JP2006302929A - Salient electrode for connecting electronic component, electronic component packaging body using the same, and manufacturing method of salient electrode and electronic component packaging body - Google Patents

Salient electrode for connecting electronic component, electronic component packaging body using the same, and manufacturing method of salient electrode and electronic component packaging body Download PDF

Info

Publication number
JP2006302929A
JP2006302929A JP2005117891A JP2005117891A JP2006302929A JP 2006302929 A JP2006302929 A JP 2006302929A JP 2005117891 A JP2005117891 A JP 2005117891A JP 2005117891 A JP2005117891 A JP 2005117891A JP 2006302929 A JP2006302929 A JP 2006302929A
Authority
JP
Japan
Prior art keywords
conductor
electronic component
electrode
protruding electrode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005117891A
Other languages
Japanese (ja)
Other versions
JP4729963B2 (en
Inventor
Kunio Hibino
邦男 日比野
Yoshihiro Tomura
善広 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005117891A priority Critical patent/JP4729963B2/en
Priority to US11/883,801 priority patent/US8033016B2/en
Priority to PCT/JP2006/307916 priority patent/WO2006112384A1/en
Priority to CN2006800117409A priority patent/CN101156238B/en
Publication of JP2006302929A publication Critical patent/JP2006302929A/en
Application granted granted Critical
Publication of JP4729963B2 publication Critical patent/JP4729963B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11003Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for holding or transferring the bump preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/111Manufacture and pre-treatment of the bump connector preform
    • H01L2224/1111Shaping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/11334Manufacturing methods by local deposition of the material of the bump connector in solid form using preformed bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Abstract

<P>PROBLEM TO BE SOLVED: To provide a salient electrode for connecting electronic components having a fine, arbitrary shape, to provide an electronic packaging body using the salient electrode, and to provide a method for manufacturing the salient electrode and the electronic component packaging body. <P>SOLUTION: The salient electrode 120 formed on a terminal electrode 110 in electronic components 100 comprises a first conductor 130 formed by a transfer mold having a recess, and a second conductor 140 formed by lamination on the first conductor 130 on the terminal electrode 110 of the electronic component 100. With this configuration, the fine-pitch salient electrode 120 in an arbitrary shape can be formed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電子部品の端子電極や基板の配線電極に形成される微細な電子部品接続用突起電極とそれを用いた電子部品実装体およびそれらの製造方法に関する。   The present invention relates to a fine projection electrode for connecting an electronic component formed on a terminal electrode of an electronic component or a wiring electrode of a substrate, an electronic component mounting body using the same, and a manufacturing method thereof.

近年、携帯型端末などの電子機器の高機能化や軽薄短小化の要求にともない、半導体チップなどの電子部品の高密度集積化や高密度実装化が要望され、これらの電子部品として用いられる半導体パッケージのさらなる小型化、多ピン化が進んできている。さらに、半導体パッケージの小型化にともなって、従来のようなリードフレームを使用した形態では小型化に限界がきている。   In recent years, with the demand for higher functionality and lighter and shorter electronic devices such as portable terminals, there is a demand for high-density integration and high-density mounting of electronic components such as semiconductor chips, and semiconductors used as these electronic components. The package has been further reduced in size and increased in pin count. Furthermore, with the miniaturization of semiconductor packages, there is a limit to miniaturization in the form using a conventional lead frame.

そのため、最近では回路基板上に半導体チップを実装したものとしてBGA(Ball Grid Array)やCSP(Chip Scale Package)などのエリア実装型の半導体パッケージが主流となっている。これらの半導体パッケージにおいて、半導体チップに電極と導体配線で構成される基板の端子との電気的接続方法として、ワイヤーボンディング方式やTAB(Tape Automated Bonding)方式、さらにFC(Flip Chip)接続方式などが知られている。   Therefore, recently, an area-mounting type semiconductor package such as a BGA (Ball Grid Array) or a CSP (Chip Scale Package) is mainly used as a semiconductor chip mounted on a circuit board. In these semiconductor packages, there are a wire bonding method, a TAB (Tape Automated Bonding) method, an FC (Flip Chip) connection method, etc. as an electrical connection method between a semiconductor chip and electrodes of a substrate composed of conductor wiring. Are known.

特に、半導体パッケージの小型化に有利なFC接続方式を用いたBGAやCSPの構造が提案されている。   In particular, BGA and CSP structures using an FC connection method that is advantageous for miniaturization of semiconductor packages have been proposed.

例えば、FC接続方式は、一般に、半導体チップの電極に予めバンプと呼ばれる突起電極を形成しておき、このバンプと基板上の端子を位置合わせして熱圧着などにより接続する方式である。   For example, the FC connection method is generally a method in which bump electrodes called bumps are formed in advance on the electrodes of a semiconductor chip, and the bumps and terminals on the substrate are aligned and connected by thermocompression bonding or the like.

そして、半導体チップに予めバンプを形成する方法としては、電解めっきによる方法とスタッドバンプによる方法などがある。電解めっきでバンプを形成する方法では、バンプをはんだだけで所望の大きさに形成するため、製造時間や製造コストが掛かるという課題があった。また、電解めっきではめっき槽の電流分布を完全に均一にするのが困難であるため、形成したバンプの大きさにばらつきが生じてしまう。バンプの大きさのばらつきは、めっき時間が長いほど顕著になるため、バンプをはんだだけで形成する方法では、製造時間や製造コストなどの課題を解決することが困難である。また、バンプの接続部分の耐湿信頼性を確保するために、例えば銅などの金属コアを有するバンプが開発されているが、製造工程が複雑となるなど製造コストがさらに掛かってしまうという課題があった。   As a method of forming bumps in advance on the semiconductor chip, there are a method using electrolytic plating and a method using stud bumps. In the method of forming bumps by electrolytic plating, the bumps are formed in a desired size using only solder, and thus there is a problem that manufacturing time and manufacturing cost are increased. Moreover, since it is difficult to make the current distribution in the plating tank completely uniform in electrolytic plating, the size of the formed bumps varies. The variation in the size of the bumps becomes more prominent as the plating time is longer. Therefore, it is difficult to solve the problems such as the manufacturing time and the manufacturing cost by the method of forming the bumps with only the solder. In addition, bumps having a metal core such as copper have been developed in order to ensure moisture resistance reliability of the bump connection parts, but there is a problem that the manufacturing process is further complicated and the manufacturing cost is further increased. It was.

一方、スタッドバンプは、半導体チップの電極に金ワイヤをボンディングし、切断することにより形成するものである。この方法では、半導体チップの電極に1つ1つバンプを形成するため、製造時間が掛かる。さらに、バンプに使用される金ワイヤの価格が高いため製造コストが掛かってしまうという課題があった。   On the other hand, the stud bump is formed by bonding a gold wire to an electrode of a semiconductor chip and cutting it. In this method, since bumps are formed one by one on the electrodes of the semiconductor chip, it takes a long manufacturing time. Furthermore, since the price of the gold wire used for the bump is high, there is a problem that the manufacturing cost is increased.

そこで、上記課題を解決するために、バンプを半導体チップの電極に一括して形成する転写バンプ方式が開発されている。これは、シート状のベースに、はんだバンプを形成した転写バンプシートと半導体チップとを位置合わせし、加熱および加圧することにより、転写バンプシート側のバンプが半導体チップ側に一括転写するものが開示されている(例えば、特許文献1および特許文献2参照)。   Therefore, in order to solve the above problems, a transfer bump method has been developed in which bumps are collectively formed on electrodes of a semiconductor chip. This discloses that the bumps on the transfer bump sheet side are collectively transferred to the semiconductor chip side by aligning the transfer bump sheet on which the solder bumps are formed on the sheet-like base and the semiconductor chip, and applying heat and pressure. (For example, see Patent Document 1 and Patent Document 2).

また、銅コアはんだバンプにより、はんだ接続部分の耐湿信頼性を確保しつつ、一括転写するものも開示されている(例えば、特許文献3参照)。
特開平5−166880号公報 特開平9−153495号公報 特開2000−286282号公報
In addition, there is also disclosed a method in which a copper core solder bump performs batch transfer while ensuring moisture resistance reliability of a solder connection portion (see, for example, Patent Document 3).
JP-A-5-166880 JP-A-9-153495 JP 2000-286282 A

しかしながら、上記特許文献1および特許文献2に示されているバンプ800は、図7(a)に示すように、はんだの表面張力により、基板810の電極820の上に球状に形成される。そのため、溶融前のはんだの量がばらついた場合や形成される電極面積などが異なる場合には、バンプ800の形状(特に、高さなど)がばらつくという課題がある。   However, the bumps 800 shown in Patent Document 1 and Patent Document 2 are formed in a spherical shape on the electrode 820 of the substrate 810 due to the surface tension of the solder, as shown in FIG. Therefore, when the amount of solder before melting varies, or when the area of the electrode to be formed is different, there is a problem that the shape (particularly, height) of the bump 800 varies.

また、図7(b)に示すように、バンプ800の形状が球状であるため、電子部品830の接続電極840と接続した場合、太鼓形状850となる。そのため、バンプ800と電子部品830の接続電極840との接続部分に応力が集中し、接続電極840の界面での剥離やクラックなどが発生するという課題がある。   Further, as shown in FIG. 7B, since the shape of the bump 800 is spherical, when it is connected to the connection electrode 840 of the electronic component 830, a drum shape 850 is obtained. Therefore, there is a problem that stress concentrates on the connection portion between the bump 800 and the connection electrode 840 of the electronic component 830, and peeling or cracking occurs at the interface of the connection electrode 840.

さらに、バンプ800の形状が太鼓形状850となるため、隣接するバンプ800間が、図7(c)に示すように短絡860する可能性があるため、電極820の間隔を狭くすることができない。また、接続する電極820のピッチを微細化する場合には、バンプ800の形状を小さくすれば可能であるが、半導体チップのなどの電子部品830の反りなどを吸収することができないため、接続の信頼性を確保することが困難である。   Further, since the bump 800 has a drum shape 850, the adjacent bumps 800 may be short-circuited 860 as shown in FIG. 7C, so that the interval between the electrodes 820 cannot be reduced. In addition, when the pitch of the electrodes 820 to be connected is reduced, it is possible to reduce the shape of the bump 800. However, since the warp of the electronic component 830 such as a semiconductor chip cannot be absorbed, It is difficult to ensure reliability.

また、上記特許文献3に示されているはんだバンプでは、転写シート上に金属層とはんだ層を積層した導電端子を半導体チップなどの接続電極に導電端子のはんだ層側と接続するように加熱加圧した後、はんだ層を溶融させて、金属層の周囲にはんだ層が回り込んだ状態にした後、転写シートを除去し、はんだバンプを一括に形成するものである。しかし、はんだ層の溶融によりバンプの形状が大きくなるため、微細なバンプの形成に課題がある。さらに、はんだ層が金属層の周囲に回り込まない場合には、基板の電極と、例えば銅などの金属を溶融させて接続することは困難であり、接続信頼性を確保するのが困難である。   Further, in the solder bump shown in Patent Document 3 above, heating is applied so that a conductive terminal in which a metal layer and a solder layer are laminated on a transfer sheet is connected to a connection electrode such as a semiconductor chip on the solder layer side of the conductive terminal. After pressing, the solder layer is melted so that the solder layer wraps around the metal layer, and then the transfer sheet is removed to form solder bumps in a lump. However, since the shape of the bump increases due to melting of the solder layer, there is a problem in forming a fine bump. Further, when the solder layer does not go around the metal layer, it is difficult to connect the substrate electrode with a metal such as copper, for example, and it is difficult to ensure connection reliability.

また、導電端子は、銅箔に転写シートとなる樹脂層を塗布し、硬化後、銅箔上にドライフィルムの積層、露光、現像の工程後に、はんだ層を電解めっきで形成する。そして、ドライフィルムを剥離および銅箔のエッチングすることにより柱状の導電端子が形成される。そのため、製造工程が複雑となり、生産性や製造コストの点で課題がある。また、エッチング処理するため、廃液の処理などの問題も発生する。   The conductive terminal is formed by applying a resin layer serving as a transfer sheet on the copper foil, and after curing, forming a solder layer by electrolytic plating after the steps of laminating a dry film on the copper foil, exposure, and development. Then, the columnar conductive terminals are formed by peeling the dry film and etching the copper foil. Therefore, the manufacturing process becomes complicated, and there are problems in terms of productivity and manufacturing cost. In addition, since the etching process is performed, problems such as waste liquid processing also occur.

本発明は、上記の従来の課題を解決するためになされたもので、微細で任意形状を有する電子部品接続用突起電極とそれを用いた電子部品実装体およびそれらの製造方法を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and provides a protruding electrode for connecting an electronic component having a fine and arbitrary shape, an electronic component mounting body using the same, and a manufacturing method thereof. Objective.

上述したような課題を解決するために、本発明の電子部品接続用突起電極は、電子部品の端子電極または基板の配線電極に形成される突起電極であって、突起電極は、電子部品の端子電極上または基板の配線電極上に形成される第1の導電体と、第1の導電体に積層して形成される第2の導電体とからなる構成を有する。   In order to solve the problems described above, the protruding electrode for connecting an electronic component of the present invention is a protruding electrode formed on a terminal electrode of an electronic component or a wiring electrode of a substrate, and the protruding electrode is a terminal of the electronic component. The first conductor is formed on the electrode or on the wiring electrode of the substrate, and the second conductor is formed by being stacked on the first conductor.

さらに、第1の導電体または第2の導電体の一方または両方が、熱硬化性樹脂を含んでもよい。   Furthermore, one or both of the first conductor and the second conductor may include a thermosetting resin.

さらに、第2の導電体が、はんだを主成分として含んでいてもよい。   Further, the second conductor may contain solder as a main component.

さらに、第1の導電体の硬化温度が、第2の導電体の硬化温度より低くてもよい。   Furthermore, the curing temperature of the first conductor may be lower than the curing temperature of the second conductor.

これらの構成により、第1の導電体により突起電極のピッチを決めることができるとともに、第2の導電体の溶融により電子部品と接合しても、突起電極のピッチが変化することがないため微細な突起電極を形成できる。   With these configurations, the pitch of the protruding electrodes can be determined by the first conductor, and the pitch of the protruding electrodes does not change even when the second conductor is melted to join the electronic component. Can be formed.

また、本発明の電子部品接続用突起電極の製造方法は、所定の突起電極の形状の凹部を備える転写型の凹部に、第2の導電体を少なくとも転写型の凹部表面までには到達しないように充填する工程と、第1の導電体を第2の導電体の上で転写型の凹部表面まで充填する工程と、電子部品の端子電極または基板の配線電極に対向して転写型の凹部を位置合わせして載置し、加熱する工程と、転写型を剥離する工程とを有する。   In the method for manufacturing a protruding electrode for connecting an electronic component according to the present invention, the second conductor does not reach at least the surface of the concave portion of the transfer mold in the concave portion of the transfer mold having the concave portion of the predetermined protruding electrode shape. A step of filling the first conductive material onto the surface of the transfer-type concave portion on the second conductor, and a transfer-type concave portion facing the terminal electrode of the electronic component or the wiring electrode of the substrate. It has the process of aligning and mounting and heating, and the process of peeling a transcription | transfer mold.

さらに、転写型が、低い弾性率および高い離型性を有する転写型樹脂でもよい。   Further, the transfer mold may be a transfer resin having a low elastic modulus and a high releasability.

さらに、転写型樹脂が、熱硬化性シリコーン樹脂であってもよい。   Further, the transfer resin may be a thermosetting silicone resin.

これらの方法により、転写型の凹部に充填された状態で突起電極を基板または電子部品に形成できるため、加熱硬化時または溶融時に形状が変化しないので微細な形状の突起電極を容易に形成できる。また、転写型の凹部により突起電極の高さを均一にできるとともに、アスペクト比の大きな突起電極などを自由に形成することができる。   By these methods, the protruding electrode can be formed on the substrate or the electronic component in a state where it is filled in the concave portion of the transfer mold. Therefore, the shape of the protruding electrode does not change at the time of heat curing or melting, so that the protruding electrode having a fine shape can be easily formed. Further, the height of the protruding electrode can be made uniform by the transfer-type recess, and a protruding electrode having a large aspect ratio can be freely formed.

また、本発明の電子部品実装体は、端子電極を有する電子部品と、電子部品の端子電極上に形成される第1の導電体と第2の導電体の積層構造からなる突起電極と、配線電極を有する基板とを有し、配線電極と突起電極の第2の導電体とが接続される構成を有する。   An electronic component mounting body according to the present invention includes an electronic component having a terminal electrode, a protruding electrode having a laminated structure of a first conductor and a second conductor formed on the terminal electrode of the electronic component, and a wiring And a wiring electrode and a second conductor of the protruding electrode are connected to each other.

また、本発明の電子部品実装体は、配線電極を有する基板と、基板の配線電極上に形成される第1の導電体と第2の導電体の積層構造からなる突起電極と、端子電極を有する電子部品とを有し、端子電極と突起電極の第2の導電体とが接続される構成を有する。   The electronic component mounting body according to the present invention includes a substrate having wiring electrodes, a protruding electrode having a laminated structure of a first conductor and a second conductor formed on the wiring electrodes of the substrate, and a terminal electrode. And the terminal electrode and the second conductor of the protruding electrode are connected to each other.

これらの構成により、電子部品の端子電極または基板の配線電極に形成された微細で狭ピッチな突起電極と、基板の配線電極または電子部品の端子電極とが接続された電子部品実装体を実現できる。   With these configurations, it is possible to realize an electronic component mounting body in which the fine and narrow pitch protruding electrodes formed on the terminal electrode of the electronic component or the wiring electrode of the substrate and the wiring electrode of the substrate or the terminal electrode of the electronic component are connected. .

また、本発明の電子部品実装体の製造方法は、所定の突起電極の形状の凹部を備える転写型の凹部に、第2の導電体を少なくとも転写型の凹部表面までには到達しないように充填する工程と、第1の導電体を第2の導電体の上で転写型の凹部表面まで充填する工程と、電子部品の端子電極または基板の配線電極に対向して転写型の凹部を位置合わせして載置し、加熱する工程と、転写型を剥離し、電子部品の端子電極または基板の配線電極上に突起電極を形成する工程と、基板の配線電極または電子部品の端子電極と電子部品の端子電極または基板の配線電極上に形成された突起電極とを接続する工程とを有する。   In the method of manufacturing an electronic component mounting body according to the present invention, the second conductor is filled at least into the concave surface of the transfer mold into the concave portion of the transfer mold including the concave portion having a predetermined protruding electrode shape. A step of filling the surface of the transfer mold with the first conductor on the second conductor, and aligning the transfer recess with the terminal electrode of the electronic component or the wiring electrode of the substrate. Mounting and heating, peeling the transfer mold, forming a protruding electrode on the terminal electrode of the electronic component or the wiring electrode of the substrate, the wiring electrode of the substrate or the terminal electrode of the electronic component and the electronic component Connecting the protruding electrode formed on the terminal electrode or the wiring electrode of the substrate.

さらに、加熱する工程が、第1の導電体の硬化温度以上で、かつ第2の導電体の硬化温度以下であってもよい。   Furthermore, the heating step may be not less than the curing temperature of the first conductor and not more than the curing temperature of the second conductor.

さらに、突起電極と接続する工程が、第2の導電体の硬化温度または融点以上で行われてもよい。   Further, the step of connecting to the protruding electrode may be performed at a temperature equal to or higher than the curing temperature or melting point of the second conductor.

さらに、転写型が、低い弾性率および高い離型性を有する転写型樹脂でもよい。   Further, the transfer mold may be a transfer resin having a low elastic modulus and a high releasability.

さらに、転写型樹脂が、熱硬化性シリコーン樹脂であってもよい。   Further, the transfer resin may be a thermosetting silicone resin.

これらの方法により、電子部品の端子電極や基板の配線電極に微細で狭ピッチな突起電極を形成できる。また、電子部品の端子電極や基板の配線電極と接続する場合、突起電極の第2の導電体の硬化温度または融点が第1の導電体の硬化温度より高いため、突起電極の第2の導電体の硬化温度以上になっても、第1の導電体はさらに硬化が進行する。そのため、突起電極の形状が接続時に変化することがないので、狭ピッチに接続された電子部品実装体を実現できる。   By these methods, it is possible to form a fine and narrow pitch protruding electrode on a terminal electrode of an electronic component or a wiring electrode of a substrate. Further, when connecting to the terminal electrode of the electronic component or the wiring electrode of the substrate, the second conductive material of the protruding electrode has a higher curing temperature or melting point than that of the first conductive material. Even when the temperature becomes higher than the curing temperature of the body, the first conductor is further cured. Therefore, since the shape of the protruding electrode does not change at the time of connection, an electronic component mounting body connected at a narrow pitch can be realized.

本発明による電子部品接続用突起電極は、第1の導電体と第2の導電体の積層構造とし、転写により、半導体チップなどの電子部品の端子電極や基板の配線電極に微細な突起電極を形成できるという大きな効果を奏する。さらには、電子部品接続用突起電極を介して、狭ピッチで多数の接続端子を有する電子部品との信頼性の高い接続を実現できるという大きな効果もある。   The protruding electrode for connecting an electronic component according to the present invention has a laminated structure of a first conductor and a second conductor, and a fine protruding electrode is formed on a terminal electrode of an electronic component such as a semiconductor chip or a wiring electrode of a substrate by transfer. There is a great effect that it can be formed. Furthermore, there is a great effect that a highly reliable connection with an electronic component having a large number of connection terminals at a narrow pitch can be realized via the protruding electrode for connecting the electronic component.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、以降において、電子部品接続用突起電極を、特に明確に表現する場合以外は「突起電極」と表現して説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the protruding electrode for connecting an electronic component will be described as a “projecting electrode” unless it is particularly clearly expressed.

(実施の形態1)
図1(a)は、本発明の実施の形態1に係る突起電極を有する電子部品の平面図であり、図1(b)は、図1(a)のA−A線断面図である。
(Embodiment 1)
Fig.1 (a) is a top view of the electronic component which has a protruding electrode which concerns on Embodiment 1 of this invention, FIG.1 (b) is the sectional view on the AA line of Fig.1 (a).

図1(a)において、半導体チップなどの電子部品100の端子電極110上に突起電極120が形成されている。また、突起電極120は、図1(b)に示すように、電子部品100の端子電極110側の第1の導電体130とその上に積層された第2の導電体140とで構成されている。そして、突起電極120は、以下の製造方法で示すように、凹部を有する転写型で形成されるため、微細なピッチで形成できるとともに、均一な高さとすることができる。   In FIG. 1A, a protruding electrode 120 is formed on a terminal electrode 110 of an electronic component 100 such as a semiconductor chip. Further, as shown in FIG. 1B, the protruding electrode 120 includes a first conductor 130 on the terminal electrode 110 side of the electronic component 100 and a second conductor 140 laminated thereon. Yes. As shown in the following manufacturing method, the protruding electrode 120 is formed with a transfer mold having a concave portion, so that it can be formed with a fine pitch and a uniform height.

ここで、第1の導電体130は、導電フィラーと熱硬化性樹脂などを含む導電性樹脂からなる。そして、導電フィラーとしては、例えば銀、銅、金、ニッケル、パラジウム、錫などの金属粒子やこれらの合金粒子などが用いられる。さらに、熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂や尿素樹脂などの内の1種もしくは2種以上の混合系が用いられる。特に、エポキシ樹脂は、導電性樹脂の粘度、硬化反応性や端子電極110との付着強度を向上させる点から好ましいものである。   Here, the first conductor 130 is made of a conductive resin including a conductive filler and a thermosetting resin. And as a conductive filler, metal particles, such as silver, copper, gold | metal | money, nickel, palladium, tin, these alloy particles, etc. are used, for example. Further, as the thermosetting resin, for example, one or a mixture of two or more of epoxy resin, phenol resin, polyimide resin, polyurethane resin, melamine resin, urea resin and the like is used. In particular, the epoxy resin is preferable from the viewpoint of improving the viscosity of the conductive resin, the curing reactivity, and the adhesion strength with the terminal electrode 110.

また、第2の導電体140は、上記第1の導電体130と同様の導電性樹脂やはんだを用いることができる。そして、第2の導電体140が導電性樹脂の場合、第1の導電体130の硬化温度よりも高いものが好ましい。さらに、第2の導電体がはんだの場合で、PET(ポリエチレンテレフタレート)などのフレキシブル基板を用いる場合には、例えば融点が150℃以下の低融点はんだであることが好ましい。これは、高周波回路などに用いられる電子部品100と基板の配線電極との接続では、接触抵抗が特性に大きく影響するため、融着により低抵抗での接続を実現するために好ましいからである。しかし、例えば、第2の導電体140を一旦溶融させて他の基板の配線電極と接続する場合、第1の導電体130の硬化温度が第2の導電体140の硬化温度よりも高いと、第2の導電体140は既に硬化しているため溶融させて融着により接続することができない。また、第1の導電体130と第2の導電体140の硬化温度以下で突起電極120を形成した場合、第2の導電体140の硬化時には、第1の導電体130の硬化温度が高いので硬化せず、熱変形により突起電極120の形状が変化する。そして、接続時の加圧などにより第1の導電体130が広がってしまうため、微細な突起電極120の形成が困難となる。   The second conductor 140 can be formed using the same conductive resin or solder as the first conductor 130. And when the 2nd conductor 140 is a conductive resin, what is higher than the hardening temperature of the 1st conductor 130 is preferable. Furthermore, when the second conductor is solder and a flexible substrate such as PET (polyethylene terephthalate) is used, it is preferably a low melting point solder having a melting point of 150 ° C. or less, for example. This is because the contact resistance greatly affects the characteristics of the connection between the electronic component 100 used in the high-frequency circuit and the like and the wiring electrode of the substrate, and is preferable for realizing a connection with a low resistance by fusion. However, for example, when the second conductor 140 is once melted and connected to the wiring electrode of another substrate, if the curing temperature of the first conductor 130 is higher than the curing temperature of the second conductor 140, Since the second conductor 140 is already cured, it cannot be melted and connected by fusion. Further, when the protruding electrode 120 is formed at a temperature lower than the curing temperature of the first conductor 130 and the second conductor 140, the curing temperature of the first conductor 130 is high when the second conductor 140 is cured. The shape of the protruding electrode 120 changes due to thermal deformation without being cured. Then, since the first conductor 130 spreads due to pressurization at the time of connection or the like, it is difficult to form the fine protruding electrode 120.

そこで、本発明の実施の形態1は、第1の導電体130の硬化温度を第2の導電体140の硬化温度より低くすることにより、第2の導電体140の硬化温度以上では、第1の導電体130はさらに硬化するため、第1の導電体130が熱変形することがない。なお、第2の導電体140がはんだの場合には、第1の導電体130の硬化温度が、第2の導電体140であるはんだの融点より高くてもよい。この理由は、はんだが固化しても、接続時にはんだの融点以上の加熱により、再溶融させて融着により接続することができるからである。   Therefore, in the first embodiment of the present invention, the curing temperature of the first conductor 130 is set lower than the curing temperature of the second conductor 140, so that the first conductor 130 is not less than the curing temperature of the second conductor 140. Since the first conductor 130 is further cured, the first conductor 130 is not thermally deformed. Note that when the second conductor 140 is solder, the curing temperature of the first conductor 130 may be higher than the melting point of the solder that is the second conductor 140. This is because even if the solder is solidified, it can be re-melted by heating at a temperature equal to or higher than the melting point of the solder at the time of connection and connected by fusion.

一方、第2の導電体140と他の基板の配線電極との接続が、超音波接合、圧接や圧着などで接続される場合には、第1の導電体130と第2の導電体140の硬化温度や融点以上で、硬化または溶融後硬化させた突起電極120であれば、特に制限されない。   On the other hand, when the connection between the second conductor 140 and the wiring electrode of another substrate is made by ultrasonic bonding, pressure welding, pressure bonding, or the like, the first conductor 130 and the second conductor 140 are connected to each other. The protruding electrode 120 is not particularly limited as long as it is a cured electrode or cured at a curing temperature or a melting point or higher.

また、突起電極120の少なくとも第1の導電体130または第2の導電体140が導電性樹脂からなるため、熱応力や外部からの衝撃などによる応力が加わってもその応力を効率よく吸収することが可能で、接続の信頼性などに大きな効果を有するものである。   In addition, since at least the first conductor 130 or the second conductor 140 of the protruding electrode 120 is made of a conductive resin, even if thermal stress or stress due to external impact is applied, the stress is efficiently absorbed. And has a great effect on the reliability of connection.

以下に、図2を用いて、本発明の実施の形態1に係る突起電極の製造方法について、半導体チップなどの電子部品の端子電極に形成する場合を例に説明する。なお、基板の配線電極上に突起電極を形成する場合も同様である。   Hereinafter, the method for manufacturing the protruding electrode according to the first embodiment of the present invention will be described with reference to FIG. 2 by taking as an example the case of forming the terminal electrode of an electronic component such as a semiconductor chip. The same applies to the case where the protruding electrode is formed on the wiring electrode of the substrate.

図2は、本発明の実施の形態1に係る突起電極の製造方法を説明する工程断面図である。   FIG. 2 is a process cross-sectional view for explaining the protruding electrode manufacturing method according to Embodiment 1 of the present invention.

まず、図2(a)に示すように、突起電極を形成する位置に対応した凹部160が形成された転写型150を用意する。ここで、転写型150は、例えば熱硬化性シリコーン樹脂などからなる低弾性率で高い離型性を有する転写型樹脂が用いられる。この理由は、第1に、シリコーン樹脂であるために、導電性樹脂やはんだに対する離型性に優れている。第2に、低弾性であるために、複雑な形状の凹部でも転写される突起電極に変形などのダメージを与えることなく剥離することができる。さらに、反りのある電子部品に対しても、容易に反りに応じて変形し突起電極の転写が可能であるなどの利点を有することによるものである。   First, as shown in FIG. 2A, a transfer mold 150 having a recess 160 corresponding to a position where a protruding electrode is formed is prepared. Here, as the transfer mold 150, for example, a transfer resin having a low elastic modulus and high releasability made of a thermosetting silicone resin or the like is used. The reason for this is that, since it is a silicone resin, it is excellent in releasability from conductive resin and solder. Second, because of its low elasticity, even a concave portion having a complicated shape can be peeled off without causing damage such as deformation to the projected electrode to be transferred. Further, even an electronic component having a warp has an advantage that it can be easily deformed in accordance with the warp and transfer of the protruding electrode is possible.

そして、転写型150の凹部160は、例えば直径10μm〜300μm、高さ10μm〜300μm、アスペクト比0.2〜10程度の突起電極の形状に形成された金型を、転写型樹脂にインプリント法や凹版印刷することにより形成できる。例えば、金型に熱硬化性シリコーン樹脂などの転写型樹脂を流し込み、温度150℃、0.5時間の条件で硬化することにより形成することができる。なお、転写型150の少なくとも凹部160に、さらに離型性を高めるために、例えばシリコーン系離型剤、フッ素系離型剤などを塗布してもよい。   The recess 160 of the transfer mold 150 is formed by, for example, imprinting a mold formed in the shape of a protruding electrode having a diameter of 10 μm to 300 μm, a height of 10 μm to 300 μm, and an aspect ratio of about 0.2 to 10 on a transfer mold resin. Or by intaglio printing. For example, it can be formed by pouring a transfer type resin such as a thermosetting silicone resin into a mold and curing it at a temperature of 150 ° C. for 0.5 hours. In order to further improve the releasability, at least the recess 160 of the transfer mold 150 may be coated with, for example, a silicone-based release agent or a fluorine-based release agent.

つぎに、図2(b)に示すように、転写型150の凹部160内で、少なくとも凹部表面180までは到達せずに空間190が形成される程度に、例えばペースト状の導電性樹脂からなる第2の導電体140がスキージ170を用いて充填される。この場合、凹部160内に充填される第2の導電体140の量は、例えばスクリーン印刷のマスクのメッシュ径を調整することにより行うことができる。また、凹部160の凹部表面180まで充填した後、第2の導電体140を、例えば自然乾燥または硬化温度以下の温度で乾燥させることにより空間190を形成することもできる。さらに、第2の導電体140との付着力の小さい材料(例えば、フッ素樹脂など)からなるローラーを用いて、第2の導電体140を凹部160に押し込んで空間190を形成してもよい。   Next, as shown in FIG. 2 (b), it is made of, for example, a paste-like conductive resin to such an extent that a space 190 is formed in the recess 160 of the transfer mold 150 without reaching at least the recess surface 180. Second conductor 140 is filled using squeegee 170. In this case, the amount of the second conductor 140 filled in the recess 160 can be determined by adjusting the mesh diameter of a screen printing mask, for example. Alternatively, the space 190 can be formed by filling the concave surface 160 of the concave portion 160 and then drying the second conductor 140 at a temperature equal to or lower than the natural drying or curing temperature, for example. Further, the space 190 may be formed by pressing the second conductor 140 into the concave portion 160 using a roller made of a material having a low adhesive force to the second conductor 140 (for example, a fluororesin).

つぎに、図2(c)に示すように、凹部160内に形成された空間190に、第2の導電体140と同様な方法を用いて、第2の導電体140よりも硬化温度の低い、例えばペースト状の導電性樹脂からなる第1の導電体130をスキージ170を用いて少なくとも凹部表面180にまで充填する。   Next, as shown in FIG. 2C, the curing temperature is lower in the space 190 formed in the recess 160 than the second conductor 140 using the same method as the second conductor 140. For example, the first conductor 130 made of a paste-like conductive resin is filled up to at least the concave surface 180 using the squeegee 170.

つぎに、図2(d)に示すように、第1の導電体130と第2の導電体140で充填された転写型150の凹部160と半導体チップなどの端子電極110を有する電子部品100とを位置合わせする。   Next, as shown in FIG. 2D, the electronic component 100 having the recess 160 of the transfer mold 150 filled with the first conductor 130 and the second conductor 140, and the terminal electrode 110 such as a semiconductor chip, Align.

つぎに、図2(e)に示すように、電子部品100の端子電極110と転写型150の凹部160とを位置合わせした状態で、第2の導電体140の硬化温度以上の温度で加熱することにより、突起電極120を硬化させる。   Next, as shown in FIG. 2 (e), the terminal electrode 110 of the electronic component 100 and the recess 160 of the transfer mold 150 are aligned and heated at a temperature equal to or higher than the curing temperature of the second conductor 140. Thus, the protruding electrode 120 is cured.

なお、第2の導電体140がはんだの場合、はんだの融点が、第1の導電体130の硬化温度以下であれば、その硬化温度以上の温度で、また、はんだの融点が、第1の導電体130の硬化温度以上であれば、その融点以上で加熱すればよい。   When the second conductor 140 is solder, if the melting point of the solder is equal to or lower than the curing temperature of the first conductor 130, the melting point of the solder is equal to or higher than the curing temperature. If it is above the curing temperature of the conductor 130, it may be heated above its melting point.

この工程により、突起電極120は、電子部品100の端子電極110の上に凹部160の形状と同じ形状で硬化する。   Through this process, the protruding electrode 120 is cured on the terminal electrode 110 of the electronic component 100 in the same shape as the concave portion 160.

そして、図2(f)に示すように、転写型を剥離することにより電子部品100の端子電極110の上に凹部とほぼ同じ形状で均一な高さを有する突起電極120が転写される。   Then, as shown in FIG. 2 (f), the protruding electrode 120 having a uniform height and substantially the same shape as the concave portion is transferred onto the terminal electrode 110 of the electronic component 100 by peeling the transfer mold.

なお、上記突起電極120を硬化する温度条件は、最終状態で、他の基板の配線電極などと圧接、圧着や超音波接合する場合を想定したものであり、本発明はこれに限られない。例えば、他の基板の配線電極と融着により接続する場合には、突起電極120の第1の導電体130の硬化温度以上で、かつ第2の導電体140の硬化温度以下の温度で硬化処理することにより、第2の導電体140を半硬化状態とする。そして、接続時に、第2の導電体140の硬化温度以上で第2の導電体140を溶融または軟化させて他の基板の配線電極と接続し固着させてもよい。   Note that the temperature condition for curing the protruding electrode 120 is assumed to be a final state in which pressure welding, pressure bonding, or ultrasonic bonding is performed with a wiring electrode on another substrate, and the present invention is not limited thereto. For example, when connecting to the wiring electrode of another substrate by fusion, the curing process is performed at a temperature higher than the curing temperature of the first conductor 130 of the protruding electrode 120 and lower than the curing temperature of the second conductor 140. Thus, the second conductor 140 is brought into a semi-cured state. At the time of connection, the second conductor 140 may be melted or softened at a temperature equal to or higher than the curing temperature of the second conductor 140 to be connected and fixed to the wiring electrode of another substrate.

また、第2の導電体がはんだの場合には、第1の導電体は硬化し、はんだが溶融する温度以上の温度で突起電極を硬化または固化させてもよい。この理由は、第1の導電体が一旦硬化温度以上で硬化すれば、再び第1の導電体が軟化することがない。そのため、突起電極の形状を損なうことなく他の基板の配線電極と、第2の導電体であるはんだを再溶融させて接続することが可能となる。   When the second conductor is solder, the first conductor is cured, and the protruding electrode may be cured or solidified at a temperature equal to or higher than the temperature at which the solder melts. This is because once the first conductor is cured at the curing temperature or higher, the first conductor is not softened again. Therefore, it is possible to remelt and connect the wiring electrode of another substrate and the solder as the second conductor without impairing the shape of the protruding electrode.

その結果、融着により突起電極の第2の導電体と配線電極とを接続できるため、低抵抗の接続や接続強度などの信頼性をさらに向上させることができる。   As a result, since the second conductor of the protruding electrode and the wiring electrode can be connected by fusion, reliability such as low resistance connection and connection strength can be further improved.

(実施の形態2)
図3(a)は、本発明の実施の形態2に係る突起電極を有する基板の平面図であり、図3(b)は、図3(a)のA−A線断面図である。
(Embodiment 2)
FIG. 3A is a plan view of a substrate having protruding electrodes according to Embodiment 2 of the present invention, and FIG. 3B is a cross-sectional view taken along line AA in FIG.

図3(a)において、配線パターン210を有する基板200の配線電極220上に突起電極120が形成されている。そして、突起電極120は、実施の形態1と同様に、基板200の配線電極220側の第1の導電体130とその上に積層された第2の導電体140とで構成されている。ここで、基板200としては、ガラスクロスにエポキシ樹脂を含浸させたガラスエポキシ基板、PET(ポリエチレンテレフタレート)樹脂やポリイミドなどの熱硬化性樹脂などの有機基板やセラミックなどの無機基板を用いることができる。なお、基板200に、例えばPETなどの有機基板を用いた場合には、突起電極120の第2の導電体140として、融点温度での基板200の変形などを防止するために、150℃以下の融点を有する、例えばIn−Sn、Bi−Snなどの鉛フリーはんだなどの低融点はんだを用いることが好ましい。   In FIG. 3A, the protruding electrode 120 is formed on the wiring electrode 220 of the substrate 200 having the wiring pattern 210. Similar to the first embodiment, the protruding electrode 120 includes the first conductor 130 on the wiring electrode 220 side of the substrate 200 and the second conductor 140 stacked thereon. Here, as the substrate 200, a glass epoxy substrate in which a glass cloth is impregnated with an epoxy resin, an organic substrate such as a thermosetting resin such as PET (polyethylene terephthalate) resin or polyimide, or an inorganic substrate such as ceramic can be used. . When an organic substrate such as PET is used as the substrate 200, the second conductor 140 of the protruding electrode 120 is 150 ° C. or lower in order to prevent deformation of the substrate 200 at the melting temperature. It is preferable to use a low-melting-point solder having a melting point, such as a lead-free solder such as In—Sn or Bi—Sn.

本発明の実施の形態2によれば、突起電極120が基板200の配線電極220上に凹部を有する転写型で形成されるため、微細なピッチで形成できるとともに、均一な高さの突起電極を有する基板を作製できる。   According to the second embodiment of the present invention, the protruding electrode 120 is formed in a transfer mold having a recess on the wiring electrode 220 of the substrate 200. Therefore, the protruding electrode can be formed with a fine pitch and a uniform height. A substrate having the same can be manufactured.

(実施の形態3)
図4は、本発明の実施の形態3に係る電子部品実装体の断面図である。
(Embodiment 3)
FIG. 4 is a cross-sectional view of the electronic component mounting body according to Embodiment 3 of the present invention.

図4においては、実施の形態2の基板200の配線電極220上に形成された突起電極120と半導体チップなどの電子部品100の端子電極110を接続して電子部品実装体を形成したものである。この場合、電子部品100の端子電極110と突起電極120の第2の導電体140とが接続される。   In FIG. 4, the bump electrode 120 formed on the wiring electrode 220 of the substrate 200 of the second embodiment and the terminal electrode 110 of the electronic component 100 such as a semiconductor chip are connected to form an electronic component mounting body. . In this case, the terminal electrode 110 of the electronic component 100 and the second conductor 140 of the protruding electrode 120 are connected.

つまり、電子部品100の端子電極110に第2の導電体140が、以下で述べるように融着した状態で接続できるため、確実な接続ができるものである。さらに、第1の導電体130の硬化温度は、第2の導電体140の硬化温度より低いため、第2の導電体140の硬化温度では、第1の導電体130が変形しない。そのため、突起電極120が基板200の配線電極220に転写された形状を保った状態で、電子部品100の端子電極110との接続ができる。   That is, since the second conductor 140 can be connected to the terminal electrode 110 of the electronic component 100 in a fused state as described below, a reliable connection can be achieved. Furthermore, since the curing temperature of the first conductor 130 is lower than the curing temperature of the second conductor 140, the first conductor 130 does not deform at the curing temperature of the second conductor 140. Therefore, it is possible to connect to the terminal electrode 110 of the electronic component 100 in a state where the protruding electrode 120 maintains the shape transferred to the wiring electrode 220 of the substrate 200.

また、第2の導電体140が、例えばはんだの場合、はんだは再溶融により電子部品100の端子電極110との高いぬれ性により、図4に示すように、突起電極120の中央部が小さくなった、いわゆる鼓形状230の突起電極120形状で接続することができる。その結果、太鼓形状になりやすい従来のはんだバンプに比べて、端子電極110と突起電極120との界面での応力集中がなくなるため、電極界面での剥離を生じにくい信頼性の高い接続を実現できる。この場合、突起電極120の端子電極110と接続される面の面積を端子電極110の面積より小さくすれば、第2の導電体140が端子電極110に全面に広がるため、鼓形状230の突起電極120を形成することにおいて、さらに効果的である。   Further, when the second conductor 140 is, for example, solder, the central portion of the protruding electrode 120 becomes small as shown in FIG. 4 due to the high wettability of the solder with the terminal electrode 110 of the electronic component 100 by remelting. Further, the connection can be made in the shape of the protruding electrode 120 having a so-called drum shape 230. As a result, the stress concentration at the interface between the terminal electrode 110 and the protruding electrode 120 is eliminated as compared with the conventional solder bump that tends to be a drum shape, so that it is possible to realize a highly reliable connection that hardly causes peeling at the electrode interface. . In this case, if the area of the surface connected to the terminal electrode 110 of the protruding electrode 120 is made smaller than the area of the terminal electrode 110, the second conductor 140 spreads over the entire surface of the terminal electrode 110. In forming 120, it is more effective.

以下に、図5を用いて、本発明の実施の形態3に係る電子部品実装体の製造方法について説明する。なお、以下では、突起電極と融着により作製される電子部品実装体を例に説明する。   Below, the manufacturing method of the electronic component mounting body which concerns on Embodiment 3 of this invention is demonstrated using FIG. In the following, an electronic component mounting body manufactured by fusion bonding with a protruding electrode will be described as an example.

図5は、本発明の実施の形態3に係る電子部品実装体の製造方法の工程断面図である。   FIG. 5 is a process cross-sectional view of the manufacturing method of the electronic component mounting body according to Embodiment 3 of the present invention.

まず、図5(a)に示すように、例えばガラス−エポキシ樹脂などの基板200の配線電極220の上に、実施の形態1を用いて形成された突起電極120と半導体チップなどの電子部品100の端子電極110を対向させて配置する。ここで、突起電極120は、第2の導電体140が導電性樹脂の場合、第1の導電体130の硬化温度以上で、かつ第2の導電体140の硬化温度以下で硬化させた、第2の導電体140が半硬化状態のものである。なお、はんだの場合には、このような制限はなく、一旦溶融し固化したものであればよい。   First, as shown in FIG. 5A, for example, a protruding electrode 120 formed on the wiring electrode 220 of the substrate 200 such as glass-epoxy resin using the first embodiment and the electronic component 100 such as a semiconductor chip. The terminal electrodes 110 are arranged to face each other. Here, when the second conductor 140 is a conductive resin, the protruding electrode 120 is cured at a temperature equal to or higher than the curing temperature of the first conductor 130 and equal to or lower than the curing temperature of the second conductor 140. The two conductors 140 are semi-cured. In the case of solder, there is no such limitation as long as it is once melted and solidified.

つぎに、図5(b)に示すように、電子部品100の端子電極110を突起電極120の第2の導電体140に接触させた状態で、第2の導電体140の硬化温度以上または融点以上の温度で加熱する。このとき、加熱と同時に加圧してもよいことはいうまでもない。   Next, as shown in FIG. 5B, in a state where the terminal electrode 110 of the electronic component 100 is in contact with the second conductor 140 of the protruding electrode 120, the temperature of the second conductor 140 is higher than the curing temperature or the melting point. Heat at the above temperature. Needless to say, the pressure may be applied simultaneously with the heating.

その結果、図5(c)に示すように、突起電極120を介して基板200の配線電極220と電子部品100の端子電極110が、融着により接続された電子部品実装体を作製できる。特に、突起電極120の第2の導電体140がはんだの場合、上記で説明したように中央部がくびれた鼓形状の突起電極120を容易に形成することができる。なお、突起電極120の形状は、必ずしも鼓形状にする必要はなく、第2の導電体140の融着により接続されていればよいものである。   As a result, as shown in FIG. 5C, it is possible to produce an electronic component mounting body in which the wiring electrode 220 of the substrate 200 and the terminal electrode 110 of the electronic component 100 are connected via the protruding electrode 120 by fusion bonding. In particular, when the second conductor 140 of the protruding electrode 120 is a solder, the drum-shaped protruding electrode 120 with a narrowed central portion can be easily formed as described above. Note that the protruding electrode 120 does not necessarily have a drum shape, and may be connected by fusion of the second conductor 140.

なお、本発明の各実施の形態では、突起電極の断面形状が台形で円錐形状を例に説明したが、これに限られない。例えば、図6(a)に示すように断面形状が長方形でも、図6(b)に示すように断面形状が三角形でもよく、転写型の凹部から剥離できる形状であれば特に限定されず、同様の効果を有するものである。さらに、平面形状においても同様に、特に円形である必要はなく、転写型の凹部から剥離できる形状であれば特に限定されない。   In each embodiment of the present invention, the protruding electrode has a trapezoidal cross-sectional shape and a conical shape has been described as an example. However, the present invention is not limited to this. For example, the cross-sectional shape may be rectangular as shown in FIG. 6 (a), or the cross-sectional shape may be triangular as shown in FIG. 6 (b). It has the effect of. Further, similarly, the planar shape does not need to be particularly circular, and is not particularly limited as long as it is a shape that can be peeled from the concave portion of the transfer mold.

以下、基板に作製した本発明の実施の形態に係る第1の導電体と第2の導電体の組み合わせが異なる突起電極および電子部品実装体について、実施例に基づいて具体的に説明する。   Hereinafter, bump electrodes and electronic component mounting bodies having different combinations of the first conductor and the second conductor according to the embodiment of the present invention manufactured on a substrate will be specifically described based on examples.

(実施例1)
実施例1においては、第1の導電体に、銀粒子の導電フィラーを主体とするエポキシ樹脂系の導電性樹脂を用い、第2の導電体に、Sn42Bi58のはんだを用いたものである。
Example 1
In Example 1, an epoxy resin-based conductive resin mainly composed of a silver particle conductive filler is used for the first conductor, and Sn42Bi58 solder is used for the second conductor.

まず、熱硬化性シリコーン樹脂からなる凹部が形成された転写型を用意する。   First, a transfer mold having a recess made of a thermosetting silicone resin is prepared.

そして、転写型に形成される突起電極に対応する凹部は、例えば直径50μm、高さ100μmの突起電極の形状がピッチ200μmで形成された金型にインプリント法を用いて形成した。形成条件は、金型に熱硬化性シリコーン樹脂を流し込み、硬化温度150℃、硬化時間30分で転写型を形成した。   Then, the recess corresponding to the protruding electrode formed in the transfer mold was formed by using an imprint method on a mold in which the shape of the protruding electrode having a diameter of 50 μm and a height of 100 μm was formed with a pitch of 200 μm, for example. The forming conditions were such that a thermosetting silicone resin was poured into a mold and a transfer mold was formed at a curing temperature of 150 ° C. and a curing time of 30 minutes.

つぎに、転写型の凹部内で、少なくとも凹部表面までは到達せずに空間が形成される程度に、139℃の融点を有するSn42Bi58のはんだペーストからなる第2の導電体を充填した。このとき、凹部内に充填される第2の導電体の量は、例えばスクリーン印刷のマスクのメッシュ径を調整することにより行った。そして、100℃、1分で第2の導電体を乾燥させ、凹部に空間を形成した。   Next, a second conductor made of Sn42Bi58 solder paste having a melting point of 139 ° C. was filled in such a degree that a space was formed in the recess of the transfer mold without reaching at least the surface of the recess. At this time, the amount of the second conductor filled in the concave portion was adjusted, for example, by adjusting the mesh diameter of the mask for screen printing. And the 2nd conductor was dried at 100 degreeC for 1 minute, and the space was formed in the recessed part.

つぎに、凹部に形成された空間に、第2の導電体と同様な方法を用いて、160℃の硬化温度を有する銀粒子の導電フィラーを主体とするエポキシ樹脂系の導電性樹脂からなる第1の導電体を充填した。   Next, in the space formed in the concave portion, the second method using the same method as that of the second conductor, a second resin composed of an epoxy resin-based conductive resin mainly composed of a conductive filler of silver particles having a curing temperature of 160 ° C. 1 conductor was filled.

つぎに、第1の導電体と第2の導電体で充填した転写型の凹部と基板の配線電極との位置合わせをした。   Next, the transfer type recess filled with the first conductor and the second conductor was aligned with the wiring electrode of the substrate.

つぎに、基板の配線電極と転写型の凹部とを位置合わせした状態で、第1の導電体の硬化温度以上の温度170℃、5分間加熱した。これにより、第1の導電体が硬化するとともに、第2の導電体であるはんだペーストが一旦溶融し、温度の低下とともに、はんだを形成することにより突起電極が形成された。このとき、第1の導電体と第2の導電体の界面近傍には、導電性樹脂とはんだの混合領域が形成され、結合力が強化された。   Next, in a state where the wiring electrode of the substrate and the concave portion of the transfer mold were aligned, the substrate was heated at 170 ° C. for 5 minutes, which is not lower than the curing temperature of the first conductor. Thereby, while the 1st conductor hardened | cured, the solder paste which is a 2nd conductor once fuse | melted, and the protruding electrode was formed by forming solder with the fall of temperature. At this time, a mixed region of conductive resin and solder was formed in the vicinity of the interface between the first conductor and the second conductor, and the bonding force was strengthened.

そして、転写型を剥離することにより、基板の配線電極の上に凹部とほぼ同じ形状で均一な高さを有する突起電極が転写され形成された。   Then, by separating the transfer mold, a protruding electrode having substantially the same shape as the concave portion and having a uniform height was transferred and formed on the wiring electrode of the substrate.

また、上記工程で基板の配線電極に形成された突起電極と半導体チップの端子電極を位置合わせし、第2の導電体であるはんだの融点以上の温度140℃で半導体チップなどを加熱し、はんだを再溶融させ、突起電極の第2の導電体と端子電極をはんだの融着により接続した。このとき、はんだは中央部にくびれを有する鼓状に形成された。これにより、接続の信頼性に優れた電子部品実装体が作製された。   In addition, the protruding electrode formed on the wiring electrode of the substrate in the above process and the terminal electrode of the semiconductor chip are aligned, and the semiconductor chip or the like is heated at a temperature of 140 ° C. higher than the melting point of the solder as the second conductor. Then, the second conductor of the protruding electrode and the terminal electrode were connected by soldering. At this time, the solder was formed in a drum shape having a constriction at the center. Thereby, an electronic component mounting body excellent in connection reliability was produced.

(実施例2)
実施例2においては、第1の導電体に、銀粒子の導電フィラーを主体とするエポキシ樹脂系の導電性樹脂を用い、第2の導電体に、Sn−20In−2.8Agのはんだを用いたものである。
(Example 2)
In Example 2, an epoxy resin-based conductive resin mainly composed of silver particle conductive filler is used for the first conductor, and Sn-20In-2.8Ag solder is used for the second conductor. It was.

まず、熱硬化性シリコーン樹脂からなる凹部が形成された転写型を用意する。   First, a transfer mold having a recess made of a thermosetting silicone resin is prepared.

そして、転写型に形成される突起電極に対応する凹部は、例えば直径30μm、高さ50μmの突起電極の形状がピッチ100μmで形成された金型にインプリント法を用いて形成した。形成条件は、金型に熱硬化性シリコーン樹脂を流し込み、硬化温度150℃、硬化時間30分で転写型を形成した。   And the recessed part corresponding to the protruding electrode formed in the transfer mold was formed by using an imprint method on a mold in which the shape of the protruding electrode having a diameter of 30 μm and a height of 50 μm was formed with a pitch of 100 μm, for example. The forming conditions were such that a thermosetting silicone resin was poured into a mold and a transfer mold was formed at a curing temperature of 150 ° C. and a curing time of 30 minutes.

つぎに、転写型の凹部内で、少なくとも凹部表面までは到達せずに空間が形成される程度に、179℃〜189℃の融点を有するSn−20In−2.8Agのはんだペーストからなる第2の導電体を充填した。このとき、凹部内に充填される第2の導電体の量は、例えばスクリーン印刷のマスクのメッシュ径を調整することにより行った。そして、140℃、1分で第2の導電体を乾燥させ、凹部に空間を形成した。   Next, a second solder paste of Sn-20In-2.8Ag having a melting point of 179 ° C. to 189 ° C. is formed so that a space is formed in the recess of the transfer mold without reaching at least the surface of the recess. The conductor was filled. At this time, the amount of the second conductor filled in the concave portion was adjusted, for example, by adjusting the mesh diameter of the mask for screen printing. And the 2nd conductor was dried at 140 degreeC for 1 minute, and the space was formed in the recessed part.

つぎに、凹部に形成された空間に、第2の導電体と同様な方法を用いて、160℃の硬化温度を有する銀粒子の導電フィラーを主体とするエポキシ樹脂系の導電性樹脂からなる第1の導電体を充填した。   Next, in the space formed in the concave portion, the second method using the same method as that of the second conductor, a second resin composed of an epoxy resin-based conductive resin mainly composed of a conductive filler of silver particles having a curing temperature of 160 ° C. 1 conductor was filled.

つぎに、第1の導電体と第2の導電体で充填した転写型の凹部と基板の配線電極との位置合わせをした。   Next, the transfer type recess filled with the first conductor and the second conductor was aligned with the wiring electrode of the substrate.

つぎに、基板の配線電極と転写型の凹部とを位置合わせした状態で、第2の導電体の融点以上の温度190℃、3分間加熱した。これにより、融点よりも硬化温度の低い第1の導電体である導電性樹脂が硬化するとともに、第2の導電体であるはんだペーストが一旦溶融し、温度の低下とともにはんだを形成することにより突起電極が形成された。   Next, the substrate was heated at 190 ° C. for 3 minutes above the melting point of the second conductor in a state where the wiring electrode of the substrate and the concave portion of the transfer mold were aligned. As a result, the conductive resin, which is the first conductor having a curing temperature lower than the melting point, is cured, and the solder paste, which is the second conductor, is once melted to form the solder by forming the solder as the temperature decreases. An electrode was formed.

その後、転写型を剥離することにより、基板の配線電極の上に凹部とほぼ同じ形状で均一な高さを有する突起電極が転写されて形成された。   Thereafter, by peeling off the transfer mold, a protruding electrode having substantially the same shape as the concave portion and having a uniform height was transferred and formed on the wiring electrode of the substrate.

また、上記工程で基板の配線電極に形成された突起電極と半導体チップの端子電極を位置合わせし、第2の導電体であるはんだの融点以上の温度190℃で半導体チップを加熱し、はんだを再溶融させ、突起電極の第2の導電体と端子電極をはんだの融着により接続した。このとき、第1の導電体である導電性樹脂は、突起電極の形成時に既に硬化しているため、軟化することがなく形状を保ったままであった。   In addition, the protruding electrode formed on the wiring electrode of the substrate in the above process and the terminal electrode of the semiconductor chip are aligned, the semiconductor chip is heated at a temperature of 190 ° C. higher than the melting point of the solder as the second conductor, and the solder is removed. After remelting, the second conductor of the protruding electrode and the terminal electrode were connected by soldering. At this time, the conductive resin, which is the first conductor, was already cured at the time of formation of the protruding electrode, and thus remained in shape without being softened.

これにより、接続の信頼性に優れた電子部品実装体が作製された。   Thereby, an electronic component mounting body excellent in connection reliability was produced.

(実施例3)
実施例3においては、第1の導電体に、銀粒子の導電フィラーを主体とする耐熱性エポキシ樹脂系の導電性樹脂を用い、第2の導電体に、2段硬化型の銀粒子の導電フィラーを主体とするポリイミド系の導電性樹脂を用いたものである。ここで、第2の導電体は、180℃近傍に、いわゆるBステージと呼ばれる半硬化状態になる第1の硬化温度と、290℃近傍に、いわゆるCステージと呼ばれる完全に硬化する第2の硬化温度の2段階の硬化温度を有するものである。
(Example 3)
In Example 3, a heat-resistant epoxy resin-based conductive resin mainly composed of a conductive filler of silver particles is used for the first conductor, and the conductivity of the two-stage curable silver particles is used for the second conductor. A polyimide-based conductive resin mainly composed of a filler is used. Here, the second conductor has a first curing temperature that is in a semi-cured state called a so-called B stage in the vicinity of 180 ° C., and a second curing that is completely cured in the vicinity of 290 ° C., which is called a so-called C stage. It has a two-stage curing temperature.

まず、熱硬化性シリコーン樹脂からなる凹部が形成された転写型を用意する。   First, a transfer mold having a recess made of a thermosetting silicone resin is prepared.

そして、転写型に形成される突起電極に対応する凹部は、例えば直径10μm、高さ20μmの突起電極の形状がピッチ50μmで形成された金型にインプリント法を用いて形成した。形成条件は、金型に熱硬化性シリコーン樹脂を流し込み、硬化温度150℃、硬化時間30分で転写型を形成した。   And the recessed part corresponding to the protruding electrode formed in the transfer mold was formed by using an imprint method on a mold in which the shape of the protruding electrode having a diameter of 10 μm and a height of 20 μm was formed with a pitch of 50 μm, for example. The forming conditions were such that a thermosetting silicone resin was poured into a mold and a transfer mold was formed at a curing temperature of 150 ° C. and a curing time of 30 minutes.

つぎに、転写型の凹部内で、少なくとも凹部表面までは到達せずに空間が形成される程度に、2段硬化型の銀粒子の導電フィラーを主体とするポリイミド系の導電性樹脂からなる第2の導電体を充填した。このとき、凹部内に充填される第2の導電体の量は、例えばスクリーン印刷のマスクのメッシュ径を調整することにより行った。そして、140℃、1分で第2の導電体を乾燥させ、凹部に空間を形成した。   Next, in the transfer-type recess, a second step is made of a polyimide-based conductive resin mainly composed of a conductive filler of two-stage curing type silver particles so that a space is formed without reaching at least the surface of the recess. 2 conductors were filled. At this time, the amount of the second conductor filled in the concave portion was adjusted, for example, by adjusting the mesh diameter of the mask for screen printing. And the 2nd conductor was dried at 140 degreeC for 1 minute, and the space was formed in the recessed part.

つぎに、凹部に形成された空間に、第2の導電体と同様な方法を用いて、180℃の硬化温度を有する銀粒子の導電フィラーを主体とする耐熱性エポキシ樹脂系の導電性樹脂からなる第1の導電体を充填した。   Next, from the heat-resistant epoxy resin-based conductive resin mainly composed of conductive fillers of silver particles having a curing temperature of 180 ° C., in the space formed in the recess, using the same method as the second conductor. The first conductor is filled.

つぎに、第1の導電体と第2の導電体で充填した転写型の凹部と基板の配線電極との位置合わせをした。   Next, the transfer type recess filled with the first conductor and the second conductor was aligned with the wiring electrode of the substrate.

つぎに、基板の配線電極と転写型の凹部とを位置合わせした状態で、第2の導電体のBステージの硬化温度190℃、10分間加熱した。これにより、第1の導電体である導電性樹脂が硬化するとともに、第2の導電体である導電性樹脂が半硬化状態からなる突起電極を形成した。   Next, in a state where the wiring electrode of the substrate and the concave portion of the transfer mold were aligned, the second conductor B stage was heated at 190 ° C. for 10 minutes. As a result, the conductive resin as the first conductor was cured, and the protruding electrode in which the conductive resin as the second conductor was in a semi-cured state was formed.

その後、転写型を剥離することにより、基板の配線電極の上に凹部とほぼ同じ形状で均一な高さを有する突起電極が転写されて形成された。   Thereafter, by peeling off the transfer mold, a protruding electrode having substantially the same shape as the concave portion and having a uniform height was transferred and formed on the wiring electrode of the substrate.

また、上記工程で基板の配線電極に形成された突起電極と高耐熱性の半導体チップの端子電極を位置合わせし、第2の導電体である導電性樹脂のCステージの硬化温度である290℃で半導体チップを加熱し、導電性樹脂が軟化した状態で突起電極の第2の導電体と端子電極を溶融により接続し、最終的に硬化させた。このとき、第1の導電体である導電性樹脂は、突起電極の形成時に既に硬化しているため、軟化することがなく形状を保ったままであった。   In addition, the protruding electrode formed on the wiring electrode of the substrate in the above process and the terminal electrode of the highly heat-resistant semiconductor chip are aligned, and the curing temperature of the C-stage of the conductive resin as the second conductor is 290 ° C. The semiconductor chip was heated and the second conductor of the protruding electrode and the terminal electrode were connected by melting in a state where the conductive resin was softened, and finally cured. At this time, the conductive resin, which is the first conductor, was already cured at the time of formation of the protruding electrode, and thus remained in shape without being softened.

これにより、接続の信頼性に優れた電子部品実装体が作製された。   Thereby, an electronic component mounting body excellent in connection reliability was produced.

本発明の電子部品接続用突起電極は、大規模集積化回路や撮像素子などに代表される大面積の半導体素子、またはそれらを搭載したパッケージなどを基板に実装する半導体実装分野において有用である。   The protruding electrode for connecting an electronic component of the present invention is useful in the field of semiconductor mounting in which a large-area semiconductor element typified by a large-scale integrated circuit or an imaging element, or a package on which a semiconductor element is mounted is mounted on a substrate.

(a)本発明の実施の形態1に係る突起電極を有する電子部品の平面図(b)図1(a)のA−A線断面図(A) Plan view of an electronic component having a protruding electrode according to Embodiment 1 of the present invention (b) AA line sectional view of FIG. 本発明の実施の形態1に係る突起電極の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the protruding electrode which concerns on Embodiment 1 of this invention (a)本発明の実施の形態2に係る突起電極を有する基板の平面図(b)図3(a)のA−A線断面図(A) Plan view of a substrate having a protruding electrode according to Embodiment 2 of the present invention (b) AA line sectional view of FIG. 3 (a) 本発明の実施の形態3に係る電子部品実装体の断面図Sectional drawing of the electronic component mounting body which concerns on Embodiment 3 of this invention 本発明の実施の形態3に係る電子部品実装体の製造方法を説明する工程断面図Process sectional drawing explaining the manufacturing method of the electronic component mounting body which concerns on Embodiment 3 of this invention 本発明の実施の形態における突起電極の変形例を示す断面図Sectional drawing which shows the modification of the protruding electrode in embodiment of this invention 従来の突起電極を説明する断面図Sectional drawing explaining the conventional protruding electrode

符号の説明Explanation of symbols

100 電子部品
110 端子電極
120 突起電極
130 第1の導電体
140 第2の導電体
150 転写型
160 凹部
170 スキージ
180 凹部表面
190 空間
200 基板
210 配線パターン
220 配線電極
230 鼓形状
DESCRIPTION OF SYMBOLS 100 Electronic component 110 Terminal electrode 120 Protruding electrode 130 1st conductor 140 2nd conductor 150 Transfer mold 160 Concave part 170 Squeegee 180 Concave surface 190 Space 200 Substrate 210 Wiring pattern 220 Wiring electrode 230 Drum shape

Claims (14)

電子部品の端子電極または基板の配線電極に形成される突起電極であって、
前記突起電極は、前記電子部品の前記端子電極上または前記基板の前記配線電極上に形成される第1の導電体と、
前記第1の導電体に積層して形成される第2の導電体とからなることを特徴とする電子部品接続用突起電極。
A protruding electrode formed on a terminal electrode of an electronic component or a wiring electrode of a substrate,
The protruding electrode includes a first conductor formed on the terminal electrode of the electronic component or the wiring electrode of the substrate;
A protruding electrode for connecting an electronic component, comprising: a second conductor formed by being laminated on the first conductor.
前記第1の導電体と前記第2の導電体の一方または両方が、熱硬化性樹脂を含むことを特徴とする請求項1に記載の電子部品接続用突起電極。 2. The protruding electrode for connecting an electronic component according to claim 1, wherein one or both of the first conductor and the second conductor includes a thermosetting resin. 前記第2の導電体が、はんだを主成分として含むことを特徴とする請求項1に記載の電子部品接続用突起電極。 2. The protruding electrode for connecting an electronic component according to claim 1, wherein the second conductor contains solder as a main component. 前記第1の導電体の硬化温度が、前記第2の導電体の硬化温度より低いことを特徴とする請求項1から請求項3までのいずれかに記載の電子部品接続用突起電極。 4. The protruding electrode for connecting an electronic component according to claim 1, wherein a curing temperature of the first conductor is lower than a curing temperature of the second conductor. 5. 所定の突起電極の形状の凹部を備える転写型の前記凹部に、第2の導電体を少なくとも前記転写型の前記凹部表面までには到達しないように充填する工程と、
第1の導電体を前記第2の導電体の上で前記転写型の前記凹部表面まで充填する工程と、
電子部品の端子電極または基板の配線電極に対向して前記転写型の前記凹部を位置合わせして載置し、加熱する工程と、
前記転写型を剥離する工程とを含むことを特徴とする電子部品接続用突起電極の製造方法。
Filling the concave portion of the transfer mold having a concave portion with a predetermined protruding electrode shape so that the second conductor does not reach at least the surface of the concave portion of the transfer mold;
Filling the first conductor onto the surface of the recess of the transfer mold on the second conductor;
The step of positioning and placing the concave portion of the transfer mold facing the terminal electrode of the electronic component or the wiring electrode of the substrate, and heating,
A method of manufacturing a protruding electrode for connecting an electronic component, comprising the step of peeling the transfer mold.
前記転写型が、低い弾性率および高い離型性を有する転写型樹脂であることを特徴とする請求項5に記載の電子部品接続用突起電極の製造方法。 6. The method for manufacturing a protruding electrode for connecting an electronic component according to claim 5, wherein the transfer mold is a transfer resin having a low elastic modulus and a high releasability. 前記転写型樹脂が、熱硬化性シリコーン樹脂であることを特徴とする請求項6に記載の電子部品接続用突起電極の製造方法。 The method for producing a protruding electrode for connecting an electronic component according to claim 6, wherein the transfer resin is a thermosetting silicone resin. 端子電極を有する電子部品と、
前記電子部品の前記端子電極上に形成される第1の導電体と第2の導電体の積層構造からなる突起電極と、
配線電極を有する基板とを有し、
前記配線電極と前記突起電極の前記第2の導電体とが接続されていることを特徴とする電子部品実装体。
An electronic component having terminal electrodes;
A protruding electrode having a laminated structure of a first conductor and a second conductor formed on the terminal electrode of the electronic component;
A substrate having wiring electrodes,
The electronic component mounting body, wherein the wiring electrode and the second conductor of the protruding electrode are connected.
配線電極を有する基板と、
前記基板の前記配線電極上に形成される第1の導電体と第2の導電体の積層構造からなる突起電極と、
端子電極を有する電子部品とを有し、
前記端子電極と前記突起電極の前記第2の導電体とが接続されていることを特徴とする電子部品実装体。
A substrate having wiring electrodes;
A bump electrode having a laminated structure of a first conductor and a second conductor formed on the wiring electrode of the substrate;
An electronic component having a terminal electrode,
The electronic component mounting body, wherein the terminal electrode and the second conductor of the protruding electrode are connected.
所定の突起電極の形状の凹部を備える転写型の前記凹部に、第2の導電体を少なくとも前記転写型の前記凹部表面までには到達しないように充填する工程と、
第1の導電体を前記第2の導電体の上で前記転写型の前記凹部表面まで充填する工程と、
電子部品の端子電極または基板の配線電極に対向して前記転写型の前記凹部を位置合わせして載置し、加熱する工程と、
前記転写型を剥離し、前記電子部品の前記端子電極または前記基板の前記配線電極上に前記突起電極を形成する工程と、
前記基板の前記配線電極または前記電子部品の前記端子電極と前記電子部品の前記端子電極または前記基板の前記配線電極上に形成された前記突起電極とを接続する工程とを含むことを特徴とする電子部品実装体の製造方法。
Filling the concave portion of the transfer mold having a concave portion with a predetermined protruding electrode shape so that the second conductor does not reach at least the surface of the concave portion of the transfer mold;
Filling the first conductor onto the surface of the recess of the transfer mold on the second conductor;
The step of positioning and placing the concave portion of the transfer mold facing the terminal electrode of the electronic component or the wiring electrode of the substrate, and heating,
Peeling the transfer mold and forming the protruding electrode on the terminal electrode of the electronic component or the wiring electrode of the substrate;
Connecting the wiring electrode of the substrate or the terminal electrode of the electronic component to the terminal electrode of the electronic component or the protruding electrode formed on the wiring electrode of the substrate. Manufacturing method of electronic component mounting body.
前記加熱する工程が、前記第1の導電体の硬化温度以上で、かつ前記第2の導電体の硬化温度以下であることを特徴とする請求項10に記載の電子部品実装体の製造方法。 11. The method of manufacturing an electronic component package according to claim 10, wherein the heating step is not less than the curing temperature of the first conductor and not more than the curing temperature of the second conductor. 前記突起電極と接続する工程が、前記第2の導電体の硬化温度または融点以上で行われることを特徴とする請求項10または請求項11に記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component mounting body according to claim 10 or 11, wherein the step of connecting to the protruding electrode is performed at a temperature equal to or higher than a curing temperature or a melting point of the second conductor. 前記転写型が、低い弾性率および高い離型性を有する転写型樹脂であることを特徴とする請求項10から請求項12までのいずれかに記載の電子部品実装体の製造方法。 13. The method for manufacturing an electronic component package according to claim 10, wherein the transfer mold is a transfer resin having a low elastic modulus and a high releasability. 前記転写型樹脂が、熱硬化性シリコーン樹脂であることを特徴とする請求項13に記載の電子部品実装体の製造方法。 The method for manufacturing an electronic component package according to claim 13, wherein the transfer resin is a thermosetting silicone resin.
JP2005117891A 2005-04-15 2005-04-15 PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM Expired - Fee Related JP4729963B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005117891A JP4729963B2 (en) 2005-04-15 2005-04-15 PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
US11/883,801 US8033016B2 (en) 2005-04-15 2006-04-14 Method for manufacturing an electrode and electrode component mounted body
PCT/JP2006/307916 WO2006112384A1 (en) 2005-04-15 2006-04-14 Protruding electrode for connecting electronic component, electronic component mounted body using such electrode and methods for manufacturing such electrode and electronic component mounted body
CN2006800117409A CN101156238B (en) 2005-04-15 2006-04-14 Methods for manufacturing protruding electrode for connecting electronic component and electronic component mounted body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005117891A JP4729963B2 (en) 2005-04-15 2005-04-15 PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM

Publications (2)

Publication Number Publication Date
JP2006302929A true JP2006302929A (en) 2006-11-02
JP4729963B2 JP4729963B2 (en) 2011-07-20

Family

ID=37470924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005117891A Expired - Fee Related JP4729963B2 (en) 2005-04-15 2005-04-15 PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM

Country Status (2)

Country Link
JP (1) JP4729963B2 (en)
CN (1) CN101156238B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135518A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Electronic component mounting structure and method for manufacturing the structure
JP2008227359A (en) * 2007-03-15 2008-09-25 Fujitsu Ltd Semiconductor device and method for manufacturing semiconductor device
JP2010226086A (en) * 2009-02-27 2010-10-07 Toyoda Gosei Co Ltd Method of manufacturing mounted body of semiconductor light emitting element, method of manufacturing light emitting device, and semiconductor light emitting element
JP2011076754A (en) * 2009-09-29 2011-04-14 Toppan Printing Co Ltd Manufacturing method of separator for fuel cell
KR101079946B1 (en) 2006-11-28 2011-11-04 파나소닉 주식회사 Electronic component mounting structure and method for manufacturing the same
JP2013074041A (en) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd Cmos semiconductor device manufacturing method and cmos semiconductor device
CN107250962A (en) * 2015-02-27 2017-10-13 株式会社藤仓 With wire body, wiring substrate and touch sensor
JP2019067878A (en) * 2017-09-29 2019-04-25 日亜化学工業株式会社 Semiconductor device manufacturing method
JP2020120083A (en) * 2019-01-28 2020-08-06 日立化成株式会社 Method of manufacturing electronic component device
JP2020123635A (en) * 2019-01-29 2020-08-13 Dic株式会社 Semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204241B2 (en) * 2008-10-27 2013-06-05 パナソニック株式会社 Semiconductor mounting structure and manufacturing method thereof
JP6225193B2 (en) * 2013-10-08 2017-11-01 リンテック株式会社 Manufacturing method of electronic component mounting body
TWI666659B (en) * 2015-10-19 2019-07-21 日商藤倉股份有限公司 Wiring body, wiring board, contact sensor, and manufacturing method of wiring body
CN107689278A (en) * 2017-08-25 2018-02-13 华南理工大学 A kind of La Fe Si base magnetic refrigeration composite materials and preparation method thereof
CN110312414B (en) * 2019-07-28 2021-01-29 南京视莱尔汽车电子有限公司 Electronic product assembly fixture

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117346A (en) * 1985-11-18 1987-05-28 Fujitsu Ltd Semiconductor device
JPH01145826A (en) * 1987-12-01 1989-06-07 Matsushita Electric Ind Co Ltd Electrical connection contact
JPH02284426A (en) * 1989-04-25 1990-11-21 Nec Corp Manufacture of semiconductor device
JPH10163368A (en) * 1996-12-02 1998-06-19 Fujitsu Ltd Manufacture of semiconductor device and semiconductor device
JP2002093842A (en) * 2000-09-12 2002-03-29 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2003258017A (en) * 2002-03-06 2003-09-12 Nec Electronics Corp Bump electrode manufacturing method
JP2004228375A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Method of forming bump, device and electronic apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11214450A (en) * 1997-11-18 1999-08-06 Matsushita Electric Ind Co Ltd Electronic part mounting body, electronic apparatus using the same and method for manufacturing electronic part mounting body

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117346A (en) * 1985-11-18 1987-05-28 Fujitsu Ltd Semiconductor device
JPH01145826A (en) * 1987-12-01 1989-06-07 Matsushita Electric Ind Co Ltd Electrical connection contact
JPH02284426A (en) * 1989-04-25 1990-11-21 Nec Corp Manufacture of semiconductor device
JPH10163368A (en) * 1996-12-02 1998-06-19 Fujitsu Ltd Manufacture of semiconductor device and semiconductor device
JP2002093842A (en) * 2000-09-12 2002-03-29 Hitachi Ltd Semiconductor device and method of manufacturing the same
JP2003258017A (en) * 2002-03-06 2003-09-12 Nec Electronics Corp Bump electrode manufacturing method
JP2004228375A (en) * 2003-01-23 2004-08-12 Seiko Epson Corp Method of forming bump, device and electronic apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135518A (en) * 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd Electronic component mounting structure and method for manufacturing the structure
KR101079946B1 (en) 2006-11-28 2011-11-04 파나소닉 주식회사 Electronic component mounting structure and method for manufacturing the same
US8120188B2 (en) 2006-11-28 2012-02-21 Panasonic Corporation Electronic component mounting structure and method for manufacturing the same
JP2008227359A (en) * 2007-03-15 2008-09-25 Fujitsu Ltd Semiconductor device and method for manufacturing semiconductor device
JP2010226086A (en) * 2009-02-27 2010-10-07 Toyoda Gosei Co Ltd Method of manufacturing mounted body of semiconductor light emitting element, method of manufacturing light emitting device, and semiconductor light emitting element
JP2011076754A (en) * 2009-09-29 2011-04-14 Toppan Printing Co Ltd Manufacturing method of separator for fuel cell
JP2013074041A (en) * 2011-09-27 2013-04-22 Toppan Printing Co Ltd Cmos semiconductor device manufacturing method and cmos semiconductor device
CN107250962A (en) * 2015-02-27 2017-10-13 株式会社藤仓 With wire body, wiring substrate and touch sensor
JP2019067878A (en) * 2017-09-29 2019-04-25 日亜化学工業株式会社 Semiconductor device manufacturing method
JP7148780B2 (en) 2017-09-29 2022-10-06 日亜化学工業株式会社 Semiconductor device manufacturing method
JP2020120083A (en) * 2019-01-28 2020-08-06 日立化成株式会社 Method of manufacturing electronic component device
JP7314515B2 (en) 2019-01-28 2023-07-26 株式会社レゾナック Method for manufacturing electronic component equipment
JP2020123635A (en) * 2019-01-29 2020-08-13 Dic株式会社 Semiconductor device

Also Published As

Publication number Publication date
CN101156238A (en) 2008-04-02
JP4729963B2 (en) 2011-07-20
CN101156238B (en) 2011-11-30

Similar Documents

Publication Publication Date Title
JP4729963B2 (en) PROJECT ELECTRODE FOR CONNECTING ELECTRONIC COMPONENT, ELECTRONIC COMPONENT MOUNTING BODY USING SAME, AND METHOD FOR PRODUCING THEM
US8033016B2 (en) Method for manufacturing an electrode and electrode component mounted body
JP4401411B2 (en) Mounting body provided with semiconductor chip and manufacturing method thereof
JP2006302930A (en) Wiring board, electronic component packaging body using the same, and manufacturing method of the wiring board and electronic component packaging body
WO2013027718A1 (en) Component-mounting printed circuit board and manufacturing method for same
US7956472B2 (en) Packaging substrate having electrical connection structure and method for fabricating the same
JPWO2007096946A1 (en) Mounted body and manufacturing method thereof
JP2012164965A (en) Wiring board and manufacturing method of the same
TW201123326A (en) Method of manufacturing substrate for flip chip and substrate for flip chip manufactured using the same
KR102006637B1 (en) Method Of Forming Bump And Semiconductor device including The Same
JP5052605B2 (en) Semiconductor chip
JP2002359323A (en) Semiconductor device and its manufacturing method
TWI452659B (en) Circuit board, fabricating method thereof and package structure
JP2010157693A (en) Semiconductor package substrate with metal bumps
JP4479582B2 (en) Manufacturing method of electronic component mounting body
JP2005340448A (en) Semiconductor device, its manufacturing method, circuit board, and electronic apparatus
JP2008288490A (en) Process for producing built-in chip substrate
JP2018037520A (en) Semiconductor device, electronic device, method for manufacturing semiconductor device, and method for manufacturing electronic device
JP2000150716A (en) Package structure and semiconductor device, manufacture of package and semiconductor device
US8168525B2 (en) Electronic part mounting board and method of mounting the same
JP7196936B2 (en) Method for manufacturing wiring board for semiconductor device, and wiring board for semiconductor device
JP2004342802A (en) Printed board with bump electrode and manufacturing method thereof
JP2007158024A (en) Bga-type semiconductor device and its manufacturing method
JP5685807B2 (en) Electronic equipment
JP2001168224A (en) Semiconductor device, electronic circuit device, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070417

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070514

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees