the cream solder 4. Thereafter, the substrate 1 is sent to a reflow process for reflow of the second surface directed to the first surface 1a. Here, heating is performed according to a predetermined heating profile (first heating step).
[0015]
The heating profile in the first surface reflow will be described with reference to FIG. When heating is started, the substrate 1 is heated to a preheating temperature T1 lower than the solder melting point temperature T2, and is maintained at this temperature for a predetermined time. Then, after the preheating, the temperature further rises and exceeds the solder melting point temperature T2, so that the solder component in the cream solder 4 is melted, and the terminal 5a is soldered to the upper surface of the electrode 2 via the melted solder. The solder melting point temperature is 183 ° C. for Sn / Pb solder and 220 ° C. for Sn / Ag solder. In this solder bonding, the oxide film formed on the surface of the terminal 5a is removed by the flux component in the cream solder 4, so that good bonding is ensured.
[0016]
Thereafter, the heating temperature further rises and reaches a maximum heating temperature Ta set at a temperature lower than the heat-resistant temperature T4 (about 250 ° C.). After maintaining this temperature for a predetermined time, the temperature gradually decreases. Here, when the maximum heating temperature Ta is set higher than the maximum heating temperature Tb in the second surface reflow described later, the moisture and the organic gas contained in the substrate 1 are reduced as much as possible by the heating during the first surface reflow. It is preferable because it can be released from the surface. In this case, the maximum heating temperature Ta is about 230 ° C to 240 ° C. At the time of reflow on the first surface, there is a space through which gas passes on the lower surface of the electronic component 5, so that mounting defects due to voids inside the resin adhesive do not occur.
[0017]
Subsequent to the mounting on the first surface 1a, mounting on the second surface 1b is performed. That is, as shown in FIG. 2A, a resin adhesive 6 which is a solder bonding paste is supplied around the electrode 3 on the second surface 1b by the dispenser 7 so as to cover the electrode 3 (second paste). Supply step). The resin adhesive 6 has an adhesive function of sealing and reinforcing the lower surface of the electronic component by adding an active component having an oxide film removing ability to a base mainly composed of a thermosetting resin such as an epoxy resin. In addition to the above, it also has a function as a flux for removing the oxide film on the solder surface at the time of solder joining to improve the solder joining property. Since the resin adhesive 6 removes the oxide film on the surface of the solder bump by the contained active component, there is no need to separately apply a flux, and a cleaning step after reflow, which is required in the conventional method using the flux, is omitted. It has the advantage of being able to.
[0018]
Here, a material having a thermosetting temperature higher than the melting point of the solder used for mounting is used as the thermosetting temperature of the base. Note that the thermosetting temperature in this embodiment is a temperature determined by differential scanning calorimetry (DSC) used for measuring a curing reaction of a resin material. That is, the relationship between the amount of heat and the temperature obtained in the process of heating a 10 mg sample at a heating rate of 10 ° C./min is plotted with the ordinate representing the amount of heat and the abscissa representing the temperature. Is formed. Then, a tangent is drawn from the inflection point on the high temperature side slope of the chevron curve, and the temperature at which the tangent intersects the horizontal axis is determined as the thermosetting temperature.
[0019]
Next, as shown in FIG. 2C, an electronic component 8 having a solder bump 9 as a connection electrode provided on the lower surface is mounted on the second surface 1b after the resin adhesive is supplied (second mounting step). Thus, the solder bumps 9 land on the electrodes 3 via the resin adhesive 6. At this time, the lower surface of the electronic component 8 is almost completely filled with the resin adhesive 6. After that, the substrate 1 is sent to a reflow process for the second surface reflow for the second surface 1b. Here, heating is performed according to a predetermined heating profile (second heating step).
[0020]
The heating profile in the second surface reflow is substantially the same as that in the first surface reflow as shown in FIG. 3, and when the temperature rises and exceeds the solder melting point temperature T2, the solder bump 9 is melted and the molten solder is melted. The terminal 5a is soldered to the electrode 3 via the terminal 5a. Here, the solder bumps 9 serve as connection electrodes for connecting the electronic component 8 to the substrate 1 and also serve as bonding solder portions supplied to the connection electrodes. In this solder bonding, even when an oxide film is formed on the surface of the electrode 3 by the heating during the first reflow, the oxide film is removed by the active component in the resin adhesive material 6, and good solder bonding property is secured. Is done.
[0021]
Thereafter, the heating temperature further rises and reaches a maximum heating temperature Tb set to a temperature higher than the thermosetting temperature T3 and lower than the heat-resistant temperature T4. After maintaining this temperature for a predetermined time, the temperature gradually decreases. Here, the maximum heating temperature Tb is lower than the maximum heating temperature Ta in the first surface reflow as described above.
[0022]
The heating causes the thermosetting reaction of the resin adhesive 6 to proceed in parallel. However, the thermosetting temperature T3 of the resin adhesive 6 is higher than the solder melting point T2 of the solder bump 9, so that the solder bump 9 When the molten solder wets the surface of the electrode 2, the resin adhesive 6 is in a state in which thermosetting has not yet started. Therefore, the flow of the molten solder in the resin adhesive 6 is ensured, and the self-alignment between the solder bump 9 and the electrode 3 is not hindered.
[0023]
After the molten solder is joined to the electrode 3, the heating is continued and the temperature rises. Next, the temperature is raised to the maximum heating temperature Ta beyond the thermosetting temperature T3, and after this temperature is maintained for a predetermined time, the process proceeds to a temperature decreasing process. In this heating process, the thermosetting of the resin adhesive 6 proceeds rapidly during the time t during which the temperature is maintained at the thermosetting temperature T3 or higher. This completes the mounting of the electronic component 5 on the first surface 1a.
[0024]
In the second surface reflow, the organic components and moisture contained in the inside of the substrate 1 are mostly gasified by heating, and are mostly gasified from the surface because the substrate 1 is already heated at a high temperature by the first surface reflow as described above. Since these gases are released and these gases are confined in the resin adhesive 6, the generation of voids is small. Further, even when a void is generated, since the resin adhesive 6 is not heated to a higher temperature thereafter, a defect caused by reheating the void, for example, the gas in the void is Such as peeling of the resin due to expansion due to heating, and if the voids are formed near the joint, the solder at the joint melts at the time of reheating and flows into the voids. There is no occurrence.
[0025]
The manufacturing method of the mounting substrate described in the above embodiment is applied in two modes as follows in production. The first aspect is that, in a design stage of a mounting board on which electronic components are mounted on both surfaces, the first surface of the electronic component is considered in consideration of whether or not the resin adhesive 4 is applied to the electronic component to be mounted. , To determine the distribution to the second surface.
[0026]
That is, when designing a mounting board for manufacturing a mounting board in which electronic components are mounted on the first surface of the substrate and the second surface on the back side of the first surface, respectively, a second mounting target to be mounted later in the component mounting process. The surface is set in advance as a second paste supply surface to which the solder bonding paste including the resin adhesive 6 is supplied. Then, in arranging the electronic components when designing the board, the electronic components to which the mounting method using the thermosetting resin is applied are preferentially arranged on the second surface. By arranging the electronic components according to such a policy when designing the board, the electronic components using the resin adhesive 6 are intensively arranged on the second surface to be mounted later. Therefore, a situation in which the used resin adhesive 6 goes through two thermosetting processes does not occur.
[0027]
On the other hand, a substrate that has not been taken into consideration as described above in the substrate design process is handled as follows. First, when the layout of electronic components on a double-sided board is presented, the types and quantities of electronic components mounted on each of the front and back surfaces of the board are compared. Then, the surface on which the proportion of electronic components to which the mounting method using the resin adhesive 6 can be applied is larger is set as the second surface to be mounted later in the component mounting process. The mounting method using the material 6 is applied.
[0028]
A mounting method that does not use the resin adhesive 6 such as a mounting method using cream solder is applied to the other electronic components on the second surface and the electronic components on the first surface. Thus, the electronic component using the resin adhesive 6 is arranged only on the second surface to be mounted later, and therefore, the situation in which the used resin adhesive 6 undergoes two thermosetting processes does not occur.
[0029]
【The invention's effect】
According to the present invention, a solder bonding paste having a function of removing the oxide film of the solder only on the second surface to be mounted later and containing a thermosetting resin as a kind is supplied. Since the heating is limited to one time in the second heating step for the second surface, it is possible to prevent a mounting failure caused by a void inside the resin adhesive.
[Brief description of the drawings]
FIG. 1 is a process explanatory view of a method for manufacturing a mounting board according to an embodiment of the present invention; FIG. 2 is a process explanatory view of a method for manufacturing a mounting board according to an embodiment of the present invention; FIG. Graph showing a temperature profile of a reflow process in a method of manufacturing a mounting board according to an embodiment [Description of reference numerals]
REFERENCE SIGNS LIST 1 board 1a first surface 1b second surface 2, 3 electrode 4 cream solder 5 electronic component 5a terminal 6 resin adhesive 8 electronic component 9 solder bump

Claims (4)

基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、部品実装工程において先に実装対象となる第1面に、熱硬化性樹脂を含まない半田接合用ペーストを供給する第1ペースト供給工程と、ペースト供給後の第1面に電子部品を搭載して電子部品の接続用電極を第1面に設けられた第1電極に着地させる第1搭載工程と、第1搭載工程後の前記基板を加熱して前記接続用電極を前記第1電極に半田接合する第1加熱工程と、第1面の実装が完了した基板の第2面に前記熱硬化性樹脂を含む半田接合用ペーストを供給する第2ペースト供給工程と、ペースト供給後の第2面に電子部品を搭載して電子部品の接続用電極を第2面に設けられた第2電極に着地させる第2搭載工程と、第2搭載工程後の前記基板を加熱して前記接続用電極もしくは前記第2電極に予め供給された接合用半田部を溶融させて接続用電極を第2電極に半田接合するとともに前記熱硬化性樹脂の熱硬化を開始させる第2加熱工程とを含むことを特徴とする実装基板の製造方法。What is claimed is: 1. A method of manufacturing a mounting board, wherein electronic parts are mounted on a first surface of a substrate and a second surface on a back side of the first surface, respectively, wherein the first surface to be mounted first in a component mounting process is provided. A first paste supply step of supplying a solder bonding paste not containing a thermosetting resin, an electronic component mounted on the first surface after the paste is supplied, and a connection electrode of the electronic component provided on the first surface. A first mounting step of landing on the first electrode, a first heating step of heating the substrate after the first mounting step, and soldering the connection electrode to the first electrode, and mounting the first surface. A second paste supply step of supplying a solder bonding paste containing the thermosetting resin to the second surface of the completed substrate, and mounting an electronic component on the second surface after the paste is supplied to form a connection electrode of the electronic component. A second mounting step of landing on a second electrode provided on the second surface Heating the substrate after the second mounting step to melt the connection electrode or a bonding solder portion previously supplied to the second electrode, thereby soldering the connection electrode to the second electrode and performing the thermosetting. And a second heating step of starting thermosetting of the conductive resin. 前記第1加熱工程において、前記第2加熱工程における加熱温度以上まで基板を昇温させることを特徴とする請求項1記載の実装基板の製造方法。The method according to claim 1, wherein in the first heating step, the substrate is heated to a temperature equal to or higher than the heating temperature in the second heating step. 基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、部品実装工程において後に実装対象となる第2面を、熱硬化性樹脂を含む半田接合用ペーストが供給される第2ペースト供給面として予め設定しておき、基板設計時の電子部品配置において、前記熱硬化性樹脂を用いた実装方式が適用される電子部品を優先的に第2面に配置することを特徴とする実装基板の製造方法。A method of manufacturing a mounting board in which electronic components are mounted on a first surface of a substrate and a second surface behind the first surface, respectively, wherein a second surface to be mounted later is mounted in a component mounting process. A mounting method using the thermosetting resin is applied in advance to a second paste supply surface to which a solder bonding paste including a thermosetting resin is supplied, and to arrange electronic components at the time of designing a board. A method for manufacturing a mounting board, wherein electronic components are preferentially arranged on a second surface. 基板の第1面と第1面の裏側の第2面にそれぞれ電子部品が実装された実装基板を製造する実装基板の製造方法であって、前記基板の表裏各面にそれぞれ実装される電子部品の種類と数量を対比し、熱硬化性樹脂を用いた実装方式が適用可能な電子部品の割合が多い方の面を、部品実装工程において後に実装対象となる第2面に設定することを特徴とする実装基板の製造方法。What is claimed is: 1. A method of manufacturing a mounting board, comprising manufacturing a mounting board having electronic components mounted on a first surface of a substrate and a second surface on a back side of the first surface, wherein the electronic components are mounted on front and rear surfaces of the substrate, respectively. By comparing the type and quantity of the electronic component, the surface having the larger proportion of electronic components to which the mounting method using the thermosetting resin can be applied is set as the second surface to be mounted later in the component mounting process. Manufacturing method of the mounting substrate.
JP2002203810A 2002-07-12 2002-07-12 Mounting board manufacturing method Expired - Fee Related JP3722096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002203810A JP3722096B2 (en) 2002-07-12 2002-07-12 Mounting board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002203810A JP3722096B2 (en) 2002-07-12 2002-07-12 Mounting board manufacturing method

Publications (2)

Publication Number Publication Date
JP2004047774A true JP2004047774A (en) 2004-02-12
JP3722096B2 JP3722096B2 (en) 2005-11-30

Family

ID=31709582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002203810A Expired - Fee Related JP3722096B2 (en) 2002-07-12 2002-07-12 Mounting board manufacturing method

Country Status (1)

Country Link
JP (1) JP3722096B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141247A (en) * 2007-12-10 2009-06-25 Panasonic Corp Method of manufacturing electronic component mounting substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141247A (en) * 2007-12-10 2009-06-25 Panasonic Corp Method of manufacturing electronic component mounting substrate

Also Published As

Publication number Publication date
JP3722096B2 (en) 2005-11-30

Similar Documents

Publication Publication Date Title
JP2000114301A (en) Formation of solder bump and method for forming the solder bump
JP2002134538A (en) Method for forming solder bump
WO2014033983A1 (en) Component-carrying structure
JPH11214441A (en) Mounting method for electronic part with bump
JP2006134982A (en) Paste for solder jointing and solder jointing method
JP2001332583A (en) Method of mounting semiconductor chip
JP2004274000A (en) Soldering method
KR100771644B1 (en) Method of manufacturing an electronic component
JP2004047773A (en) Method of manufacturing mounting board
JP3381593B2 (en) How to mount electronic components with bumps
JP3570229B2 (en) Solder joining method and thermosetting resin for solder joining
JP3693007B2 (en) Electronic component mounting method
JP3722096B2 (en) Mounting board manufacturing method
JP4236809B2 (en) Electronic component mounting method and mounting structure
JPH09246319A (en) Flip chip mounting method
JP2004363220A (en) Method of manufacturing packaging structure, and connector
JP5370300B2 (en) Electronic component joining method
JP3266414B2 (en) Solder supply method
JP3705152B2 (en) Method of forming solder bump
JP3417281B2 (en) How to mount electronic components with bumps
JP2000058597A (en) Method of mounting electronic component
JP4381795B2 (en) Electronic component mounting method
JP3983972B2 (en) Electronic circuit module
JP5370296B2 (en) Electronic component joining method
KR20210001630A (en) Electrode - Micro device bonding method using self-assembled and aligned solder paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050905

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees