JP3692466B2 - 光電気変換素子 - Google Patents

光電気変換素子 Download PDF

Info

Publication number
JP3692466B2
JP3692466B2 JP28430299A JP28430299A JP3692466B2 JP 3692466 B2 JP3692466 B2 JP 3692466B2 JP 28430299 A JP28430299 A JP 28430299A JP 28430299 A JP28430299 A JP 28430299A JP 3692466 B2 JP3692466 B2 JP 3692466B2
Authority
JP
Japan
Prior art keywords
layer
electrons
energy
barrier layer
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28430299A
Other languages
English (en)
Other versions
JP2001111093A (ja
Inventor
哲也 末光
俊二 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP28430299A priority Critical patent/JP3692466B2/ja
Publication of JP2001111093A publication Critical patent/JP2001111093A/ja
Application granted granted Critical
Publication of JP3692466B2 publication Critical patent/JP3692466B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光を感知する、あるいは光の強度の変化によって伝達される信号を電気信号に変換・加工する機能を持つ光電気変換素子に関する。
【0002】
【従来の技術】
従来より光信号を電気信号に変換する素子としては、フォトダイオード、フォトトランジスタ等が使用されている。フォトダイオードは、化合物半導体のヘテロ構造を使用し、そのヘテロ構造の一部で構成される光吸収層において光の入射によって励起された電子・ホール対によって電流を発生させる。この電流値を大きくするためには、励起される電子・ホール対の数を多くする必要があり、従って光吸収層を厚くする必要がある。
【0003】
フォトトランジスタは、光吸収層をトランジスタのベースとして利用することによって、光によって励起された電子・ホール対によって生じた電流を増幅させる機能を持たせ、効率よく電気信号を生成することができる。しかし、トランジスタとしての高速特性を向上させるためにはホールが走行するベース層を薄くする必要がある反面、光信号に対する感度を向上させるためにはベース層を厚くする必要があり、感度と動作速度の間にトレードオフが生じる。
【0004】
動作速度の観点からすると、有効質量の大きいホールが電気伝導に寄与しない素子が望まれる。その意味では電子のみをキャリアとして扱うユニポーラ素子が有効である。このような光電気変換素子としては、電界効果トランジスタ(FET)が知られている。
【0005】
図8(a)は従来例における電界効果型フォトトランジスタの構造図の一例であり、(b)はそのポテンシャル図である。図において、101は基板、102はチャネル層・吸収層、103はバリア層、104はソース電極、105はドレイン電極、106はゲート電極である。基板101側より光信号hvを入力し、光によって励起された電子・ホール対のうち、少数キャリアであるホールを素子内に蓄積させて実効的なFETのしきい値電圧を変化させてキャリア電子の濃度を増加させて電流を変化させる。
【0006】
この時のドレイン電流Idは、
【数式1】
Figure 0003692466
と近似される。ここで、gm は相互コンダクタンス、Vgsはゲート電圧、Vthはしきい値電圧、ΔVthは光励起によるしきい値変化量を表す。
【0007】
光の照射により、ゲート電極106直下にホールが一様に面密度σ蓄積したとすると、ΔVthは近似的に次のように表される。
【数式2】
Figure 0003692466
ここで、dp はゲート電極106から−ホールまでの平均距離である。
このような原理によって、光信号hvの強度に伴いゲート電極106下に蓄積するホール濃度を変化させることによってFETの実効的なしきい値電圧を変化させてドレイン電流Idを変化させる素子が電界効果フォトトランジスタとして考案されている。
【0008】
【発明が解決しようとする課題】
上記動作原理に基づくフォトFETにおいて、有意なしきい値の変化ΔVthを起こすためにはある程度のホール濃度が必要となる。例えば、式(2)においてdp を25nmと仮定すると、ΔVthを0.1Vにするためには、ホール密度は約3×1011cm-2必要となる。
通常のGaAs系あるいはInP系ヘテロ構造のキャリア電子濃度が1012cm-2台であることを考えると、光によってそれとほぼ同じオーダのキャリアを励起しなければならないこととなる。従って実用的な感度を確保するためには光吸収層を厚くしなければならないが、それは同時に式(1)におけるgm を低下させることになり、特性とのトレードオフを免れない、という問題がある。
【0009】
更に大きな問題は、ユニポーラ素子であるFETを受光素子として使用する場合、励起されたホールが素子の外部に抜けていくための電極がないことから、多数のホールがFET内に蓄積したとき、光入力をオフにしたときにホールが再結合によって消滅するための時間が必要となる。従って高速の光信号のオン・オフに追随できず、素子動作を阻害する可能性がある、という問題がある。
【0010】
また、このフォトFETを通常のFETと組み合わせて集積回路を作るとき、フォトFETを駆動するための光信号が通常のFETのしきい値電圧まで変化させてしまうと、集積回路動作に障害をもたらすため、フォトFETと通常FETを空間的に分離する等のレイアウト上の制限が課せられる、という問題がある。すなわち、従来技術における問題点は、ドレイン電流を変化させるために相当数のホールの蓄積を必要とするために生じるものである。
【0011】
本発明はこのような点に鑑みてなされたものであり、上記問題点の解決を可能とする少量のホールで効率よくドレイン電流を変化させることができる光電気変換素子を提供することを目的とする。
【0012】
【課題を解決するための手段】
ソース電極とドレイン電極間の空隙では、表面のフェルミ準位が価電子帯に近いところに固定(ピンニング)されて、光を照射しない状態(暗状態)においてその直下のチャネル内に電子が存在できないような構成とする。伝導帯はチャネル層において他の2層より十分低く、電子が溜まりやすくする一方、価電子帯はバリア層とチャネル層の間でエネルギー差が極力生じず、バッファ層はこの2層と同じ、或いはこの2層より十分低い様な材料を選ぶ。このホールによる空間電荷は電子に対するポテンシャルを変調し、光によって励起された電子以上の電子がチャネル内に存在することができる光電気変換素子を構成している。
つまり、請求項1の発明は、光を透過する半導体基板と、その上に不純物をドープしない第1の半導体層であり、光を透過するバッファ層と、その上に所定の波長の光を吸収し、且つバッファ層対して伝導帯エネルギーが電子を閉じこめるのに十分に小さい、不純物をドープしない第2の半導体層であるチャネル層と、その上にチャネル層に対して伝導帯エネルギーが電子の浸入を抑制するのに十分なほど高く、且つホールの浸入を容易にするのに十分なほど価電子帯のエネルギー差が小さいか又は価電子帯エネルギーがチャネル層よりも高い材料で構成された、少なくとも一部n型ドープされた第3の半導体層であるバリア層と、このバリア層の表面にオーミック接触を形成するソース電極及びドレイン電極と、ソース電極とドレイン電極との間のバリア層表面に形成され、それら電極の間の少なくとも一部のバリア層の表面近傍にキャリア電子が存在しない程度のエネルギーにフェルミ準位が固定されている表面ピンニング領域とから構成され、光を照射しない状態で、表面ピンニング領域直下のチャネル内に電子が存在しないようにし、光の照射によりチャネル層内に発生した電子・ホール対の中のホールが価電子帯のエネルギー関係によって表面ピンニング領域に蓄積して電子に対するポテンシャルを変調し、チャネル層で電子が溜まりやすくしたことを特徴とする光電気変換素子である。
請求項2の発明は、光を透過する半導体基板と、その上に不純物をドープしない第1の半導体層であり、光を透過するバッファ層と、その上に所定の波長の光を吸収し、且つ第1の半導体層に対して伝導帯エネルギーが電子を閉じこめるのに十分に小さい、不純物をドープしない第2の半導体層であるチャネル層と、その上にチャネル層に対して伝導帯エネルギーが電子の浸入を抑制するのに十分なほど高く、且つホールの浸入を容易にするのに十分なほど価電子帯のエネルギー差が小さいか又は価電子帯エネルギーがチャネル層よりも高い材料で構成された、少なくとも一部n型ドープされた第3の半導体層であるバリア層と、このバリア層の表面にオーミック接触を形成するソース電極及びドレイン電極と、それら電極の間にバリア層表面に接するショットキ−接合を形成するゲート電極と、ソース電極とゲート電極との間のバリア層表面、および、ゲート電極とドレイン電極との間のバリア層表面に形成され、それぞれソース電極・ゲート電極間、ゲート電極・ドレイン電極間の少なくとも一部のバリア層の表面近傍にキャリア電子が存在しない程度のエネルギーにフェルミ準位が固定されている表面ピンニング領域とから構成され、光を照射しない状態で、表面ピンニング領域直下のチャネル内に電子が存在しないようにし、光の照射によりチャネル層内に発生した電子・ホール対の中のホールが価電子帯のエネルギー関係によって表面ピンニング領域に蓄積して電子に対するポテンシャルを変調し、チャネル層で電子が溜まりやすくしたことを特徴とする光電気変換素子である。
【0013】
【発明の実施の形態】
上記課題を解決するために本発明の光電気変換素子は、半導体基板1と、その上に不純物をドープしない第1の半導体層であるバッファ層2と、その上に所定の波長の光を吸収し、且つバッファ層2対して伝導帯エネルギーが電子を閉じこめるのに十分に小さい、不純物をドープしない第2の半導体層であるチャネル層(吸収層)3と、その上にチャネル層(吸収層)3に対して伝導帯エネルギーが電子の浸入を抑制するのに十分なほど高く、且つホールの浸入を容易にするのに十分なほど価電子帯のエネルギー差が小さいか又は価電子帯エネルギーがチャネル層(吸収層)3よりも高い材料で構成された、少なくとも一部n型ドープされた第3の半導体層であるバリア層4と、このバリア層4の表面にオーミック接触を形成するソース電極5及びドレイン電極6と、それら電極の間の少なくとも一部のバリア層4の表面近傍にキャリア電子が存在しない程度のエネルギーにフェルミ準位が固定されている表面ピンニング領域7とから構成されていることに特徴を有している。
【0014】
また、本発明の光電気変換素子は、半導体基板1と、その上に不純物をドープしない第1の半導体層であるバッファ層2と、その上に所定の波長の光を吸収し、且つ第1の半導体層に対して伝導帯エネルギーが電子を閉じこめるのに十分に小さい、不純物をドープしない第2の半導体層であるチャネル層(吸収層)3と、その上にチャネル層(吸収層)3に対して伝導帯エネルギーが電子の浸入を抑制するのに十分なほど高く、且つホールの浸入を容易にするのに十分なほど価電子帯のエネルギー差が小さいか又は価電子帯エネルギーがチャネル層(吸収層)3よりも高い材料で構成された、少なくとも一部n型ドープされた第3の半導体層であるバリア層4と、このバリア層4の表面にオーミック接触を形成するソース電極5及びドレイン電極6と、それら電極の間にバリア層4表面に接するショットキ−接合を形成するゲート電極8と、それぞれソース電極5・ゲート電極8間、ゲート電極8・ドレイン電極6間の少なくとも一部のバリア層4の表面近傍にキャリア電子が存在しない程度のエネルギーにフェルミ準位が固定されている表面ピンニング領域7とから構成されていることに特徴を有している。
【0015】
【実施例】
以下、本発明の一実施例を図面に基づいて説明する。図1は、本発明による第1の光電気変換素子の構造図である。この光電気変換素子は化合物半導体の多層構造からなり、半導体基板1とバッファ層2は入射する光を透過するようなバンドギャップエネルギーを持つ材料からなる。一方、チャネル層3は光吸収層としても作用するような材料を選ぶ。バリア層4の一部あるいはすべてはn型の不純物がドープされており、それから発生するキャリア電子が2つのオーミック接合電極であるソース電極5からドレイン電極6に流れることによって電流となる。ただし、両電極間の空隙では、表面のフェルミ準位が価電子帯に近いところに固定(ピンニング)された表面ピンニング領域7により、光を照射しない状態においてその直下のチャネル内に電子が存在できないような構成とする。
【0016】
図2(a)〜(d)は、本発明の光電気変換素子の動作原理を示す説明図である。(a)は光電気変換素子の多層構造図であり、(b)は光信号が照射されていない場合のA−A’断面のポテンシャル図であり、(c)は光信号が照射された場合の電子・ホールの存在確率密度を説明するA−A’断面のポテンシャル図であり、(d)は光信号が照射された場合の電子・ホールの疑フェルミ準位を説明するA−A’断面のポテンシャル図である。
【0017】
バリア層4・チャネル層3・バッファ層2の間の伝導帯Ec及び価電子帯Evのエネルギーの関係においては、伝導帯Ecはチャネル層3において他の2層より十分低く電子が溜まりやすくする一方、価電子帯Evはバリア層4とチャネル層3の間でエネルギー差が極力生じず、バッファ層2はこの2層と同じ、或いはこの2層より十分低い様な材料を選ぶ。
【0018】
光信号hvが照射されると、チャネル層3において電子・ホール対が励起される。この時、伝導帯Ecのエネルギー関係によって電子はチャネル内に留まるが、ホールの波動関数の絶対値、言い換えればホールの存在確率密度は価電子帶Evのエネルギー関係によってホールにとってエネルギーがより低い表面側で大きくなる。即ち、チャネル層3で発生したホールは表面側に移動することになる。表面にはホールが外部に抜けるための電極がないことから、ある程度ホールが充電されて平衡状態となる。
【0019】
このホールによる空間電荷は電子に対するポテンシャルを変調し、光信号hvによって励起された電子以上の電子がチャネル内に存在することができる。これらは擬フェルミ準位の概念を用いてモデル化することができる。暗状態における電子・ホール濃度をそれぞれno 、po とする。光照射によって電子濃度がn、ホール濃度がpとなったとき、
【数式3】
Figure 0003692466
となる。ここで、kはボルツマン定数,Tは格子温度,qは電荷素量,Efn,Efpはそれぞれ電子及びホールの擬フェルミ準位である。即ち、Efn−Ef がキャリア電子の増加を生み出す起電力と見なすことができる。
【0020】
しかし、前述のホールのバリア層4への移動がおこると、ホールの擬フェルミ準位はチャネルと表面で等しくなリ、しかもその位置は平衡状態におけるフェルミ準位に等しい。その結果、電子の擬フェルミ準位は元の位量から
【数式4】
Figure 0003692466
だけ高い位置となり、その起電力Efn−Efpは先のEfn−Ef よりも大きいことがわかる。
【0021】
この時電子濃度nは近似的に、
【数式5】
Figure 0003692466
と表される。ここで、εはバリア層4の誘電率、dは表面からキャリア電子までの実効的な距離である。ホールの増加量は入射光の強度に比例するから、式(5)より電子濃度の増加は入射光の対数に比例することがわかる。
【0022】
この表面ピンニング領域7が存在するソース電極5端,ドレイン電極6端の間(長さL)に電圧Vを印加したときの電流Iはオームの法則より、
【数式6】
Figure 0003692466
と電子濃度に比例する。ここでμは電子の移動度である。
【0023】
また、後述する図3のようなゲート電極8を持つ構造の場合、表面ピンニング領域7は寄生抵抗として働くから、ソース電極5・ドレイン電極6間の電流Id は、
【数式7】
Figure 0003692466
と表すことができる。ここで、gmoはFETの真性トランスコンダクタンスである。式(6)及び(7)を見ると電流値が表面ピンニング領域7が存在するチャネル電子濃度nによって変化することが分かる。一般にn型半導体では平衡状態におけるホール濃度po は非常に小さいから、式(5)より微弱な光による少量のホールの増加でも電子濃度の増加への寄与は大きくなり、感度の高い光電気変換素子が実現できる。
【0024】
図3は、本発明による第2の光電気変換素子の構造図である。図1の構造にゲート電極を加えたものである。このゲート電極8はバリア層4表面にショットキー接合しており、この電極と他の2つのオーミック電極との間の空隙は前述の通り、フェルミ準位ピンニングによって暗状態でキャリア電子が空乏化されている。このゲート電極8は表面付近に溜まった余剰ホールを逃がすための電極となるが、通常のFETと同様に電気信号を印加する制御端子として使用し、光信号と電気信号を混合して電気信号を生成する機能を付与することができる。
【0025】
図4(a),(b)は、本発明の光電気変換素子によって得られる特性を示す特性図である。(a)はドレイン電圧/ドレイン電流特性を示している。ドレイン電流が飽和するようなドレイン電圧を印加した状態で、入射する光の強度を変化させるとその強度の対数に比例するようなドレイン飽和電流の変化がみられる。
【0026】
また、(b)はホール濃度/ドレイン電流特性を示しており、式(2)で表される従来技術を用いた素子と式(5)から(7)で示される本発明の素子におけるホール濃度とドレイン電流の関係を示している。ホール濃度は入射光強度に比例するので、この関係は光信号の入力に対する出力電流の関係と見ることができる。
本発明の素子はドレイン電流をある値に増加させるために必要なホール濃度の変化量ΔP1 が従来素子のそれΔP2 に比べ小さく、微弱な光信号に対する感度が優れているといえる。更に、光信号に対する応答速度は光照射によって増加したホールが再結合によって消滅する時間によって律則されるため、必要とするホール濃度の変化量が小さいほど入力光信号に対する応答速度が大きく、高速動作を可能とする。
【0027】
(実施例1)
図5は、本発明の第1の実施例における光電気変換素子の構造図である。光ファイバ通信に用いられる波長1.55μmに対する吸収性を持つことから、チャネル層53にはIn組成53%のInGaAsを用いる。バリア層54とバッファ層52にはIn組成65%のInAlAsを用いることによってチャネル層53との価電子帯Evのエネルギー差は室温における熱エネルギー程度に押さえられ、且つ伝導帯Ecのエネルギー差は約300mV確保できる。
【0028】
半絶縁性InP基板51上にアンドープInAlAsバッファ層52(200nm、尚、層の厚さは一例である。以下同じ)、アンドープInGaAsチャネル層53(15nm)、アンドープInAlAsバリア層54(10nm)が順次エピタキシャル成長されており、バリア層54中にはチャネルとの界面から3nm離れたところにSiのプレーナドープ59(一例としては4×1012cm-2)が施され、キャリア電子を供給する。バリア層54の表面は、フェルミ準位を価電子帯付近にピンニングさせるため、表面ピンニング領域55として薄いp型ドープInAlAs層(2nm、1×1019cm-3)を成長しておく。
【0029】
その上には高濃度n型ドープInGaAsコンタクト層(20nm、1×1019cm-3)を成長し、オーミック電極の形成を容易にする。ソース電極57及びドレイン電極58としてTi(3nm)、Pt(2nm)、Au(200nm)を順次蒸着等によって積層させる。この電極の間の一部はコンタクト層56をエッチングしてp型ドープInAlAS層である表面ピンニング領域55を表面に露出させる。半絶縁性InP基板51の裏面は鏡面加工し、反射防止膜を堆積する。
【0030】
(実施例2)
図6は、本発明の第2の実施例における光電気変換素子の構造図である。構成されたエピタキシャル層上の薄いp型ドープp型InAlAs層を含まない点を除いて第1の実施例と同じである。オーミック電極を形成後、その電極間の一部のコンタクト層56をエッチングし、バリア層54表面を露出させ、その一部にゲート電極60としてTi(3nm)、Pt(2nm)、Au(400nm)を順次堆積する。ゲート電極60の両側には依然バリア層54が露出した領域が存在する。この状態で、窒素雰囲気中で200度で2時間熱処理を行うことによって、露出したInAlAsバリア層54表面に表面ピンニング領域61である高濃度の表面準位を形成し、フェルミ準位ピンニングを実現する。
【0031】
(実施例3)
図7は、本発明の第3の実施例における光電気変換素子の構造図である。本例では、高速電子デバイスであるInGaAsチャネル高電子移動度トランジスタ(HEMT)と同一半絶縁性InP基板71、同一エピタキシャル層構造にて本発明の光電気変換素子を実現したものである。チャネル層73材料はInGaAs、バリア層74、バッファ層72材料はIn組成52%のInAlAsである。なお、77はソース電極、78はドレイン電極、80はゲート電極である。この時、価電子帯Evのチャネル・バリア間のエネルギー差は約180mVとなり、若干のエネルギー差が生じる。これはホールがバリア層74へ移動する際に障壁として働くが、チャネル層73が薄いために形成されるサブバンドのエネルギーと熱エネルギーによってやはりホールがバリア層74側へ移動することが可能となる。
【0032】
HEMTではしきい値電圧の均一性を確保するためにバリア層74とコンタクト層76の間に厚さ5nmのInPをエッチング停止層82として挟んである。光電気変換素子の形成時には、InP表面は価電子帯に近いフェルミ準位ピンニングを実現することが困難なため、この層をエッチングして、InAlAsバリア層74を露出させた後、前述の熱処理によって表面ピンニング領域81であるフェルミ準位ピンニングを実現する。
【0033】
従来技術のフォトFETは式(2)に示すようなしきい値電圧の変化を利用しているが、HEMTも光を照射すると同様のしきい値変化を示す。従ってこれら2つの素子を集積化すると、フォトFETを駆動するために入射した光信号がHEMTの動作にも影響を及ぼし、回路の誤動作の原因となるため、フォトFETのみに光が照射されるように回路のレイアウトを考慮する必要がある。本発明の光電気変換素子では、微弱な光による少量のホールの生成で電流値の制御が可能なので、HEMTにおいてチャネル層に生成したホールがしきい値電圧を変化させない程度に光強度を押さえることによって、チップ全面に光信号を照射してもHEMTの動作を阻害することなく光電気変換素子を制御することが可能であり、光素子とHEMTが混在するような集積回路のレイアウトが容易になる。
【0034】
【発明の効果】
以上説明したように、高感度で電界効果トランジスタと集積化が容易な光電気変換素子を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明による第1の光電気変換素子の構造図である。
【図2】(a)〜(d)は、本発明の光電気変換素子の動作原理を示す説明図である。
【図3】本発明による第2の光電気変換素子の構造図である。
【図4】(a),(b)は、本発明の光電気変換素子によって得られる特性を示す特性図である。
【図5】本発明の第1の実施例における光電気変換素子の構造図である。
【図6】本発明の第2の実施例における光電気変換素子の構造図である。
【図7】本発明の第3の実施例における光電気変換素子の構造図である。
【図8】(a)は従来例における電界効果型フォトトランジスタの構造図の一例であり、(b)はそのポテンシャル図である。
【符号の説明】
1 半導体基板
2 バッファ層
3 チャネル層(吸収層)
4 バリア層
5 ソース電極
6 ドレイン電極
7 表面ピンニング領域
8 ゲート電極
51 半絶縁性InP基板
52 バッファ層
53 チャネル層(吸収層)
54 バリア層
55 表面ピンニング領域
56 コンタクト層
57 ソース電極
58 ドレイン電極
59 プレーナドープ
60 ゲート電極
61 表面ピンニング領域
71 半絶縁性InP基板
72 バッファ層
73 チャネル層(吸収層)
74 バリア層
76 コンタクト層
77 ソース電極
78 ドレイン電極
80 ゲート電極
81 表面ピンニング領域
82 InPエッチング停止層
101 基板
102 チャネル層・吸収層
103 バリア層
104 ソース電極
105 ドレイン電極
106 ゲート電極

Claims (2)

  1. 光を透過する半導体基板(1)と、
    その上に不純物をドープしない第1の半導体層であり、光を透過するバッファ層(2)と、
    その上に所定の波長の光を吸収し、且つバッファ層(2)対して伝導帯エネルギーが電子を閉じこめるのに十分に小さい、不純物をドープしない第2の半導体層であるチャネル層(3)と、
    その上にチャネル層(3)に対して伝導帯エネルギーが電子の浸入を抑制するのに十分なほど高く、且つホールの浸入を容易にするのに十分なほど価電子帯のエネルギー差が小さいか又は価電子帯エネルギーがチャネル層(3)よりも高い材料で構成された、少なくとも一部n型ドープされた第3の半導体層であるバリア層(4)と、
    このバリア層(4)の表面にオーミック接触を形成するソース電極(5)及びドレイン電極(6)と、
    ソース電極(5)とドレイン電極(6)との間のバリア層(4)表面に形成され、それら電極の間の少なくとも一部のバリア層(4)の表面近傍にキャリア電子が存在しない程度のエネルギーにフェルミ準位が固定されている表面ピンニング領域(7)とから構成され
    光を照射しない状態で、表面ピンニング領域(7)直下のチャネル内に電子が存在しないようにし、光の照射によりチャネル層(3)内に発生した電子・ホール対の中のホールが価電子帯のエネルギー関係によって表面ピンニング領域(7)に蓄積して電子に対するポテンシャルを変調し、チャネル層(3)で電子が溜まりやすくしたことを特徴とする光電気変換素子。
  2. 光を透過する半導体基板(1)と、
    その上に不純物をドープしない第1の半導体層であり、光を透過するバッファ層(2)と、
    その上に所定の波長の光を吸収し、且つ第1の半導体層に対して伝導帯エネルギーが電子を閉じこめるのに十分に小さい、不純物をドープしない第2の半導体層であるチャネル層(3)と、
    その上にチャネル層(3)に対して伝導帯エネルギーが電子の浸入を抑制するのに十分なほど高く、且つホールの浸入を容易にするのに十分なほど価電子帯のエネルギー差が小さいか又は価電子帯エネルギーがチャネル層(3)よりも高い材料で構成された、少なくとも一部n型ドープされた第3の半導体層であるバリア層(4)と、
    このバリア層(4)の表面にオーミック接触を形成するソース電極(5)及びドレイン電極(6)と、
    それら電極の間にバリア層(4)表面に接するショットキ−接合を形成するゲート電極(8)と、
    ソース電極(5)とゲート電極(8)との間のバリア層(4)表面、および、ゲート電極(8)とドレイン電極(6)との間のバリア層(4)表面に形成され、それぞれソース電極(5)・ゲート電極(8)間、ゲート電極(8)・ドレイン電極(6)間の少なくとも一部のバリア層(4)の表面近傍にキャリア電子が存在しない程度のエネルギーにフェルミ準位が固定されている表面ピンニング領域(7)とから構成され
    光を照射しない状態で、表面ピンニング領域(7)直下のチャネル内に電子が存在しないようにし、光の照射によりチャネル層(3)内に発生した電子・ホール対の中のホールが価電子帯のエネルギー関係によって表面ピンニング領域(7)に蓄積して電子に対するポテンシャルを変調し、チャネル層(3)で電子が溜まりやすくしたことを特徴とする光電気変換素子。
JP28430299A 1999-10-05 1999-10-05 光電気変換素子 Expired - Lifetime JP3692466B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28430299A JP3692466B2 (ja) 1999-10-05 1999-10-05 光電気変換素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28430299A JP3692466B2 (ja) 1999-10-05 1999-10-05 光電気変換素子

Publications (2)

Publication Number Publication Date
JP2001111093A JP2001111093A (ja) 2001-04-20
JP3692466B2 true JP3692466B2 (ja) 2005-09-07

Family

ID=17676781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28430299A Expired - Lifetime JP3692466B2 (ja) 1999-10-05 1999-10-05 光電気変換素子

Country Status (1)

Country Link
JP (1) JP3692466B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101356653B (zh) * 2006-02-14 2012-01-25 独立行政法人产业技术综合研究所 光控场效应晶体管和使用它的集成光电检测器
US8415713B2 (en) 2008-02-25 2013-04-09 National Institute Of Advanced Industrial Science And Technology Photo-field effect transistor and its production method
CN111668347B (zh) * 2020-07-10 2022-08-09 西安交通大学 一种基于表面pn结晶体硅太阳电池的制备方法

Also Published As

Publication number Publication date
JP2001111093A (ja) 2001-04-20

Similar Documents

Publication Publication Date Title
KR101919005B1 (ko) 탄소 기반 전도체 및 양자점을 갖는 광트랜지스터
JP4963120B2 (ja) 光電界効果トランジスタ,及びそれを用いた集積型フォトディテクタ
KR101938934B1 (ko) 이득조절이 가능한 그래핀-반도체 쇼트키 접합 광전소자
JP5004107B2 (ja) 光電界効果トランジスタ,及びその製造方法
US11164988B2 (en) Photovoltage Field-Effect Transistor
CN114041210A (zh) 电磁波检测器
US20200343401A1 (en) Electrical devices making use of counterdoped junctions
WO2007135739A1 (ja) 紫外受光素子
Allen et al. 66‐4: invited paper: graphene enhanced QD image sensor technology
JP3692466B2 (ja) 光電気変換素子
US4488038A (en) Phototransistor for long wavelength radiation
JP3589390B2 (ja) 光電気集積回路およびヘテロ接合ホトトランジスタ
JP4058921B2 (ja) 半導体受光素子
US5459333A (en) Semiconductor photodetector with potential barrier regions
US20020117660A1 (en) Quantum type phototransistor
Yang et al. Optically controlled quantum dot gated transistors with high on/off ratio
EP0428146B1 (en) Field effect transistor type photo-detector
JP4284781B2 (ja) Msm型フォトダイオード
JP2813217B2 (ja) 半導体装置
Chakrabarti et al. Charge‐Sheet Model of a Proposed MISFET Photodetector
Kara Mostefa et al. Performances analysis of InP/InGaAs heterojunction bipolaire phototransistor for different base thicknesses
Döhler High-speed nipi photodetector with internal gain
JP2637953B2 (ja) 半導体受光素子
TW202316643A (zh) 光電探測器及積體電路
JPH0728046B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5