JP3570229B2 - Solder joining method and thermosetting resin for solder joining - Google Patents

Solder joining method and thermosetting resin for solder joining Download PDF

Info

Publication number
JP3570229B2
JP3570229B2 JP19705198A JP19705198A JP3570229B2 JP 3570229 B2 JP3570229 B2 JP 3570229B2 JP 19705198 A JP19705198 A JP 19705198A JP 19705198 A JP19705198 A JP 19705198A JP 3570229 B2 JP3570229 B2 JP 3570229B2
Authority
JP
Japan
Prior art keywords
solder
electronic component
bond
thermosetting resin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19705198A
Other languages
Japanese (ja)
Other versions
JP2000031187A (en
Inventor
誠一 吉永
忠彦 境
憲 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP19705198A priority Critical patent/JP3570229B2/en
Publication of JP2000031187A publication Critical patent/JP2000031187A/en
Application granted granted Critical
Publication of JP3570229B2 publication Critical patent/JP3570229B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/1182Applying permanent coating, e.g. in-situ coating
    • H01L2224/11822Applying permanent coating, e.g. in-situ coating by dipping, e.g. in a solder bath
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/118Post-treatment of the bump connector
    • H01L2224/11848Thermal treatments, e.g. annealing, controlled cooling
    • H01L2224/11849Reflowing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1356Disposition
    • H01L2224/13563Only on parts of the surface of the core, i.e. partial coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/1369Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子部品に形成された半田バンプ、プリコート半田または半田ボールなどの半田をワークの電極に半田接合する半田接合方法および半田接合用の熱硬化性樹脂に関するものである。
【0002】
【従来の技術】
電子部品や基板などのワークの電極に接合対象物を接合する方法として半田接合が多用される。この半田接合において、基板の電極に電子部品を実装する場合には、電子部品に予め半田部としての半田バンプやプリコート半田を形成する方法が知られており、また電子部品に半田バンプやプリコート半田を形成する方法としては半田ボールを電子部品の電極に半田接合する方法が用いられる。これらの方法は、いずれも半田部としての半田バンプ、プリコート半田または半田ボールを電極に半田接合するプロセスを含んでいる。
【0003】
【発明が解決しようとする課題】
従来半田を電極に接合する際には、半田接合性を向上させるためにフラックスが用いられ、半田接合後には接合部の信頼性向上のためフラックスの残渣の除去を目的とする洗浄を行う必要があった。しかしながら洗浄工程は、有機溶剤の使用規制や電子部品の小型化により複雑化し、高コストを要するものとなって来ている。そしてこの洗浄工程が半田接合を用いる工法での低コスト化を阻害する1つの要因となっていた。
【0004】
そこで本発明は、低コストで半田接合後の信頼性を確保することができる半田接合方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の半田接合方法は、ワークに形成された電極に電子部品に形成された半田を接合する半田接合方法であって、前記電極または前記半田に、半田の酸化膜を除去する活性作用を有し、半田の溶融温度よりも高い硬化開始温度の熱硬化性樹脂を塗布する工程と、前記熱硬化性樹脂の塗布後に前記電子部品を保持する圧着ツールを下降させることにより前記半田を前記電極に搭載する工程と、加熱によって前記半田を溶融させ、次いで加熱温度を更に上昇させて前記熱硬化性樹脂を熱硬化させる工程とを含み、前記熱硬化性樹脂は、エポキシ樹脂に、半田の融点温度よりも高い融点温度を有する硬化剤と、非結晶系のロジンおよび有機酸より成る活性剤とを含有して成る。
【0007】
請求項4記載の半田接合用の熱硬化性樹脂は、ワークに形成された電極に半田を接合するための半田接合用の熱硬化性樹脂であって、エポキシ樹脂に、半田の融点温度よりも高い融点温度を有する硬化剤と、非結晶系のロジンおよび有機酸より成る活性剤とを含有して半田の酸化膜を除去する活性作用を有する。
請求項6の半田接合方法は、ワークに形成された電極に電子部品に形成された半田バンプを接合する半田接合方法であって、前記電極または前記半田に、半田の酸化膜を除去する活性作用を有し、半田の溶融温度よりも高い硬化開始温度の第1のボンドを塗布する工程と、前記第1のボンドの塗布後に前記電子部品を保持する圧着ツールを下降させることにより前記半田バンプを前記電極に位置合わせして電子部品を基板に搭載する工程と、電子部品の周囲の基板上に半田の溶融温度よりも高い融点温度の硬化剤を含む第2のボンドを塗布する工程と、加熱によって前記第2のボンドの粘度を低下させて、この第2のボンドを電子部品と基板の間に浸透させ、その後前記半田を溶融させ次いで前記第1のボンド及び第2のボンドを熱硬化させる工程を含む。
【0008】
各請求項記載の発明によれば、半田接合される電極または半田に、半田の酸化膜を除去する活性作用を有し、半田の融点温度よりも高い融点温度を有する熱硬化性樹脂を塗布することにより、フラックスを使用せずに信頼性に優れた半田接合を低コストで行うことができる。
【0009】
【発明の実施の形態】
(実施の形態1)
図1(a),(b),(c)、図2(a),(b),(c),(d)は本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図、図3は同バンプ付電子部品の実装方法の加熱プロファイルである。図1(a),(b),(c)、図2(a),(b),(c),(d)はバンプ付電子部品の実装方法を工程順に示すものである。
【0010】
図1(a)において、バンプ付電子部品1は半田バンプ2を有しており、バンプ付電子部品1は圧着ツール3によって保持されている。圧着ツール3の下方にはボンド槽4が配置されており、ボンド槽4の底面には第1のボンド5がスキージ6により塗布されている。
【0011】
ここで第1のボンド5について説明する。第1のボンド5は、樹脂封止に用いられるエポキシ樹脂に、半田接合時の接合性を向上させるために用いられるフラックスの機能を併せて備えるようにしたものである。第1のボンド5の組成の例としては、エポキシ樹脂(約40%)、非結晶系のロジン(約40%)、ジカルボン酸などの有機酸よりなる活性剤兼硬化剤(約10%)および硬化剤(約10%)となっている。ここで、硬化剤の融点温度、第1のボンド5の硬化開始温度は200±5℃であり、半田の融点温度より高いものとなっている。
【0012】
圧着ツール3を下降させてバンプ付電子部品1の半田バンプ2をボンド槽4の底面に当接させた後に圧着ツール3を上昇させると、図1(b)に示すように半田バンプ2の下端部に第1のボンド5が転写により塗布される。第1のボンド5を塗布する方法としては、転写以外にもディスペンサによる吐出、スクリーンマスクによる印刷などの方法を用いることもできる。
【0013】
次いで圧着ツール3を移動させ基板7上に位置させて、バンプ付電子部品1の半田バンプ2を基板7の電極8に位置合せする。その後圧着ツール3を下降させることにより、図1(c)に示すようにバンプ付電子部品1を基板7に搭載する。
【0014】
この後、図2(a)に示すように、第2のボンド9をディスペンサ10により基板7の上面の電子部品1の周囲に塗布して供給する。第2のボンド9はエポキシ樹脂を主成分としており、硬化後は封止樹脂の一部を構成する。第2のボンド9は、第1のボンド5と同様に半田の融点温度より高い融点温度の硬化剤を含んでいる。この第2のボンド9は、バンプ付電子部品1と基板2の間の隙間に充填されるものであり、ディスペンサ10によって塗布される際にも出来るだけ隙間の内部に侵入しやすいようバンプ付き電子部品1に接近して塗布される。
【0015】
この後基板7はリフロー炉に送られ、全体が加熱される。ここで図3を参照してリフロー加熱時の温度の変化について説明する。図3の範囲Aに示すように、リフロー工程では、加熱を開始してから温度が上昇して半田の融点温度以下に設定された所定温度に到達すると、この所定温度が保持される。これによりバンプ付電子部品1の周囲に供給された第2のボンド9の粘度が低下し、表面張力によりバンプ付電子部品1と基板7の間の隙間に浸透する。この結果、図2(b)に示すようにバンプ付電子部品1と基板7の間の隙間は、第2のボンド9によって充填される。
【0016】
この後、図3の範囲Bに示すように、加熱温度を半田の融点温度(183℃)以上に上昇させる。これにより、半田バンプ2が溶融し、溶融半田2’は基板7の電極8に半田付けされる。このとき、半田バンプ2の下端部には、ロジンや活性剤を含有する第1のボンド5が塗布されているので、半田バンプ2の表面の酸化膜は還元され良好な半田付けを行うことができる。また、第1のボンドには溶剤が含まれていないので、半田接合部周囲での加熱による溶剤の発泡が発生せず、発泡による接合不良が生じない。
【0017】
この後、加熱温度は図3の範囲Cに示すように更に上昇し、第1のボンド5、第2のボンド9の硬化開始温度より高くなる。これにより第1のボンド5、第2のボンド9は熱硬化を開始し、所定時間加熱を継続することにより第1のボンド5、第2のボンド9は硬化して接合部を固定し、バンプ付電子部品1の実装が完了する。
【0018】
ここで、半田バンプ2の電極8への半田付け後には第1のボンド5は第2のボンド9と混ざり合い、第1のボンド5中のロジンや活性剤などの活性成分は第2のボンド9のエポキシ樹脂中に取り込まれることにより活性を失い、電極7や基板1上面の配線回路面を腐食する作用を失う。したがって、通常のフラックスを使用する場合に半田付け後に行われる洗浄を必要とせずに、実装後の信頼性を確保することができる。
【0019】
また加熱工程として、半田付けと、アンダーフィル樹脂としての第1のボンド5、第2のボンド9の熱硬化を同一のリフロー工程で行うようにしているので、実装工程を簡略化することができる。さらにリフロー炉による加熱を用いることにより、多数の電子部品を一括して実装することができ、圧着ツールなどによる各電子部品個別の実装方法と比較して、実装時の生産効率を格段に向上させることができる。
【0020】
なお上記実施例では、バンプ付電子部品1の搭載後に第2のボンド9を供給するようにしているが、予め基板7上に第2のボンド9を供給した後にバンプ付き電子部品1を搭載するようにしてもよい。
【0021】
(実施の形態2)
図4(a),(b),(c),(d)は本発明の実施の形態2の半田接合方法の工程説明図である。本実施の形態2は、半田部としての半田ボールをワークとしての基板の電極に半田接合するものである。
【0022】
まず図4(a)において、吸着ヘッド11には半田ボール12が真空吸着により保持されている。半田ボール12の下端部には、実施の形態1において図1(a)に示す方法と同様に、第1のボンド5が転写により塗布される。塗布の方法として、転写以外にもディスペンサによる吐出、スクリーンマスクによる印刷などの方法を用いることができる点、および第1のボンド5の成分構成についても実施の形態1と同様である。
【0023】
次に、図4(a)に示すように吸着ヘッド11を電極14が設けられた基板13上に位置させ、半田ボール12を電極14に位置合せした後に吸着ヘッド11を下降させる。図4(b)は、このようにして半田ボール12を電極14に搭載した状態を示している。このとき、半田ボール12に塗布された第1のボンド5は、搭載時に電極14の周囲にもはみ出し、電極14の側面も含めて半田ボール12と電極14の当接部全体を包み込んでいる。
【0024】
次に基板13は加熱工程に送られ、ここで半田の融点温度以上に加熱される。これにより半田ボール12が溶融し、溶融半田は電極14に溶着して図4(c)に示すように半田バンプ12’が形成される。このとき、第1のボンド5中のロジンや活性剤により良好な半田付けが行われる点は実施の形態1と同様である。この後、加熱温度は実施の形態1と同様に図3の範囲Cに示す温度まで上昇し、これにより図4(d)に示すように第1のボンド5は熱硬化を開始し、完全硬化することにより接合部を固定するとともに、電極14全体を包み込んで半田バンプ12’との接合部を有効に補強する。
【0025】
ここで、第1のボンド5中の活性成分の大部分は、半田ボール12や電極14の酸化膜を還元することでその活性作用を失い、残りの活性成分も第1のボンド5中のエポキシ樹脂中に固定されることにより外部に溶出することがなく、したがって接合後に活性成分によって電極14が腐食されることがない。なお、第1のボンド5中に銀などの導電材を混入させることにより、半田ボール12が電極14と完全に接触していなくても、導電材を介して電極14と半田ボール12との導通が確保されることとなり、更に接合部の信頼性を向上させることができる。
【0026】
【発明の効果】
本発明によれば、半田接合される電極または半田部に、半田の酸化膜を除去する活性作用を有し、半田の融点温度よりも高い融点温度を有する熱硬化性樹脂を塗布するようにしたので、フラックスを使用せずに信頼性に優れた半田接合を行うことができる。また半田接合後の洗浄工程を必要としないため、半田接合の低コスト化を実現することができる。
【図面の簡単な説明】
【図1】(a)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
(b)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
(c)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
【図2】(a)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
(b)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
(c)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
(d)本発明の実施の形態1のバンプ付電子部品の実装方法の工程説明図
【図3】本発明の実施の形態1のバンプ付電子部品の実装方法の加熱プロファイルを示す図
【図4】(a)本発明の実施の形態2の半田接合方法の工程説明図
(b)本発明の実施の形態2の半田接合方法の工程説明図
(c)本発明の実施の形態2の半田接合方法の工程説明図
(d)本発明の実施の形態2の半田接合方法の工程説明図
【符号の説明】
1 バンプ付電子部品
2 バンプ
5 第1のボンド
7 基板
9 第2のボンド
12 半田ボール
12’ 半田バンプ
13 基板
14 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a soldering method for soldering a solder such as a solder bump, a pre-coated solder or a solder ball formed on an electronic component to an electrode of a work, and a thermosetting resin for soldering.
[0002]
[Prior art]
2. Description of the Related Art Soldering is often used as a method of joining an object to be joined to an electrode of a work such as an electronic component or a substrate. In this solder bonding, when an electronic component is mounted on an electrode of a substrate, a method of forming a solder bump or a precoat solder as a solder portion on the electronic component in advance is known, and a solder bump or a precoat solder is formed on the electronic component. Is formed by soldering a solder ball to an electrode of an electronic component. Each of these methods includes a process of soldering a solder bump, a precoat solder, or a solder ball as a solder portion to an electrode.
[0003]
[Problems to be solved by the invention]
Conventionally, when solder is joined to electrodes, flux is used to improve the solderability, and after soldering, it is necessary to perform cleaning to remove the residue of the flux to improve the reliability of the joint. there were. However, the cleaning process has become complicated due to restrictions on the use of organic solvents and the miniaturization of electronic components, and has become expensive. This washing step has been one factor that hinders cost reduction by a method using solder bonding.
[0004]
Therefore, an object of the present invention is to provide a soldering method that can ensure reliability after soldering at low cost.
[0005]
[Means for Solving the Problems]
2. The solder bonding method according to claim 1, wherein the solder formed on the electronic component is bonded to the electrode formed on the work, and the active action of removing an oxide film of the solder on the electrode or the solder. Having a step of applying a thermosetting resin having a curing start temperature higher than the melting temperature of the solder, and lowering a crimping tool that holds the electronic component after the application of the thermosetting resin, thereby lowering the solder by applying A step of mounting the electrode, and a step of melting the solder by heating, and then heating the thermosetting resin further by further increasing the heating temperature, wherein the thermosetting resin is an epoxy resin, It comprises a curing agent having a melting point higher than the melting point, and an activator comprising amorphous rosin and an organic acid.
[0007]
The thermosetting resin for solder bonding according to claim 4 is a thermosetting resin for solder bonding for bonding solder to an electrode formed on a work, wherein the epoxy resin has a temperature lower than the melting point of the solder. It contains a curing agent having a high melting point and an activator composed of amorphous rosin and an organic acid, and has an activity of removing an oxide film of solder.
7. The solder bonding method according to claim 6, wherein the solder bump is formed on an electronic component and the solder bump is formed on the electrode formed on the workpiece. anda step of first bond of high curing initiation temperature than the solder melting temperature is coated cloth, the solder bumps by lowering the pressure bonding tool which holds the electronic component after application of the first bond Positioning the electronic component on the substrate in alignment with the electrodes, and applying a second bond containing a curing agent having a melting point higher than the melting temperature of the solder on the substrate around the electronic component, Heating reduces the viscosity of the second bond, allowing the second bond to penetrate between the electronic component and the substrate, then melting the solder and thermosetting the first and second bonds. Let Comprising the step.
[0008]
According to the invention described in each claim, a thermosetting resin having an activity of removing an oxide film of the solder and having a melting point higher than the melting point of the solder is applied to the electrode or the solder to be soldered. This makes it possible to perform highly reliable solder bonding at low cost without using a flux.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIGS. 1 (a), (b), (c) and FIGS. 2 (a), (b), (c), (d) illustrate a process of a method for mounting an electronic component with bumps according to Embodiment 1 of the present invention. FIG. 3 and FIG. 3 are heating profiles of the mounting method of the electronic component with bumps. 1 (a), (b), (c) and FIGS. 2 (a), (b), (c), (d) show a method of mounting an electronic component with bumps in the order of steps.
[0010]
In FIG. 1A, an electronic component with bumps 1 has solder bumps 2, and the electronic component with bumps 1 is held by a crimping tool 3. A bond tank 4 is disposed below the crimping tool 3, and a first bond 5 is applied to a bottom surface of the bond tank 4 by a squeegee 6.
[0011]
Here, the first bond 5 will be described. The first bond 5 is provided with an epoxy resin used for resin sealing and a function of a flux used for improving the joining property at the time of soldering. Examples of the composition of the first bond 5 include an epoxy resin (about 40%), an amorphous rosin (about 40%), an activator / curing agent (about 10%) composed of an organic acid such as dicarboxylic acid, and the like. It is a curing agent (about 10%). Here, the melting point temperature of the curing agent and the curing start temperature of the first bond 5 are 200 ± 5 ° C., which are higher than the melting point temperature of the solder.
[0012]
After lowering the crimping tool 3 to bring the solder bumps 2 of the electronic component 1 with bumps into contact with the bottom surface of the bond tank 4 and then raising the crimping tool 3, as shown in FIG. The first bond 5 is applied to the portion by transfer. As a method of applying the first bond 5, a method such as ejection by a dispenser or printing by a screen mask can be used other than the transfer.
[0013]
Next, the crimping tool 3 is moved and positioned on the substrate 7, and the solder bumps 2 of the electronic component 1 with bumps are aligned with the electrodes 8 of the substrate 7. Thereafter, the crimping tool 3 is lowered to mount the bumped electronic component 1 on the substrate 7 as shown in FIG.
[0014]
Thereafter, as shown in FIG. 2A, a second bond 9 is applied by a dispenser 10 around the electronic component 1 on the upper surface of the substrate 7 and supplied. The second bond 9 has an epoxy resin as a main component, and after curing, forms a part of the sealing resin. Like the first bond 5, the second bond 9 includes a curing agent having a melting point higher than the melting point of the solder. The second bond 9 is filled in the gap between the electronic component 1 with bumps and the substrate 2, and the electronic component with bumps is formed so as to easily enter into the gap when applied by the dispenser 10. It is applied close to the part 1.
[0015]
Thereafter, the substrate 7 is sent to a reflow furnace, and the whole is heated. Here, a change in temperature during reflow heating will be described with reference to FIG. As shown in a range A of FIG. 3, in the reflow step, when the temperature rises from the start of heating and reaches a predetermined temperature set to be equal to or lower than the melting point temperature of the solder, the predetermined temperature is maintained. Thereby, the viscosity of the second bond 9 supplied around the bumped electronic component 1 decreases, and the second bond 9 penetrates into the gap between the bumped electronic component 1 and the substrate 7 by surface tension. As a result, the gap between the electronic component with bumps 1 and the substrate 7 is filled with the second bond 9 as shown in FIG.
[0016]
Thereafter, as shown in a range B of FIG. 3, the heating temperature is raised to the melting point temperature of the solder (183 ° C.) or higher. As a result, the solder bumps 2 are melted, and the molten solder 2 ′ is soldered to the electrodes 8 on the substrate 7. At this time, since the first bond 5 containing rosin and activator is applied to the lower end of the solder bump 2, the oxide film on the surface of the solder bump 2 is reduced and good soldering can be performed. it can. Further, since the first bond does not contain a solvent, the solvent does not foam due to heating around the solder joint, so that a bonding failure due to the foam does not occur.
[0017]
Thereafter, the heating temperature further rises as shown in a range C of FIG. 3 and becomes higher than the curing start temperature of the first bond 5 and the second bond 9. As a result, the first bond 5 and the second bond 9 start thermosetting, and by continuing heating for a predetermined time, the first bond 5 and the second bond 9 are hardened to fix the bonded portion, and the bump is fixed. The mounting of the attached electronic component 1 is completed.
[0018]
Here, after the solder bump 2 is soldered to the electrode 8, the first bond 5 is mixed with the second bond 9, and the active components such as rosin and activator in the first bond 5 are changed to the second bond 9. By being taken into the epoxy resin of No. 9, the activity is lost, and the action of corroding the electrode 7 and the wiring circuit surface on the upper surface of the substrate 1 is lost. Therefore, the reliability after mounting can be ensured without the need for cleaning performed after soldering when using a normal flux.
[0019]
Also, as the heating step, the soldering and the thermosetting of the first bond 5 and the second bond 9 as the underfill resin are performed in the same reflow step, so that the mounting step can be simplified. . Furthermore, by using heating in a reflow furnace, a large number of electronic components can be mounted at one time, and the production efficiency during mounting is significantly improved compared to individual mounting methods for each electronic component using a crimping tool. be able to.
[0020]
In the above embodiment, the second bond 9 is supplied after the mounting of the electronic component 1 with the bump. However, the electronic component 1 with the bump is mounted after the second bond 9 is supplied on the substrate 7 in advance. You may do so.
[0021]
(Embodiment 2)
4 (a), (b), (c), and (d) are process explanatory views of the solder bonding method according to the second embodiment of the present invention. In the second embodiment, a solder ball as a solder portion is soldered to an electrode of a substrate as a work.
[0022]
First, in FIG. 4A, the suction head 11 holds a solder ball 12 by vacuum suction. The first bond 5 is applied to the lower end of the solder ball 12 by transfer, as in the method shown in FIG. 1A in the first embodiment. As a method of application, in addition to transfer, a method such as ejection by a dispenser, printing by a screen mask, and the like, and the component configuration of the first bond 5 are the same as those in the first embodiment.
[0023]
Next, as shown in FIG. 4A, the suction head 11 is positioned on the substrate 13 on which the electrodes 14 are provided, and after positioning the solder balls 12 on the electrodes 14, the suction head 11 is lowered. FIG. 4B shows a state in which the solder ball 12 is mounted on the electrode 14 in this manner. At this time, the first bond 5 applied to the solder ball 12 protrudes around the electrode 14 at the time of mounting, and covers the entire contact portion between the solder ball 12 and the electrode 14 including the side surface of the electrode 14.
[0024]
Next, the substrate 13 is sent to a heating step, where it is heated to a temperature equal to or higher than the melting point of the solder. As a result, the solder ball 12 is melted, and the molten solder is welded to the electrode 14 to form a solder bump 12 'as shown in FIG. At this time, the good soldering is performed by the rosin and the activator in the first bond 5 as in the first embodiment. Thereafter, the heating temperature rises to the temperature shown in the range C of FIG. 3 as in the first embodiment, whereby the first bond 5 starts thermosetting as shown in FIG. By doing so, the joint is fixed, and the entire electrode 14 is wrapped around to effectively reinforce the joint with the solder bump 12 ′.
[0025]
Here, most of the active components in the first bond 5 lose their activation action by reducing the oxide film of the solder balls 12 and the electrodes 14, and the remaining active components also lose their epoxy effects in the first bond 5. By being fixed in the resin, there is no elution to the outside, so that the electrode 14 is not corroded by the active component after bonding. By mixing a conductive material such as silver into the first bond 5, even if the solder ball 12 is not completely in contact with the electrode 14, conduction between the electrode 14 and the solder ball 12 via the conductive material can be achieved. Is secured, and the reliability of the joint can be further improved.
[0026]
【The invention's effect】
According to the present invention, a thermosetting resin having an activity of removing an oxide film of solder and having a melting point higher than the melting point of solder is applied to an electrode or a solder portion to be soldered. Therefore, reliable solder bonding can be performed without using flux. Further, since a cleaning step after soldering is not required, cost reduction of soldering can be realized.
[Brief description of the drawings]
FIG. 1A is a process explanatory view of a method for mounting an electronic component with bumps according to a first embodiment of the present invention; FIG. 1B is a process explanatory view of a method for mounting an electronic component with bumps according to a first embodiment of the present invention; FIGS. 2A and 2B are process explanatory views of a method for mounting an electronic component with bumps according to the first embodiment of the present invention. FIGS. Process explanatory drawing of the mounting method of the electronic component with bump of Embodiment 1 of the present invention (c) Process explanatory drawing of the mounting method of the electronic component with bump of Embodiment 1 of the present invention (d) Embodiment 1 of the present invention FIG. 3 is a process explanatory view of a method of mounting an electronic component with bumps. FIG. 3 is a diagram showing a heating profile of a method of mounting an electronic component with bumps according to Embodiment 1 of the present invention. (B) Steps of the soldering method according to the second embodiment of the present invention Step illustration of a solder bonding method of the second embodiment of Akirazu step (c) illustration of a solder bonding method of the second embodiment (d) of the invention The present invention Description of Reference Numerals]
REFERENCE SIGNS LIST 1 electronic component with bump 2 bump 5 first bond 7 substrate 9 second bond 12 solder ball 12 ′ solder bump 13 substrate 14 electrode

Claims (6)

ワークに形成された電極に電子部品に形成された半田を接合する半田接合方法であって、前記電極または前記半田に、半田の酸化膜を除去する活性作用を有し、半田の溶融温度よりも高い硬化開始温度の熱硬化性樹脂を塗布する工程と、前記熱硬化性樹脂の塗布後に前記電子部品を保持する圧着ツールを下降させることにより前記半田を前記電極に搭載する工程と、加熱によって前記半田を溶融させ、次いで加熱温度を更に上昇させて前記熱硬化性樹脂を熱硬化させる工程とを含み、前記熱硬化性樹脂は、エポキシ樹脂に、半田の融点温度よりも高い融点温度を有する硬化剤と、非結晶系のロジンおよび有機酸より成る活性剤とを含有して成ることを特徴とする半田接合方法。A solder bonding method for bonding a solder formed on an electronic component to an electrode formed on a work, wherein the electrode or the solder has an active action of removing an oxide film of the solder, and has a lower temperature than the melting temperature of the solder. A step of applying a thermosetting resin having a high curing start temperature, a step of mounting the solder on the electrodes by lowering a crimping tool that holds the electronic component after the application of the thermosetting resin, and Melting the solder and then further increasing the heating temperature to thermally cure the thermosetting resin, wherein the thermosetting resin is cured with an epoxy resin having a melting point higher than the melting point of the solder. And an activator comprising an amorphous rosin and an organic acid. 前記半田が電子部品に形成された半田バンプであることを特徴とする請求項1記載の半田接合方法。The method according to claim 1, wherein the solder is a solder bump formed on an electronic component. 前記半田が複数の半田ボールであることを特徴とする請求項1記載の半田接合方法。The method according to claim 1, wherein the solder is a plurality of solder balls. ワークに形成された電極に半田を接合するための半田接合用の熱硬化性樹脂であって、エポキシ樹脂に、半田の融点温度よりも高い融点温度を有する硬化剤と、非結晶系のロジンおよび有機酸より成る活性剤とを含有して、半田の酸化膜を除去する活性作用を有することを特徴とする半田接合用の熱硬化性樹脂。A thermosetting resin for solder bonding for bonding solder to an electrode formed on a work, and a curing agent having a melting point higher than the melting point of the solder, a non-crystalline rosin and an epoxy resin. A thermosetting resin for solder bonding, comprising an activator made of an organic acid and having an activity of removing an oxide film of solder. 前記熱硬化性樹脂には溶剤が含まれていないことを特徴とする請求項4記載の半田接合用の熱硬化性樹脂。The thermosetting resin according to claim 4, wherein the thermosetting resin does not contain a solvent. ワークに形成された電極に電子部品に形成された半田バンプを接合する半田接合方法であって、前記電極または前記半田に、半田の酸化膜を除去する活性作用を有し、半田の溶融温度よりも高い硬化開始温度の第1のボンドを塗布する工程と、前記第1のボンドの塗布後に前記電子部品を保持する圧着ツールを下降させることにより前記半田バンプを前記電極に位置合わせして電子部品を基板に搭載する工程と、電子部品の周囲の基板上に半田の溶融温度よりも高い融点温度の硬化剤を含む第2のボンドを塗布する工程と、加熱によって前記第2のボンドの粘度を低下させて、この第2のボンドを電子部品と基板の間に浸透させ、その後前記半田を溶融させ次いで前記第1のボンド及び第2のボンドを熱硬化させる工程を含むことを特徴とする半田接合方法。A solder bonding method for bonding a solder bump formed on an electronic component to an electrode formed on a work, wherein the electrode or the solder has an activating action of removing an oxide film of the solder, and a temperature lower than a melting temperature of the solder. Applying a first bond having a high curing initiation temperature, and lowering a crimping tool for holding the electronic component after the application of the first bond, thereby aligning the solder bump with the electrode to form the electronic component. Mounting on a substrate, applying a second bond containing a curing agent having a melting point higher than the melting temperature of the solder on the substrate around the electronic component, and heating to reduce the viscosity of the second bond. Lowering and penetrating the second bond between the electronic component and the substrate, and then melting the solder and thermally curing the first and second bonds. Solder bonding method.
JP19705198A 1998-07-13 1998-07-13 Solder joining method and thermosetting resin for solder joining Expired - Fee Related JP3570229B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19705198A JP3570229B2 (en) 1998-07-13 1998-07-13 Solder joining method and thermosetting resin for solder joining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19705198A JP3570229B2 (en) 1998-07-13 1998-07-13 Solder joining method and thermosetting resin for solder joining

Publications (2)

Publication Number Publication Date
JP2000031187A JP2000031187A (en) 2000-01-28
JP3570229B2 true JP3570229B2 (en) 2004-09-29

Family

ID=16367906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19705198A Expired - Fee Related JP3570229B2 (en) 1998-07-13 1998-07-13 Solder joining method and thermosetting resin for solder joining

Country Status (1)

Country Link
JP (1) JP3570229B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135894A (en) * 2021-03-31 2022-10-07 주식회사 노피온 Self-assembly anisotropic conductive adhesive and component mounting method using the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6578755B1 (en) * 2000-09-22 2003-06-17 Flip Chip Technologies, L.L.C. Polymer collar for solder bumps
JP2002164644A (en) * 2000-11-24 2002-06-07 Nec Kyushu Ltd Solder ball mounting agent, solder ball mounter and solder ball mounting method
JP3486872B2 (en) 2001-01-26 2004-01-13 Necセミコンダクターズ九州株式会社 Semiconductor device and manufacturing method thereof
JP5280597B2 (en) * 2001-03-30 2013-09-04 サンスター技研株式会社 One-component thermosetting epoxy resin composition and underfill material for semiconductor mounting
JP2006265484A (en) * 2005-03-25 2006-10-05 Fujitsu Ltd Adhesive resin composition and electronic apparatus
JP4788754B2 (en) 2008-10-15 2011-10-05 パナソニック株式会社 Component built-in wiring board and method for manufacturing component built-in wiring board
CN107813090B (en) * 2016-09-13 2021-08-31 富鼎电子科技(嘉善)有限公司 Probe preparation method and welding jig for preparing probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220135894A (en) * 2021-03-31 2022-10-07 주식회사 노피온 Self-assembly anisotropic conductive adhesive and component mounting method using the same
KR102556928B1 (en) 2021-03-31 2023-07-20 주식회사 노피온 Self-assembly anisotropic conductive adhesive and component mounting method using the same

Also Published As

Publication number Publication date
JP2000031187A (en) 2000-01-28

Similar Documents

Publication Publication Date Title
JP4659262B2 (en) Electronic component mounting method and paste material
JP3381601B2 (en) How to mount electronic components with bumps
US20020033525A1 (en) Packaging method and packaging structures of semiconductor devices
JP2001024034A (en) Method and apparatus for mounting electronic component on circuit board
JP2008205321A (en) Electronic component and method of manufacturing electronic device
WO2001052316A1 (en) Chip mounting method
JP2001332583A (en) Method of mounting semiconductor chip
JP3570229B2 (en) Solder joining method and thermosetting resin for solder joining
KR20020044577A (en) Advanced flip-chip join package
JPH1126922A (en) Method for mounting chip
JP2001284382A (en) Solder bump forming method, flip-chip mounting method and mounting structure
JP2000174059A (en) Method of mounting electronic component
JP2003100809A (en) Flip-chip mounting method
JP3381593B2 (en) How to mount electronic components with bumps
JP2002334906A (en) Method for mounting flip chip
JP2002232123A (en) Manufacturing method of composite circuit substrate
WO2006098294A1 (en) Method for mounting electronic component, circuit board with electronic component mounted thereon, and electronic equipment with said circuit board mounted thereon
JP4200273B2 (en) Mounting board manufacturing method
JP3417281B2 (en) How to mount electronic components with bumps
JPH09246319A (en) Flip chip mounting method
JP3890814B2 (en) Electronic component mounting method
JP2004153113A (en) Circuit wiring board, manufacturing method thereof, and sealing resin composition
JP4200090B2 (en) Manufacturing method of semiconductor device
JP2000058597A (en) Method of mounting electronic component
KR100347762B1 (en) Direct attatch bonding process of bare chip and pwb

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040121

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040614

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070702

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110702

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120702

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees