JP2009141247A - Method of manufacturing electronic component mounting substrate - Google Patents

Method of manufacturing electronic component mounting substrate Download PDF

Info

Publication number
JP2009141247A
JP2009141247A JP2007318131A JP2007318131A JP2009141247A JP 2009141247 A JP2009141247 A JP 2009141247A JP 2007318131 A JP2007318131 A JP 2007318131A JP 2007318131 A JP2007318131 A JP 2007318131A JP 2009141247 A JP2009141247 A JP 2009141247A
Authority
JP
Japan
Prior art keywords
electronic component
solder
resin
curing reaction
solder joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007318131A
Other languages
Japanese (ja)
Other versions
JP4905339B2 (en
Inventor
Yoshiyuki Wada
義之 和田
Tadahiko Sakai
忠彦 境
Koji Motomura
耕治 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007318131A priority Critical patent/JP4905339B2/en
Publication of JP2009141247A publication Critical patent/JP2009141247A/en
Application granted granted Critical
Publication of JP4905339B2 publication Critical patent/JP4905339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an electronic component mounting substrate which ensures bonding reliability in manufacturing a mounting substrate where thermosetting resin containing solder particles is used as a solder joint material. <P>SOLUTION: The method of manufacturing an electronic component mounting substrate performing double-sided mounting of a first electronic component 6 and a second electronic component 7 on a substrate 1 includes: a first reflow step for performing solder joint of the first electronic component 6; and a second reflow step for performing solder joint of the second electronic component after the first step, wherein curing reaction of thermosetting resin is progressed such that the curing reaction rate falls in a range of 10%-75% immediately after remelting of a first solder joint 5a1. Consequently, abnormal shape of the solder joint caused by inhibition of free expansion of remolten solder is prevented and reliability of a solder joint can be ensured. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電子部品を基板に実装して実装基板を製造する電子部品実装基板の製造方法に関するものである。   The present invention relates to an electronic component mounting board manufacturing method for manufacturing a mounting board by mounting electronic components on a board.

半導体チップなどの電子部品の実装方法として、半田接合による方法が広く用いられている。この半田接合の方式として、熱硬化性樹脂に半田粒子を含有させた半田接合材料が用いられるようになっている(例えば特許文献1,2参照)。この方法では、電子部品の半田バンプを電極上に着地させた後に基板を加熱することにより、半田バンプと電極との半田接合と熱硬化性樹脂を成分とする樹脂接着材の熱硬化とを同一加熱工程にて行う。この方法によれば、補強用の樹脂部形成工程を独立した工程として設ける必要がないという利点を有している。
特開平11−186334号公報 特開2004−260131号公報
As a method for mounting an electronic component such as a semiconductor chip, a solder bonding method is widely used. As a solder bonding method, a solder bonding material in which solder particles are contained in a thermosetting resin is used (for example, see Patent Documents 1 and 2). In this method, the solder bump of the electronic component is landed on the electrode and then the substrate is heated, so that the solder bonding between the solder bump and the electrode is the same as the thermosetting of the resin adhesive containing the thermosetting resin as a component. Performed in the heating process. According to this method, there is an advantage that it is not necessary to provide the reinforcing resin portion forming step as an independent step.
JP-A-11-186334 JP 2004-260131 A

しかしながら、上記半田接合材料を用いた電子部品の実装方式を、基板に多数の電子部品を実装して実装基板を製造する過程に適用した場合においては、両面実装基板における第1面側部品など、半田接合のための1回目のリフローが終了し一旦形成された半田接合部が第2面側部品などの他部品の半田接合のための2回目のリフロー時において再度加熱されるケースが生じる。   However, when the electronic component mounting method using the solder bonding material is applied to a process of manufacturing a mounting substrate by mounting a large number of electronic components on the substrate, the first surface side component in the double-sided mounting substrate, etc. There is a case where the first reflow for the solder joint is completed and the solder joint once formed is heated again at the second reflow for the solder joint of other parts such as the second surface side parts.

このような場合には、一旦溶融した半田が固化して形成された半田接合部が、2回目のリフロー時において再度液相線温度を超えて加熱され再溶融して流動化する。このとき、半田接合部を覆って形成された補強のための樹脂部において、熱硬化性樹脂の硬化反応が既に相当程度進行している場合には、2回目のリフローでの半田溶融時点において、樹脂部はある程度以上の強度を有した状態で半田接合部を覆っている。すなわちこの状態では樹脂部は半田接合部が溶融した半田の自由膨張を妨げることとなり、溶融した半田が樹脂部と端子との隙間から外部へ流出してはみ出したり、半田の流出により樹脂部内にボイドが発生するなど、半田接合部の形状異常を誘発して、接合信頼性を低下させる場合がある。   In such a case, the solder joint portion formed by solidifying the once melted solder is heated again above the liquidus temperature and fluidized by remelting at the second reflow. At this time, in the resin part for reinforcement formed so as to cover the solder joint part, when the curing reaction of the thermosetting resin has already progressed considerably, at the time of solder melting in the second reflow, The resin portion covers the solder joint portion with a certain level of strength. That is, in this state, the resin portion prevents free expansion of the molten solder at the solder joint portion, and the molten solder flows out from the gap between the resin portion and the terminal, or voids in the resin portion due to the outflow of solder. In some cases, such as the occurrence of soldering, an abnormal shape of the solder joint may be induced to reduce joint reliability.

そこで本発明は、半田粒子を含有した熱硬化性樹脂を半田接合材料として用いて行われる実装基板の製造において、接合信頼性を確保することができる電子部品実装基板の製造方法を提供することを目的とする。   Therefore, the present invention provides an electronic component mounting board manufacturing method capable of ensuring bonding reliability in the manufacturing of a mounting board performed using a thermosetting resin containing solder particles as a solder bonding material. Objective.

本発明の電子部品実装基板の製造方法は、第1電極と第2電極を有する基板に第1電子部品と第2電子部品を電気的に接続した実装基板を製造する電子部品実装基板の製造方法であって、前記第1電極と第1電子部品の端子の間に熱硬化性樹脂に半田粒子入を含有させた半田接合材料を介在させた状態でこの第1電子部品を基板に搭載する第1部品搭載工程と、前記第1電子部品を搭載した基板を加熱して前記半田粒子を溶融固化させて前記第1電極と第1電子部品の端子とを接合する第1半田接合部を形成するとともに、前記熱硬化性樹脂の硬化反応を進行させて前記第1半田接合部を覆う第1樹脂部を形成する第1リフロー工程と、前記第1リフロー工程の後、前記第2電極と第2電子部品の端子の間に前記半田接合材料を介在させた状態でこの第2電子部品を前記基板に搭載する第2部品搭載
工程と、前記第2電子部品を搭載した前記基板を加熱して前記半田粒子を溶融固化させて前記第2電極と第2電子部品の端子とを接合する第2半田接合部を形成するとともに、前記熱硬化性樹脂の硬化反応を進行させて前記第2半田接合部を覆う第2樹脂部を形成する第2リフロー工程とを含み、前記第2リフロー工程において、示差走査熱量計によって未硬化の熱硬化性樹脂および硬化反応が進行途中の熱硬化性樹脂をそれぞれ測定の対象として得られた第1の発熱量および第2の発熱量を用い第1の発熱量と第2の発熱量との差を第1の発熱量で除した比率を百分比で示した値によって定義される硬化反応率が、前記第1半田接合部が再溶融した直後において10%〜75%の範囲内となるように、前記第1樹脂部の熱硬化性樹脂の硬化反応を進行させる。
An electronic component mounting board manufacturing method according to the present invention is an electronic component mounting board manufacturing method for manufacturing a mounting board in which a first electronic component and a second electronic component are electrically connected to a board having a first electrode and a second electrode. The first electronic component is mounted on the substrate in a state in which a solder bonding material containing solder particles in a thermosetting resin is interposed between the first electrode and the terminal of the first electronic component. A one-component mounting step, and a substrate on which the first electronic component is mounted is heated to melt and solidify the solder particles, thereby forming a first solder joint that joins the first electrode and the terminal of the first electronic component. And a first reflow step of forming a first resin portion that covers the first solder joint by advancing a curing reaction of the thermosetting resin, and the second electrode and the second after the first reflow step. A state in which the soldering material is interposed between terminals of an electronic component A second component mounting step of mounting the second electronic component on the substrate, and heating the substrate on which the second electronic component is mounted to melt and solidify the solder particles, thereby the second electrode and the second electronic component. And a second reflow step of forming a second resin portion that covers the second solder joint by advancing a curing reaction of the thermosetting resin. In the second reflow step, the first calorific value and the second calorific value obtained by measuring the uncured thermosetting resin and the thermosetting resin in the middle of the curing reaction by the differential scanning calorimeter, respectively. The curing reaction rate defined by the value obtained by dividing the difference between the first calorific value and the second calorific value by the first calorific value using the amount is represented by the first solder joint. Immediately after melting, the range is 10% to 75%. So that the inner, to advance the curing reaction of the thermosetting resin of the first resin portion.

本発明によれば、第2リフロー工程において、第1半田接合部が再溶融した直後において硬化反応率が10%〜75%の範囲内となるように熱硬化性樹脂の硬化反応を進行させることにより、再溶融した半田の自由膨張が阻害されることに起因する半田接合部の形状異常を防止して、半田接合部の信頼性を確保することができる。   According to the present invention, in the second reflow step, the curing reaction of the thermosetting resin proceeds so that the curing reaction rate is in the range of 10% to 75% immediately after the first solder joint is remelted. Therefore, it is possible to prevent the shape abnormality of the solder joint caused by hindering the free expansion of the remelted solder and to ensure the reliability of the solder joint.

次に本発明の実施の形態を図面を参照して説明する。図1、図2は本発明の一実施の形態の電子部品実装基板の製造方法を示す工程説明図、図3は本発明の一実施の形態の電子部品実装基板の製造方法におけるリフロー工程の加熱プロファイルを示す図、図4は従来の電子部品実装基板の製造方法における半田接合不具合の説明図である。   Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 are process explanatory views showing a method for manufacturing an electronic component mounting board according to an embodiment of the present invention, and FIG. 3 is a heating in a reflow process in the method for manufacturing an electronic component mounting board according to an embodiment of the present invention. FIG. 4 is a diagram showing a profile, and FIG. 4 is an explanatory diagram of a solder joint failure in a conventional method for manufacturing an electronic component mounting board.

まず電子部品実装基板の製造方法について説明する。図1,図2は、第1電極と第2電極を有する基板に、第1電子部品と第2電子部品を電気的に接続した実装基板を製造する方法を工程順に示すものである。図1(a)において、基板1の第1面1a、第2面1bには、それぞれ配線回路2および第2電極4が形成されている。配線回路2の内側の端部は第1電子部品の端子を接続するための第1電極2aとなっている。第1電極2aには、電子部品の端子との半田接合部の形成範囲を囲む配置・形状で予めソルダレジスト3が形成されている。   First, a method for manufacturing an electronic component mounting board will be described. 1 and 2 show a method of manufacturing a mounting substrate in which a first electronic component and a second electronic component are electrically connected to a substrate having a first electrode and a second electrode in order of steps. In FIG. 1A, a wiring circuit 2 and a second electrode 4 are formed on a first surface 1a and a second surface 1b of a substrate 1, respectively. The inner end of the wiring circuit 2 serves as a first electrode 2a for connecting a terminal of the first electronic component. A solder resist 3 is formed in advance on the first electrode 2a in an arrangement / shape surrounding the formation range of the solder joint with the terminal of the electronic component.

次いで、図1(b)に示すように、半田の酸化膜を除去する活性作用を有する熱硬化性樹脂5bに半田粒子5aを含有させた半田接合材料5を、第1電極2a上にスクリーン印刷やディスペンサによる塗布などの方法によって供給する。ここでは、半田粒子5aとしてAg3.0%,Cu0.5%を含有するSn系の半田の粒子、熱硬化性樹脂5bとしてビスフェノールA型のエポキシ樹脂を用い、エポキシ樹脂には硬化剤(活性剤)としてのオニウム塩が添加されている。   Next, as shown in FIG. 1B, a solder bonding material 5 in which solder particles 5a are contained in a thermosetting resin 5b having an active action of removing an oxide film of solder is screen-printed on the first electrode 2a. Or by a method such as application by a dispenser. Here, Sn solder particles containing 3.0% Ag and 0.5% Cu are used as the solder particles 5a, and a bisphenol A type epoxy resin is used as the thermosetting resin 5b. ) As an onium salt.

この後、図1(c)に示すように、半田接合材料5が第1電極2aに供給された状態の基板1に対して、両端部に端子6aを有するチップ型の第1電子部品6が搭載される。すなわち、第1電極2aと第1電子部品6の端子6aの間に熱硬化性樹脂5bに半田粒子5aを含有させた半田接合材料を介在させた状態で、この第1電子部品6を基板1に搭載する(第1部品搭載工程)。   Thereafter, as shown in FIG. 1 (c), the chip-type first electronic component 6 having terminals 6a at both ends of the substrate 1 in a state where the solder bonding material 5 is supplied to the first electrode 2a. Installed. That is, the first electronic component 6 is mounted on the substrate 1 with a solder bonding material containing solder particles 5a in the thermosetting resin 5b interposed between the first electrode 2a and the terminal 6a of the first electronic component 6. (First component mounting process).

次いで、第1電子部品6が搭載された基板1はリフロー装置に送られる。ここでは、図1(d)に示すように、第1電子部品6を搭載した基板1を加熱し、半田接合材料5中の半田粒子5aを溶融固化させて、第1電極2aと第1電子部品6の端子6aとを接合する第1半田接合部5a1を形成する。これとともに、熱硬化性樹脂5bの硬化反応を進行させて、ゲル状となった樹脂によって第1半田接合部5a1を覆う第1樹脂部5b1を形成する(第1リフロー工程)。このとき、溶融状態の半田が過度に濡れ拡がることによる流動が、第1電極2aに形成されたソルダレジスト3によって規制され、適正な形状の第1
半田接合部5a1が形成される。なお、ソルダレジスト3は必ずしも必須ではなく、半田の流動に起因する不具合のおそれがない場合には、ソルダレジスト3を形成しなくてもよい。
Next, the substrate 1 on which the first electronic component 6 is mounted is sent to the reflow apparatus. Here, as shown in FIG. 1D, the substrate 1 on which the first electronic component 6 is mounted is heated to melt and solidify the solder particles 5a in the solder bonding material 5, so that the first electrode 2a and the first electrons A first solder joint portion 5a1 for joining the terminal 6a of the component 6 is formed. At the same time, the curing reaction of the thermosetting resin 5b is advanced to form the first resin portion 5b1 that covers the first solder joint portion 5a1 with the gel-like resin (first reflow step). At this time, the flow caused by excessively spreading the molten solder is restricted by the solder resist 3 formed on the first electrode 2a, and the first of the first shape having an appropriate shape.
Solder joint 5a1 is formed. Note that the solder resist 3 is not indispensable, and the solder resist 3 may not be formed if there is no risk of trouble due to solder flow.

この後、第1リフロー工程後の基板1は、表裏反転されて第2面1bを上向きにした姿勢で部品搭載装置へ送られる。次いで図2(a)に示すように、第2面1bに設けられた第2電極4には、図1に示す半田接合材料5が供給される。この後、図2(b)に示すように、半田接合材料5が第2電極4に供給された状態の基板1に対して、両端部に端子7aを有するチップ型の第2電子部品7が搭載される。すなわち、第2電極4と第2電子部品7の端子7aの間に熱硬化性樹脂5bに半田粒子5aを含有させた半田接合材料5を介在させた状態で、この第2電子部品7を基板1に搭載する(第2部品搭載工程)。   Thereafter, the substrate 1 after the first reflow process is sent to the component mounting apparatus in a posture in which the front and back surfaces are reversed and the second surface 1b faces upward. Next, as shown in FIG. 2A, the solder bonding material 5 shown in FIG. 1 is supplied to the second electrode 4 provided on the second surface 1b. Thereafter, as shown in FIG. 2 (b), the chip-type second electronic component 7 having terminals 7a at both ends of the substrate 1 in a state where the solder bonding material 5 is supplied to the second electrode 4 is formed. Installed. That is, the second electronic component 7 is mounted on the substrate with the solder bonding material 5 containing the solder particles 5a in the thermosetting resin 5b interposed between the second electrode 4 and the terminal 7a of the second electronic component 7. 1 is mounted (second component mounting step).

次いで、第2電子部品7が搭載された基板1は、再びリフロー装置に送られる。ここでは、図2(c)に示すように、第2電子部品7を搭載した基板1を加熱し、半田接合材料5中の半田粒子5aを溶融固化させて、第2電極4と第2電子部品7の端子7aとを接合する第2半田接合部5a2を形成する。これとともに、熱硬化性樹脂5bの硬化反応を進行させて、ゲル状となった樹脂によって第2半田接合部5a2を覆う第2樹脂部5b2を形成する(第2リフロー工程)。   Next, the substrate 1 on which the second electronic component 7 is mounted is sent again to the reflow apparatus. Here, as shown in FIG. 2C, the substrate 1 on which the second electronic component 7 is mounted is heated to melt and solidify the solder particles 5a in the solder bonding material 5, so that the second electrode 4 and the second electron A second solder joint 5a2 that joins the terminal 7a of the component 7 is formed. At the same time, the curing reaction of the thermosetting resin 5b is advanced to form the second resin portion 5b2 that covers the second solder joint portion 5a2 with the gel-like resin (second reflow step).

この第2リフロー工程の後には、基板1はキュア装置に送られ、第1面1a、第2面1bにそれぞれ形成された第1半田接合部5a1を覆う第1樹脂部5b1、第2半田接合部5a2を覆う第2樹脂部5b2を再び加熱して、熱硬化性樹脂5bの硬化反応をさらに進行させる(樹脂硬化工程)。これにより、第1電極2aと第2電極4を有する基板1に、第1電子部品6と第2電子部品7を電気的に接続した電子部品実装基板10が完成する。なお樹脂硬化工程においては、第1リフロー工程、第2リフロー工程においてそれぞれ半田粒子5aを溶融固化させて形成された第1半田接合部5a1、第2半田接合部5a2が再溶融しない温度で、基板1を加熱する。ここでは、前述組成のSn系の半田(融点217℃)に対して、キュア温度を205℃に設定するようにしている。   After the second reflow process, the substrate 1 is sent to the curing device, and the first resin portion 5b1 and the second solder joint covering the first solder joint portion 5a1 formed on the first surface 1a and the second surface 1b, respectively. The second resin portion 5b2 covering the portion 5a2 is heated again to further advance the curing reaction of the thermosetting resin 5b (resin curing step). Thereby, the electronic component mounting substrate 10 in which the first electronic component 6 and the second electronic component 7 are electrically connected to the substrate 1 having the first electrode 2a and the second electrode 4 is completed. In the resin curing step, the substrate is formed at a temperature at which the first solder joint portion 5a1 and the second solder joint portion 5a2 formed by melting and solidifying the solder particles 5a in the first reflow step and the second reflow step are not remelted. 1 is heated. Here, the curing temperature is set to 205 ° C. with respect to the Sn-based solder (melting point 217 ° C.) having the above composition.

上述の電子部品実装基板の製造方法においては、第1電子部品6、第2電子部品7をそれぞれ半田接合するための第1リフロー工程、第2リフロー工程、第1樹脂部5b1,第2樹脂部5b2を硬化させるための樹脂硬化工程の3回にわたって基板1を加熱するようにしている。すなわち、第1電子部品6を半田接合するために供給された半田接合材料5中の熱硬化性樹脂5bは、3回の加熱サイクルを経て最終的に硬化し、第2電子部品7を半田接合するために供給された半田接合材料5中の熱硬化性樹脂5bは、2回の加熱サイクルを経て最終的に硬化する。   In the electronic component mounting board manufacturing method described above, the first reflow process, the second reflow process, the first resin part 5b1, and the second resin part for soldering the first electronic component 6 and the second electronic component 7 respectively. The substrate 1 is heated three times in the resin curing step for curing 5b2. That is, the thermosetting resin 5b in the solder bonding material 5 supplied for soldering the first electronic component 6 is finally cured through three heating cycles, and the second electronic component 7 is soldered. Therefore, the thermosetting resin 5b in the solder bonding material 5 supplied to be finally cured through two heating cycles.

本実施の形態に示す電子部品実装基板の製造方法では、上述の3回の加熱サイクルにおける熱硬化性樹脂5bの硬化反応の進行を合理的に制御することにより、実装基板製造過程における不具合の発生を極力抑制するようにしている。すなわち、第2リフロー工程においては、熱硬化性樹脂5bの硬化反応の進行度合いを示す硬化反応率が、第1半田接合部5a1が再溶融した直後において、10%〜75%の範囲内となるように熱硬化性樹脂5bの硬化反応を進行させる。そして第2リフロー工程後に実行される樹脂硬化工程においては、硬化反応率が80%以上(望ましくは90%以上)となるように熱硬化性樹脂5bの硬化反応を進行させる。   In the manufacturing method of the electronic component mounting board shown in the present embodiment, the occurrence of defects in the mounting board manufacturing process is achieved by rationally controlling the progress of the curing reaction of the thermosetting resin 5b in the three heating cycles described above. Is to be suppressed as much as possible. That is, in the second reflow step, the curing reaction rate indicating the degree of progress of the curing reaction of the thermosetting resin 5b is in the range of 10% to 75% immediately after the first solder joint 5a1 is remelted. Thus, the curing reaction of the thermosetting resin 5b is advanced. In the resin curing step performed after the second reflow step, the curing reaction of the thermosetting resin 5b is advanced so that the curing reaction rate is 80% or higher (desirably 90% or higher).

本実施の形態においては、図3に示す加熱プロファイルによって、第1リフロー工程、第2リフロー工程における加熱を行うようにしている。ここでは、融点Mpが217℃のSn系の半田を対象として、常温から最高加熱温度(265℃)まで短時間で昇温・降温させる加熱パターンを採用している。すなわち、常温から急速に温度を上昇させて融点M
pを超えて最高加熱温度に到達させ、半田接合材料5中の半田粒子5aを確実に溶融させた後には急速に常温まで降温させる。このとき、加熱温度を100℃以上に保持する加熱時間tが3min.未満となるように加熱制御することにより、加熱継続時間が必要以上に遅延しないようにしている。これにより、熱硬化性樹脂5bの硬化反応が必要以上に進行することが防止され、第1リフロー工程、第2リフロー工程における硬化反応率を前述の範囲内に収めることが可能となる。
In the present embodiment, the heating in the first reflow process and the second reflow process is performed by the heating profile shown in FIG. Here, a heating pattern in which the temperature is raised and lowered in a short time from normal temperature to the maximum heating temperature (265 ° C.) is adopted for Sn solder having a melting point Mp of 217 ° C. That is, the melting point M
After reaching the maximum heating temperature exceeding p and surely melting the solder particles 5a in the solder bonding material 5, the temperature is rapidly lowered to room temperature. At this time, the heating time t for maintaining the heating temperature at 100 ° C. or higher is 3 min. By controlling the heating so as to be less than, the heating duration time is prevented from being delayed more than necessary. Thereby, it is possible to prevent the curing reaction of the thermosetting resin 5b from proceeding more than necessary, and it is possible to keep the curing reaction rate in the first reflow process and the second reflow process within the aforementioned range.

ここで硬化反応率の定義を説明する。エポキシ樹脂などの熱硬化性樹脂は、樹脂を構成する高分子構造の加熱による重合反応が進行することによって硬化する。この硬化反応の進行度合いは、未硬化の熱硬化性樹脂および硬化反応が進行途中の熱硬化性樹脂をそれぞれ対象として、DSC(示差走査熱量測定)を行うことによって求められる。すなわち示差走査熱量計によって未硬化の熱硬化性樹脂および硬化反応が進行途中の熱硬化性樹脂をそれぞれ対象として示差走査熱量測定を行い、未硬化の熱硬化性樹脂についての発熱量の測定結果(第1の発熱量Q1)および硬化反応が進行途中の熱硬化性樹脂、すなわち硬化反応の進行度合いを求める測定対象となっている熱硬化性樹脂についての発熱量の測定結果(第2の発熱量Q2)を求める。   Here, the definition of the curing reaction rate will be described. A thermosetting resin such as an epoxy resin is cured by a polymerization reaction caused by heating of a polymer structure constituting the resin. The degree of progress of this curing reaction is determined by performing DSC (differential scanning calorimetry) for uncured thermosetting resin and thermosetting resin in progress of curing reaction. In other words, differential scanning calorimetry was performed for each of the uncured thermosetting resin and the thermosetting resin in the course of the curing reaction with a differential scanning calorimeter, and the calorific value measurement result for the uncured thermosetting resin ( The first calorific value Q1) and the measurement result of the calorific value of the thermosetting resin in which the curing reaction is in progress, that is, the thermosetting resin that is the measurement target for determining the degree of progress of the curing reaction (second calorific value) Q2) is determined.

次いで測定された第1の発熱量Q1と第2の発熱量Q2を用い、第1の発熱量Q1と第2の発熱量Q2との差を第1の発熱量Q1で除した比率R(R=(Q1−Q2)/Q1)を求め、この比率を百分比で示した値によって、硬化反応が進行中の熱硬化性樹脂の硬化反応率を定義する。硬化反応の進行度合いを求める測定対象が未硬化状態である場合には、第1の発熱量Q1と第2の発熱量Q2とは等しくなるため硬化反応率は0%となり、硬化反応の進行度合いを求める測定対象が熱硬化反応が完全に進行した完全硬化状態である場合には、第2の発熱量Q2は0となることから硬化反応率は100%となる。   Next, the ratio R (R) obtained by dividing the difference between the first heat generation amount Q1 and the second heat generation amount Q2 by the first heat generation amount Q1 using the measured first heat generation amount Q1 and the second heat generation amount Q2. = (Q1-Q2) / Q1) is determined, and the curing reaction rate of the thermosetting resin in which the curing reaction is in progress is defined by a value indicating this ratio in percentage. When the measurement target for determining the degree of progress of the curing reaction is an uncured state, the first heat generation amount Q1 and the second heat generation amount Q2 are equal, so the curing reaction rate is 0%, and the degree of progress of the curing reaction. In the case where the measurement target for obtaining is a completely cured state in which the thermosetting reaction has completely proceeded, the second calorific value Q2 is 0, so that the curing reaction rate is 100%.

すなわち本実施の形態においては、熱硬化性樹脂5bの熱硬化反応の進行度合いを示す硬化反応率は、示差走査熱量計によって未硬化の熱硬化性樹脂および硬化反応が進行途中の熱硬化性樹脂をそれぞれ測定の対象として得られた第1の発熱量Q1および第2の発熱量Q2を用い、第1の発熱量Q1と第2の発熱量Q2との差を第1の発熱量で除した比率R(R=(Q1−Q2)/Q1)を百分比で示した値によって定義される。なお熱硬化性樹脂5bの熱硬化反応は、熱硬化性樹脂5bに配合する硬化剤の種類や配合量、加熱条件(最高加熱温度や加熱継続時間)などによって規定されることから、上述の硬化反応率は、硬化剤の選定や配合割合の設定および加熱プロファイルによってコントロールすることが可能である。   That is, in the present embodiment, the curing reaction rate indicating the degree of progress of the thermosetting reaction of the thermosetting resin 5b is determined based on the uncured thermosetting resin and the thermosetting resin that is in the process of proceeding with the differential scanning calorimeter. Using the first calorific value Q1 and the second calorific value Q2 obtained by measuring each of the above, the difference between the first calorific value Q1 and the second calorific value Q2 is divided by the first calorific value. The ratio R (R = (Q1-Q2) / Q1) is defined by a value expressed as a percentage. In addition, since the thermosetting reaction of the thermosetting resin 5b is prescribed | regulated by the kind and compounding quantity of a hardening | curing agent mix | blended with the thermosetting resin 5b, heating conditions (maximum heating temperature and heating duration), etc., it is the above-mentioned hardening. The reaction rate can be controlled by selecting a curing agent, setting the blending ratio, and heating profile.

このようにして定義される硬化反応率を、前述のように設定することの意義について、表1を参照して説明する。表1は、第2リフロー工程における熱硬化性樹脂の硬化反応率と、第2リフロー工程における部品挙動、半田挙動および樹脂硬化工程後の接続信頼性との関係を示している。表1は、複数種類の半田接合材料を用いて、図3に示す加熱プロファイルによって前述の第2リフロー工程を実行した場合の硬化反応率、さらに表1記載のアフタキュア条件(205℃/加熱継続時間30分(但し、実験例7,8についてはそれぞれ5分、60分))で樹脂硬化工程を実行した場合の最終的な硬化反応率の実測結果と、それぞれの場合において、第2リフロー工程における部品挙動、第2リフロー工程における半田挙動および樹脂硬化工程後の接続信頼性を評価した結果を1つの表にまとめたものである。   The significance of setting the curing reaction rate thus defined as described above will be described with reference to Table 1. Table 1 shows the relationship between the curing reaction rate of the thermosetting resin in the second reflow process, the component behavior in the second reflow process, the solder behavior, and the connection reliability after the resin curing process. Table 1 shows the curing reaction rate when the above-mentioned second reflow process is executed by using the heating profile shown in FIG. 3 using a plurality of types of solder bonding materials, and the after-curing conditions (205 ° C./heating duration time) shown in Table 1. 30 minutes (however, for Experimental Examples 7 and 8, 5 minutes and 60 minutes, respectively)) The final curing reaction rate measurement results when the resin curing step was executed, and in each case, in the second reflow step The results of evaluating the component behavior, the solder behavior in the second reflow process, and the connection reliability after the resin curing process are summarized in one table.

Figure 2009141247
Figure 2009141247

ここでは、半田接合材料5として前述のように、Ag3.0%,Cu0.5%を含有す
るSn系の半田を成分とする半田粒子5aを、ビスフェノールA型のエポキシ樹脂を成分とする熱硬化性樹脂5bに混入した組成のものを用いている。ここでエポキシ樹脂には、硬化剤(活性剤)としてのオニウム塩が6通りの異なる配合割合で添加されており、これにより6種類の半田接合材料5が準備され、これらの半田接合材料5を用いて実験例1〜実験例8が実行されている。それぞれの実験例に用いられた半田接合材料5の組成を示す数値は、熱硬化性樹脂、半田粒子および硬化剤の配合割合を重量比で示すものである。熱硬化性樹脂および半田粒子の配合割合については、いずれの実験例においても100:300であり、硬化剤の配合割合は、実験例1〜実験例6のそれぞれについて、0.01、0.05、0.1、0.5、1、2の重量比に設定されている。なお実験例7,8には、実験例2と同様に硬化剤の配合割合が0.05の半田接合材料が用いられており、実験例7,8は、同一組成の半田接合材料についてアフタキュア条件を変化させた場合の影響を確認するために実行された。
Here, as described above, as the solder bonding material 5, the solder particles 5a containing Sn-based solder containing 3.0% Ag and 0.5% Cu as the components are thermally cured using the bisphenol A type epoxy resin as the components. The composition mixed in the functional resin 5b is used. Here, an onium salt as a curing agent (activator) is added to the epoxy resin at six different blending ratios, whereby six types of solder bonding materials 5 are prepared. Experimental example 1 to experimental example 8 are used. The numerical value indicating the composition of the solder bonding material 5 used in each experimental example indicates the blending ratio of the thermosetting resin, the solder particles, and the curing agent in weight ratio. The blending ratio of the thermosetting resin and the solder particles is 100: 300 in any of the experimental examples, and the blending ratio of the curing agent is 0.01, 0.05 for each of Experimental Examples 1 to 6. , 0.1, 0.5, 1 and 2 are set. In Experimental Examples 7 and 8, a solder bonding material having a curing agent blending ratio of 0.05 is used as in Experimental Example 2, and in Experimental Examples 7 and 8, the after-curing conditions for the solder bonding material having the same composition are used. This was done to confirm the effect of changing the.

これら6種類の半田接合材料5を用いて前述の第2のリフロー工程を実行した場合の硬化反応率の測定では、実験例1〜実験例6のそれぞれについて、5、10、53、75、82、90(%)の測定値が得られている。すなわち硬化剤の配合割合を増加させることにより、硬化反応率が増加する結果が得られている。これらの硬化反応率の算出に際しては、第2のリフロー工程において第1半田接合部5a1の融点温度に到達後、リフロー装置から取り出して急冷した測定サンプルを用いて示差走査熱量測定を行っている。示差走査熱量測定にはセイコーインスツルメンツ株式会社製の示差走査熱量計(型式DSC6220)を用いている。   In the measurement of the curing reaction rate when the above-described second reflow process is performed using these six kinds of solder bonding materials 5, 5, 10, 53, 75, 82 for each of Experimental Examples 1 to 6. , 90 (%) measurement value is obtained. That is, the result of increasing the curing reaction rate is obtained by increasing the blending ratio of the curing agent. When calculating these curing reaction rates, differential scanning calorimetry is performed using a measurement sample that is taken out of the reflow apparatus and rapidly cooled after reaching the melting point temperature of the first solder joint 5a1 in the second reflow step. For differential scanning calorimetry, a differential scanning calorimeter (model DSC 6220) manufactured by Seiko Instruments Inc. is used.

そして第2のリフロー工程後の測定サンプルについて、前述のアフタキュア条件で樹脂硬化工程を実行した場合の硬化反応率の測定を行っている。測定結果として、実験例1〜実験例8のそれぞれについて70、80、90、95、97、98、72、89(%)の測定値が得られている。すなわち、硬化剤の配合割合を増加させた実験例1〜実験例6においては、上述と同様に硬化剤の配合割合を増加させることにより硬化反応率が増加する結果となっている。また同一の配合割合で硬化剤が配合された半田接合材料について加熱継続時間を変化させた実験例2,7,8においては、加熱継続時間が長くなるほど硬化反応率が増加する結果が得られている。   And about the measurement sample after a 2nd reflow process, the measurement of the cure reaction rate at the time of performing the resin hardening process on the above-mentioned after-cure conditions is performed. As measurement results, measured values of 70, 80, 90, 95, 97, 98, 72, and 89 (%) are obtained for each of Experimental Examples 1 to 8. That is, in Experimental Example 1 to Experimental Example 6 in which the blending ratio of the curing agent was increased, the curing reaction rate was increased by increasing the blending ratio of the curing agent as described above. Moreover, in Experimental Examples 2, 7, and 8 in which the heating duration was changed for the solder joint material in which the curing agent was blended at the same blending ratio, a result in which the curing reaction rate increased as the heating duration increased was obtained. Yes.

そして、実験例1〜実験例8について求められた第2リフロー工程における部品挙動、第2リフロー工程における半田挙動および樹脂硬化工程後の接続信頼性についての評価結果は、以下の通りである。まず第2リフロー工程における部品挙動については、*1に示すように、第1樹脂部5b1の硬化が必要とされる度合いだけ進行していて、第2リフロー工程後に電子部品が正常に接合されていると認められる場合を○評価とし、第1樹脂部5b1の硬化が不十分で、第2リフロー工程(再リフロー)中に第1樹脂部5b1が流動し、部品がずれたり落下するなどの現象が認められる場合を×評価としている。表1から判るように、硬化反応率が5%の実験例1においては×評価が付されているものの、硬化反応率が増加して10%以上の場合にはいずれの実験例においても○評価が得られている。すなわち硬化反応率10%は、第2リフロー工程で第1半田接合部5a1が再溶融した直後に、第1電子部品6が落下しない程度の強度で第1樹脂部5b1が第1電子部品6を接合している認められるための下限値としての意義を有している。   And the evaluation result about the connection reliability after the component behavior in the 2nd reflow process calculated | required about Experimental example 1-Experimental example 8, the solder behavior in a 2nd reflow process, and a resin hardening process is as follows. First, as to the component behavior in the second reflow process, as indicated by * 1, the first resin portion 5b1 has progressed to the extent that it is required to be cured, and the electronic components are normally joined after the second reflow process. A case where it is recognized that the first resin part 5b1 is not cured is insufficient, the first resin part 5b1 flows during the second reflow process (re-reflow), and the parts are displaced or dropped. Is evaluated as x evaluation. As can be seen from Table 1, in Example 1 where the curing reaction rate is 5%, x evaluation is given, but in the case where the curing reaction rate is increased to 10% or more, it is evaluated as ○ in any of the experimental examples. Is obtained. In other words, the curing reaction rate of 10% is such that the first resin part 5b1 does not drop the first electronic component 6 at such a strength that the first electronic component 6 does not drop immediately after the first solder joint 5a1 is remelted in the second reflow process. It has significance as a lower limit value for allowing bonding.

また第2リフロー工程における半田挙動では、*2に示すように、半田が正常に濡れており、正常な形状の第1半田接合部5a1が形成されていると認められる場合を○評価とし、半田が第1半田接合部5a1から異常に突出していると認められる場合を×評価としている。すなわち図4の従来技術における不具合例に示すように、第1樹脂部5b1の硬化反応が適正範囲を超えて進行している場合には、第2リフロー工程において第1半田接合部5a1が溶融した直後には、第1樹脂部5b1は既に半田の自由膨張を阻害するだけ
の硬さを有している。これにより、膨張した溶融半田は端子7aとの界面など膨出しやすい部位から外部に突出する形で流出し、半田膨出部8が形成される。またこれとともに、第1半田接合部5a1においては、流出した溶融半田の分だけ半田体積が減少することから、第1樹脂部5b1によって閉囲された範囲内において半田が存在しないボイド9が生じる場合がある。
In addition, in the solder behavior in the second reflow process, as indicated by * 2, the case where the solder is normally wet and the first solder joint portion 5a1 having a normal shape is recognized to be formed is evaluated as o. Is evaluated as x evaluation when it is recognized that the protrusion protrudes abnormally from the first solder joint portion 5a1. That is, as shown in the failure example in the prior art of FIG. 4, when the curing reaction of the first resin portion 5b1 proceeds beyond the appropriate range, the first solder joint portion 5a1 has melted in the second reflow process. Immediately after that, the first resin portion 5b1 is already hard enough to inhibit the free expansion of the solder. As a result, the expanded molten solder flows out from a portion that tends to bulge out, such as the interface with the terminal 7a, so that the solder bulging portion 8 is formed. At the same time, in the first solder joint portion 5a1, since the solder volume is reduced by the amount of the molten solder that has flowed out, there occurs a void 9 in which no solder exists within the range enclosed by the first resin portion 5b1. There is.

表1から判るように、硬化反応率が82%、90%の実験例5、6においては×評価が付されているものの、硬化反応率が低下して75%以下の場合には、実験例2〜実験例4において○評価が得られている。すなわち硬化反応率75%は、第2リフロー工程における半田挙動が正常であり、半田の自由膨張が阻害されないための上限値としての意義を有している。なお実験例1については、第2リフロー工程における部品挙動が×評価となってその後の工程が実行不能であることから、第2リフロー工程における部品挙動についての評価結果は得られていない。   As can be seen from Table 1, in Examples 5 and 6 where the curing reaction rate is 82% and 90%, x is given, but when the curing reaction rate is reduced to 75% or less, the experimental example 2-Evaluation in Example 4 is good. That is, the curing reaction rate of 75% has a significance as an upper limit value for normal solder behavior in the second reflow process and for preventing free expansion of the solder. In Experimental Example 1, since the part behavior in the second reflow process is evaluated as x and the subsequent process cannot be executed, the evaluation result on the part behavior in the second reflow process is not obtained.

そして樹脂硬化工程後の接続信頼性では、*3に示すように、規定の信頼性試験の基準をみたしている場合を○評価とし、落下試験やヒートサイクル試験においてオープン不良が発生する場合を×評価としている。表1に示す実験結果では、実験例2〜実験例6および実験例8については○評価が得られ、有効に実験が実行された範囲では、硬化反応率が72%の実験例7についてのみ×評価が付されている。   And in connection reliability after the resin curing process, as shown in * 3, the case where the standard of the specified reliability test is met is evaluated as ○, and the case where an open defect occurs in the drop test or heat cycle test. × Evaluated. In the experimental results shown in Table 1, evaluations were obtained for Experimental Examples 2 to 6 and Experimental Example 8, and in the range where the experiment was effectively performed, only for Experimental Example 7 with a curing reaction rate of 72%. Evaluation is attached.

上述の実験結果をまとめると、表1に示す実験例1〜8のうち、鎖線枠[1]に示す範囲については、*1、*2の評価結果がいずれも○評価となっている。すなわち鎖線枠[1]に含まれる範囲に示す硬化反応率(10%〜75%)が第2リフロー工程における第1半田接合部5a1の再溶融直後に実現されるように、半田接合材料5の組成、加熱プロファイルを設定することにより、第2リフロー工程における部品挙動、半田挙動のいずれについても、良好な結果が得られることが判る。   Summarizing the above experimental results, among the experimental examples 1 to 8 shown in Table 1, in the range indicated by the chain line frame [1], the evaluation results of * 1 and * 2 are both evaluated as ◯. That is, the soldering reaction rate of the solder bonding material 5 is such that the curing reaction rate (10% to 75%) shown in the range included in the chain line frame [1] is realized immediately after the first solder bonding portion 5a1 is remelted in the second reflow process. It can be seen that by setting the composition and the heating profile, good results can be obtained for both the component behavior and the solder behavior in the second reflow process.

また、鎖線枠[2]に示す範囲については、*3の評価結果がいずれも○評価となっている。すなわち鎖線枠[2]に含まれる範囲に示す硬化反応率(80%以上)が第2リフロー工程後に実行される樹脂硬化工程において実現されるように、半田接合材料5の組成、アフタキュア条件を設定することにより、樹脂工程後の最終製品についての接合信頼性が確保されることが判る。   In addition, for the range indicated by the chain line frame [2], the evaluation results of * 3 are all ◯ evaluations. In other words, the composition of the solder joint material 5 and the after-cure conditions are set so that the curing reaction rate (80% or more) shown in the range included in the chain line frame [2] is realized in the resin curing process performed after the second reflow process. It can be seen that the bonding reliability of the final product after the resin process is ensured.

従って本実施の形態に示す電子部品実装基板の製造方法においては、上述の実験結果より得られた知見に基づき、第2のリフロー工程において、前述のように定義される硬化反応率が、加熱終了時において10%〜75%の範囲内となるように、熱硬化性樹脂5bの硬化反応を進行させるようにしている。また第2リフロー工程後に実行される樹脂硬化工程において、硬化反応率が80%以上となるように、第1樹脂部5b1および第2樹脂部5b2の硬化反応を進行させるようにしている。   Therefore, in the manufacturing method of the electronic component mounting substrate shown in the present embodiment, based on the knowledge obtained from the above experimental results, in the second reflow process, the curing reaction rate defined as described above is the end of heating. The curing reaction of the thermosetting resin 5b is caused to proceed so as to be within the range of 10% to 75%. Further, in the resin curing step executed after the second reflow step, the curing reaction of the first resin portion 5b1 and the second resin portion 5b2 is advanced so that the curing reaction rate becomes 80% or more.

なお、表1に示す実験例においては、第2リフロー工程のみを対象として部品挙動や半田挙動を評価した例を示しているが、ここで得られた実験結果のうち、部品挙動についての結果は第1リフロー工程についても適用することができる。すなわち第1リフロー工程において、リフロー工程終了後における硬化反応率が10%以上となるように熱硬化性樹脂5bの硬化反応を進行させるようにする。これにより、第1リフロー工程後第2リフロー工程に移行するまでの間に、第1樹脂部5b1が流動して第1電子部品6の位置ずれが生じる不具合を防止できる。   In addition, in the experimental example shown in Table 1, although the example which evaluated the component behavior and the solder behavior only for the 2nd reflow process is shown, the result about the component behavior among the experimental results obtained here is The first reflow process can also be applied. That is, in the first reflow process, the curing reaction of the thermosetting resin 5b is advanced so that the curing reaction rate after the end of the reflow process is 10% or more. Thereby, it is possible to prevent a problem that the first electronic component 6 is displaced due to the flow of the first resin portion 5b1 before the transition from the first reflow process to the second reflow process.

なお上記実施の形態においては、表1に示す組成の半田接合材料5に、図3に示す加熱プロファイルを適用することによって、リフロー工程における硬化反応率が上述範囲内と
なるようにしているが、本発明はこのような実施例には限定されず、表1に示す組成以外の半田接合材料について図3に示すパターン以外の加熱プロファイルを適用することによっても、本発明の効果を得ることが可能である。
In the above embodiment, the heating reaction rate shown in FIG. 3 is applied to the solder bonding material 5 having the composition shown in Table 1 so that the curing reaction rate in the reflow process is within the above range. The present invention is not limited to such an embodiment, and the effects of the present invention can be obtained by applying a heating profile other than the pattern shown in FIG. 3 to a solder bonding material other than the composition shown in Table 1. It is.

すなわち、表1の実験結果に示すように、硬化反応率は硬化剤の配合割合の増加に伴って増大することが定性的に知られており、他の種類の硬化剤を他の組成の熱硬化性樹脂に用いる場合についても同様の定性的関係が成り立つ。また、加熱プロファイルについても、使用される半田を十分に溶融させるのに必要な所定温度まで昇温させるという条件下においては、加熱継続時間を長くするほど硬化反応率が増大することは自明である。従って、半田接合材料の組成および加熱プロファイルが指定され、指定された組成の半田接合材料を対象として、表1に示すような実験、すなわち硬化反応率を実測により求める実験を系統的または試行錯誤的に実行することにより、半田接合・樹脂硬化工程における硬化反応率が所望の範囲内となるような半田接合材料の組成を決定することができる。   That is, as shown in the experimental results of Table 1, it is qualitatively known that the curing reaction rate increases with an increase in the blending ratio of the curing agent. The same qualitative relationship holds for the case of using the curable resin. In addition, regarding the heating profile, it is obvious that the curing reaction rate increases as the heating duration is increased under the condition that the temperature is raised to a predetermined temperature necessary for sufficiently melting the solder used. . Therefore, the composition and heating profile of the solder joint material are specified, and the experiment shown in Table 1, that is, the experiment for obtaining the curing reaction rate by actual measurement for the solder joint material having the designated composition is systematic or trial and error. By executing the above, it is possible to determine the composition of the solder bonding material so that the curing reaction rate in the solder bonding / resin curing step is within a desired range.

また上記実施の形態においては、第1電子部品6,第2電子部品7をそれぞれ基板1の第1面1a、第2面1bにそれぞれ実装する両面実装の例を示したが、本発明は両面実装には限定されず、複数の電子部品を第1リフロー工程、第2リフロー工程の2回に分けて同一の基板に半田接合する形態であれば本発明を適用することができる。   Moreover, in the said embodiment, although the example of the double-sided mounting which each mounted the 1st electronic component 6 and the 2nd electronic component 7 in the 1st surface 1a of the board | substrate 1 and the 2nd surface 1b, respectively was shown, this invention is a double-sided mounting. The invention is not limited to mounting, and the present invention can be applied as long as a plurality of electronic components are solder-bonded to the same substrate in two steps of a first reflow process and a second reflow process.

本発明の電子部品実装基板の製造方法は、半田粒子を含有した熱硬化性樹脂を半田接合材料として用いて行われる電子部品実装基板の製造において、接合信頼性を確保することができるという利点を有し、両面実装基板など2回のリフロー工程を経て電子部品が実装される電子部品実装基板の製造分野に有用である。   The method for manufacturing an electronic component mounting board according to the present invention has an advantage that the bonding reliability can be ensured in the manufacture of an electronic component mounting board performed using a thermosetting resin containing solder particles as a solder bonding material. It is useful in the field of manufacturing an electronic component mounting board in which electronic components are mounted through two reflow processes such as a double-sided mounting board.

本発明の一実施の形態の電子部品実装基板の製造方法を示す工程説明図Process explanatory drawing which shows the manufacturing method of the electronic component mounting board of one embodiment of this invention 本発明の一実施の形態の電子部品実装基板の製造方法を示す工程説明図Process explanatory drawing which shows the manufacturing method of the electronic component mounting board of one embodiment of this invention 本発明の一実施の形態の電子部品実装基板の製造方法におけるリフロー工程の加熱プロファイルを示す図The figure which shows the heating profile of the reflow process in the manufacturing method of the electronic component mounting substrate of one embodiment of this invention 従来の電子部品実装基板の製造方法における半田接合不具合の説明図Explanatory drawing of solder joint failure in the conventional manufacturing method of electronic component mounting board

符号の説明Explanation of symbols

1 基板
2 配線回路
2a 第1電極
4 第2電極
5 半田接合材料
5a 半田粒子
5a1 第1半田接合部
5a2 第2半田接合部
5b 熱硬化性樹脂
5b1 第1樹脂部
5b2 第2樹脂部
6 第1電子部品
7 第2電子部品
10 電子部品実装基板
DESCRIPTION OF SYMBOLS 1 Board | substrate 2 Wiring circuit 2a 1st electrode 4 2nd electrode 5 Solder joint material 5a Solder particle 5a1 1st solder joint part 5a2 2nd solder joint part 5b Thermosetting resin 5b1 1st resin part 5b2 2nd resin part 6 1st Electronic component 7 Second electronic component 10 Electronic component mounting board

Claims (4)

第1電極と第2電極を有する基板に第1電子部品と第2電子部品を電気的に接続した実装基板を製造する電子部品実装基板の製造方法であって、
前記第1電極と第1電子部品の端子の間に熱硬化性樹脂に半田粒子入を含有させた半田接合材料を介在させた状態でこの第1電子部品を基板に搭載する第1部品搭載工程と、
前記第1電子部品を搭載した基板を加熱して前記半田粒子を溶融固化させて前記第1電極と第1電子部品の端子とを接合する第1半田接合部を形成するとともに、前記熱硬化性樹脂の硬化反応を進行させて前記第1半田接合部を覆う第1樹脂部を形成する第1リフロー工程と、
前記第1リフロー工程の後、前記第2電極と第2電子部品の端子の間に前記半田接合材料を介在させた状態でこの第2電子部品を前記基板に搭載する第2部品搭載工程と、
前記第2電子部品を搭載した前記基板を加熱して前記半田粒子を溶融固化させて前記第2電極と第2電子部品の端子とを接合する第2半田接合部を形成するとともに、前記熱硬化性樹脂の硬化反応を進行させて前記第2半田接合部を覆う第2樹脂部を形成する第2リフロー工程とを含み、
前記第2リフロー工程において、示差走査熱量計によって未硬化の熱硬化性樹脂および硬化反応が進行途中の熱硬化性樹脂をそれぞれ測定の対象として得られた第1の発熱量および第2の発熱量を用い第1の発熱量と第2の発熱量との差を第1の発熱量で除した比率を百分比で示した値によって定義される硬化反応率が、前記第1半田接合部が再溶融した直後において10%〜75%の範囲内となるように、前記第1樹脂部の熱硬化性樹脂の硬化反応を進行させることを特徴とする電子部品実装基板の製造方法。
An electronic component mounting substrate manufacturing method for manufacturing a mounting substrate in which a first electronic component and a second electronic component are electrically connected to a substrate having a first electrode and a second electrode,
A first component mounting step of mounting the first electronic component on the substrate in a state where a solder bonding material containing a thermosetting resin containing solder particles is interposed between the first electrode and the terminal of the first electronic component. When,
The substrate on which the first electronic component is mounted is heated to melt and solidify the solder particles to form a first solder joint that joins the first electrode and the terminal of the first electronic component, and the thermosetting A first reflow step of forming a first resin portion that covers the first solder joint by advancing a resin curing reaction;
After the first reflow step, a second component mounting step of mounting the second electronic component on the substrate with the solder bonding material interposed between the second electrode and the terminal of the second electronic component;
The substrate on which the second electronic component is mounted is heated to melt and solidify the solder particles to form a second solder joint for joining the second electrode and the terminal of the second electronic component, and the thermosetting A second reflow step of forming a second resin portion that covers the second solder joint by advancing a curing reaction of the conductive resin,
In the second reflow step, a first calorific value and a second calorific value obtained by measuring the uncured thermosetting resin and the thermosetting resin in the course of the curing reaction by a differential scanning calorimeter, respectively. The cure reaction rate defined by the value obtained by dividing the difference between the first calorific value and the second calorific value by the first calorific value using the percentage is remelted by the first solder joint. A method of manufacturing an electronic component mounting board, wherein a curing reaction of the thermosetting resin of the first resin portion is allowed to proceed within a range of 10% to 75% immediately after the process.
前記第2リフロー工程後、前記硬化反応率が80%以上となるように前記第1樹脂部および第2樹脂部の熱硬化性樹脂の硬化反応を進行させる樹脂硬化工程をさらに含むことを特徴とする請求項1記載の電子部品実装基板の製造方法。   After the second reflow step, the resin composition further includes a resin curing step in which a curing reaction of the thermosetting resin of the first resin portion and the second resin portion proceeds so that the curing reaction rate becomes 80% or more. The manufacturing method of the electronic component mounting board | substrate of Claim 1 to do. 前記樹脂硬化工程において、前記半田粒子が溶融固化した前記第1半田接合部および第2半田接合部が再溶融しない温度で前記基板を加熱することを特徴とする請求項2記載の電子部品実装基板の製造方法。   3. The electronic component mounting board according to claim 2, wherein, in the resin curing step, the board is heated at a temperature at which the first solder joint and the second solder joint where the solder particles are melted and solidified are not remelted. Manufacturing method. 前記第1リフロー工程において、リフロー工程終了後における前記硬化反応率が10%以上となるように、前記熱硬化性樹脂の硬化反応を進行させることを特徴とする請求項1乃至3に記載の電子部品実装基板の製造方法。   4. The electron according to claim 1, wherein in the first reflow step, a curing reaction of the thermosetting resin is advanced so that the curing reaction rate after the reflow step is 10% or more. Manufacturing method of component mounting board.
JP2007318131A 2007-12-10 2007-12-10 Manufacturing method of electronic component mounting board Active JP4905339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007318131A JP4905339B2 (en) 2007-12-10 2007-12-10 Manufacturing method of electronic component mounting board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007318131A JP4905339B2 (en) 2007-12-10 2007-12-10 Manufacturing method of electronic component mounting board

Publications (2)

Publication Number Publication Date
JP2009141247A true JP2009141247A (en) 2009-06-25
JP4905339B2 JP4905339B2 (en) 2012-03-28

Family

ID=40871542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007318131A Active JP4905339B2 (en) 2007-12-10 2007-12-10 Manufacturing method of electronic component mounting board

Country Status (1)

Country Link
JP (1) JP4905339B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072213A (en) * 2010-09-27 2012-04-12 Panasonic Corp Thermosetting resin composition and semiconductor component mounting board
JP2014045152A (en) * 2012-08-28 2014-03-13 Panasonic Corp Component mounting board
JP2017162960A (en) * 2016-03-09 2017-09-14 株式会社タムラ製作所 Bonding method of electronic component, and solder composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267536A (en) * 1992-03-17 1993-10-15 Fujitsu Ltd Packaging of electronic component
JP2001093939A (en) * 1999-09-20 2001-04-06 Sony Chem Corp Connection method
JP2004047774A (en) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing mounted substrate
JP2004047773A (en) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd Method of manufacturing mounting board
JP2004247531A (en) * 2003-02-14 2004-09-02 Misuzu Kogyo:Kk Mounting method of electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05267536A (en) * 1992-03-17 1993-10-15 Fujitsu Ltd Packaging of electronic component
JP2001093939A (en) * 1999-09-20 2001-04-06 Sony Chem Corp Connection method
JP2004047774A (en) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd Method for manufacturing mounted substrate
JP2004047773A (en) * 2002-07-12 2004-02-12 Matsushita Electric Ind Co Ltd Method of manufacturing mounting board
JP2004247531A (en) * 2003-02-14 2004-09-02 Misuzu Kogyo:Kk Mounting method of electronic component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072213A (en) * 2010-09-27 2012-04-12 Panasonic Corp Thermosetting resin composition and semiconductor component mounting board
JP2014045152A (en) * 2012-08-28 2014-03-13 Panasonic Corp Component mounting board
JP2017162960A (en) * 2016-03-09 2017-09-14 株式会社タムラ製作所 Bonding method of electronic component, and solder composition

Also Published As

Publication number Publication date
JP4905339B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2017110052A1 (en) Paste thermosetting resin composition, semiconductor component, semiconductor mounted article, method for manufacturing semiconductor component, and method for manufacturing semiconductor mounted article
TWI280829B (en) Mounting substrate and mounting method of electronic part
JP5728636B2 (en) Conductive adhesive, circuit board using the same, and electronic component module
JP5093766B2 (en) Manufacturing method of semiconductor package substrate mounted with conductive balls, etc.
JP6534122B2 (en) Resin flux solder paste and mounting structure
CN102714921B (en) The soft soldering method of face installing component and face installing component
KR101975076B1 (en) Mounting structure and method for manufacturing same
JP2008510620A (en) Solder composition, solder joint method, and solder joint structure
JP2008510621A (en) Solder composition, solder joint method, and solder joint structure
JP2007134476A (en) Soldering method and soldering structure of electronic component
JP2017080797A (en) Solder paste, flux for soldering, and mounting structure using the same
CN102800634B (en) The assembling structure of semiconductor packing device and manufacture method
JP4905339B2 (en) Manufacturing method of electronic component mounting board
WO2001024968A1 (en) Soldering flux, solder paste and method of soldering
JP3849842B2 (en) Flux for soldering, solder paste, electronic component device, electronic circuit module, electronic circuit device, and soldering method
CN101848605B (en) Method of joining electronic component and the electronic component
JP5140038B2 (en) Thermosetting resin composition and circuit board
JP2020163404A (en) Solder paste and mounting structure
CN108966522A (en) QFN chip welding spot reinforcement means and element solder joint intensifying method
JP2010232388A (en) Semiconductor package and mounting structure of semiconductor component
JP5560032B2 (en) Solder joint reinforcing agent composition and method for producing mounting board using the same
JP4236809B2 (en) Electronic component mounting method and mounting structure
JP4471825B2 (en) Electronic component and method for manufacturing electronic component
JPH09295184A (en) Solder, circuit board on which electronic parts are mounted using the solder, and solder paste
JP2007081198A (en) Method for conductive connection between terminals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4905339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3