JP2004363220A - Method of manufacturing packaging structure, and connector - Google Patents

Method of manufacturing packaging structure, and connector Download PDF

Info

Publication number
JP2004363220A
JP2004363220A JP2003157805A JP2003157805A JP2004363220A JP 2004363220 A JP2004363220 A JP 2004363220A JP 2003157805 A JP2003157805 A JP 2003157805A JP 2003157805 A JP2003157805 A JP 2003157805A JP 2004363220 A JP2004363220 A JP 2004363220A
Authority
JP
Japan
Prior art keywords
semiconductor device
bonding material
hole
circuit board
resin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003157805A
Other languages
Japanese (ja)
Other versions
JP2004363220A5 (en
JP4129837B2 (en
Inventor
Masahiro Ono
正浩 小野
Hiroshi Sogo
寛 十河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003157805A priority Critical patent/JP4129837B2/en
Publication of JP2004363220A publication Critical patent/JP2004363220A/en
Publication of JP2004363220A5 publication Critical patent/JP2004363220A5/ja
Application granted granted Critical
Publication of JP4129837B2 publication Critical patent/JP4129837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a packaging structure of high reliability wherein a shortcircuit is not generated between connecting parts which are adjacent to each other even if a gap between terminal electrodes of a semiconductor device becomes narrow, and to provide a connector. <P>SOLUTION: In the manufacturing method, through holes 11 are formed in a resin film 7 and a lifting sheet 10 on the terminal electrodes 8 of a circuit board 9, and the through holes 11 are filled with a conductive adhesive 13; the lifting sheet 10 is exfoliated; projection electrodes 3 of the semiconductor device 1 are aligned on the conductive adhesive 13; and packaging is performed. The pierced hole 11 is formed as an inverse tapered shape wherein the diameter of a circuit board 9 side is greater than that of a semiconductor device 1 side. As a result, spreading of the conductive adhesive 13 by pushing at the time of packaging is restrained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置(半導体チップ)を回路基板に実装してなる実装構造体の製造方法及びその製造方法に好適な接続体に関する。
【0002】
【従来の技術】
近年、携帯用電子機器の小型化、高性能化の要求に伴って半導体パッケージなどに対しても小型化、高性能化がますます求められている。そのため、端子ピン数が増加し、端子ピンの狭ピッチ化あるいはエリア配列が重要となっている。
【0003】
このような要求に有効な実装技術の一つにフリップチップ実装がある。かかるフリップチップ実装として、図9に示されるように、ワイヤボンディング法を用いて形成された突起電極(バンプ)20を有する半導体装置21を、導電性接着剤22を介して回路基板23の端子電極24上に実装し、封止樹脂25より補強した実装構造がある(例えば、特許文献1参照)。
【0004】
この場合、導電性接着剤22という接合層の存在により接続部の高信頼性が確保されている。
【0005】
しかし、バンプ形成工程、バンプの高さのばらつきを矯正するバンプレベリング工程、導電性接着剤供給工程、実装工程、封止樹脂封入工程、導電性接着剤及び封止樹脂の硬化工程など工程数が非常に多いことや、バッチ処理のため樹脂の硬化時間が長く、生産タクト、高生産性が懸念されている。
【0006】
また、導電性接着剤の供給工程では、突起電極20への転写によって供給するため、狭ピッチになると、突起電極20を小さくせざるを得ないので、導電性接着剤の転写量(供給量)が減少し、接続信頼性を確保するのが困難となる。なお、突起電極は、ワイヤボンディング法以外に、電解めっき、あるいは、無電解めっきで生成された金属、例えばAu、Niなどで構成されたものも用いることができる。
【0007】
一方で、図10に示されるように、回路基板26の凹部に電極となる金属をメッキ等によって形成した凹状ベセル27に、半田や導電性接着剤などの導電性接合材28を充填し、そこに突起電極(バンプ)29を有する半導体装置30を搭載するものがある(例えば、特許文献2参照)。
【0008】
また、図11に示されるように、接着剤層31を両面に有する基材32に設けた貫通孔に導電性ペースト33を充填し、半導体素子34を回路基板35に実装する方式が提案されている(例えば、特許文献3参照)。
【0009】
【特許文献1】
特許第3012809号
【特許文献2】
特許第3160175号
【特許文献3】
特開2000−59592号公報
【0010】
【発明が解決しようとする課題】
従来の実装技術では、半導体装置(半導体チップ)の端子電極の間隔が狭くなって狭ピッチになると、導電性接着剤などの接合材料の安定した供給が難しくなると同時に、半導体装置の突起電極(バンプ)を、回路基板の孔などに充填された接合材料に実装する際に、荷重が作用するために、接合材料が孔などから外に溢れて隣接する接続部同士がショ−トしてしまう虞がある。
【0011】
そのため、本来、高信頼性を確保するために用いた接合材料であるのに、逆に接続品質を損なってしまうことになる。
【0012】
本発明は、上述の点に鑑みて為されたものであって、半導体装置の端子電極の間隔が狭くなっても、半導体装置と回路基板とを良好に接続できる実装構造体の製造方法および接続体を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明では、上述の目的を達成するために、次のように構成している。
【0014】
すなわち、本発明の実装構造体の製造方法は、半導体装置の端子電極を、接合材料が充填された貫通孔を有する樹脂フィルムの前記接合材料を介して、回路基板の端子電極に接続して、前記半導体装置を前記回路基板に実装してなる実装構造体の製造方法であって、前記貫通孔の径が、前記半導体装置側に比べて、前記回路基板側が大きいものである。
【0015】
本発明によると、接合材料が充填される貫通孔の径を、半導体装置側に比べて、回路基板側を大きくした、すなわち、半導体装置側の接合材料を少なくしたので、半導体装置を回路基板に実装する際の押圧によって、接合材料が、貫通孔から溢れて広がるのを抑制することができ、これにより、端子電極を有する半導体装置を、端子電極を有する回路基板に接合材料を介して実装する場合に、狭ピッチでも安定に接続することができ、高信頼性を確保できる。
【0016】
また、本発明の実装構造体の製造方法は、半導体装置の端子電極を、接合材料が充填された貫通孔を有する樹脂フィルムの前記接合材料を介して、回路基板の端子電極に接続して、前記半導体装置を前記回路基板に実装してなる実装構造体の製造方法であって、前記接合材料は、前記半導体装置が実装される前は、前記樹脂フィルムの表面よりも前記半導体装置側に突出しており、前記接合材料の前記突出している端部の径が、前記貫通孔の前記回路基板側の径よりも小さいものである。
【0017】
本発明によると、接合材料が充填される貫通孔から半導体装置側へ突出している接合材料の端部の径を、前記貫通孔の回路基板側よりも小さくしたので、実装前や半導体装置を回路基板に実装する際の押圧によって、接合材料が広がるのを抑制することができ、これにより、端子電極を有する半導体装置を、端子電極を有する回路基板に接合材料を介して実装する場合に、狭ピッチでも安定に接続することができ、高信頼性を確保できる。
【0018】
本発明の一つの実施態様においては、前記半導体装置の前記端子電極には、突起電極が形成されるとともに、前記突起電極の周囲には、該突起電極の表面よりもその表面が高くなるように保護膜が形成されている。
【0019】
この実施態様によると、半導体装置の突起電極の表面は、その周囲の保護膜の表面よりも低く形成されているので、突起電極の部分が凹部となっており、半導体装置を回路基板に実装するときの押圧によって、広がろうとする接合材料を、前記凹部内に収納して外側に広がるのを有効に抑制することができる。
【0020】
本発明の実装構造体の製造方法は、前記回路基板上に、片面に剥離シートを有する前記樹脂フィルムを配置して接着する工程と、前記回路基板の前記端子電極上の前記樹脂フィルム及び前記剥離シートに前記貫通孔を形成する工程と、前記貫通孔に前記接合材料を充填する工程と、前記剥離シートを前記樹脂フィルムから剥離する工程と、前記半導体装置の前記端子電極を、前記接合材料上に位置合わせして実装する工程とを備えるのが好ましい。
【0021】
また、前記接合材料は、半田または導電性接着剤であるのが好ましく、前記半田は、Ag、Pb、Sn、Zn、Pd、Biの少なくとも1つを含むものであるのが好ましく、前記導電性接着剤は、導電性フィラーとしてAg、Pd、Ni、Au、Cu、C、Pt、Fe、Tiの少なくとも1つを含んでいるのが好ましい。
【0022】
また、接合材料は、熱硬化性の導電性接着剤であって、前記半導体装置が実装される前に、前記回路基板を加熱して前記導電性接着剤を半硬化状態にするのが好ましい。
【0023】
このように半硬化状態にしておくことによって、実装前や半導体装置を回路基板に実装する際の押圧によって、接合材料が広がるのを一層抑制することができる。
【0024】
前記接合材料は、熱可塑性の導電性接着剤であって溶剤を含んでおり、前記半導体装置が実装される前に、前記回路基板を加熱して前記溶剤を飛散させるようにしてもよい。
【0025】
前記樹脂フィルムは、エポキシ系樹脂を主成分として含むとともに、無機物の粒子を含むものであってもよいし、あるいは、エポキシ系樹脂を主成分として含むとともに、導電性の粒子としてAg、Pd、Ni、Au、Cu、C、Pt、Feの少なくとも1つを含むものであってもよい。
【0026】
本発明の接続体は、半導体装置と回路基板とを接続するための接続体であって、貫通孔を有する樹脂フィルムの前記貫通孔に接合材料が充填され、前記貫通孔の一端側の径が、他端側の径よりも小さいものである。
【0027】
また、接合材料は、前記一端側から突出しているのが好ましい。
【0028】
本発明によると、接合材料が充填される貫通孔の径が小さい一端側を半導体装置側とし、他端側を回路基板側として、半導体装置を回路基板に実装することにより、接合材料が、貫通孔から溢れて広がるのを抑制することができ、これにより、端子電極を有する半導体装置を、端子電極を有する回路基板に接続体を介して実装する場合に、狭ピッチでも安定に接続することができ、高信頼性を確保できる。
【0029】
また、本発明の接続体は、半導体装置と回路基板とを接続するための接続体であって、貫通孔を有する樹脂フィルムの前記貫通孔に接合材料が充填され、前記貫通孔の一端側から前記接合材料が突出し、この突出している端部の径が、前記貫通孔の他端側の径よりも小さいものである。
【0030】
本発明によると、接合材料の突出している端部の径が貫通孔の他端側の径よりも小さい一端側を半導体装置側とし、他端側を回路基板側として、半導体装置を回路基板に実装することにより、接合材料が、貫通孔から溢れて広がるのを抑制することができ、これにより、端子電極を有する半導体装置を、端子電極を有する回路基板に接続体を介して実装する場合に、狭ピッチでも安定に接続することができ、高信頼性を確保できる。
【0031】
また、前記接合材料は、前記貫通孔内に充填されている量が、前記貫通孔から突出している量よりも多いのが好ましい。
【0032】
また、前記接合材料が、半田または導電性接着剤であるのが好ましい。
【0033】
また、前記貫通孔は、前記半導体装置の端子電極と前記回路基板の端子電極との接続位置に対応して形成されるのが好ましい。
【0034】
【発明の実施の形態】
(実施の形態1)
図1は、本発明の第1の実施の形態に係る実装構造体の製造方法の概略図である。
【0035】
この実施の形態の製造方法では、先ず、同図(a)に示されるように、入出力端子電極8を有する回路基板9上の実装領域に、片面に剥離シート10を有する樹脂フィルム7を配置して接着する。
【0036】
この接着は、樹脂フィルム7を、例えば、80℃程度で1秒程度加温して粘着性を生じさることにより行なうことができ、また、冷却後には、半硬化状態に保つことができる。
【0037】
次に、同図(b)に示されるように、入出力端子電極8上の接続部位に相当する位置に、接合材料としての導電性接着剤が充填される貫通孔11を、後述のようにして形成する。
【0038】
この実施の形態では、半導体装置1の突起電極3を、回路基板9の接合材料に荷重をかけて接続する際に、接合材料である導電性接着剤13が外に溢れて接続部同士がショートしないように、貫通孔11は、その径が、回路基板9側が大きく、半導体装置1側が小さい逆テーパ型(円錐台状)に形成される。
【0039】
次に、同図(c)に示されるように、スキージ12を用いて接合材料である導電性接着剤13を、樹脂フィルム7および剥離シート10に亘る貫通孔11に充填する。このとき、導電性接着剤13は、剥離シート10の上面と面一となるように充填される。
【0040】
次に、この実施の形態では、実装前の導電性接着剤13の広がりを抑制し、さらに、半導体装置1を回路基板9に搭載する際の実装荷重が作用しても導電性接着剤13が流動して広がるのを抑制するために、同図(d)に示されるように、回路基板が載置されている加熱用ステージ14に内蔵されているヒータ15によって加熱して導電性接着剤13を半硬化状態にする。
【0041】
なお、導電性接着剤13は、必ずしも半硬化状態にしなくてもよい。
【0042】
次に、剥離シート10を剥がすことで、同図(e)に示されるように、導電性接着剤13を、樹脂フィルム7の上面から僅かに突出させる。
【0043】
この実施の形態では、半導体装置1の突起電極3を、回路基板9に荷重をかけて接続する際に、導電性接着剤13が外に溢れて接続部同士がショートしないようにするために、半導体装置1は、次のように構成されている。
【0044】
すなわち、半導体装置1は、同図(e)に示されるように、端子電極2およびその上の突起電極3の周囲には、パッシベーション膜4および保護膜5が形成されるとともに、突起電極3の部分が凹部となるように、保護膜5の表面が、突起電極3の表面よりも高く形成されている。
【0045】
次に、半導体装置1の突起電極3を、樹脂フィルム7の貫通孔11の導電性接着剤13に位置合わせした後に回路基板9に搭載し、加熱押圧する。
【0046】
この実施の形態では、導電性接着剤13は、逆テーパ型(円錐台状)の貫通孔11に充填されており、樹脂フィルム7の上面から突出している導電性接着剤13の量も少なく、したがって、半導体装置1の突起電極3を、導電性接着剤13に位置合わせして押圧した際に、樹脂フィルム7の上面から外方に溢れて広がる導電性接着剤13の量が少なくなる。
【0047】
しかも、半導体装置1の突起電極3の部分は、その周囲の保護膜5の表面よりも低い凹部となっているので、広がった導電性接着剤13が、凹部内に収まり、導電性接着剤13が外に溢れて接続部同士がショートするのを有効に防止することができる。
【0048】
このように、貫通孔11から溢れた導電性接着剤を、凹部に収めるために、この凹部の容積をV1とし、実装時に半導体装置1側で広がる導電性接着剤13の容積をV2とすると、少なくともV1≧V2であることが好ましい。
【0049】
この実施の形態では、上述のように、導電性接着剤13を予め半硬化状態としているので、導電性接着剤13が外に溢れるのが、一層抑制されることになる。
【0050】
また、このように半導体装置1を、導電性接着剤13を介して回路基板9に実装するので、実装時の応力を緩和することができ、回路基板9の反りやうねりに対しても柔軟に対応でき、さらに、回路基板9の入出力端子電極8が変形するまでの実装荷重を必要とせず、低荷重実装が可能となる。
【0051】
この実施の形態において、封止樹脂としての上述の樹脂フィルム7には、通常の異方性導電膜(ACF)に用いられているとの同じような樹脂を用いることができ、例えば、エポキシ系樹脂フィルムを用いることができる。
【0052】
また、この樹脂フィルム7は、SiOやAl、TiO、SiN、SiC、AlNなどの無機物の粒子だけを含んだ絶縁樹脂として用いることもできるし、導電性粒子、例えばAg、Pd、Ni、Au、Cu、C、Pt、Fe、Tiなどの少なくとも1つを含んだ異方性導電樹脂として用いることもできる。
【0053】
この樹脂フィルム7としては、例えば、ナガセケムテックス(株)製品番R6001が好ましい。この品番R6001の樹脂フィルムは、1週間程度は、常温保存可能であり、貫通孔を形成する工程と、樹脂フィルムを回路基板に接着させる工程とを、別々に行なうことができるので、生産タクトが向上できて生産性に優れている。
【0054】
導電性接着剤13は、熱硬化性または熱可塑性の樹脂を主成分とし、導電性フィラーを含んでおり、樹脂としては、エポキシ系の樹脂を用いることができ、導電性フィラーには、例えばAg、Pd、Ni、Au、Cu、C、Pt、Fe、Tiの少なくとも1つを用いることができる。
【0055】
ここで、樹脂フィルム7の逆テーパ型(円錐台状)の貫通孔11の形成について説明する。
【0056】
貫通孔11は、レ−ザ−ビームを照射して形成するのが好ましく、特に、加工時に熱を発生しないので、YAGレーザーを用いて形成するのが好ましい。
【0057】
貫通孔11の穴径は、レーザー出力の強弱や波長によって調整することができるので、逆テーパ型の貫通孔となるようにレーザー出力や波長を調整して形成する。
【0058】
この実施の形態では、回路基板9上に、剥離シート10を有する樹脂フィルム7を配置接着し、逆テーパ型の貫通孔11を形成して導電性接着剤13を充填して剥離シート10を剥がすことにより、半導体装置1と回路基板9との間に、接合用の樹脂フィルム7を形成したけれども、本発明の他の実施の形態として、例えば、図2に示される本発明に係る接続体を予め準備し、この接続体17を用いて実装構造体を製造してもよい。
【0059】
すなわち、図2は、本発明の一つの実施の形態に係る接続体の断面図であり、図1に対応する部分には、同一の参照符号を付す。
【0060】
この接続体17は、樹脂フィルム7の接続部位に相当する位置に逆テーパ型の貫通孔11が形成され、この貫通孔11に導電性接着剤13が充填されているとともに、上面から導電性接着剤13の一部が突出して形成されている。
【0061】
この接続体17は、例えば、図3(a)に示されるように、金属板15上に、片面に剥離シート10を有する樹脂フィルム7を配置し、同図(b)に示されるように、レーザーなどを用いて接続部位に相当する位置に、逆テーパ型(円錐台状)の貫通孔11を形成する。この逆テーパ型の貫通孔11は、上述のように、レーザーの出力や波長の調整によって形成される。
【0062】
次に、同図(c)に示されるように、接合材料としての導電性接着剤13を、スキージ12を用いて貫通孔11に充填し、次に、剥離シート10を樹脂フィルム7から剥がし、金属板15から樹脂フィルム7を分離して上述の図2の接続体17を得ることができる。なお、金属板15に代えて金属箔を用いてもよい。
【0063】
この接続体17は、逆テーパ型の貫通孔11に導電性接着剤13が充填されているとともに、上面から導電性接着剤13の一部が突出しているので、上述の図1(e)の導電性接着剤13を有する樹脂フィルム7と同様である。
【0064】
したがって、本発明の他の実施の形態の実装構造体の製造方法として、回路基板9上の実装領域に、回路基板9の入出力電極8と接続体17の導電性接着剤13とを位置合わせして配置接着し、半導体装置1の突起電極3を、接続体17の導電性接着剤13に位置合わせてして加熱押圧して熱圧着するようにしてもよい。
【0065】
この接続体17の樹脂フィルム7および導電性接着剤13は、上述の図1と同様であるので、その説明は省略する。
【0066】
(実施の形態2)
図4は、本発明の第2の実施の形態に係る実装構造体の製造方法の概略図であり、上述の図1に対応する部分には、同一の参照符号を付してその説明を省略する。
【0067】
上述の実施の形態では、半導体装置1は、突起電極3の部分が凹部となるように、保護膜15の表面が、突起電極3の表面よりも高く形成されていたのに対して、この実施の形態では、突起電極3−1は、保護膜5の表面よりも突出するように形成されている。
【0068】
その他の構成は、上述の実施の形態と同様である。
【0069】
(実施の形態3)
図5は、本発明の第3の実施の形態に係る実装構造体の製造方法の概略図であり、上述の図1に対応する部分には、同一の参照符号を付してその説明を省略する。
【0070】
この実施の形態では、同図(b)に示されるように、樹脂フィルム7および剥離シート10に亘って形成される貫通孔を、上述の各実施の形態のように逆テーパ型に形成するのではなく、樹脂フィルム7の部分が大径であって、剥離シート10の部分が小径となる二段型の貫通孔11−1としている。
【0071】
このように、二段型の貫通孔11−1とすることにより、同図(e)に示されるように、樹脂フィルム7の上面から突出している導電性接着剤13の量を少なくすることができ、上述の実施の形態と同様に、半導体装置1の突起電極3を、導電性接着剤13に位置合わせして押圧した際に、導電性接着剤13が、樹脂フィルム7の上面から外方に溢れて広がるのを抑制して接続部同士がショートするのを有効に防止することができる。
【0072】
この二段型の貫通孔11−1は、次のようにして形成することができる。すなわち、例えば、剥離シート10にはPET(ポリエチレンテレフタレート)フィルムを、樹脂フィルム7にはPEN(ポリエチレンナフタート)フィルムを用いる。最初に炭酸ガスレーザーで剥離シート10および樹脂フィルム7に小径の穴を形成した後、YAGレーザーにてそれより径の大きい穴を樹脂フィルム7のみに形成する。この場合、YAGレーザーは、PETフィルムに吸収されないので剥離シート10には、大径の穴があかず、樹脂フィルム7のみに大径な穴をあけることができる。
【0073】
その他の構成は、上述の実施の形態1と同様である。
【0074】
この実施の形態では、回路基板9上に、剥離シート10を有する樹脂フィルム7を配置接着し、二段型の貫通孔11−1を形成して導電性接着剤13を充填して剥離シート10を剥がすことにより、半導体装置1と回路基板9との間に、接合用の樹脂フィルム7を形成したけれども、本発明の他の実施の形態として、例えば、図6に示される本発明に係る接続体18を予め準備し、この接続体18を用いて実装構造体を製造してもよい。
【0075】
すなわち、図6は、本発明の他の実施の形態に係る接続体18の断面図である。
【0076】
この接続体18は、樹脂フィルム7の接続部位に相当する位置に貫通孔が形成され、この貫通孔に導電性接着剤13が充填されているとともに、上面から貫通孔よりも小径の導電性接着剤13が突出して形成されている。
【0077】
この接続体18は、例えば、図7(a)に示されるように、金属板15上に、片面に剥離シート10を有する樹脂フィルム7を配置し、同図(b)に示されるように、接続部位に相当する位置に、例えば、炭酸ガスレーザーを用いて剥離シート10および樹脂フィルム7に小径の貫通孔11−1’を形成する。次に、同図(c)に示されるように、YAGレーザーを用いて樹脂フィルム7のみに大径の貫通孔を形成する。これによって、樹脂フィルム7の部分が大径であって、剥離シート10の部分が小径となる二段型の貫通孔11−1を形成する。
【0078】
次に、同図(d)に示されるように、接合材料としての導電性接着剤13を、スキージ12を用いて貫通孔11−1に充填し、次に、剥離シート10を樹脂フィルム7から剥がし、金属板15から樹脂フィルム7を分離して上述の図6の接続体18を得ることができる。なお、金属板15に代えて金属箔を用いてもよい。
【0079】
この接続体18は、大径の貫通孔に導電性接着剤13が充填されているとともに、上面から小径の導電性接着剤13が突出しているので、上述の図5(e)の導電性接着剤13を有する樹脂フィルム7と同様である。
【0080】
したがって、本発明の他の実施の形態の実装構造体の製造方法として、回路基板9上の実装領域に、回路基板9の入出力電極8と接続体18の導電性接着剤13とを位置合わせして配置接着し、半導体装置1の突起電極3を、接続体18の導電性接着剤13に位置合わせてして加熱押圧して熱圧着するようにしてもよい。
【0081】
この接続体18の樹脂フィルム7および導電性接着剤13は、上述の図5と同様であるので、その説明は省略する。
【0082】
(実施の形態4)
図8は、本発明の第4の実施の形態に係る実装構造体の製造方法の概略図であり、上述の図5に対応する部分には、同一の参照符号を付してその説明を省略する。
【0083】
上述の実施の形態3では、半導体装置1は、突起電極3の部分が凹部となるように、保護膜15の表面が、突起電極3の表面よりも高く形成されていたのに対して、この実施の形態では、突起電極3−1は、保護膜5の表面よりも突出するように形成されている。
【0084】
その他の構成は、上述の実施の形態3と同様である。
【0085】
(その他の実施の形態)
上述の実施の形態では、貫通孔を二段型に形成したけれども、本発明の他の実施の形態として、三段以上の多段に形成してもよい。
【0086】
上述の実施の形態では、接合材料として導電性接着剤に適用して説明したけれども、導電性接着剤に代えて、半田を用いてもよい。
【0087】
本発明の接続体は、剥離シートや金属板(箔)を備えていてもよい。
【0088】
【発明の効果】
以上のように本発明によれば、端子電極を有する半導体装置を、端子電極を有する回路基板に接合材料を介して実装する場合に、接合材料が広がるのを抑制することができ、狭ピッチでも安定に接続できるとともに、高信頼性を確保できる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の実装構造体の製造方法の概略図である。
【図2】本発明に係る接続体の概略断面図である。
【図3】図2の接続体の製造方法の概略図である。
【図4】本発明の第2の実施の形態の実装構造体の製造方法の概略図である。
【図5】本発明の第3の実施の形態の実装構造体の製造方法の概略図である。
【図6】本発明の他の実施の形態の接続体の概略断面図である。
【図7】図6の接続体の製造方法の概略図である。
【図8】本発明の第4の実施の形態の実装構造体の製造方法の概略図である。
【図9】従来の接合層を用いた実装方法を示す概略図である。
【図10】従来の接合層を用いた実装方法を示す概略図である。
【図11】従来の接合層を用いた実装方法を示す概略図である。
【符号の説明】
1 半導体装置(半導体チップ) 2端子電極
3 突起電極(バンプ) 4 パッシベーション膜
5 保護膜 7 樹脂フィルム 8 入出力端子電極
9 回路基板 10 剥離シート 11 貫通孔
12 スキージ 13 導電性接着剤
14 加熱用ステージ 15 金属板
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a mounting structure in which a semiconductor device (semiconductor chip) is mounted on a circuit board, and a connector suitable for the manufacturing method.
[0002]
[Prior art]
In recent years, with the demand for miniaturization and high performance of portable electronic devices, miniaturization and high performance of semiconductor packages and the like have been increasingly required. Therefore, the number of terminal pins increases, and it is important to reduce the pitch of the terminal pins or to arrange the areas.
[0003]
One of the effective mounting techniques for such a demand is flip-chip mounting. As shown in FIG. 9, a semiconductor device 21 having a projecting electrode (bump) 20 formed by a wire bonding method is connected to a terminal electrode of a circuit board 23 via a conductive adhesive 22 as shown in FIG. There is a mounting structure that is mounted on the substrate 24 and reinforced by a sealing resin 25 (for example, see Patent Document 1).
[0004]
In this case, high reliability of the connection portion is secured by the presence of the bonding layer of the conductive adhesive 22.
[0005]
However, the number of steps such as a bump forming step, a bump leveling step for correcting variations in bump height, a conductive adhesive supply step, a mounting step, a sealing resin enclosing step, and a curing step of the conductive adhesive and the sealing resin are reduced. Due to the large number of batch processing and the long curing time of the resin due to batch processing, production tact and high productivity are concerned.
[0006]
Further, in the conductive adhesive supply step, the conductive adhesive is supplied by transfer to the protruding electrodes 20. Therefore, when the pitch is narrow, the protruding electrodes 20 must be reduced, so the transfer amount (supply amount) of the conductive adhesive is required. And it becomes difficult to secure connection reliability. In addition to the wire bonding method, the protruding electrode may be formed of a metal generated by electrolytic plating or electroless plating, for example, Au, Ni, or the like.
[0007]
On the other hand, as shown in FIG. 10, a conductive bonding material 28 such as solder or a conductive adhesive is filled in a concave vessel 27 in which a metal serving as an electrode is formed in a concave portion of a circuit board 26 by plating or the like. Mounted with a semiconductor device 30 having a protruding electrode (bump) 29 (for example, see Patent Document 2).
[0008]
As shown in FIG. 11, a method has been proposed in which a conductive paste 33 is filled in a through hole provided in a base material 32 having an adhesive layer 31 on both sides, and a semiconductor element 34 is mounted on a circuit board 35. (For example, see Patent Document 3).
[0009]
[Patent Document 1]
Patent No. 3012809 [Patent Document 2]
Patent No. 3160175 [Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-59592
[Problems to be solved by the invention]
In the conventional mounting technology, if the interval between the terminal electrodes of the semiconductor device (semiconductor chip) becomes narrow and the pitch becomes narrow, it becomes difficult to supply a bonding material such as a conductive adhesive stably, and at the same time, the protrusion electrodes (bumps) ) Is mounted on a bonding material filled in a hole or the like of a circuit board, a load acts, so that the bonding material overflows from the hole or the like and shorts adjacent connection portions. There is.
[0011]
For this reason, although the bonding material is originally used for ensuring high reliability, the connection quality is adversely affected.
[0012]
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and has a method and a method for manufacturing a mounting structure capable of satisfactorily connecting a semiconductor device and a circuit board even when a distance between terminal electrodes of the semiconductor device is reduced. The purpose is to provide the body.
[0013]
[Means for Solving the Problems]
The present invention has the following configuration to achieve the above object.
[0014]
That is, the manufacturing method of the mounting structure of the present invention connects the terminal electrode of the semiconductor device to the terminal electrode of the circuit board via the bonding material of the resin film having the through hole filled with the bonding material, A method of manufacturing a mounting structure in which the semiconductor device is mounted on the circuit board, wherein the diameter of the through hole is larger on the circuit board side than on the semiconductor device side.
[0015]
According to the present invention, the diameter of the through hole filled with the bonding material is larger on the circuit board side than on the semiconductor device side, that is, the bonding material on the semiconductor device side is reduced, so that the semiconductor device can be mounted on the circuit board. The bonding material can prevent the bonding material from overflowing from the through hole and spreading due to the pressing at the time of mounting, whereby the semiconductor device having the terminal electrode is mounted on the circuit board having the terminal electrode via the bonding material. In this case, stable connection can be achieved even at a narrow pitch, and high reliability can be ensured.
[0016]
In the method for manufacturing a mounting structure of the present invention, the terminal electrode of the semiconductor device is connected to the terminal electrode of the circuit board via the bonding material of the resin film having the through hole filled with the bonding material, A method of manufacturing a mounting structure in which the semiconductor device is mounted on the circuit board, wherein the bonding material protrudes toward the semiconductor device from a surface of the resin film before the semiconductor device is mounted. The diameter of the protruding end of the bonding material is smaller than the diameter of the through hole on the circuit board side.
[0017]
According to the present invention, the diameter of the end of the bonding material projecting from the through-hole filled with the bonding material toward the semiconductor device is smaller than that of the through-hole on the circuit board side. The bonding material can be prevented from spreading due to the pressure applied when the semiconductor device is mounted on the substrate. Therefore, when the semiconductor device having the terminal electrodes is mounted on the circuit board having the terminal electrodes via the bonding material, the width of the bonding material is reduced. Connection can be made stably even at the pitch, and high reliability can be secured.
[0018]
In one embodiment of the present invention, a projection electrode is formed on the terminal electrode of the semiconductor device, and the surface of the projection electrode is higher than the surface of the projection electrode around the projection electrode. A protective film is formed.
[0019]
According to this embodiment, the surface of the protruding electrode of the semiconductor device is formed lower than the surface of the surrounding protective film, so that the portion of the protruding electrode is a concave portion, and the semiconductor device is mounted on a circuit board. Due to the pressing, the joining material to be spread can be effectively prevented from being stored in the recess and spreading outward.
[0020]
The method for manufacturing a mounting structure according to the present invention includes the steps of: disposing and bonding the resin film having a release sheet on one surface on the circuit board; and bonding the resin film on the terminal electrode of the circuit board and the release Forming the through hole in the sheet, filling the through hole with the bonding material, releasing the release sheet from the resin film, and placing the terminal electrode of the semiconductor device on the bonding material. It is preferable to include a step of positioning and mounting.
[0021]
Preferably, the bonding material is a solder or a conductive adhesive, and the solder preferably includes at least one of Ag, Pb, Sn, Zn, Pd, and Bi. Preferably contains at least one of Ag, Pd, Ni, Au, Cu, C, Pt, Fe, and Ti as a conductive filler.
[0022]
Preferably, the bonding material is a thermosetting conductive adhesive, and before the semiconductor device is mounted, the circuit board is heated to bring the conductive adhesive into a semi-cured state.
[0023]
By setting the semi-cured state in this manner, it is possible to further suppress the spread of the bonding material due to pressing before mounting or when mounting the semiconductor device on the circuit board.
[0024]
The bonding material may be a thermoplastic conductive adhesive containing a solvent, and the circuit board may be heated to disperse the solvent before the semiconductor device is mounted.
[0025]
The resin film may include an epoxy-based resin as a main component and inorganic particles, or may include an epoxy-based resin as a main component and include Ag, Pd, and Ni as conductive particles. , Au, Cu, C, Pt, and Fe.
[0026]
The connection body of the present invention is a connection body for connecting the semiconductor device and the circuit board, and the bonding material is filled in the through hole of the resin film having the through hole, and the diameter of one end side of the through hole is reduced. , Smaller than the diameter at the other end.
[0027]
Further, it is preferable that the joining material protrudes from the one end side.
[0028]
According to the present invention, the bonding material is penetrated by mounting the semiconductor device on the circuit board by setting the one end side where the diameter of the through hole filled with the bonding material is small to the semiconductor device side and the other end side to the circuit board side. It is possible to prevent the semiconductor device having the terminal electrodes from being spread out from the holes, thereby enabling stable connection even at a narrow pitch when the semiconductor device having the terminal electrodes is mounted on a circuit board having the terminal electrodes via a connector. And high reliability can be ensured.
[0029]
Further, the connection body of the present invention is a connection body for connecting the semiconductor device and the circuit board, wherein the bonding material is filled in the through-hole of the resin film having the through-hole, from one end side of the through-hole. The bonding material protrudes, and the diameter of the protruding end is smaller than the diameter of the other end of the through hole.
[0030]
According to the present invention, the semiconductor device is mounted on a circuit board, with one end having a diameter of the protruding end of the bonding material smaller than the diameter of the other end of the through hole being the semiconductor device side and the other end being the circuit board side. By mounting, it is possible to prevent the bonding material from overflowing and spreading from the through-holes. This makes it possible to mount a semiconductor device having terminal electrodes on a circuit board having terminal electrodes via a connector. The connection can be stably performed even in a narrow pitch, and high reliability can be secured.
[0031]
Further, it is preferable that the amount of the bonding material filled in the through hole is larger than the amount of the bonding material protruding from the through hole.
[0032]
Preferably, the joining material is a solder or a conductive adhesive.
[0033]
Further, it is preferable that the through hole is formed corresponding to a connection position between a terminal electrode of the semiconductor device and a terminal electrode of the circuit board.
[0034]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is a schematic view of a method for manufacturing a mounting structure according to the first embodiment of the present invention.
[0035]
In the manufacturing method of this embodiment, first, as shown in FIG. 1A, a resin film 7 having a release sheet 10 on one surface is arranged in a mounting area on a circuit board 9 having input / output terminal electrodes 8. And glue.
[0036]
This adhesion can be performed by heating the resin film 7 at, for example, about 80 ° C. for about 1 second to generate tackiness, and can be maintained in a semi-cured state after cooling.
[0037]
Next, as shown in FIG. 2B, a through hole 11 filled with a conductive adhesive as a bonding material is formed at a position corresponding to a connection site on the input / output terminal electrode 8 as described later. Formed.
[0038]
In this embodiment, when the projecting electrode 3 of the semiconductor device 1 is connected to the bonding material of the circuit board 9 by applying a load, the conductive adhesive 13 as the bonding material overflows and the connection portions are short-circuited. To avoid this, the through-hole 11 is formed in an inverted tapered shape (a truncated cone shape) having a larger diameter on the circuit board 9 side and a smaller diameter on the semiconductor device 1 side.
[0039]
Next, as shown in FIG. 1C, a conductive adhesive 13 as a bonding material is filled in the through hole 11 extending over the resin film 7 and the release sheet 10 using a squeegee 12. At this time, the conductive adhesive 13 is filled so as to be flush with the upper surface of the release sheet 10.
[0040]
Next, in this embodiment, the spread of the conductive adhesive 13 before mounting is suppressed, and even when a mounting load is applied when the semiconductor device 1 is mounted on the circuit board 9, the conductive adhesive 13 is prevented from being spread. As shown in FIG. 4D, the conductive adhesive 13 is heated by a heater 15 built in a heating stage 14 on which a circuit board is mounted, in order to suppress the flow and spread. To a semi-cured state.
[0041]
Note that the conductive adhesive 13 does not necessarily have to be in a semi-cured state.
[0042]
Next, by peeling the release sheet 10, the conductive adhesive 13 is slightly projected from the upper surface of the resin film 7 as shown in FIG.
[0043]
In this embodiment, when the projecting electrode 3 of the semiconductor device 1 is connected to the circuit board 9 by applying a load, in order to prevent the conductive adhesive 13 from overflowing and short-circuit the connecting portions, The semiconductor device 1 is configured as follows.
[0044]
That is, in the semiconductor device 1, as shown in FIG. 4E, the passivation film 4 and the protection film 5 are formed around the terminal electrode 2 and the protruding electrode 3 thereon, and The surface of the protective film 5 is formed higher than the surface of the bump electrode 3 so that the portion becomes a concave portion.
[0045]
Next, after positioning the protruding electrode 3 of the semiconductor device 1 with the conductive adhesive 13 in the through hole 11 of the resin film 7, the semiconductor device 1 is mounted on the circuit board 9 and heated and pressed.
[0046]
In this embodiment, the conductive adhesive 13 is filled in the reverse tapered (frustoconical) through-hole 11, and the amount of the conductive adhesive 13 protruding from the upper surface of the resin film 7 is small. Therefore, when the projecting electrode 3 of the semiconductor device 1 is positioned and pressed against the conductive adhesive 13, the amount of the conductive adhesive 13 that overflows from the upper surface of the resin film 7 and spreads is reduced.
[0047]
In addition, since the portion of the bump electrode 3 of the semiconductor device 1 is a concave portion lower than the surface of the surrounding protective film 5, the spread conductive adhesive 13 is accommodated in the concave portion, and the conductive adhesive 13 Can be effectively prevented from overflowing outside and short-circuiting the connection portions.
[0048]
As described above, in order to store the conductive adhesive overflowing from the through hole 11 in the concave portion, the volume of the concave portion is set to V1, and the volume of the conductive adhesive 13 spreading on the semiconductor device 1 side during mounting is set to V2. It is preferable that at least V1 ≧ V2.
[0049]
In this embodiment, as described above, since the conductive adhesive 13 is in a semi-cured state in advance, overflow of the conductive adhesive 13 to the outside is further suppressed.
[0050]
Further, since the semiconductor device 1 is mounted on the circuit board 9 via the conductive adhesive 13 as described above, stress at the time of mounting can be reduced, and the circuit board 9 can be flexibly prevented from warping or undulating. In addition, mounting load is not required until the input / output terminal electrodes 8 of the circuit board 9 are deformed, and low-load mounting is possible.
[0051]
In this embodiment, a resin similar to that used for an ordinary anisotropic conductive film (ACF) can be used for the above-mentioned resin film 7 as a sealing resin. A resin film can be used.
[0052]
The resin film 7 can be used as an insulating resin containing only inorganic particles such as SiO 2 , Al 2 O 3 , TiO 2 , SiN, SiC, and AlN, or conductive particles such as Ag and Pd. , Ni, Au, Cu, C, Pt, Fe, Ti and the like.
[0053]
As the resin film 7, for example, Nagase ChemteX Corporation product number R6001 is preferable. The resin film of the product number R6001 can be stored at room temperature for about one week, and the step of forming the through-hole and the step of bonding the resin film to the circuit board can be performed separately. It can be improved and has excellent productivity.
[0054]
The conductive adhesive 13 has a thermosetting or thermoplastic resin as a main component and includes a conductive filler. As the resin, an epoxy resin can be used. For the conductive filler, for example, Ag is used. , Pd, Ni, Au, Cu, C, Pt, Fe, and Ti.
[0055]
Here, the formation of the reverse tapered (frusto-conical) through hole 11 of the resin film 7 will be described.
[0056]
The through-hole 11 is preferably formed by irradiating a laser beam. In particular, it is preferable to form the through-hole 11 using a YAG laser because heat is not generated during processing.
[0057]
Since the hole diameter of the through-hole 11 can be adjusted by the intensity and wavelength of the laser output, the laser output and the wavelength are adjusted so as to form a reverse tapered through-hole.
[0058]
In this embodiment, a resin film 7 having a release sheet 10 is placed and adhered on a circuit board 9, a reverse tapered through hole 11 is formed, a conductive adhesive 13 is filled, and the release sheet 10 is peeled off. Thus, although the resin film 7 for bonding is formed between the semiconductor device 1 and the circuit board 9, as another embodiment of the present invention, for example, the connecting body according to the present invention shown in FIG. The mounting structure may be prepared in advance and manufactured using the connection body 17.
[0059]
That is, FIG. 2 is a cross-sectional view of a connection body according to one embodiment of the present invention, and portions corresponding to FIG. 1 are denoted by the same reference numerals.
[0060]
The connection body 17 has a reverse tapered through-hole 11 formed at a position corresponding to a connection portion of the resin film 7. The through-hole 11 is filled with the conductive adhesive 13, and the conductive adhesive 13 is formed from the upper surface. A part of the agent 13 is formed to protrude.
[0061]
For example, as shown in FIG. 3A, the connection body 17 has a resin film 7 having a release sheet 10 on one side on a metal plate 15, and as shown in FIG. Using a laser or the like, a reverse tapered (frusto-conical) through hole 11 is formed at a position corresponding to the connection site. The inverted tapered through hole 11 is formed by adjusting the output and wavelength of the laser as described above.
[0062]
Next, as shown in FIG. 3C, a conductive adhesive 13 as a bonding material is filled in the through holes 11 using a squeegee 12, and then the release sheet 10 is peeled from the resin film 7, By separating the resin film 7 from the metal plate 15, the connection body 17 of FIG. 2 described above can be obtained. Note that a metal foil may be used instead of the metal plate 15.
[0063]
In this connection body 17, since the conductive adhesive 13 is filled in the through hole 11 of the reverse taper type and a part of the conductive adhesive 13 protrudes from the upper surface, the connection body 17 shown in FIG. This is the same as the resin film 7 having the conductive adhesive 13.
[0064]
Therefore, as a method of manufacturing a mounting structure according to another embodiment of the present invention, the input / output electrodes 8 of the circuit board 9 and the conductive adhesive 13 of the connecting body 17 are aligned with the mounting area on the circuit board 9. Alternatively, the protrusion electrodes 3 of the semiconductor device 1 may be aligned with the conductive adhesive 13 of the connection body 17, and heated and pressed to perform thermocompression bonding.
[0065]
Since the resin film 7 and the conductive adhesive 13 of the connection body 17 are the same as those in FIG. 1 described above, the description thereof is omitted.
[0066]
(Embodiment 2)
FIG. 4 is a schematic view of a method of manufacturing a mounting structure according to a second embodiment of the present invention. Parts corresponding to those in FIG. 1 described above are denoted by the same reference numerals and description thereof is omitted. I do.
[0067]
In the above-described embodiment, the semiconductor device 1 has the surface of the protective film 15 formed higher than the surface of the bump electrode 3 so that the portion of the bump electrode 3 becomes a concave portion. In the embodiment, the bump electrode 3-1 is formed so as to protrude from the surface of the protective film 5.
[0068]
Other configurations are the same as those of the above-described embodiment.
[0069]
(Embodiment 3)
FIG. 5 is a schematic view of a method of manufacturing a mounting structure according to a third embodiment of the present invention. Parts corresponding to those in FIG. 1 described above are denoted by the same reference numerals and description thereof is omitted. I do.
[0070]
In this embodiment, as shown in FIG. 3B, the through holes formed over the resin film 7 and the release sheet 10 are formed in an inversely tapered shape as in the above-described embodiments. Instead, a two-stage through hole 11-1 is used in which the resin film 7 has a large diameter and the release sheet 10 has a small diameter.
[0071]
In this manner, by forming the two-stage type through-hole 11-1, the amount of the conductive adhesive 13 protruding from the upper surface of the resin film 7 can be reduced as shown in FIG. Like the above-described embodiment, when the protruding electrode 3 of the semiconductor device 1 is positioned and pressed against the conductive adhesive 13, the conductive adhesive 13 is moved outward from the upper surface of the resin film 7. It is possible to effectively prevent the connecting portions from being short-circuited by suppressing the overflowing and spreading.
[0072]
This two-stage through-hole 11-1 can be formed as follows. That is, for example, a PET (polyethylene terephthalate) film is used for the release sheet 10, and a PEN (polyethylene naphthalate) film is used for the resin film 7. First, a hole having a smaller diameter is formed in the release sheet 10 and the resin film 7 using a carbon dioxide gas laser, and then a hole having a larger diameter is formed only in the resin film 7 using a YAG laser. In this case, since the YAG laser is not absorbed by the PET film, a large-diameter hole is not formed in the release sheet 10, and a large-diameter hole can be formed only in the resin film 7.
[0073]
Other configurations are the same as those in the first embodiment.
[0074]
In this embodiment, a resin film 7 having a release sheet 10 is placed and adhered on a circuit board 9 to form a two-stage through hole 11-1 and filled with a conductive adhesive 13 to form a release sheet 10 Although the resin film 7 for bonding was formed between the semiconductor device 1 and the circuit board 9 by peeling off, as another embodiment of the present invention, for example, the connection according to the present invention shown in FIG. The body 18 may be prepared in advance, and the mounting structure may be manufactured using the connection body 18.
[0075]
That is, FIG. 6 is a cross-sectional view of the connection body 18 according to another embodiment of the present invention.
[0076]
The connection body 18 has a through hole formed at a position corresponding to a connection portion of the resin film 7, the through hole is filled with the conductive adhesive 13, and a conductive adhesive having a smaller diameter than the through hole is formed from the upper surface. The agent 13 is formed to protrude.
[0077]
For example, as shown in FIG. 7A, the connection body 18 has a resin film 7 having a release sheet 10 on one side on a metal plate 15 as shown in FIG. For example, a small-diameter through hole 11-1 ′ is formed in the release sheet 10 and the resin film 7 at a position corresponding to the connection portion using a carbon dioxide laser. Next, as shown in FIG. 3C, a large-diameter through hole is formed only in the resin film 7 using a YAG laser. As a result, a two-stage through hole 11-1 is formed in which the resin film 7 has a large diameter and the release sheet 10 has a small diameter.
[0078]
Next, as shown in FIG. 2D, a conductive adhesive 13 as a bonding material is filled in the through holes 11-1 using a squeegee 12, and then the release sheet 10 is removed from the resin film 7. By peeling off and separating the resin film 7 from the metal plate 15, the above-described connecting body 18 of FIG. 6 can be obtained. Note that a metal foil may be used instead of the metal plate 15.
[0079]
Since the large-diameter through hole is filled with the conductive adhesive 13 and the small-diameter conductive adhesive 13 protrudes from the upper surface of the connection body 18, the conductive adhesive 13 shown in FIG. This is the same as the resin film 7 having the agent 13.
[0080]
Therefore, as a method of manufacturing a mounting structure according to another embodiment of the present invention, the input / output electrodes 8 of the circuit board 9 and the conductive adhesive 13 of the connector 18 are aligned with the mounting area on the circuit board 9. Alternatively, the protrusion electrodes 3 of the semiconductor device 1 may be aligned with the conductive adhesive 13 of the connection body 18, and heated and pressed to perform thermocompression bonding.
[0081]
Since the resin film 7 and the conductive adhesive 13 of the connection body 18 are the same as those in FIG. 5 described above, the description thereof is omitted.
[0082]
(Embodiment 4)
FIG. 8 is a schematic diagram of a method of manufacturing a mounting structure according to a fourth embodiment of the present invention. Parts corresponding to FIG. 5 described above are denoted by the same reference numerals, and description thereof is omitted. I do.
[0083]
In the third embodiment described above, in the semiconductor device 1, the surface of the protective film 15 is formed higher than the surface of the bump electrode 3 so that the portion of the bump electrode 3 becomes a concave portion. In the embodiment, the protruding electrode 3-1 is formed so as to protrude from the surface of the protective film 5.
[0084]
Other configurations are the same as those of the third embodiment.
[0085]
(Other embodiments)
In the above-described embodiment, the through holes are formed in a two-stage type. However, as another embodiment of the present invention, the through holes may be formed in three or more stages.
[0086]
In the above-described embodiment, the description has been made by applying the conductive adhesive to the bonding material, but solder may be used instead of the conductive adhesive.
[0087]
The connection body of the present invention may include a release sheet or a metal plate (foil).
[0088]
【The invention's effect】
As described above, according to the present invention, when a semiconductor device having a terminal electrode is mounted on a circuit board having a terminal electrode via a bonding material, the spread of the bonding material can be suppressed. Stable connection and high reliability can be ensured.
[Brief description of the drawings]
FIG. 1 is a schematic view of a method for manufacturing a mounting structure according to a first embodiment of the present invention.
FIG. 2 is a schematic sectional view of a connector according to the present invention.
FIG. 3 is a schematic view of a method of manufacturing the connection body of FIG. 2;
FIG. 4 is a schematic view of a method for manufacturing a mounting structure according to a second embodiment of the present invention.
FIG. 5 is a schematic view of a method for manufacturing a mounting structure according to a third embodiment of the present invention.
FIG. 6 is a schematic sectional view of a connector according to another embodiment of the present invention.
FIG. 7 is a schematic view of a method for manufacturing the connection body of FIG. 6;
FIG. 8 is a schematic view of a method for manufacturing a mounting structure according to a fourth embodiment of the present invention.
FIG. 9 is a schematic view showing a conventional mounting method using a bonding layer.
FIG. 10 is a schematic view showing a conventional mounting method using a bonding layer.
FIG. 11 is a schematic view showing a conventional mounting method using a bonding layer.
[Explanation of symbols]
Reference Signs List 1 semiconductor device (semiconductor chip) 2 terminal electrode 3 projecting electrode (bump) 4 passivation film 5 protective film 7 resin film 8 input / output terminal electrode 9 circuit board 10 release sheet 11 through hole 12 squeegee 13 conductive adhesive 14 heating stage 15 Metal plate

Claims (17)

半導体装置の端子電極を、接合材料が充填された貫通孔を有する樹脂フィルムの前記接合材料を介して、回路基板の端子電極に接続して、前記半導体装置を前記回路基板に実装してなる実装構造体の製造方法であって、
前記貫通孔の径が、前記半導体装置側に比べて、前記回路基板側が大きいことを特徴とする実装構造体の製造方法。
A terminal electrode of a semiconductor device is connected to a terminal electrode of a circuit board through the bonding material of a resin film having a through hole filled with a bonding material, and the semiconductor device is mounted on the circuit board. A method of manufacturing a structure, comprising:
A method of manufacturing a mounting structure, wherein the diameter of the through hole is larger on the circuit board side than on the semiconductor device side.
半導体装置の端子電極を、接合材料が充填された貫通孔を有する樹脂フィルムの前記接合材料を介して、回路基板の端子電極に接続して、前記半導体装置を前記回路基板に実装してなる実装構造体の製造方法であって、
前記接合材料は、前記半導体装置が実装される前は、前記樹脂フィルムの表面よりも前記半導体装置側に突出しており、前記接合材料の前記突出している端部の径が、前記貫通孔の前記回路基板側の径よりも小さいことを特徴とする実装構造体の製造方法。
A terminal electrode of a semiconductor device is connected to a terminal electrode of a circuit board through the bonding material of a resin film having a through hole filled with a bonding material, and the semiconductor device is mounted on the circuit board. A method of manufacturing a structure, comprising:
Before the semiconductor device is mounted, the bonding material protrudes toward the semiconductor device from the surface of the resin film, and the diameter of the protruding end of the bonding material is smaller than the diameter of the through hole. A method for manufacturing a mounting structure, characterized in that the diameter is smaller than a diameter on a circuit board side.
前記半導体装置の前記端子電極には、突起電極が形成されるとともに、前記突起電極の周囲には、該突起電極の表面よりもその表面が高くなるように保護膜が形成される請求項1または2記載の実装構造体の製造方法。The projection electrode is formed on the terminal electrode of the semiconductor device, and a protection film is formed around the projection electrode so that the surface is higher than the surface of the projection electrode. 3. The method for manufacturing the mounting structure according to 2. 前記回路基板上に、片面に剥離シートを有する前記樹脂フィルムを配置して接着する工程と、
前記回路基板の前記端子電極上の前記樹脂フィルム及び前記剥離シートに前記貫通孔を形成する工程と、
前記貫通孔に前記接合材料を充填する工程と、
前記剥離シートを前記樹脂フィルムから剥離する工程と、
前記半導体装置の前記端子電極を、前記接合材料上に位置合わせして実装する工程とを備える請求項1ないし3のいずれかに記載の実装構造体の製造方法。
A step of arranging and bonding the resin film having a release sheet on one side on the circuit board,
Forming the through holes in the resin film and the release sheet on the terminal electrodes of the circuit board;
Filling the through-hole with the bonding material;
Removing the release sheet from the resin film,
4. The method according to claim 1, further comprising: positioning the terminal electrode of the semiconductor device on the bonding material.
前記接合材料が、半田または導電性接着剤である請求項1ないし4のいずれかに記載の実装構造体の製造方法。5. The method according to claim 1, wherein the bonding material is a solder or a conductive adhesive. 前記接合材料は、熱硬化性の導電性接着剤であり、前記半導体装置が実装される前に、前記回路基板を加熱して前記導電性接着剤を半硬化状態にする請求項5に記載の実装構造体の製造方法。The bonding material according to claim 5, wherein the bonding material is a thermosetting conductive adhesive, and before the semiconductor device is mounted, the circuit board is heated to bring the conductive adhesive into a semi-cured state. Manufacturing method of mounting structure. 前記接合材料は、熱可塑性の導電性接着剤であって溶剤を含んでおり、前記半導体装置が実装される前に、前記回路基板を加熱して前記溶剤を飛散させる請求項5に記載の実装構造体の製造方法。6. The mounting according to claim 5, wherein the bonding material is a thermoplastic conductive adhesive and includes a solvent, and the solvent is scattered by heating the circuit board before the semiconductor device is mounted. The method of manufacturing the structure. 前記接合材料は、Ag、Pb、Sn、Zn、Pd、Biの少なくとも1つを含む半田である請求項5に記載の実装構造体の製造方法。6. The method according to claim 5, wherein the bonding material is a solder containing at least one of Ag, Pb, Sn, Zn, Pd, and Bi. 前記導電性接着剤の導電性フィラーは、Ag、Pd、Ni、Au、Cu、C、Pt、Fe、Tiの少なくとも1つを含んでいる請求項5ないし7のいずれかに記載の実装構造体の製造方法。The mounting structure according to any one of claims 5 to 7, wherein the conductive filler of the conductive adhesive includes at least one of Ag, Pd, Ni, Au, Cu, C, Pt, Fe, and Ti. Manufacturing method. 前記樹脂フィルムは、エポキシ系樹脂を主成分として含むとともに、無機物の粒子を含む請求項1ないし9のいずれかに記載の実装構造体の製造方法。The method for manufacturing a mounting structure according to claim 1, wherein the resin film includes an epoxy-based resin as a main component and inorganic particles. 前記樹脂フィルムは、エポキシ系樹脂を主成分として含むとともに、導電性の粒子としてAg、Pd、Ni、Au、Cu、C、Pt、Feの少なくとも1つを含む請求項1ないし9のいずれかに記載の実装構造体の製造方法。The resin film according to any one of claims 1 to 9, wherein the resin film contains an epoxy resin as a main component and at least one of Ag, Pd, Ni, Au, Cu, C, Pt, and Fe as conductive particles. A manufacturing method of the mounting structure described in the above. 半導体装置と回路基板とを接続するための接続体であって、
貫通孔を有する樹脂フィルムの前記貫通孔に接合材料が充填され、前記貫通孔の一端側の径が、他端側の径よりも小さいことを特徴とする接続体。
A connection body for connecting a semiconductor device and a circuit board,
A connection body, wherein a bonding material is filled in the through-hole of the resin film having the through-hole, and a diameter of one end of the through-hole is smaller than a diameter of the other end.
前記一端側から前記接合材料が突出している請求項12に記載の接続体。The connecting body according to claim 12, wherein the joining material protrudes from the one end side. 半導体装置と回路基板とを接続するための接続体であって、
貫通孔を有する樹脂フィルムの前記貫通孔に接合材料が充填され、前記貫通孔の一端側から前記接合材料が突出し、この突出している端部の径が、前記貫通孔の他端側の径よりも小さいことを特徴とする接続体。
A connection body for connecting a semiconductor device and a circuit board,
A bonding material is filled in the through hole of the resin film having a through hole, and the bonding material protrudes from one end of the through hole, and the diameter of the protruding end is larger than the diameter of the other end of the through hole. A connection body characterized in that it is also small.
前記接合材料は、前記貫通孔内に充填されている量が、前記貫通孔から突出している量よりも多い請求項13または14に記載の接続体。The connector according to claim 13, wherein an amount of the bonding material filled in the through hole is larger than an amount of the bonding material protruding from the through hole. 前記接合材料が、半田または導電性接着剤である請求項12ないし15のいずれかに記載の接続体。The connector according to any one of claims 12 to 15, wherein the joining material is a solder or a conductive adhesive. 前記貫通孔は、前記半導体装置の端子電極と前記回路基板の端子電極との接続位置に対応して形成される請求項12ないし16のいずれかに記載の接続体。17. The connector according to claim 12, wherein the through-hole is formed corresponding to a connection position between a terminal electrode of the semiconductor device and a terminal electrode of the circuit board.
JP2003157805A 2003-06-03 2003-06-03 Manufacturing method of mounting structure Expired - Fee Related JP4129837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003157805A JP4129837B2 (en) 2003-06-03 2003-06-03 Manufacturing method of mounting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157805A JP4129837B2 (en) 2003-06-03 2003-06-03 Manufacturing method of mounting structure

Publications (3)

Publication Number Publication Date
JP2004363220A true JP2004363220A (en) 2004-12-24
JP2004363220A5 JP2004363220A5 (en) 2006-07-27
JP4129837B2 JP4129837B2 (en) 2008-08-06

Family

ID=34051404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157805A Expired - Fee Related JP4129837B2 (en) 2003-06-03 2003-06-03 Manufacturing method of mounting structure

Country Status (1)

Country Link
JP (1) JP4129837B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235772A (en) * 2007-03-23 2008-10-02 Nec Tokin Corp Solid state electrolytic capacitor and method of manufacturing the same
JP2009111312A (en) * 2007-11-01 2009-05-21 Trinc:Kk Chip mounter
CN100576532C (en) * 2007-08-02 2009-12-30 全懋精密科技股份有限公司 The structure of semiconductor component-buried loading board and method for making thereof
KR100951300B1 (en) 2008-06-10 2010-04-02 삼성전기주식회사 Camera module and manufacturing method of the same
KR100966967B1 (en) 2008-06-10 2010-06-30 삼성전기주식회사 Camera module and manufacturing method of the same
US7943001B2 (en) * 2006-06-16 2011-05-17 Fujitsu Limited Process for producing multilayer board
JP2014086616A (en) * 2012-10-25 2014-05-12 Denso Corp Electronic device and manufacturing method therefor
JP2017073448A (en) * 2015-10-06 2017-04-13 住友電気工業株式会社 Solder paste, connection sheet, method for manufacturing electrical connection body, and electrical connection body
JP2019153415A (en) * 2018-03-01 2019-09-12 富士フイルム株式会社 Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266306A (en) * 1989-12-19 1991-11-27 Nitto Denko Corp Anisotropic conductive film
JPH04169081A (en) * 1990-10-31 1992-06-17 Ricoh Co Ltd Anisotropic conductive film and its manufacture
JP2000294043A (en) * 1999-04-06 2000-10-20 Nitto Denko Corp Anisotropic conductive connector
JP2001077516A (en) * 1999-07-05 2001-03-23 Matsushita Electric Ind Co Ltd Electronic component, its manufacturing method, and circuit board
JP2002076056A (en) * 2000-08-28 2002-03-15 Yuken Industry Co Ltd Anisotropic conductive film and manufacturing method therefor
JP2003124251A (en) * 2001-10-10 2003-04-25 Matsushita Electric Ind Co Ltd Semiconductor device and mounting structure and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03266306A (en) * 1989-12-19 1991-11-27 Nitto Denko Corp Anisotropic conductive film
JPH04169081A (en) * 1990-10-31 1992-06-17 Ricoh Co Ltd Anisotropic conductive film and its manufacture
JP2000294043A (en) * 1999-04-06 2000-10-20 Nitto Denko Corp Anisotropic conductive connector
JP2001077516A (en) * 1999-07-05 2001-03-23 Matsushita Electric Ind Co Ltd Electronic component, its manufacturing method, and circuit board
JP2002076056A (en) * 2000-08-28 2002-03-15 Yuken Industry Co Ltd Anisotropic conductive film and manufacturing method therefor
JP2003124251A (en) * 2001-10-10 2003-04-25 Matsushita Electric Ind Co Ltd Semiconductor device and mounting structure and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943001B2 (en) * 2006-06-16 2011-05-17 Fujitsu Limited Process for producing multilayer board
JP2008235772A (en) * 2007-03-23 2008-10-02 Nec Tokin Corp Solid state electrolytic capacitor and method of manufacturing the same
US8213160B2 (en) 2007-03-23 2012-07-03 Nec Tokin Corporation Solid electrolytic capacitor and method of manufacturing same
CN100576532C (en) * 2007-08-02 2009-12-30 全懋精密科技股份有限公司 The structure of semiconductor component-buried loading board and method for making thereof
JP2009111312A (en) * 2007-11-01 2009-05-21 Trinc:Kk Chip mounter
KR100951300B1 (en) 2008-06-10 2010-04-02 삼성전기주식회사 Camera module and manufacturing method of the same
KR100966967B1 (en) 2008-06-10 2010-06-30 삼성전기주식회사 Camera module and manufacturing method of the same
JP2014086616A (en) * 2012-10-25 2014-05-12 Denso Corp Electronic device and manufacturing method therefor
JP2017073448A (en) * 2015-10-06 2017-04-13 住友電気工業株式会社 Solder paste, connection sheet, method for manufacturing electrical connection body, and electrical connection body
JP2019153415A (en) * 2018-03-01 2019-09-12 富士フイルム株式会社 Anisotropic conductive member, method for manufacturing the same, and method for manufacturing bonded body

Also Published As

Publication number Publication date
JP4129837B2 (en) 2008-08-06

Similar Documents

Publication Publication Date Title
TWI567864B (en) Semiconductor device and method of forming high routing density interconnect sites on substrate
JP4809761B2 (en) Method for attaching area array device to electric substrate and patterned underfill film
JP4246134B2 (en) Semiconductor element mounting method and semiconductor element mounting substrate
TWI532133B (en) Lead-free structures in a semiconductor device
US9721866B2 (en) Semiconductor device having multiple bonded heat sinks
JP2006302929A (en) Salient electrode for connecting electronic component, electronic component packaging body using the same, and manufacturing method of salient electrode and electronic component packaging body
JP2004342988A (en) Method for manufacturing semiconductor package and semiconductor device
JP5272922B2 (en) Semiconductor device and manufacturing method thereof
JP2000349194A (en) Semiconductor device and its manufacture
JP4129837B2 (en) Manufacturing method of mounting structure
JP2004128056A (en) Semiconductor device and its manufacturing method
JP5061668B2 (en) Hybrid substrate having two types of wiring boards, electronic device having the same, and method for manufacturing hybrid substrate
JP5560713B2 (en) Electronic component mounting method, etc.
JP2002026071A (en) Semiconductor device and its manufacturing method, circuit board, and electronic equipment
JP2017005007A (en) Semiconductor device and semiconductor device manufacturing method
JPH10112515A (en) Ball grid array semiconductor device and its manufacture
JP2001127194A (en) Flip chip semiconductor device and its manufacturing method
JP2011023407A (en) Semiconductor device and method of manufacturing the same
JP2000058597A (en) Method of mounting electronic component
JPH0831871A (en) Interface sealing film used for surface mount electronic device and surface mount structure
JPH11111755A (en) Manufacture of semiconductor device
JP2006173234A (en) Semiconductor device and its manufacturing method
JPH10308415A (en) Method for mounting electrode, electronic component, electronic device, and electronic component
JP4285140B2 (en) Manufacturing method of semiconductor device
JP2002016104A (en) Mounting method of semiconductor device and manufacturing method of semiconductor device mounted assembly

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080319

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees