JP3687560B2 - ディーゼルエンジンのステップモータ式吸気絞り弁制御装置 - Google Patents

ディーゼルエンジンのステップモータ式吸気絞り弁制御装置 Download PDF

Info

Publication number
JP3687560B2
JP3687560B2 JP2001112864A JP2001112864A JP3687560B2 JP 3687560 B2 JP3687560 B2 JP 3687560B2 JP 2001112864 A JP2001112864 A JP 2001112864A JP 2001112864 A JP2001112864 A JP 2001112864A JP 3687560 B2 JP3687560 B2 JP 3687560B2
Authority
JP
Japan
Prior art keywords
throttle valve
intake throttle
opening
amount
ecu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001112864A
Other languages
English (en)
Other versions
JP2001349224A (ja
Inventor
幹士 木崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001112864A priority Critical patent/JP3687560B2/ja
Publication of JP2001349224A publication Critical patent/JP2001349224A/ja
Application granted granted Critical
Publication of JP3687560B2 publication Critical patent/JP3687560B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Control Of Stepping Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ディーゼルエンジンのステップモータ式吸気絞り弁制御装置に関する。より具体的には、本発明は、ステップモータ式吸気絞り弁が脱調を起こした場合に、吸気絞り弁を強制的に制御することができるステップモータ式吸気絞り弁制御装置に関する。
【0002】
【従来の技術】
従来の技術は、例えば、特開平7−12000号公報に記載にされている。この公報は、ステップモータ式吸気絞り弁のステップモータが脱調を起こした場合に、ステップモータ制御を中止することを記載している。すなわち従来の技術によるステップモータ式吸気絞り弁制御装置は、制御装置から出力される吸気絞り弁開度指令と、実際の吸気絞り弁開度との差が大きくなった場合には、制御を中止していた。
【0003】
【発明が解決しようとする課題】
ところが、上記公報に示されるように、ステップモータが脱調したときに制御を中止すると、エンジンの正常な運転が困難になる可能性がある。一方、ディーゼルエンジンの吸気絞り弁駆動において、閉じ側脱調はスモークを発生させるが、開き側脱調はスモークを発生させない。このように閉じ側脱調が生じた場合と開き側脱調が生じた場合とではスモークに対する影響が異なったものとなるが、従来の技術はこうしたスモークに対する影響の差異に関わりなく制御を中止してしまうという問題があった。
【0004】
本発明は、上記課題を解決するためになされたものであり、その目的は、開き側脱調および閉じ側脱調のいずれかに応じて、脱調を判定する基準の厳しさを変えることができるディーゼルエンジンのステップモータ式吸気絞り弁制御装置を提供することである。
【0005】
【課題を解決するための手段】
本発明によるディーゼルエンジンのステップモータ式吸気絞り弁を制御する装置は、ステップモータ式吸気絞り弁の実際の位置が目標位置に対して開き側に第1所定値以上ずれたとき、およびステップモータ式吸気絞り弁の実際の位置が目標位置に対して閉じ側に第2所定値以上ずれたときに、ステップモータが脱調したと検出する脱調検出手段を備えており、第1所定値は、第2所定値よりも大きく、そのことにより上記目的が達成される。
【0006】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態を説明する。
本明細書において、フラグの「ON」および「OFF」は、それぞれ2進数の「1」(真)および「0」(偽)に対応する。またスイッチの「ON」および「OFF」は、それぞれスイッチの導通状態および非導通状態に対応する。
【0007】
図1は、本発明によるステップモータ式吸気絞り弁が用いられるディーゼルエンジンの概略構成図である。ここでは、本発明の制御装置をディーゼルエンジンの吸気絞り弁に適用する場合を例に挙げて説明するが、これには限られない。
【0008】
ディーゼルエンジン(以下、「エンジン」とする)11は、燃焼室12を含む複数の気筒を有する。エンジン11の吸入行程において、吸気弁14は、吸気ポート13を開けることによって、吸気通路16に吸入される外気(吸入空気)を燃焼室12に入れる。燃料噴射ポンプ18は、燃料ライン19を通じて燃料を燃料噴射ノズル17に圧送する。燃料噴射ノズル17は、燃料を燃焼室12内へ噴射する。エンジン11の排気行程において、排気弁23は、排気ポート22を開けることによって、排気通路24を通して排気ガスを排出する。
【0009】
ステップモータ26は、電子制御ユニット(以下、「ECU」とする)39からの制御信号に基づいて、吸気絞り弁25の開度が所望の値になるように吸気絞り弁25を駆動する。全開スイッチ58は、吸気絞り弁25が全開位置にあるときにONになり、それ以外の位置にあるときにOFFになる。
【0010】
EGR(排気ガス再循環)装置40は、燃焼室12から排気通路24へ排出される排気ガスの一部を吸気通路16に再循環させて、燃焼室12に戻す。EGR装置40は、排気通路24から吸気通路16へ排気ガスの一部を流すためのEGR通路41と、EGR通路41を流れる排気ガスの量(EGR量)を調整するためのEGR弁42とを備えている。
【0011】
EGR弁42は、負圧および大気圧を作動圧としてEGR通路41を開閉するダイアフラム弁である。EGR装置40は、圧力室46に導入される負圧および大気圧を調整するエレクトリック・バキューム・レギュレーティング・弁(以下、「EVRV」とする)48を備えている。EVRV48は、ポンプ32に接続される負圧ポート51と、大気を取り込む大気ポート53とに接続されて、圧力室46に供給される負圧の大きさを調節する。EVRV48に流れる電流は、ECU39によって制御される。ECU39は、エンジン11の運転状態に応じてEVRV48を制御することによって、EGR弁42の開度を調節し、それによりEGR量を連続的に調節する。
【0012】
エンジン11のクランクシャフト21は、噴射ポンプ18のドライブシャフト29を回転させる。噴射ポンプ18に設けられた回転速度センサ56は、ドライブシャフト29の回転速度を検出することによって、クランクシャフト21の回転速度、すなわちエンジン回転速度NEを検出する。
【0013】
エンジン11に設けられた水温センサ57は、エンジン11を冷却する冷却水の温度THWを検出し、冷却水温度THWに対応する電気信号をECU39に出力する。吸気通路16に設けられた吸気圧センサ59は、吸気通路16における吸気圧力PMを検出し、吸気圧力PMに対応する電気信号をECU39に出力する。アクセルペダル60の近傍に設けられたアクセルセンサ61は、アクセルペダルの踏み込み量に対応するアクセル開度ACCPを示す電気信号をECU39に出力する。
【0014】
図2は、ECU39の内部と、入出力信号とを示すブロック図である。ECU39は、典型的には、中央処理ユニット(CPU)63、リードオンリーメモリ(ROM)64、ランダムアクセスメモリ(RAM)65、バックアップRAM66、入力ポート67、出力ポート68、内部バス69、バッファ70、マルチプレクサ71、A/D変換器72、波形整形回路73、および駆動回路74を内蔵する。センサ57〜59および61から出力される電気信号は、バッファ70およびマルチプレクサ71を介してA/D変換器72によってディジタル信号に変換されてから入力ポート67に与えられる。センサ56から出力される電気信号は、波形整形回路73によって波形が整えられてから入力ポート67に与えられる。ステップモータ26およびEVRV48を駆動するための電気信号は、出力ポート68を介して駆動回路74に与えられ、駆動に必要な増幅がされてからステップモータ26およびEVRV48に出力される。入力ポート67および出力ポート68は、内部バス69を介してCPU63、ROM64、RAM65およびバックアップRAM66に接続される。例えば、ROM64に格納されている制御プログラムは、ECU39に入力される電気信号が表すパラメータを演算処理してディーゼル吸気絞り弁制御およびEGR制御をおこなう。
【0015】
次に図3〜図5を参照して、例示的なディーゼル吸気絞り弁制御およびEGR制御の概要を説明する。
図3の(a)は、ディーゼル吸気絞り弁制御のプログラムのフローチャートであり、図3の(b)は、ステップ310で用いる2次元マップである。図3のプログラムは、例えば8msに1回、実行される。
【0016】
ステップ310において、図3の(b)に示す2次元マップを用いてエンジン回転数NEおよび燃料噴射量QFINからディーゼル吸気絞り弁の開度の目標値である目標ステップLSTRGを算出する。この2次元マップは、横軸にエンジン回転数NEを、縦軸に燃料噴射量QFINをとり、2次元平面上(NE,QFIN)の点における目標ステップLSTRGが、例えば、0ステップから230ステップの範囲の値をとるように設定されている。図3の(b)に示す2次元マップは、簡単のために、0ステップ、100ステップおよび200ステップのプロットしか表現されていないが、実際の目標ステップLSTRGは連続な自然数をとる。グラフ中の単位[mm3/st]は、ピストン1ストロークあたりの燃料噴射量を示す。
【0017】
ステップモータ26は、実ステップLSACTが目標ステップLSTRGに一致するように、ECU39が実行するプログラムによって制御される。目標ステップLSTRGは、例えば、全開時にゼロをとり、吸気絞り弁25が閉じるにつれ大きい値をとる自然数である。
【0018】
図4は、ディーゼル吸気絞り弁制御のプログラムのフローチャートである。図4のプログラムは、所定の割り込み間隔で実行される。ステップ410は、ECU39が認識している実ステップLSACTを算出する。もし目標ステップLSTRGが実ステップLSACTよりも大きいなら、現在の実ステップLSACTに1を加えた値によって、実ステップLSACTを置換する。もし目標ステップLSTRGが実ステップLSACTよりも小さいなら、現在の実ステップLSACTに1を減じた値によって、実ステップLSACTを置換する。
【0019】
ステップ420は、図4のプログラムを実行する割り込み時刻を例えば、以下のように算出する。もし電源電圧が10V以上なら、時刻TSに5msを加えた値によって、時刻TSを置換する。もし電源電圧が10V未満なら、時刻TSに10msを加えた値によって、時刻TSを置換する。したがって電源電圧が低下したときには、割り込みの間隔が長くなる。
【0020】
図5の(a)は、EGR制御のプログラムのフローチャートであり、図5の(b)〜(f)は、図5の(a)に示すステップで用いられるパラメータの関係を示すグラフである。図5の(a)のプログラムは、例えば8msに1回、実行される。
【0021】
ステップ510において、図5の(b)に示す2次元マップを用いてエンジン回転数NEおよび燃料噴射量QFINから、EGRリフト量の基準となるベース目標EGRリフトELBSEを算出する。この2次元マップは、横軸にエンジン回転数NEを、縦軸に燃料噴射量QFINをとり、2次元平面上(NE,QFIN)の点におけるベース目標EGRリフトELBSEが、例えば、0mmから6mmの範囲の値をとるように設定されている。図5に示す2次元マップにおいて、目標EGRリフトELBSEは、0mmおよび6mmのあいだで連続的な値をとる。エンジン回転数NEは、回転速度センサ56から出力された電気信号から得られる。燃料噴射量QFINは、例えば、次式から求められる。
【0022】
QFIN=min{f(エンジン回転数,アクセル開度),g(エンジン回転数,吸気圧,吸気温度)}
ここで「min」は、引数のうち、いずれか小さい値をとる関数であり、「f」および「g」は、例えば、ECUのROMに格納された関数である。
【0023】
ステップ520において、図5の(c)に示す1次元マップを用いて水温THWから、水温補正係数METHWを算出する。この1次元マップは、横軸に水温THWを、縦軸に水温補正係数METHWをとり、ある水温THWにおける水温補正係数METHWが、例えば、0から1の範囲の値をとるように設定されている。水温THWは、水温センサ57から出力された電気信号から得られる。
【0024】
ステップ530において、図5の(d)に示す1次元マップを用いて吸気圧PAから、吸気圧補正係数MEPIMを算出する。この1次元マップは、横軸に吸気圧PAを、縦軸に吸気圧補正係数MEPIMをとり、ある吸気圧PAにおける吸気圧補正係数MEPIMが、例えば、0から1の範囲の値をとるように設定されている。吸気圧PAは、吸気圧センサ59から出力された電気信号から得られる。
【0025】
ステップ540において、ベース目標EGRリフトELBSE、水温補正係数METHW、および吸気圧補正係数MEPIMを用いて、最終目標EGRリフトELTRGを、ELTRG=ELBSE×METHW×MEPIMなる式に基づいて算出する。
【0026】
ステップ550において、EGR弁の実際のリフト量を検出するセンサ(EGR弁リフトセンサ)を用いることによって、実際のリフト量に対応する実EGRリフトELACTを検出する。
【0027】
ステップ560において、図5の(e)に示す1次元マップを用いて最終目標EGRリフトELTRGから、ベースEGR制御量IEBSEを算出する。この1次元マップは、横軸に最終目標EGRリフトELTRGを、縦軸にベースEGR制御量IEBSEをとり、ある最終目標EGRリフトELTRGにおけるベースEGR制御量IEBSEが、例えば、約300mAから約500mAの範囲の値をとるように設定されている。
【0028】
ステップ570において、図5の(f)に示す1次元マップを用いて(最終目標EGRリフトELTRG−実EGRリフトELACT)の値から、フィードバックEGR制御量IEFBを算出する。この1次元マップは、横軸に(最終目標EGRリフトELTRG−実EGRリフトELACT)の値を、縦軸にフィードバックEGR制御量IEFBをとり、ある(最終目標EGRリフトELTRG−実EGRリフトELACT)の値におけるフィードバックEGR制御量IEFBが、例えば、約−100mAから約100mAの範囲の値をとるように設定されている。
【0029】
ステップ580において、ベースEGR制御量IEBSEおよびフィードバックEGR制御量IEFBを用いて、最終EGR制御量IEFINを、IEFIN=IEBSE+ΣIEFBなる式に基づいて算出する。ECU39は、最終EGR制御量IEFINの電流がEVRV48に流れるように制御する。
【0030】
以下に、脱調のために生じる、ECU39が認識している「実開度ステップLSACT」と、ロータの実際の位置に対応する「真の開度ステップLSTRUE」との差を検出する方法を説明する。この差の検出は、図7を参照して後述するプログラムにおいて利用される。
【0031】
後述するプログラムでも用いる実開度ステップLSACTは、ステップモータ26のロータの現在のステップ位置を示す整数であり、典型的にはECU39の中のRAM65に格納される。したがって実開度ステップLSACTは、ECU39が「認識」しているロータの現在位置であるといえる。実開度ステップLSACTは、ステップモータの1ステップを単位としてロータの位置を示す整数であり、吸気絞り弁25が全開位置でゼロをとり、閉じるにしたがって大きな値をとる。実開度ステップLSACTの「1」は、ステップモータ26のロータの角度では、例えば、0.3°に対応する。
【0032】
ここで仮想的な真の開度ステップLSTRUEを定義する。真の開度ステップLSTRUEは、ステップモータ26のロータが実際に位置する、真のステップ位置を示す整数である。ステップモータ26のロータの実際の絶対的な位置は、通常、吸気絞り弁25が全閉または全開のときにしか決定できないので、真の開度ステップLSTRUEは、ECU39が直接的にいつも保持している値ではない。真の開度ステップLSTRUEは、実開度ステップLSACTと同様に、ステップモータ26の1ステップを単位としてロータの位置を示す整数であり、吸気絞り弁25が全開位置でゼロをとり、閉じるにしたがって大きな値をとる。ステップモータ26が脱調していないときには、ECU39が認識するロータの現在位置を示す実開度ステップLSACTは、ロータの真のステップ位置を示す真の開度ステップLSTRUEに等しい。しかしステップモータ26が脱調しているときには、ECU39が認識している位置を示す実開度ステップLSACTは、真の位置を示す真の開度ステップLSTRUEに等しくなくなる。
【0033】
図6は、ステップモータ26の脱調を説明するための図である。図6のグラフの横軸は時間を示し、縦軸はステップ位置を示す。図6において、真の開度ステップLSTRUEのグラフは、ロータが実際に位置する真のステップ位置の変化を示し、実開度ステップLSACTOのグラフは、ステップモータ26が開き側に脱調しているときにECUが保持しているステップ位置の変化を示し、実開度ステップLSACTCのグラフは、ステップモータ26が閉じ側に脱調しているときにECU39が保持しているロータのステップ位置の変化をそれぞれ表す。
【0034】
「ステップモータが開き側に脱調している」とは、ロータが実際に位置する真のステップ位置が、ECU39が認識しているロータのステップ位置よりも、吸気絞り弁25がより開く側に存在する状態をいう。また「ステップモータが閉じ側に脱調している」とは、ロータが実際に位置する真のステップ位置が、ECU39が認識しているロータのステップ位置よりも、吸気絞り弁25がより閉じる側に存在する状態をいう。したがって、真の開度ステップLSTRUEのグラフは、実開度ステップLSACTOのグラフよりもステップ位置がより小さい側(つまり図6のグラフの下側)に位置する。また真の開度ステップLSTRUEのグラフは、実開度ステップLSACTCのグラフよりもステップ位置がより大きい側(つまり図6のグラフの上側)に位置する。
【0035】
図6を用いて、脱調に起因する真の開度ステップLSTRUEと、実開度ステップLSACTOおよび実開度ステップLSACTCとの差を求める方法を説明する。図6において、ステップモータ26のロータは、吸気絞り弁25を全開から閉じ側へ駆動し、その後、再び全開へ駆動する。開き側脱調量LSOFPは、実開度ステップLSACTOおよび真の開度ステップLSTRUEの差である。つまり、開き側脱調量LSOFPは、開き側脱調によってロータの真のステップ位置が、ECU39が認識しているステップ位置からずれている量を示す。閉じ側脱調量LSOFMは、実開度ステップLSACTCおよび真の開度ステップLSTRUEの差である。つまり、閉じ側脱調量LSOFMは、閉じ側脱調によってロータの真のステップ位置が、ECU39が認識しているステップ位置からずれている量を示す。開き側脱調量LSOFPおよび閉じ側脱調量LSOFMは、いずれも非負の整数であり、「1」がステップモータの1ステップに対応する。
【0036】
本発明が適用されるディーゼルエンジンは、全開スイッチ58を備えている。全開スイッチ58は、吸気絞り弁25が全開位置にあるときにONであり、それ以外のときにはOFFである。このとき、開き側脱調量LSOFPを求める手順を以下に説明する。図6に示される開き側脱調量LSOFPは、2ステップである。すなわちECU39が認識しているロータの位置よりも実際のロータの位置が開き側に2ステップずれている。時刻t2において全開スイッチ58がONになったとき(つまり真の開度ステップLSTRUEがゼロに等しくなったとき)、実開度ステップLSACTOは2である。図6からわかるように、ステップモータ26が開き側に脱調しているときは、全開スイッチ58がONになったときの実開度ステップLSACTOが開き側脱調量LSOFPに等しい。開き側脱調の場合は、ECU39が、ロータが全開位置に達したと認識する時刻t3より前の時刻t2において全開スイッチ58がONになる。
【0037】
次に閉じ側脱調量LSOFMを求める手順を以下に説明する。図6に示される閉じ側脱調量LSOFMは、2ステップである。すなわちECU39が認識しているロータの位置よりも実際のロータの位置が閉じ側に2ステップずれている。時刻t1において実開度ステップLSACTCがゼロに等しくなったとき、全開スイッチ58はOFFである。図6からわかるように、ステップモータ26が閉じ側に脱調しているときは、実開度ステップLSACTCがゼロに等しくなってから、全開スイッチ58がONになるまでの期間が、閉じ側脱調量LSOFMに対応する。ただし、ここでは1単位時間に1ステップずつ開き側にステップモータ25を駆動するとしている。閉じ側脱調の場合は、ECU39が、ロータが全開位置に達したと認識する時刻t1より後の時刻t2において全開スイッチ58がONになる。
【0038】
図7は、ディーゼルエンジンのステップモータ式吸気絞り弁が用いるプログラムのフローチャートである。図7のプログラムは、例えば8msに1回、実行される。つまり一定間隔でプログラムの制御が図7中の「スタート」から始まり、「リターン」で終了する。制御が「リターン」に移ると、次に制御が「スタート」に移るまでは、プログラムは実行されない。
【0039】
ステップ701において、脱調補正中であるかどうかを判定する。すなわち、脱調補正中を示すフラグWCORRがONであるかどうかを判定する。もし脱調補正中である(WCORR=ON)なら、ステップ721に進み、もし脱調補正中ではない(WCORR=OFF)なら、ステップ702に進む。
【0040】
ステップ702において、全開学習が済んでいるかどうかを判定する。すなわち、全開学習を示すフラグXGLSOFがONであるどうかを判定する。もし全開学習が済んでいる(XGLSOF=ON)なら、ステップ703に進み、もし全開学習が済んでいない(XGLSOF=OFF)なら、制御はリターンに移る。
【0041】
ステップ703において、吸気絞り弁25が全開位置にあるかどうかを判定する。すなわち、全開スイッチ58の出力信号WLOPNがONであるかどうかを判定する。もし吸気絞り弁25が全開位置にある(WLOPN=ON)なら、ステップ706に進み、もし吸気絞り弁25が全開位置にない(WLOPN=OFF)なら、ステップ704に進む。全開スイッチ58は、吸気絞り弁25を駆動する回転軸に連結しており、その出力信号WLOPNは、吸気絞り弁25が全開のときにONになり、それ以外のときにOFFになる。つまり全開スイッチ58の出力信号WLOPNは、吸気絞り弁25が実際に全開位置にあるかどうかを示す。
【0042】
ステップ704において、ECU39が認識している吸気絞り弁25の位置が全開位置であるかどうかを判定する。すなわち、実開度ステップLSACTがゼロに等しいかどうかを判定する。実開度ステップLSACT=0は、吸気絞り弁25が全開の状態に対応する。もしECU39が認識している吸気絞り弁25の位置が全開位置である(LSACT=0)なら、ステップ705に進む。このときステップモータは閉じ側に脱調している。なぜなら、実際は吸気絞り弁25が全開ではないにもかかわらず、ECU39は「すでに全開に達した」と認識しており、ロータが実際に位置する真のステップ位置が、ECU39が認識しているロータのステップ位置よりも、吸気絞り弁がより閉じる側に存在するからである。もしECU39が認識している吸気絞り弁25の位置が全開位置ではない(LSACT=0ではない)なら、ステップモータは脱調していないので、制御はリターンに移る。
【0043】
ステップ705において、脱調補正中を示すフラグWCORRをONにしてから、制御はリターンに移る。
ステップ706において、ECU39が認識している吸気絞り弁25の位置が全開位置であるかどうかを判定する。すなわち、実開度ステップLSACTがゼロに等しいかどうかを判定する。もしECU39が認識している吸気絞り弁25の位置が全開位置である(LSACT=0)なら、ステップモータは脱調していないので、制御はリターンに移る。もしECU39が認識している吸気絞り弁25の位置が全開位置ではない(LSACT=0ではない)なら、ステップ707に進む。このときステップモータは開き側に脱調している。なぜなら、実際は吸気絞り弁25が全開であるにもかかわらず、ECU39は「全開に達していない」と認識しており、ロータが実際に位置する真のステップ位置が、ECU39が認識しているロータのステップ位置よりも、吸気絞り弁がより開く側に存在するからである。
【0044】
ステップ707において、実開度ステップLSACTの値を開き側脱調量LSOFPに代入する。
ステップ708において、脱調した回数を示すエラーカウンタCLSERRを1だけインクリメントしてから、制御はリターンに移る。エラーカウンタCLSERRは、製造時からの累積の脱調回数をカウントするためのもので、初期状態ではゼロが代入されている。エラーカウンタCLSERRは、イグニッションスイッチをオフしたときでもクリアされないように、例えば、電池によってバックアップされたRAMなどにその値が保持される。
【0045】
ステップ721において、閉じ側脱調量LSOFMを1だけインクリメントする。閉じ側脱調量LSOFMは、初期状態ではゼロが代入されている。
ステップ722において、吸気絞り弁25が全開位置にあるかどうかを判定する。すなわち、全開スイッチ58の出力信号WLOPNがONであるかどうかを判定する。もし吸気絞り弁25が全開位置にある(WLOPN=ON)なら、ステップ723に進み、もし吸気絞り弁25が全開位置にない(WLOPN=OFF)なら、制御はリターンに移る。
【0046】
ステップ723においては、吸気絞り弁25が実際に全開状態である。したがって閉じ側脱調量LSOFMは、ステップモータが閉じ側に脱調していると判断されたステップ705から、1ずつステップモータを開き側に駆動し、実際に吸気絞り弁25が全開になるまでのあいだに累積してインクリメントされた値に等しい。ステップ723において閉じ側脱調量LSOFMが算出されたので、脱調補正中を示すフラグWCORRをOFFにする。
【0047】
ステップ724において、脱調した回数を示すエラーカウンタCLSERRを1だけインクリメントしてから、制御はリターンに移る。
図8は、ディーゼルエンジンのステップモータ式吸気絞り弁が用いる目標開度補正プログラムのフローチャートである。図8のプログラムも、例えば8msに1回、実行される。
【0048】
ステップ801において、閉じ側脱調量LSOFMが20より大きいかどうかを判定する。もし閉じ側脱調量LSOFMが20より大きいなら、ステップ805に進み、もし閉じ側脱調量LSOFMが20より大きくないなら、ステップ802に進む。
【0049】
ステップ802において、開き側脱調量LSOFPが40より大きいかどうかを判定する。もし開き側脱調量LSOFPが40より大きいなら、ステップ805に進み、もし開き側脱調量LSOFPが40より大きくないなら、ステップ803に進む。
【0050】
ステップ802の判定に用いる閾値(値40)は、ステップ801の判定に用いる閾値(値20)より大きい。すなわちステップ802における開き側脱調の判定のほうが、ステップ801における閉じ側脱調の判定よりも緩く設定される。さらに言い換えれば、ステップ802の開き側脱調の判定の敏感さは、ステップ801の閉じ側脱調の判定の敏感さよりも鈍い。これにより、開き側脱調を検出した場合は、閉じ側脱調に比べ、運転可能な限界により近い点まで、脱調用の制御(例えば、吸気絞り弁を強制的に所定の位置に駆動する制御)をおこなわないでおくことができる。そのため、エンジン運転が限界まで可能になるという効果を有する。
【0051】
ステップ802の閾値(値40)をステップ801の閾値(値20)よりも大きく設定する理由は、ディーゼルエンジンの吸気絞り弁駆動において、閉じ側脱調はスモークを発生させるが、開き側脱調はスモークを発生させないからである。つまり、開き側脱調の判定を閉じ側脱調の判定よりも緩く設定することによって、ほんとうに必要なときまで開き側脱調であるとの判定を遅らせることができる。
【0052】
ステップ803において、目標ステップLSTRGを開き側に補正する。すなわち、目標ステップLSTRGから閉じ側脱調量LSOFMを減じた値(LSTRG−LSOFM)によって目標ステップLSTRGを置換する。言い換えれば、ステップ803おいては、目標ステップLSTRGから閉じ側脱調量LSOFMを減じる補正、つまり吸気絞り弁25を目標ステップLSTRGよりも閉じ側に脱調していると推測される量LSOFMだけ開き側にシフトする補正をおこなう。この閉じ側脱調量LSOFMに基づいた補正は、次回もLSOFM分だけ脱調するかもしれない、とするいわゆる「見込み補正」になる。目標ステップを誤って補正したときに悪影響がより大きいのは、閉じ側への誤補正である。逆にいえば、開き側への誤補正は、閉じ側への誤補正よりも悪影響は少ない。これは、ディーゼルエンジンにおいては、吸気量が燃料量に比較して所定量以上確保されていない場合にスモークあるいは燃焼不良による失火、エンストが発生するという問題が生じることなどによる。
【0053】
したがってステップ803においては、目標ステップLSTRGに閉じ側脱調量LSOFMだけを反映させる補正をする。これにより目標ステップLSTRGの補正は、安全な側へ、つまり開き側へだけシフトすることによっておこなわれる。その結果、閉じ側に誤って補正するために生じるスモークの問題などを避けることができる。
【0054】
ステップ804において、エラーカウンタCLSERRが10より大きいかどうかを判定する。もしエラーカウンタCLSERRが10より大きいなら、ステップ806に進み、もしエラーカウンタCLSERRが10より大きくないなら、制御はリターンに移る。
【0055】
ステップ805において、目標ステップLSTRGを所定の値にセットすることによって、強制的に吸気絞り弁25を所定の位置に駆動する。例えば、目標ステップLSTRGをゼロにセットすれば、吸気絞り弁25を全開位置に駆動することができる。これにより、脱調量が所定の値よりも大きいときには、吸気絞り弁25を制御せずに、所定位置に強制的に駆動することができる。
【0056】
ステップ805において、強制的に吸気絞り弁25を駆動できることの意味を説明する。ディーゼルエンジンは、その性質上、吸気量が燃料量に比べて所定量以上、確保されている状態では、スモークを発生することなく、燃料噴射量によって決定されるエンジントルクで運転することが可能である。このため、ステップ805を含むプログラムによってステップモータを制御すれば、脱調が起こったときには、吸気絞り弁を所定の高開度位置に駆動することができる。これによりステップモータが脱調したときであっても、スモークを排出することなくエンジンを運転することができる。
【0057】
ステップ806において、運転者に対するウォーニングを発してから、制御はリターンに移る。
図9は、ディーゼルエンジンのステップモータ式吸気絞り弁が用いる他のプログラムのフローチャートである。図9のプログラムは、ステップ903および904の順序がステップ803および804と逆である点で図8のプログラムと異なる。これにより、ステップモータが脱調する回数が所定の回数を越えるまでは、開き側への補正をおこなわないことができる。逆にいえば、図9においては、脱調回数が所定の回数を越えてはじめて開き側への補正がおこなわれる。図9のフローチャートに示す目標ステップの補正は、ステップモータの脱調回数が所定回数を越える場合には、その後にも何回も脱調すると予期しやすいことに基づいている。すなわちステップ904において、脱調回数が所定の回数を越えるかどうかを判定し、越える場合には、ステップモータが脱調しやすいと判断して見込み補正をおこなう。図9に示す実施の形態によれば、ステップモータが脱調する傾向にあることを確認してから目標ステップの補正をおこなえるので、目標ステップの誤補正を避けることができるという効果がある。
【0058】
上述の説明において、例えば、ステップ801および802の判定に用いる所定の値20および40は、制御対象および所望の制御特性に応じて変えてもよい。
【0059】
ディーゼルエンジンのステップモータ式吸気絞り弁が用いる上述したプログラムは、典型的には、ECU39に内蔵されたROM64に格納されるが、これには限られない。これらのプログラムの機能は、CPU63が所定のステップを実行するようなインストラクションによってプログラムされた汎用のプロセッサによってもインプリメントでき、所定のステップを実行する布線論理を含む特定のハードウェア要素によってもインプリメントでき、あるいはプログラムされた汎用のプロセッサと特定のハードウェアとの組み合わせによってもインプリメントできる。
【0060】
【発明の効果】
本発明によれば、少なくとも以下の効果が得られる。すなわち、開き側脱調を検出するときの敏感さを、閉じ側脱調を検出するときの敏感さよりも鈍く設定することによって、スモーク発生に影響しない開き側脱調の場合には、運転可能な限界まで脱調時用の制御をおこなわないことができる。
【図面の簡単な説明】
【図1】本発明によるステップモータ式吸気絞り弁が用いられるディーゼルエンジンの概略構成図である。
【図2】ECU39の内部と、入出力信号とを示すブロック図である。
【図3】ディーゼル吸気絞り弁制御のプログラムのフローチャートおよび2次元マップである。
【図4】ディーゼル吸気絞り弁制御のプログラムのフローチャートである。
【図5】EGR制御のプログラムのフローチャートおよびプログラム中のステップで用いられるパラメータの関係を示すグラフである。
【図6】ステップモータ26の脱調を説明するための図である。
【図7】ディーゼルエンジンのステップモータ式吸気絞り弁が用いるプログラムのフローチャートである。
【図8】ディーゼルエンジンのステップモータ式吸気絞り弁が用いる目標開度補正プログラムのフローチャートである。
【図9】ディーゼルエンジンのステップモータ式吸気絞り弁が用いる他のプログラムのフローチャートである。
【符号の説明】
801〜806 プログラムのステップ

Claims (1)

  1. ディーゼルエンジンのステップモータ式吸気絞り弁を制御する装置であって、
    該ステップモータ式吸気絞り弁の実際の位置が目標位置に対して開き側に第1所定値以上ずれたとき、および該ステップモータ式吸気絞り弁の該実際の位置が該目標位置に対して閉じ側に第2所定値以上ずれたときに、ステップモータが脱調したと検出する脱調検出手段を備えており、
    該第1所定値は、該第2所定値よりも大きいディーゼルエンジンのステップモータ式吸気絞り弁制御装置。
JP2001112864A 2001-04-11 2001-04-11 ディーゼルエンジンのステップモータ式吸気絞り弁制御装置 Expired - Fee Related JP3687560B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001112864A JP3687560B2 (ja) 2001-04-11 2001-04-11 ディーゼルエンジンのステップモータ式吸気絞り弁制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001112864A JP3687560B2 (ja) 2001-04-11 2001-04-11 ディーゼルエンジンのステップモータ式吸気絞り弁制御装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP17056197A Division JP3209147B2 (ja) 1997-06-26 1997-06-26 ディーゼルエンジンのステップモータ式吸気絞り弁制御装置

Publications (2)

Publication Number Publication Date
JP2001349224A JP2001349224A (ja) 2001-12-21
JP3687560B2 true JP3687560B2 (ja) 2005-08-24

Family

ID=18964191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001112864A Expired - Fee Related JP3687560B2 (ja) 2001-04-11 2001-04-11 ディーゼルエンジンのステップモータ式吸気絞り弁制御装置

Country Status (1)

Country Link
JP (1) JP3687560B2 (ja)

Also Published As

Publication number Publication date
JP2001349224A (ja) 2001-12-21

Similar Documents

Publication Publication Date Title
US7524106B2 (en) Abnormality diagnosis apparatus and method for water temperature sensor
US9062596B2 (en) Wastegate valve control device for internal combustion engine and wastegate valve control method for internal combustion engine
JP3818118B2 (ja) 可変容量過給機の故障診断装置
US20200158036A1 (en) Internal combustion engine control system
JPH09203350A (ja) ディーゼルエンジンの排気ガス再循環制御装置
JP2007303294A (ja) 過給機付き内燃機関の制御装置
US5159913A (en) Method and system for controlling fuel supply for internal combustion engine coupled with supercharger
JP3687560B2 (ja) ディーゼルエンジンのステップモータ式吸気絞り弁制御装置
JP3092547B2 (ja) Egr制御付きエンジンの吸気絞り弁制御装置
US6328018B1 (en) Control apparatus for controlling internal combustion engine
JP2781878B2 (ja) エンジン制御装置
JPS6181549A (ja) 多気筒内燃エンジンの燃料供給制御方法
JP7067078B2 (ja) 内燃機関制御システム
JP3209147B2 (ja) ディーゼルエンジンのステップモータ式吸気絞り弁制御装置
JP3963099B2 (ja) 内燃機関の運転状態判別装置
JPH11257137A (ja) エンジンの燃料噴射制御装置
JPH0718357B2 (ja) 内燃機関の燃料噴射制御装置
JP3137039B2 (ja) ステップモータ制御装置
JP4239578B2 (ja) 内燃機関の運転状態判別装置
EP0887919A2 (en) Step motor controller
JP2003214232A (ja) 内燃機関の電子スロットル制御装置
JP2627838B2 (ja) 内燃機関の電子制御燃料噴射装置
JPH1113494A (ja) ステップモータ式吸気絞り弁
JP2004092619A (ja) 内燃機関の制御装置及び制御方法
JPH10122020A (ja) 過給機付エンジンの制御装置

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Effective date: 20040830

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050517

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees