JPH03266306A - Anisotropic conductive film - Google Patents

Anisotropic conductive film

Info

Publication number
JPH03266306A
JPH03266306A JP41085290A JP41085290A JPH03266306A JP H03266306 A JPH03266306 A JP H03266306A JP 41085290 A JP41085290 A JP 41085290A JP 41085290 A JP41085290 A JP 41085290A JP H03266306 A JPH03266306 A JP H03266306A
Authority
JP
Japan
Prior art keywords
hole
film
insulating film
fine
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP41085290A
Other languages
Japanese (ja)
Other versions
JP2984064B2 (en
Inventor
Yoshinari Takayama
嘉也 高山
Shu Mochizuki
周 望月
Atsushi Hino
敦司 日野
Kazuo Ouchi
一男 大内
Masakazu Sugimoto
正和 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2410852A priority Critical patent/JP2984064B2/en
Publication of JPH03266306A publication Critical patent/JPH03266306A/en
Application granted granted Critical
Publication of JP2984064B2 publication Critical patent/JP2984064B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain high-reliability of electric connection by providing a fine through-hole in an insulating film in the direction of the thickness and filling the through-hole with metal material by plating, etc., to form a metal protrusion from both ends of the through-hole in a rivet shape. CONSTITUTION:Fine through-holes 2 of about 20-50mum dia. are made at pitches of about 40-100mum in an electrically insulating film 1 such as a polyimide film in the direction of the thickness by means of a machining method by punching or a dry/wet etching method. Each through-hole 2 filled with metal material 3 by plating, etc., to form a bump-like metal protrusion 4 from both ends of the through-hole 2 in a rivet shape. By making the base area of the metal protrusion 4 larger than the plane area of the through-hole 2, falling of the protrusion 4 is prevented and the reliability of electric connection is increased. The metal material filled as a conductive passage is thus fully stuck to the insulating film without falling of the metal material, so giving the fine hole satisfactory conductivity and increasing the reliability of electric connection.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001) [0001)

【産業上の利用分野】[Industrial application field]

本発明は異方導電フィルムに関する。 [00023 The present invention relates to an anisotropic conductive film. [00023

【従来の技術] 近年の電子機器の多機能化と小型軽量化に伴い、半導体
分野においては配線回路のパターンが高集積化され、多
ピンおよび狭ピッチのファインパターンが採用されてい
る。このような回路のファインパターン化に対応すべく
、基板上に形成された複数の導体パターンとそれと接続
する導体パターンまたはIC,LSIとの接続に、異方
導電フィルムを介在させる方法が試みられている。 [0003] 例えば、特開昭55−161306号公報には絶縁性多
孔体シートの選択領域内の孔部に金属メツキを施こし異
方導電化したシートが開示されている。しかしこのよう
なシートは表面に金属突出部がないので、ICなどの接
続に際してはIC側の接続パッド部に突起電極(バンプ
)を形成しておく必要があり、接続工程が煩雑となる。 [0004] また、特開昭62−43008号公報や特開昭63−4
0218号公報、特開昭63−94504号公報には絶
縁性フィルムの厚み方向に設けた微細孔に金属物質を充
填して異方導電化し、さらにフィルム表面からバンプ状
に金属物質を突出させて接続を容易にしたものが開示さ
れている。 特開平3−26に306 (3) 【00051 【発明が解決しようとする課題】 しかし、このような異方導電性フィルムは一般に図3に
示すような構造であるために、充填された金属物質と絶
縁性フィルムとの密着性が充分ではなく、金属物質が脱
落して本来導電性を有かなければならない微細孔が導電
性を発揮せず、電気的接続信頼性に欠ける恐れがある。 [0006]
[Background Art] As electronic devices have become more multifunctional and smaller and lighter in recent years, wiring circuit patterns in the semiconductor field have become highly integrated, and fine patterns with many pins and narrow pitches have been adopted. In order to respond to such fine patterning of circuits, a method has been attempted in which an anisotropic conductive film is interposed between a plurality of conductor patterns formed on a substrate and a conductor pattern connected thereto, or an IC or LSI. There is. [0003] For example, JP-A-55-161306 discloses a sheet in which holes in selected areas of an insulating porous sheet are plated with metal to make them anisotropically conductive. However, since such a sheet does not have a metal protrusion on its surface, when connecting an IC or the like, it is necessary to form a protruding electrode (bump) on the connection pad on the IC side, which complicates the connection process. [0004] Also, JP-A-62-43008 and JP-A-63-4
No. 0218 and Japanese Unexamined Patent Publication No. 63-94504 disclose that micropores provided in the thickness direction of an insulating film are filled with a metal substance to make it conductive anisotropically, and the metal substance is made to protrude from the surface of the film in the form of bumps. Disclosed is one that facilitates the connection. JP-A-3-26-306 (3) [Problem to be Solved by the Invention] However, since such an anisotropic conductive film generally has a structure as shown in FIG. If the adhesion between the metal material and the insulating film is insufficient, the metal substance may fall off, and the micropores that should be conductive may not exhibit conductivity, resulting in a lack of reliability in electrical connection. [0006]

【課題を解決するための手段】[Means to solve the problem]

そこで、本発明者らは従来の異方導電フィルムが有する
上記課題を解決し、確実に異方導電化できて接続信頼性
が高い異方導電フィルムを提供すべく鋭意検討を重ね、
本発明を完成するに至った。 [0007] 即ち、本発明は絶縁性フィルムの厚み方向に独立して導
通する微細貫通孔を有し、かつ該フィルムの表裏面上の
貫通孔両端部のうち少なくとも一端部が貫通孔の開口部
面積よりも大きな底面積を有するバンプ状の金属突出物
によって閉塞されていることを特徴とする異方導電フィ
ルムを提供するものである。 [00083 以下、本発明を図面を用いて説明する。 図1は本発明の異方導電フィルムの一実例を示す断面図
である。 図1において絶縁性フィルム1には厚み方向に微細貫通
孔2が設けられており金属物質3を充填した導通路が表
裏面に達している。貫通孔2の両端部には貫通孔2の開
口部面積よりも大きな底面積を有するバンプ状の金属突
出物4が形成されており、所謂リベット状に貫通孔2を
閉塞している。 [0009] また、図2は本発明の異方導電性フィルムの他の実例を
示す断面図であり、絶縁性フィルム1に設けられた貫通
孔20片端部にバンプ上の金属突出物4が形成されてな
るものである。 [0010] 上記微細貫通孔2の直径は通常15〜100μm、好ま
しくは20〜50μm特開平3−26G306 (4) とし、ピッチは15〜200A1m、好ましくは40〜
100μmとする。 [0011] 本発明において絶縁性フィルム1は電気絶縁特性を有す
るフィルムであればその素材に制限はなく、ポリエステ
ル系樹脂、エポキシ系樹脂、ウレタン系樹脂、ポリスチ
レン系樹脂、ポリエチレン系樹脂、ポリアミド系樹脂、
ポリイミド系樹脂、ABS樹脂、ポリカーボネート樹脂
、シリコーン系樹脂など熱硬化性樹脂や熱可塑性樹脂を
問わず目的に応じて選択できる。例えば、可撓性を必要
どする場合はシリコーンゴム、ウレタンゴム、フッ素ゴ
ムなどの弾性体を使用することが好ましく、耐熱性が要
求される場合はポリイミド、ポリエーテルスルホン、ポ
リフェニレンスルフィドなどの耐熱性樹脂を用いること
が好ましい。また、絶縁性フィルム1の厚さは任意に選
択できるカミフィルム厚の精度(バラツキ)や形成する
貫通孔の孔径精度の点からは通常、5〜200μm、好
ましくは10〜100μmとする。 [0012] 上記絶縁性フィルム1に設ける微細貫通孔に充填する導
通路となる金属物質3およびバンプ状の金属突出物4と
なる金属物質としては、例えば金、銀、銅、錫鉛、ニッ
ケル、コバルト、インジウムなどの各種金属、またはこ
れらを成分とする各種合金が用いられる。このような金
属物質は純度が高すぎるとバンプ状となりにくいので、
自体公知の有機物や無機物を微量混入した金属物質や合
金を用いることが好ましい。導通路の形成方法としては
、スパッタリング、各種蒸着、各種メツキなどの各種方
法が採用できる。なお、メツキ法による場合は、メツキ
時間を長くすることによって、バンプ状に金属突出物4
を成長させることができるのである。 [0013] 上記絶縁性フィルム1に設ける微細貫通孔2は、パンチ
ングなどの機械的加工法、レーザー プラズマなどによ
るドライエツチング法、薬品、溶剤などによる化学的な
ウエットニッチレグ法などがある。エツチング法の場合
は絶縁性フィルム1に所望の花形状、例えば丸、四角、
菱形などを有するマスクを密着させ、マスクの上から処
理する間接的エツチング法、スポットを絞ったレーザー
光をフイ」       L −32〜 (J甫1 ’f’ 、j−ごb L)t5 Uθ(ロノ
ルムに当てたり、マスクを通してレーザー光をフィルム
上に結像させるさせるドライエツチング法、感光性レジ
ストを用いて、予め微細孔をパターニングしたのちウェ
ットエツチングする直接エツチング法などがある。なお
、回路のファインパターン化に対応するにはドライエツ
チング法やウェットエツチング法が好ましく、特にエキ
シマレーザ−の如き紫外線レーザーによるアブレーショ
ンを用いたドライエツチング法の場合は、高いアスペク
ト比が得られるので好ましい。 [0014] 例えば、レーザー光によってフィルム1に微細貫通孔4
を設ける場合、図3に示すようにレーザー光を照射した
側のフィルム表面の貫通孔直径は、反対側のフィルム表
面に形成される貫通孔直径よりも大きくなる。また、図
1および図2において貫通孔2の形成角度αは90±2
0度とし、貫通孔2の平面形状の面積を〔フィルム厚×
5/4〕2よりも大きくすることによって、孔部へのメ
ツキ液の濡れ性の点で後の金属充填の際に効果的となる
。 [0015] 上記貫通孔2の開口部に形成されたバンプ状金属突出物
4は、貫通孔2の平面面積よりも大きな底面積、好まし
くは1.1倍以上の大きさとする。本発明においてはこ
のように底面積を大きくすることによって、貫通孔2内
に形成された導通路が脱落することもなく、絶縁性フィ
ルム1の厚み方向に対する剪断力に対しても充分な強度
を有し、電気的接続信頼性が向上する。 [0016] 本発明の異方導電フィルムを得るための方法としては、
例えば以下の工程からなる方法が挙げられる。 [0017] ■絶縁性フィルムと導電層との積層フィルム(接着剤を
介した3層フィルムまたは直接積層した2層フィルム)
の絶縁性フィルムのみに微細貫通孔を設けるか或いは微
細貫通孔を設けた絶縁性フィルムに導電層を積層(但し
、導電層は微細孔が貫通するように積層するか、積層液
除去する)し、導電層表面にレジスト層を形成して表面
を絶縁後、貫通孔部をエツチングして貫通孔部に接する
導電層部分にリベット状の溝部を形成する工程。 [0018] ■微細貫通孔に電解メツキや無電解メツキなどのメツキ
法により金属物質を充填し、バンプ状の金属突出物を形
成する工程。 [0019] ■絶縁性フィルムに積層されていた導電層およびレジス
ト層を化学的エツチング液または電解腐食によって除去
する工程。 [0020] なお、上記■の工程においてバンプ状の金属突出物の形
成は■の工程後に行なってもよい。 [0021] 本発明の異方導電性フィルムにおいて絶縁性フィルムの
一方の側にバンプ状の金属突出物を形成する場合は、図
2に示すように貫通孔の孔径が小さい側のフィルム表面
にバンプ状の金属突出物を形成することが好ましい。従
って、図3のような絶縁性フィルム1においてはバンプ
状の金属突出物4の形成側(図中、下面側)に上記■工
程における導電層が形成されている。 [0022] バンプ状に金属突出物を形成するには金属結晶の状態を
微細結晶とすることが好ましい。なお、高電流密度で電
解メツキを行なった場合は、樹枝状の結晶が形成される
のでバンプ状とならない場合がある。また、金属結晶の
析出速度を調整したり、メツキ液の種類やメツキ浴の温
度を調整することによって平滑、均一な突出物を得るこ
ともできる。 [0023] 本発明においてバンプ状金属突出物を貫通孔の開口部面
積よりも大きな底面積を有するようにするには、上記メ
ツキの際にメツキ皮膜を開口部表面、即ち絶縁性フィル
ム面よりも高く成長させ、かつリベット状に貫通孔から
横にも成長させる必要があり、その高さは孔ピッチや用
途によって任意に設定することができ、通常5μm以上
、好ましくは5〜100μmの範囲に調整される。 [0024] さらに、貫通孔底面の導電層を除去してリベット状のバ
ンプを形成する場合(特朋平3−26G30G (7) 両側にバンブを形成する場合)も、エツチングを貫通孔
直径の1.1倍以上とすることが好ましい。1.1倍に
満たないと、リベット状のバンプとしての効果が乏しく
なり、所期の効果を発揮しない場合がある。 [0025]
Therefore, the present inventors have made extensive studies to solve the above-mentioned problems of conventional anisotropic conductive films, and to provide an anisotropic conductive film that can be reliably made anisotropically conductive and has high connection reliability.
The present invention has now been completed. [0007] That is, the present invention has fine through-holes that conduct independently in the thickness direction of an insulating film, and at least one end of both ends of the through-hole on the front and back surfaces of the film is an opening of the through-hole. An object of the present invention is to provide an anisotropic conductive film characterized in that it is closed by bump-shaped metal protrusions having a larger base area than the area of the anisotropic conductive film. [00083] The present invention will be explained below using the drawings. FIG. 1 is a sectional view showing an example of the anisotropic conductive film of the present invention. In FIG. 1, an insulating film 1 is provided with minute through holes 2 in the thickness direction, and conductive paths filled with a metal substance 3 reach the front and back surfaces. A bump-shaped metal protrusion 4 having a larger bottom area than the opening area of the through hole 2 is formed at both ends of the through hole 2, and closes the through hole 2 in a so-called rivet shape. [0009] FIG. 2 is a sectional view showing another example of the anisotropic conductive film of the present invention, in which a metal protrusion 4 on a bump is formed at one end of a through hole 20 provided in an insulating film 1. It is something that has been done. [0010] The diameter of the fine through holes 2 is usually 15 to 100 μm, preferably 20 to 50 μm, and the pitch is 15 to 200 A1 m, preferably 40 to 50 μm.
It is set to 100 μm. [0011] In the present invention, the material of the insulating film 1 is not limited as long as it has electrical insulation properties, and may include polyester resin, epoxy resin, urethane resin, polystyrene resin, polyethylene resin, and polyamide resin. ,
Any thermosetting resin or thermoplastic resin, such as polyimide resin, ABS resin, polycarbonate resin, or silicone resin, can be selected depending on the purpose. For example, if flexibility is required, it is preferable to use an elastic material such as silicone rubber, urethane rubber, or fluorine rubber; if heat resistance is required, heat resistant materials such as polyimide, polyether sulfone, or polyphenylene sulfide are used. Preferably, resin is used. Further, the thickness of the insulating film 1 is usually 5 to 200 μm, preferably 10 to 100 μm, from the viewpoint of the accuracy (variation) of the thickness of the thin film, which can be selected arbitrarily, and the accuracy of the diameter of the through holes to be formed. [0012] Examples of the metal substance 3 serving as a conductive path and the metal substance forming the bump-shaped metal protrusion 4 filling the fine through-holes provided in the insulating film 1 include gold, silver, copper, tin-lead, nickel, Various metals such as cobalt and indium, or various alloys containing these as components are used. If the purity of such metal substances is too high, it is difficult to form bumps, so
It is preferable to use a metal substance or alloy mixed with a small amount of a known organic or inorganic substance. As a method for forming the conductive path, various methods such as sputtering, various types of vapor deposition, and various types of plating can be adopted. In addition, when using the plating method, by increasing the plating time, the metal protrusions 4 are formed in a bump shape.
can grow. [0013] The fine through-holes 2 formed in the insulating film 1 can be formed by a mechanical processing method such as punching, a dry etching method using laser plasma or the like, or a chemical wet niche leg method using chemicals, solvents, or the like. In the case of the etching method, the insulating film 1 is shaped into a desired flower shape, such as round, square, etc.
An indirect etching method in which a mask with a diamond shape or the like is placed in close contact with the mask and the process is performed from above the mask, and a laser beam with a narrowed spot is applied. There are dry etching methods in which a laser beam is imaged onto the film by exposing it to a lonorm or through a mask, and direct etching methods in which fine holes are patterned in advance using a photosensitive resist and wet etching is performed. Dry etching and wet etching are preferable for patterning, and dry etching using ablation with an ultraviolet laser such as an excimer laser is particularly preferable because a high aspect ratio can be obtained. [0014] For example: , fine through holes 4 are formed in the film 1 by laser light.
3, the diameter of the through hole in the film surface on the side irradiated with laser light is larger than the diameter of the through hole formed in the film surface on the opposite side. In addition, in FIGS. 1 and 2, the formation angle α of the through hole 2 is 90±2
0 degrees, and the area of the planar shape of the through hole 2 is [film thickness x
5/4] By making it larger than 2, it becomes effective in the subsequent metal filling in terms of wettability of the plating liquid into the hole. [0015] The bump-shaped metal protrusion 4 formed at the opening of the through hole 2 has a bottom area larger than the planar area of the through hole 2, preferably 1.1 times or more. In the present invention, by increasing the bottom area in this way, the conductive path formed in the through hole 2 does not fall off, and the insulating film 1 has sufficient strength against shearing force in the thickness direction. This improves electrical connection reliability. [0016] As a method for obtaining the anisotropic conductive film of the present invention,
For example, a method consisting of the following steps can be mentioned. [0017] ■Laminated film of insulating film and conductive layer (3-layer film with adhesive or 2-layer film directly laminated)
Either provide fine through holes only in the insulating film, or laminate a conductive layer on the insulating film provided with the fine through holes (however, the conductive layer is laminated so that the fine holes penetrate through it, or the lamination solution is removed). . After forming a resist layer on the surface of the conductive layer to insulate the surface, etching the through hole to form a rivet-like groove in the portion of the conductive layer in contact with the through hole. [0018] (2) A step of filling the fine through holes with a metal substance by a plating method such as electrolytic plating or electroless plating to form a bump-shaped metal protrusion. [0019] (1) A step of removing the conductive layer and resist layer laminated on the insulating film using a chemical etching solution or electrolytic corrosion. [0020] Note that in the above step (1), the formation of bump-shaped metal protrusions may be performed after the step (2). [0021] When forming a bump-shaped metal protrusion on one side of the insulating film in the anisotropic conductive film of the present invention, as shown in FIG. It is preferable to form metal protrusions of the shape. Therefore, in the insulating film 1 as shown in FIG. 3, the conductive layer in step (2) is formed on the side where the bump-shaped metal protrusions 4 are formed (lower surface side in the figure). [0022] In order to form a bump-shaped metal protrusion, it is preferable that the metal crystal is in a fine crystal state. Note that when electrolytic plating is performed at a high current density, dendritic crystals are formed, so the bump-like shape may not be obtained. Moreover, smooth and uniform protrusions can be obtained by adjusting the precipitation rate of metal crystals, the type of plating solution, and the temperature of the plating bath. [0023] In the present invention, in order to make the bump-shaped metal protrusion have a larger bottom area than the opening area of the through hole, the plating film is placed on the opening surface, that is, the insulating film surface, during the plating. It is necessary to grow high and also to grow laterally from the through hole in a rivet-like manner, and the height can be set arbitrarily depending on the hole pitch and purpose, and is usually adjusted to 5 μm or more, preferably in the range of 5 to 100 μm. be done. [0024] Furthermore, when forming rivet-like bumps by removing the conductive layer at the bottom of the through-hole (Tokuhohei 3-26G30G (7) When forming bumps on both sides), etching is performed at 1 part of the diameter of the through-hole. .1 times or more is preferable. When it is less than 1.1 times, the effect as a rivet-like bump becomes poor and the desired effect may not be exhibited. [0025]

【実施例】【Example】

以下に本発明の実施例を示し、さらに具体的に説明する
。 [0026] 銅箔上にポリイミド前駆体溶液を乾燥後の厚さ1m1l
となるように塗工、硬化させ、銅箔とポリイミドフィル
ムとの2層フィルムを作製した。 [0027] 次に、ポリイミドフィルム表面に発振波長248nmの
KrFエキシマレーザ−光を、マスクを通して照射して
ドライエツチングを施こし、゛ポリイミドフィルム層に
60μmφ、ピッチ200μmの微細貫通孔を5個/m
mで80m2の領域に設けた。 [0028] 次いで、銅箔表面にレジストを塗工、硬化させて絶縁し
、化学研磨溶液中に50℃で2分間浸漬した。 [0029] これを水洗したのち、銅箔部を電極に接続して60℃の
シアン化金メツキ浴に浸漬し、銅箔をマイナス極とし、
2層フィルムの貫通孔部に金メツキを成長させポリイミ
ドフィルム表面からやや全結晶が突出したとき(突出高
さ5μm)にメツキ処理を中断した。 [0030] 最後に、塗工したレジスト層を剥離して2層フィルムの
銅箔を塩化第二銅で溶解除去し、本発明の異方導電フィ
ルムを得た。
Examples of the present invention will be shown below and will be explained more specifically. [0026] Thickness of polyimide precursor solution after drying on copper foil: 1ml
It was coated and cured to produce a two-layer film of copper foil and polyimide film. [0027] Next, dry etching was performed by irradiating the surface of the polyimide film with KrF excimer laser light with an oscillation wavelength of 248 nm through a mask to form 5 fine through holes with a diameter of 60 μm and a pitch of 200 μm in the polyimide film layer.
It was set up in an area of 80 m2. [0028] Next, a resist was applied to the surface of the copper foil, cured, and insulated, and immersed in a chemical polishing solution at 50° C. for 2 minutes. [0029] After washing this with water, the copper foil part was connected to an electrode and immersed in a cyanide gold plating bath at 60°C, the copper foil was used as a negative electrode,
Gold plating was grown in the through-holes of the two-layer film, and the plating process was interrupted when all the crystals slightly protruded from the surface of the polyimide film (protrusion height 5 μm). [0030]Finally, the applied resist layer was peeled off and the copper foil of the two-layer film was dissolved and removed with cupric chloride to obtain an anisotropic conductive film of the present invention.

【0031】[0031]

【発明の効果】【Effect of the invention】

本発明の異方導電フィルムは以上のような構造からなる
ので、導通路として充填された金属物質は、絶縁性フィ
ルムと充分に密着しており、金属物質の脱落もなく本来
、導電性を有かなければならない微細孔が充分に導電性
を発揮し、的接続信頼性が高いものである。
Since the anisotropic conductive film of the present invention has the above structure, the metal substance filled as a conductive path is in sufficient contact with the insulating film, and the metal substance does not fall off and is inherently conductive. The fine pores that must be connected exhibit sufficient conductivity, and the connection reliability is high.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】 本発明の異方導電フィルムの一実例を示す断面図である
FIG. 1 is a sectional view showing an example of an anisotropic conductive film of the present invention.

【図2】 本発明の異方導電フィルムの他の実例を示す断面図であ
る。
FIG. 2 is a sectional view showing another example of the anisotropic conductive film of the present invention.

【図3】 従来のバンプ付異方導電フィルムの断面図である。[Figure 3] FIG. 2 is a cross-sectional view of a conventional anisotropic conductive film with bumps.

【符号の説明】[Explanation of symbols]

1 絶縁性フィルム 2 微細貫通孔 3 金属物質 4 バンプ状の金属突出物 電気 1 Insulating film 2 Fine through holes 3 Metallic substances 4 Bump-shaped metal protrusions electricity

【書類名】【Document name】

【図1】[Figure 1]

【図2】[Figure 2]

【図3】 図面[Figure 3] drawing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】絶縁性フィルムの厚み方向に独立して導通
する微細貫通孔を有し、かつ該フィルムの表裏面上の貫
通孔両端部のうち少なくとも一端部が貫通孔の開口部面
積よりも大きな底面積を有するバンプ状の金属突出物に
よって閉塞されていることを特徴とする異方導電フィル
ム。
Claim 1: An insulating film has fine through-holes that conduct independently in the thickness direction, and at least one end of both ends of the through-hole on the front and back surfaces of the film is larger than the opening area of the through-hole. An anisotropic conductive film characterized in that it is blocked by bump-shaped metal protrusions having a large base area.
JP2410852A 1989-12-19 1990-12-14 Method for producing anisotropic conductive film Expired - Fee Related JP2984064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2410852A JP2984064B2 (en) 1989-12-19 1990-12-14 Method for producing anisotropic conductive film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33005289 1989-12-19
JP1-330052 1989-12-19
JP2410852A JP2984064B2 (en) 1989-12-19 1990-12-14 Method for producing anisotropic conductive film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8002081A Division JP2984205B2 (en) 1996-01-10 1996-01-10 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JPH03266306A true JPH03266306A (en) 1991-11-27
JP2984064B2 JP2984064B2 (en) 1999-11-29

Family

ID=26573408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2410852A Expired - Fee Related JP2984064B2 (en) 1989-12-19 1990-12-14 Method for producing anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP2984064B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109510A (en) * 1990-08-30 1992-04-10 Shin Etsu Polymer Co Ltd Anisotropic conductive film and manufacture thereof
US5399809A (en) * 1992-05-29 1995-03-21 Shinko Electric Industries Company, Limited Multi-layer lead frame for a semiconductor device
US5438223A (en) * 1992-03-13 1995-08-01 Nitto Denko Corporation Anisotropic electrically conductive adhesive film and connection structure using the same
JP2002075064A (en) * 2000-08-23 2002-03-15 Tdk Corp Anisotropic conductive film and its manufacturing method, and display using anisotropic conductive film
JP2004363220A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Method of manufacturing packaging structure, and connector
WO2009113486A1 (en) 2008-03-14 2009-09-17 富士フイルム株式会社 Probe guard

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234804A (en) * 1986-04-03 1987-10-15 富士ゼロックス株式会社 Anisotropic conductive film
JPS6340218A (en) * 1986-08-05 1988-02-20 住友スリ−エム株式会社 Anisotropic conducting film and manufacture thereof
JPS6396811A (en) * 1986-10-14 1988-04-27 日東電工株式会社 Stabilizing anisotropic conducting sheet
JPH03269976A (en) * 1990-03-16 1991-12-02 Canon Inc Manufacture of electric connection member
JPH03291879A (en) * 1990-04-06 1991-12-24 Canon Inc Manufacture of electric connection member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234804A (en) * 1986-04-03 1987-10-15 富士ゼロックス株式会社 Anisotropic conductive film
JPS6340218A (en) * 1986-08-05 1988-02-20 住友スリ−エム株式会社 Anisotropic conducting film and manufacture thereof
JPS6396811A (en) * 1986-10-14 1988-04-27 日東電工株式会社 Stabilizing anisotropic conducting sheet
JPH03269976A (en) * 1990-03-16 1991-12-02 Canon Inc Manufacture of electric connection member
JPH03291879A (en) * 1990-04-06 1991-12-24 Canon Inc Manufacture of electric connection member

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04109510A (en) * 1990-08-30 1992-04-10 Shin Etsu Polymer Co Ltd Anisotropic conductive film and manufacture thereof
US5438223A (en) * 1992-03-13 1995-08-01 Nitto Denko Corporation Anisotropic electrically conductive adhesive film and connection structure using the same
US5399809A (en) * 1992-05-29 1995-03-21 Shinko Electric Industries Company, Limited Multi-layer lead frame for a semiconductor device
JP2002075064A (en) * 2000-08-23 2002-03-15 Tdk Corp Anisotropic conductive film and its manufacturing method, and display using anisotropic conductive film
JP2004363220A (en) * 2003-06-03 2004-12-24 Matsushita Electric Ind Co Ltd Method of manufacturing packaging structure, and connector
WO2009113486A1 (en) 2008-03-14 2009-09-17 富士フイルム株式会社 Probe guard

Also Published As

Publication number Publication date
JP2984064B2 (en) 1999-11-29

Similar Documents

Publication Publication Date Title
US5438223A (en) Anisotropic electrically conductive adhesive film and connection structure using the same
EP0433996B1 (en) Process for producing an anisotropic conductive film
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
JP2003031925A (en) Structure with flush circuit feature and manufacturing method therefor
US6977349B2 (en) Method for manufacturing wiring circuit boards with bumps and method for forming bumps
US5545429A (en) Fabrication of double side fully metallized plated thru-holes, in polymer structures, without seeding or photoprocess
JP3352705B2 (en) Mounting structure using anisotropic conductive adhesive film
US5188702A (en) Process for producing an anisotropic conductive film
JP2984205B2 (en) Anisotropic conductive film
JPH03266306A (en) Anisotropic conductive film
JP3096235B2 (en) Probe structure and method of manufacturing the same
JPH0410696A (en) Multilayer wiring board
JPH05152019A (en) Anisotropic conduction connector
JPH05258790A (en) Anisotropically conductive adhesion film and connecting structure using it
JPS63280496A (en) Manufacture for multilayer circuit board
JPH05226054A (en) Manufacture of anisotropic conductive film
JPH05325669A (en) Manufacture of anisotropic conductive film
JPH05152021A (en) Anisotropic conduction connector
JPH05258789A (en) Anisotropically conductive adhesion film and connecting structure using it
JP2003273170A (en) Manufacturing method for both-side wiring tape carrier and tape carrier using the same
JPH05226055A (en) Manufacture of anisotropic conductive film
JP3015709B2 (en) Film carrier, semiconductor device using the same, and semiconductor element mounting method
JPH0639961A (en) Method for manufacturing composite-layer base material and anisotropic electrically conductive film using it
JPH1117059A (en) Ball grid array board and continued body thereof
TW557645B (en) Flexible printed wiring board and its production method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees