JP3677317B2 - ダイナモエレクトリック機器の整流制御 - Google Patents

ダイナモエレクトリック機器の整流制御 Download PDF

Info

Publication number
JP3677317B2
JP3677317B2 JP15109595A JP15109595A JP3677317B2 JP 3677317 B2 JP3677317 B2 JP 3677317B2 JP 15109595 A JP15109595 A JP 15109595A JP 15109595 A JP15109595 A JP 15109595A JP 3677317 B2 JP3677317 B2 JP 3677317B2
Authority
JP
Japan
Prior art keywords
signal
bus
commutation
ripple
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15109595A
Other languages
English (en)
Other versions
JPH07327388A (ja
Inventor
ジョセフ・ジェラルド・マーキンキエヴィッツ
ジョン・スティーヴン・ソーン
ジェイムズ・リー・スキナー
Original Assignee
エマーソン エレクトリック カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エマーソン エレクトリック カンパニー filed Critical エマーソン エレクトリック カンパニー
Publication of JPH07327388A publication Critical patent/JPH07327388A/ja
Application granted granted Critical
Publication of JP3677317B2 publication Critical patent/JP3677317B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • H02P25/086Commutation
    • H02P25/089Sensorless control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements

Description

【0001】
【産業上の利用分野】
本発明は、家庭用又は類似の電気器具に用いられる多相電気モータのようなダイナモエレクトリック機器の整流制御に関し、更に詳細には整流制御を与えるための改良型センサレス制御器に関する。
【0002】
【従来の技術】
1993年1月14日出願の、本発明と同じ譲受人に譲渡された米国特許出願第 08/00 441 には、ダイナモエレクトリック機器の整流制御を成すための方法と装置が記述されている。そこに述べられた発明の利点は特に、これまでの制御方法や回路構成と異なり、該機器のロータとステータの巻線の相対的な位置を決めるのに必要な整流についての情報を得る為にホール効果によるセンサーの様な物理的な検出素子を必要としていないことである。整流角(commutation angle)の修正はもし必要であれば行うことができる。その発明の方法と装置はむしろ、整流角が“同相”にあるか、進みにあるか又は遅れにあるかを決めるためにDCバス電流の波形をサンプリングし、該サンプルを解析することを含んでいた。解析の結果、もし整流角が進みであるか遅れであるか決められると、適当な補正によって整流角“同相”になるように調整されるか又は機器の特定な作動条件に合うように所望の整流角に調整された。該方法は,作動条件が変化するとそれを感知し、ロータとステータの巻線の間の所望の“同相”関係を変化させた。更に、その発明は従来の整流制御器によって成し遂げられえた制御の限定された速度範囲ではなく、機器の作動速度全域に渡って整流制御を可能にした。
【0003】
全般的には有効であるが、いくつかの例においてその整流角度制御の解析は、バスリプル、バス上への過渡電流(transients)及び類似現象に影響されることがわかっている。典型的には、整流装置を有するモーターは、バスライン上のリプル及び過渡電流を濾波するフィルターを含んでいるが、より高いにて使用される場合、コンデンサこれらの交流成分を完全に取り除くことができないかも知れない。その結果、電流の波形はリプルと過渡電流によってゆがみ、所望の制御レベルが失われてしまう。ラインフィルタ(コンデンサ又はインダクタ又は両方)がないような使用例においては、ラインAC成分がバス上に存在するであろう。
【0004】
前記特許出願第08/004411に開示されたサンプリングスキームにおいては、電流包絡線(envelope)各整流間隔中の二点でサンプリングされる。これらサンプル値は次いで比値を与えるように組み合わせれ、そこからロータとステータの位相巻線の間の整流関係が決められる。包絡線は、前記の交流及び過渡電流の影響又は他のシステムの不安定状態によってゆがみが惹起されその波形歪められて、処理されたサンプルが位相関係を不正確に表わすようなるかも知れない。このような条件に対して“同相”関係を生ずるように加えられた次ぎの制御は、モータ/制御器にる程度の不安定性を持ち込む。これは、その電流波形(及びその結果の比)、ある整流間隔から次ぎの整流間隔に渡り大きく変化するからである。このような状況は、電流包絡線へのリプル及び過渡電流の影響を完全に排除するか又は波形サンプルから得られた情報の処理中に補正をすることが可能であるなら、修正することができるであろう。
【0005】
【発明が解決しようとする課題】
本発明の目的の幾つかの内、家庭用の電気器具に使用される型の電気モータのようなダイナモエレクトリック機器の整流角制御に使用されるセンサレス制御器を提供することと、DCバス電圧と電流を検知することによって相電気モータの整流制御を成し遂げ、ロータ及びステータの情報のためにホール効果や他のセンサーに頼らないようなセンサレス整流角制御器を提供することと、バス電圧又は電流の波形へのバスリプル又は過渡電流するようなセンサレス整流角制御器を提供することと、従って定常状態の安定度と過渡電流応答を与えるようなセンサレス整流角制御器を提供することと、リプル及び過渡電流の影響を検知し整流制御へのこれらの影響を相殺するようにフィードバック制御を使用するようなセンサレス整流角制御器を提供することと、バス電圧及び電流のDC成分に基づいた出力パワーを制限するモード制御器を有するようなセンサレス整流角制御器を提供することと、制御変数を用いることによって該制御器のエラーシステムが容易に安定化され該制御器を振動に押しやらないようなセンサレス整流角制御器を提供することと、定常状態の誤差がゼロでダイナミック応答が優れているようなセンサレス整流角制御器を提供することと、フィードバック値がリプルと過渡電流の影響を相殺するように導かれる数式を含んでいる制御方法論を用いるような制御器を提供することとが注目されてよい。
【0006】
【課題を解決するための手段】
本発明に従うと、概して言えば、ブラシレス永久磁石(BPM)又はスイッチリラクタンス(SRM)電気モータのようなダイナモエレクトリック機器はそれぞれ給電線と帰電線に渡ってDCバス電流を供給されている。パルス幅変調(PWM)又は6ステップインバータが、バス電流を用いて、モータの位相巻線に規則的にエネルギーを加えたり断ったりして該モータを整流している。その結果のバス電流の波形は、機器のロータと巻線との間の整流角の関数である特性を有する。又、該波形はバスへのバスリプル又は過渡電流の影響を含んでいる。整流制御器は各整流間隔の間に数回に渡って波形をサンプリングし、サンプリングされた電流波形から整流角の情報を得る。制御器はフィードバック回路又はアルゴリズムを用いて、整流制御変数へのリプルと過渡電流の影響を相殺している。制御器の周波数と電圧補正入力はインバータに与えられ、波サンプルから得られた情報に応じて整流角を調整する。制御方法論の部分として、制御器は整流角の関数である制御変数を計算する。次いで、この計算された制御変数は、波形へのリプルと機器の過渡電流への応答の関数である値と組み合わされる。この結果は、インバータに供給され周波数と電圧制御入力を得るために用いられる。他の目的及び特徴は部分的に明らかであり、部分的に以下に指摘されている。
【0007】
【実施例】
同一参照符号は全図面に渡って同一部分を示す。
図面を参照して、多相(三相)の整流電気モータMのようなダイナモエレクトリック機器が図1に示されている。電気モータMは例えば、図2Aに示したようなブラシレス永久磁石(BPM)か又は図2Bに示したようなスイッチリラクタンス(SRM)モータM´である。モータMはロータTとステータアセンブリAを有する三相モータであるように図示されている。ステータアセンブリはそれぞれの巻線セットW1-W3を含んでいる。モータM´もモータMに類似して三相モータであり、ロータT´とステータアセンブリA´を含んでいる。このステータアセンブリも又それぞれの巻線セットW1´-W3´を含んでいる。モータはBPMモータであるかSRMモータであるかに拘わらず家庭用電気器具(図示せず)に使用される型のモータである。
【0008】
電源SからのAC力はそれぞれ出力線及び帰電供給線L1, L2に渡ってAC-DC変換器Cに加えられる。変換器の出力は次いでパルス幅変調(PWM)インバータIに供給される。この分野ではよく知られているように、インバータIは6ステップインバータであってもよい。インバータの出力は制御されたシーケンスでモータの相(ステータの巻線)に逐次与えられ、それによってモータのロータT又はT´とステータ巻線W1-W3又はW1´-W3´との間に好ましい関係が保持される。この関係は与えられたセットのモータの作動条件(負荷、作動速度等)に対して有効であり、作動条件が変化するとこの関係は変化する。
【0009】
本発明のセンサレス制御10は、変器とインバータとの間のバスラインにある分流器Hを通って得られるバス電流の情報に応答する。センサレス制御は本出願と同一譲受人に譲渡される共出願中の国特許出願第08/004411に詳細に記述されている。この特許出願第08/004411の教示は本件に参照に取り入れられている。簡単に言うと、かかる特許出願に記述された制御器の作動は、モータに供給された電流に対してDC電流の波形(図16A−16C参照)を二箇所でサンプリングすることを含んでいた。大きさと比値はそのサンプルから計算され、モータの整流が図16Aに示したように“同相”にあるか、図16Bに示したように“遅れ”にあるか、図16Cに示したように“進み”にあるかを決めるのに用いられた。この決定に基づいて、必要であるなら、適当な周波数と電圧補正入力、そこを通って電流がモータの巻線に供給されるインバータに与えられる。
【0010】
線L1及びL2上のDCバス電流はACリプルとバスの過渡電流を受けやすいことが気付かれるであろう。これが起こると、これらは電流の波形に重ね合わされる。制御器10によって検出されるその結果の波形は、混成の歪んだ波形になる。この歪んだ波形が制御器で処理されると波形の解釈が間違った結果になってしまうおそれがある。従って、インバータへの変換器からの出力は必ずしもモータを“同相”条件の方へ運転させない。更に、これらACの影響は一整流間隔から次の整流間隔で該電流の波形を歪ませるので、インバータに供給された補正信号は不規則な結果をももたらしかねない。その結果、モータの作動は不安定になり効率の悪いものになりかねない。
【0011】
本発明の制御器10は、分流器Hを通って発生したバス電流の波形が増幅器12によって増幅され、低域フィルタ14とサンプルアンドホールド回路16の両方に供給されように作動する。フィルタの出力は信号Ibusavg.であり、該回路からの出力は信号Ibusenv.である。加えて、信号Vbusが、変換器とインバータとの間に延在しているDCバス線L1とL2とを横切って結線されているフィルタ18を用いて発生される。分流器H、増幅器12、サンプルアンドホールド回路16及びそれぞれのフィルタ14及び18は全 DCバス電流の波形を検知するための手段19を構成している。
【0012】
これらの信号は全てアナログディジタル(A/D)変換器20に加えられる A/D変換器からのディジタル出力信号はモード制御器22と整流制御器24とに並列に加えられる。モード制御器は図3にてより詳細に記述されている A/D変換器、モード制御器及び整流制御器は全 DCバス電流の波形をサンプリングするための手段25を構成し、リプルと過渡電流の影響に対する補正をするために波形の情報を処理し、整流が“同相”であるか“遅れ”であるか“進み”であるかを補正された波形の情報から決定し、インバータIに適当な周波数と電圧入力を与える。インバータは整流制御器からの入力に応答してモータのステータ位相巻線の一セットから次のセットへ電流を逐次転換させ、時間的調節によりロータをステータ巻線と“同相”にもたらすか又は保持するようにしている。
【0013】
モード制御器22は電気器具の制御ユニット(図示せず)から指令信号を受け取る。これらの信号はモード制御器10に電気器具の現行の作動モードと該電気器具が一つの作動モードから別の作動モードに何時移ったかを知らせる。これらの信号は更に、モード制御器に特定の作動モードに関連した種々の運転パラメーターを指示する。これらパラメーターは例えばモータの速度及びトルク、及び該モータに加えられる電圧を含んでいる。もし電気器具が洗濯機であるなら、電気器具の作動に関する他の情報は該機器を通り抜ける立方フィート/分(cfm)単位の水の体積を含んでいてよい。これらの信号は、制御器内で低域フィルタ26を通りスイッチングモジュール28に供給されるスイッチングモジュールは適当なアルゴリズムを組み込んでいる。スイッチングモジュール28はマルチプレックス(多重化)スイッチであり、これによってモータの速度やトルクのような種々の運転パラメーターに対するそれぞれの入力信号は、関連したモジュール30a-30dに向けられる。各モジュールは該入力信号と共にアルゴリズムを用い、該アルゴリズムは特定のパラメータに対してモーターの作動特性を表わす。
【0014】
モジュール30a-30cの出力はそれぞれ加算器(summer)32a-32cに与えられる。各モジュール30の出力はそれぞれの加算器の反転(non-inverting)入力に加えられる。整流制御器24からインバータIへの周波数出力信号 out モード制御器22に送られる。この信号は加算器32aの反転(inverting)入力に与えられる。加算器 32b の反転入力にはA/D変換器20からの出力Ibusenv.に対する変換値共通に(commonly)与えられる。信号Ibusenv.は低域フィルタ34を通ってモード制御器に与えられる。これら加算器32a, 32b, 32cの各々の出力は個々の入力としてスイッチングモジュール36に供給される。低域フィルタ34からの信号と信号foutは直接モジュール30dに与えられる。モジュール30dはフィルタされた信号Ibusenv.と信号foutとを適当なアルゴリズムを用いて処理して、スイッチングモジュール36に適当な入力を供給する。
【0015】
スイッチングモジュール36はモジュール28同様に、マルチプレックススイッチである。モジュールへの選択された入力は出力としてリミッター38へ与えられる。リミッターは選択されたパラメーターのどの値をも一定の確定された値に制限するように働く。例えば、リミッター38はモータ加速度の比率を限定するように使われてよい。もし選択されたパラメーターの値が制限範囲内にあれば、リミッターからの出力はその値となる。もしパラメータ値がこのパラメーター値に対する上限値又は下限値を越すと、リミッターの出力はその境界値になる。
【0016】
イッチングモジュール36は5番目の入力としてDCバス電流の制限値の周波数差を表わす値を有する。A/D変換器20からの出力Vbusは低域フィルタ40を通って処理モジュール42に与えられる。フィルタ40からの出力が信号Vbusavg.である。モジュール42はスケーリング機能を行い、従って該信号値を、公称バス電圧値と結合された最大平均バス電流を表わす値に対する数として用いている。モジュール42からのこの出力が電流制限値を表わす値である。この値は、平均バス電流値(Ibusavg.)に対する電流制限値の大きさを決める論理モジュール44に送られる。この目的のためにモジュール44はA/D変換器20からの平均バス電流信号Ibusavg.である第2の入力を受け取る。この比較の結果がスイッチングモジュール36に供給される信号差を発生させる。
【0017】
リミッターモジュール38は積分器46に限定周波数差信号(flimited)を与える。積分器46は次いで出力として周波数指令信号(fcommand)を与える。周波数指令信号は接続点47に与えられる。接続点から該信号は加算器32cの反転入力とモード制御器の出力モジュール48との両方に伝達される。該信号は整流制御器24にも直接伝達される。モジュール48は第2入力として入力フィルタ40からの平均バス電圧信号Vbusavg.を受け取る。モジュールは、周波数指令信号の関数(Vfcommand,(V/Hz))を、公称バス電圧値を平均バス電圧値で割ることによってえられた値と結合させる。この操作の結果が、モジュール48から整流制御器24に与えられる電圧出力信号(Vout)である。
【0018】
前述で参照した特許出願第08/004411に記述された制御器は部分的に各整流間隔の間で二つのDCバス電流の波形のサンプルを採取することによって作動している。上述したように、ACリプルと伝送線路過渡電流の影響は波形を歪ませ、該サンプルは、処理時には、整流角を正確には表示しないかもしれない。この問題を避けるために、本発明の改良型制御器は先ずDCバス電流波形を各間隔の間で二回ではなく三回検出している。図9に示したように、サンプルlbは該間隔期間の約1/3の点で取られ、第二サンプルlmは該間隔期間の約2/3の点で取られ、最終 ンプルは該間隔の終わりで採取される。これら三つのサンプルが採取される該間隔内の正確な時点は変化してよいことがわかるであろう。ここで重要なのは、これらサンプルの一つが該間隔の初めの方で取られ、第二のサンプルが該間隔の中間点で取られ、第3のサンプルが該間隔の終わりで取られるということである。従って、tが整流間隔であるなら、第一サンプルは0.33t、第二サンプルは0.66t、第三サンプルは1.00tで採ることができる。これらサンプルがこれらの時点で採られることは必ずしも重要ではないが、第一と第二のサンプルが採られる時間間隔と、第二と第三のサンプルが採られる時間間隔とがおおむね等しいことが重要である。従って、これらサンプルは、0.33t 、0.66t 、1.00tで採られる代わりに、例えば0.30t 、0.60t 、0.90tで採られてもよい。又、これらのサンプル A/D変換器20から生じたディジタルデータ流から選択されたディジタル値を表わしていることがわかるであろう。これについて A/D変換器は変換されたデータ流からのサンプルを受け取る付随サンプリングモジュール50を有している。該モジュールにより、処理器25のモード制御器と整流制御器区部との双方への出力データ流は、“ディジタル化された” A/D 変換器20へもたらされたサンプリングされたデータとなる。
【0019】
図4を参照すると、整流制御器24の第一実施例は整流角制御区部24Aとリプル排除区部24Bの両方を含んでいる。区部24Aはバス電流Ibuscorrected.のサンプルを用いて整流角の誤差を補正する。これは制御変数(Icurvecorrected.)内の揺らぎに対する該制御器の応答によって為される。これらの揺らぎに対する応答は適切な整流を成すのを助けるだけでなく、モータを振動に陥ることから守るためにも重要である。又、基準点のIcurveref.が平均バス電流Ibusavg.とインバータの出力周波数foutとの関数としてモジュール54によって調整される。この操作点での調整は、負荷、モータ及びシステムの効率の要求を最良に適応させるように該制御器に所望の整流角を変化させる。
【0020】
区部24Bはバス電流の波形上のACバスリプル成分の影響を取除くように作用する。これら二つの区部からの出力は結合され、その結果は制御手段24cに与えられる。この制御手段は区部24A、24Bからの結合された入力に応答してインバータIへの周波数補正入力を表わす出力信号を発生させる。この入力はインバータに整流間隔を調整させ、システムを“同相”条件の方へもたらす。
【0021】
ロータの位置をバス電流の関数として推定するために図1の分流器Hからの信号Ibusは加算素子56の反転入力に加えられ、電流補正信号Ibuscorrectionも該素子に加えられる。電流補正信号は,バス電圧のAC成分を帯域通過フィルタ62によって先ず引き抜き、その後モータの小信号インパルス応答Hmotor(t)と共にバス電圧のAC成分VbusACの畳み込み(convolution)を行うことによって得られる。この畳み込みは畳み込み素子64によって行われ、質的にバス電圧のAC成分にモータと同じ応答を有するフィルタを通過させていることになる加算素子56の出力は次いでサンプルアンドホールドモジュール16と前述したA/D変換器20とへ通り抜ける。変換器20でのA/D変換の後、得られたディジタルデータはバスリプルと過渡電流の影響に対する補正をされたバス電流を表わしている A/D変換器20の出力はサンプル処理モジュール52に供給される。
【0022】
モジュール52は採取された波形値lb、lm、leについて作動する。これらの値は次の数式を用いて結合される:Icurve=2E-3M+B、ここでEは間隔の終わりで取られたleの値、Mは中間で取られたlmの値、Bは最初に取られたlbの値である。Icurveは制御変数を表わし、かかる数式は異なったサンプル値の解析に基づいており、これらの値を結合する一方法である。サンプル値は別の数式によっても結合されうることがわかるであろう。図4において、補正は波形のディジタル化以前に行われているのでIcurve=Icurvecorrectedである。
【0023】
図10を参照して、一連のカーブはサンプル値の異なった試験的組合せを表わしている。第一カーブM-Bは概ねU字型に従うように示されている。第二カーブE-Mは広い範囲の整流角に渡り概ね平坦であるように見えているが、整流角がゼロを越えて増加すると急激に上昇するのがわかる。逆に、組合せE-2M+Bを表わす第三カーブは整流角がゼロに向かうにつれて急速に上昇するが、その後、概ね平坦になる。
【0024】
ここに示した三つのカーブはどれも、広範囲に渡る整流値について概ね線形関係を有すべき適当な制御変数を与えない。しかし、E-MとE-2M+Bとによって表わされる二つのカーブの組合せは所望の線形性をほぼ与えることに気付かれるであろう。従って、図11に示したように、上述の数式で示したカーブ(即ち上述の二つのカーブの組合せ)は所望の線形性を与える。図11には三つのカーブが与えられている。一つは800 rpm(回転/分)で作動するモータについてであり、二番目は1600 rpmで作動するモータについてである。中間のカーブも示されており、他の二つのカーブに概ね平行である。これら三つのカーブの全てにおいて、カーブの中間部分は概ね線形である。整流角の範囲の両端部でのみこれらのカーブは急激に上昇又は減衰する。
【0025】
図12において、VAはバス電圧のAC成分を“帯域通過させる”(bandpass)のに用いられた直線近似のボード振幅ダイアグラムの一例である。その例として、モータの周波数応答の縮尺された高周波数シミュレーションを表わしている。VBは図1の分流器Hで検出された電圧の直線近似ボードダイアグラムの一例であり、その例として、BPMモータが典型的に与える高周波数減衰を表わしている。図13はモータMの実際の振幅/周波数応答(カーブY)と図15に示した増幅器A2の実際の振幅/周波数応答(カーブZ)を表わしている。カーブXは二つのカーブY及びZの間の差を表わしている。カーブXからわかるように、120 Hzより大きな周波数に対して誤差は非常に小さくなる。図14は図13に類似した図であるが、振幅ではなく位相に対するカーブが図示されている。
【0026】
再び図4に関して、信号Ibusavg.制御変数基準モジュール54に与えられる。モジュール54は、入力Ibusavg.と制御手段24Cの出力からフィードバックされる周波数出力信号foutとの両方の関数である出力信号Icurveref.を与える。モジュール52は上に記述された数式に従って入力Ibusenv. correctedのサンプル値B、M及びEを組み合わせる。この結果が出力Icurvecorrected.である。
【0027】
モジュール52からの出力は制御変数Icurvecorrected.であり、バスリプルに対して補正されている。出力は加算器58の反転入力に加えられる。モジュール54からの出力Icurveref.は加算器の非反転入力に与えられる。加算器からの出力はACリプルとバス過渡電流の影響の両方に対して補正されたDCバス電流波形を表わしている。この信号は、図11に関して議論された高端部と低端部の制限を実施するリミッター60に与えられる。即ち、もしモジュール60からの補正された出力信号が図11に示した適切な(relevant)カーブのどちらかの端で通常の線形性の範囲を越えているなら、リミッター60は該信号値を最大又は最小許容値に制限するように作用する。
【0028】
上記の如く、整流制御器の区部24Bは入力信号Vbus供給される。この信号は、DCバス上に存在するあらゆるACリプルを含んでいる。入力Vbusは帯域通過フィルタ62に先ず供給される。フィルタされた後、モジュール64に供給され、そこでHmotor(t)の値と結合される。Hmotor(t)はモータM又はM´の小信号インパルス応答を表わす。これら二つの値は片方を他方で畳み込みすることで結合される。その結果、信号Ibuscorrectionが生じる。この信号は、分流器Hでできた信号Ibusと加算するために加算器56の反転又は補正入力に加えられる。
【0029】
リミッター60からの出力信号は、上記の如く、基準電流信号Icurveref.を引いたリプルと過渡電流の影響に対して補正されたDCバス電流の波形の誤差信号を表わしている。この信号はモジュール66、68、70をそれぞれ含むPID(比例積分微分)制御器65に与えられる。該制御器65は補正誤差信号に応答して、特定のセットのモータ作動条件に対して“同相”整流角を生ずるように整流間隔を決定する。この間隔はインバータIの作動周波数に適用される。加算器72はモータを運転させるようにインバータIに出力信号foutを供給する。又、この信号foutは入力としてモジュール54にフィードバックされる。
【0030】
リミッター60からの出力信号は、比例制御器66、積分器68及び微分器70に同時に供給される。各ユニットはそれぞれ関連した利得定数Kp、Ki 及びKdを有する。これら定数値はモータM又はM´の設計及び作動特性の関数である。各ユニットは加算ユニット72の非反転入力に別々の出力を与える。更に、積分器46(図3参照)からの出力信号fcommandも加算ユニットに入力として供給される。該加算ユニットはモータの現行の作動条件の組に対するインバータの公称作動周波数を表わしている周波数命令入力を現行のDC電流の波形を表わす入力と組み合せる。これらの現行のDC電流の波形を表わす入力の値はモータの実際の現時点の運動を表わしている。この結果生じた出力foutは、モータを“同相”条件の方にもたらす信号f command に対する補正を含んでいる。もしモータが現在時点で“同相”で作動しているなら、入力fcommandに対して為される補正は存在しない。
【0031】
図5を参照すると、該整流制御器の好ましい実施例が概ね符号74Aで示されている。図からわかるように、この別の実施例は図4に関して記述したものと類似しているが、ここでは制御器74Aの動作が周波数と電圧との両方を補正することによって高められている。しかし図5の制御器は、図4の実施例の入力VbusとIbusがアナログ信号であったのに対し、A/D変換器20によるディジタルデータを与えられてよい。従って、類似の素子は接尾辞“A”によって示されており、機能は上述のものと同じである。整流制御器74Aが制御器24と異なる点は、帯域通過フィルタ62Aからの出力VbusACがモジュール64Aに加えて利得モジュール76に供給される点である。モジュール76は、入力VbusのAC成分をスケールして、Voutによって表わされた平均出力電圧の辺りに出力電圧を変化することによって該バス上の実際のAC電圧を適当に相殺している。モジュール76からの出力は加算器78の反転入力に与えられる。加算器78への第二の入力はモード制御器22の出力モジュール48からの信号Voutである。装置の前実施例において、モジュール48からの出力はインバータIに直接与えられていた。加算器78は、バスリプルの適当にスケールされた表示(KvVbusAC)を表わすモジュール76からの出力をモード制御器からの入力Voutと結合して出力Voutcorrected.を作り出す。こうして、この信号はインバータにその電圧制御入力として供給される。
【0032】
図6は該整流制御器の更に別の実施例を示している。この実施例は符号84で表わされている。整流制御器24Bの作動は前述した整流制御器24に概ね類似している。前述した素子に類似する全ての素子は接尾辞“B”で示されている。整流器84が前述の制御器の実施例と異なる点は、制御変数Icurveを表わすモジュール52からの出力が該制御器のリプル排除区部(即ち、図4の56、62、64又は図5の56A、62A、64A)からの出力と結合されていないことである。従って、図5ではモジュール52Aからの出力が加算器56Aでモジュール64Aからの出力と結合され、或いは、図4で信号Ibusが加算器56でモジュール64の出力と結合されていたのに対し、モジュール52Bからの出力は加算器58Bの反転入力に直接供給されている。加算器58Bへの別の入力は更にモジュール54Bからの出力Icurveref.がある。制御器24の場合のように、加算器58Bからの出力はリミッター60Bに供給され、そこから該制御器の制御手段の区部84Cに供給される。
【0033】
御器のリプル排除区部84Bに対する信号入力VbusACとモータの小信号インパルス応答Hmotor(t)との間で畳み込みが行われるモジュール64は、この実施例からは取り除かれている。むしろ、入力Vbusは帯域通過フィルタ62Bに供給され、次いで利得モジュール76Bに供給される。制御器74におけるように、利得モジュールの出力はモード制御器からの電圧出力信号Voutと結合され、インバータIに供給される信号Voutcorrectedを生ずる。
【0034】
図7を参照すると、制御器区部の第四の実施例が概ね符号94で示されおり、前述の素子に類似の全ての素子は接尾辞“C”を用いて示してある。制御器94は制御器のリプル排除部分94Bの設計と作動において上述の実施例とかなり異なっている。制御器94の区部94Aと94Cは前述したものと同じである。区部94Bにおいて、制御器への入力信号Vbusは低域フィルタ96によって処理され、信号出力Vbusavg.を作る。この信号は次いで算器(divider)モジュール98へ入力として供給される。モジュール98は第二の入力として区部94Bへの入力Vbusを有する。算器モジュールにおいて、入力Vbusは信号Vbusavg.を割って出力Vbusavg./Vbusを作り出す。この新しい信号は算器(multiplier)モジュール100に供給される。又、モード制御器22からの出力信号Voutもモジュール100へ入力として供給される。算器モジュール100はこれら二つの入力を結合させ、インバータIへ入力として与えられる信号Voutcorrectedを作る。
【0035】
図8に整流制御器の更に別の実施例が符号104で示してある。この実施例について、前述した素子に類似の全ての素子は接尾辞“D”で示してある。整流制御器104のリプル排除区部104Bは次のように機能する:
先ず、区部104BはDCバス上に存在するいずれかのACリプルを表わす入力信号Vbusを与えられる。入力Vbusは帯域通過フィルタ62Dに与えられる。フィルタされた後、処理器モジュール64Dに与えられ、そこでモータの小信号インパルス応答を表わす値Hmotor(t)と結合される。これら二つの値は次いで、該制御器の実施例24と74に関して記したように、一方を他方で畳み込みするすることによって結合される。その結果生じるのが信号Ibusenv. correctionである。実施例74の場合と同様に、この信号はモジュール50(図1参照)からの信号Ibusenv. と加算するために加算器56Dの反転入力に加えられ信号Ibusenv. correctedを生成する。信号Ibusenv. correctedがモジュール52Dへの入力であり、モジュールは信号Ibusenv. correctedから取られた三つのサンプルIb、Im、Ieから信号Icurvecorrectedを計算する。
【0036】
帯域通過フィルタ62Dへの入力信号Vbusは同時に低域フィルタ96Dに供給される。低域フィルタからの出力が信号Vbusavg.である。この信号は算器モジュール98Dに供給される。リプル排除区部104Bへの入力Vbusは除数としてモジュール98Dに与えられる。信号Vbusavg.をこの信号で割ったものが出力Vbusavg./Vbusである。信号Vbusavg./Vbusは算器モジュール100Dに供給される。モード制御器22からの出力信号Voutは再びモジュール100Dへの入力として与えられる。モジュール100はこの二つの入力を結合してインバータIへの入力として供給される信号Voutcorrectedを作る。
【0037】
その結果、整流制御器104は、制御器のリプル排除区部が整流制御器の別の実施例において前述した二つの方法の両方で入力Vbusに作するハイブリッド制御器になる。従ってこのハイブリッド結合は、モータの整流を“同相”にもたらすようにインバータに供給された周波数出力と補正電圧信号との両方の制御の度合いを高めている。
【0038】
前述したどの実施例においても整流制御器の作動は高度の制御を与え、それによってACバスリプルと電力線過渡電流が存在していても安定したモータの作動を与える。過渡電流の補正といずれかのACリプル成分の排除のために制御変数を使用することによって、所望の“同相”整流を達成するためにどの実施例を用いても容易く行うことができる。与えられたどのセットのモータ作動条件に対しても“同相”整流は最も効率の良い作動レベルを与える。
【0039】
前述した整流制御器とモード制御器の実施例のそれぞれにおいて、記述された種々の成分は集積回路と適当にプログラムされたディジタル素子を使用して行える。図15を参照すると、整流制御器のリプル排除部分は別々のアナログ成分によっても行うことができる。リプル除波器のこの実施例は概ね符号24Eで示してある。
【0040】
リプル除波器の回路は三つの演算増幅器(op-amp)A1-A3を含んでいる。第一のop-amp A1はリプル除波器への入力Vbusに応答して入力のDC成分を削除し、DCバイアスと共に信号のAC部分を通過させる。第二のop-amp A2はop-amp A1からの出力を帯域通過フィルタして、op-amp A1の出力をモータの小信号インパルス応答と結合する。これは以前述べた畳み込み機能である。最後に、第三のop-amp A3はバス電流を検出し、該信号からACリプルの“推定される”衝撃を差し引く。
【0041】
更に詳細には、該入力信号Vbusはop-amp A1の反転入力に供給される。該信号は入力抵抗器R1を通って電圧分割回路110に与えられる。該回路は接続点112を含み、この点について抵抗器R2及びR3、とポテンシオメータ又は固定抵抗R4が平行に繋がれている。抵抗器R2の別の側は接続点114に繋がれている。又、この共通点には抵抗器R5とR6の一方の側が繋がれている。抵抗器R5の他方の側は共通接続(common)に結び付けられている接続点116に繋がれている。ポテンシオメータ又は固定抵抗R4の他方の側も接続点116に繋がれている。抵抗器R6はop-amp A1の反転入力に連結している接続点118に繋がれている。抵抗器R7は一方の側を接続点116に、他方の側を接続点120に繋いでいる。op-amp A1の非反転入力もこの共通点に接続している。
【0042】
DC基準電圧が、抵抗器R8とR9とを備える電圧分割器を通ってDC電圧を加えることによって得られる。この抵抗器の別の側は共通接続に繋がれている。抵抗器R10は一方の側を抵抗器R8とR9との間で接続点122に接続させている。又、抵抗器R10は基準DC電圧が該op-amp に与えられるように接続点120に繋がれている。抵抗器R3は接続点112と接続点124との間に延在している。又、この接続点には抵抗器R11とコンデンサC1も接続されている。コンデンサの他方の側は共通接続に繋がっている。抵抗器R11の他端も接続点120に繋がっている。該op-amp の出力は接続点126に連結されている。フィードバックの抵抗器R12は接続点118と126との間で接続され、該op-amp の出力をその反転入力に戻して加えている。
【0043】
信号Vbusがリプル除波器24Eに加えられると、該信号のDC成分は抵抗器回路110、コンデンサC1回路によって除去される。該入力のAC成分が課せられるDCバイアスは該op-amp の非反転入力への基準電圧入力によって与えられる。
【0044】
接続点126でのop-amp A1の出力は抵抗器R13を通ってRC回路128に加えられる。RC回路128は並列に繋がれた抵抗器R14とコンデンサC2を備えている。該RC回路の出力はop-amp A2の反転入力に加えられる。DC基準電圧が、抵抗器R15とR16を備える電圧分割器を通って発生される。この電圧は該op-amp の非反転入力に加えられる。接続点132での該op-amp の出力は別のRC回路130を通ってその反転入力に戻って加えられる。この回路は並列に繋がれた抵抗器R17とコンデンサC3とを備えている。これらのRC回路は図4に関して述べた帯域通過フィルタとモータのインパルス応答を生じ、op-amp A2はモータのインパルス応答とバス電圧のAC成分との間で帯域通過フィルタと畳み込みを行う。従って該op-ampの出力はサンプリングされた波形値へのDCバス電流のAC成分の影響を表わしている。
【0045】
op-amp A2の出力は接続点132に繋がれている。抵抗器R18この接続点と接続点134との間に繋がれている。接続点134はop-amp A3の反転入力に接続している。DC基準電圧該op-ampへの非反転入力に供給されている。この電圧は抵抗器R19とR20とを通って生ずる。これらは接続点136で共通に繋がれている。コンデンサC4は抵抗器R20と並列に繋がれ、この抵抗の他端は共通接続に繋がれている。抵抗器R21op-amp A3の反転入力と共通接続との間に繋がれる。分流抵抗器R22抵抗器R21と共に接地に共通に接続されている。抵抗器R22の他端は抵抗器R23に接続され、その他端は接続点136に繋がれている。
【0046】
分流路抵抗器R22は図1に示した分流器Hに相当し、その瞬間のDCバス電流を検知するのに用いられる。その結果、op-amp A3は該バス電流から(op-amp A2によって発生されたような)バス電流のACリプル成分を引き去ることができる。op-amp A3の出力は、抵抗器R24とそれに並列に繋がれたコンデンサC5を備えているRC回路138を通って、該op-ampの反転入力にフィードバックされる。又、該op-ampの出力は、該リプル除波回路の出力であり、該整流制御器のサンプルアンドホールドモジュール16(図1参照)に入力として供給される。
【0047】
以上に記述されたものは家庭用電気器具に用いられる如き電気モータの整流角制御に用いるためのセンサレス制御器である。制御器は特許出願第08/004411に記述されたものに優る改良である。その制御器と同様に、本発明の制御器はロータ及びステータの情報を得るためにホール効果又は他のセンサーによらずに整流制御を成し遂げている。上述したように、本発明の改良型制御器はバス電圧の波形に存在するバスリプル又は過渡電流に対する補正をしている。そうすることによって、定常の安定性と迅速な過渡応答を与えている。このことは、どのような妨害を排除するにもディジタル、アナログ、又はハイブリッド技術を用いることによって達成される。即ち、別々の又は集積した要素が該制御器の回路構成を形作るように使われうる。所望の作動安定性と過渡応答を得るために、制御変数(Icurve)が該制御器によって使用される。該制御器の整流制御部の過渡応答部分、即ちPIDモジュール65は信号Icurveの揺らぎに応答して、制御器が振動にもたらされるのを防いでいる。その結果、該制御器は定常状態誤差がゼロでダイナミック応答がよい。又、該制御器は、バス電圧と電流のDC成分に基づいた出力動力を制限するモード制御器を含んでいる。
【0048】
本発明の改良型センサレス制御器はバス電流の波形を検出し、該波形を表わすディジタルデータの流れを生成し、該データをサンプリングすることによって作動する。データのサンプリングは各整流間隔中に三度行われる。サンプリングの間の時間は該間隔を通じて均等に間を置かれており、初期、中間、及び終期サンプリングが行われる。該データの種々の組み合わせの評価に基づいて、該制御器は規定の数式にしたがって各整流間隔についてとられた三つのサンプルを組み合わせる。該数式は質的に整流角の値の全域に渡って線形応答を与える。この線形性は広範囲のモータ作動速度について観察できる。これらサンプル値が、該数式にしたがって制御器によって結合されると、所望の制御を達成するために用いられる制御変数となる
【0049】
更に改良型制御器の重要な特徴は、各特定の作動モードに対する速度、モータトルク、モータ電圧及び(該制御器が洗濯機のような電気器具に用いられている場合には)流体の流れ、のようなモータの所望の作動特性を郭定することである。次いで制御器はれらの値の変化に応答して、モータのロータとステータの位相巻線の間の関係を“同相”作動条件が得られるように調整る。
【0050】
上述のものを考慮すると、本発明の幾つかの目的が達成され、他の有利な結果が得られることがわかるであろう。
【0051】
本発明の範囲を逸脱することなく種々の変更が上述の構造に為されるので、上述の記述に含まれ或いは付随の図面に示した全てのことがらは実例として解釈されるべきであって本発明を限定するものではない。
【図面の簡単な説明】
【図1】本発明によるセンサレス制御器のシステムブロック線図である。
【図2】図(A)はブラシレス永久磁石(BPM)モータの表示であり,図(B)はスイッチリラクタンスモータ(SRM)の表示である。
【図3】御器の波形処理器のモード制御器部分のブロック線図である。
【図4】形処理器の整流制御器部分のブロック線図である。
【図5】流制御器の第2実施例のブロック線図である。
【図6】流制御器の第3実施例のブロック線図である。
【図7】流制御器の第4実施例のブロック線図である。
【図8】流制御器の第5実施例のブロック線図である。
【図9】本発明によるDCバス電流の波形のサンプリングの図である。
【図10】整流角度を採取されたバス電流の関数として用いた可能なフィードバック制御式を表わすカーブのグラフ表示である。
【図11】流制御器に用いられた好ましいフィードバック制御カーブのグラフ表示で、異なるモータ速度に対するカーブを示す。
【図12】御器に用いられたフィルタに対する第1近似のグラフである。
【図13】モータ電圧、補正及び誤差に対する周波数応答のグラフである。
【図14】図13に類似した図で、位相に対する周波数応答のグラフである。
【図1】バス上へのACリプルと過渡電流に対してバス電流のフィードバックを補正するための回路の概略図である。
【図16】図A〜Cは“同相”条件、遅れ条件及び進み条件に対するDCバスの波形の包絡線を示す
【符号の説明】
A ステータアセンブリ
A´ ステータアセンブリ
A1−A3 演算増幅器
C AC-DC変換器
H 分流器
I パルス幅変調インバータ
L1 供給線
L2 供給線
M モーター
M´ モーター
R1−R24 抵抗器
S 電源
T ローター
T´ ローター
W1 巻線
W2 巻線
W3 巻線
W1´ 巻線
W2´ 巻線
W3´ 巻線
10 制御器
12 増幅器
14 低域フィルター
16 サンプルアンドホールド回路
18 フィルター
19 DCバス電流の波形の検知手段
20 アナログ/ディジタル変換器
22 モード制御器
24 整流制御器
25 DCバス電流の波形サンプリング手段
26 低域フィルター
28 スイッチングモジュール
30a−30d モジュール
32a−32c 加算
34 低域フィルター
36 スイッチングモジュール
38 リミッター
40 低域フィルター
42 処理モジュール
44 論理モジュール
46 積分器
47 接続点
48 モード制御出力モジュール
50 サンプル抽出モジュール
52 サンプル処理モジュール
54 制御変数基準モジュール
56 加算素子
58 加算
60 リミッター
62 帯域通過フィルタ
64 畳み込み素子
65 PID(比例積分微分)制御器
66 比例制御器モジュール
68 積分器
70 微分器
72 加算器ユニット
74 整流制御器
76 利得モジュール
78 加算
84 制御手段の区部
94 制御器区部
96 低域フィルター
98 算器モジュール
100 算器モジュール
104 整流制御器
110 電圧分割回路
112 接続点
114 接続点
116 接続点
118 接続点
120 接続点
122 接続点
124 接続点
126 接続点
128 RC回路
130 RC回路
132 接続点
134 接続点
136 接続点
138 RC回路

Claims (24)

  1. 複数のステータ巻線(W1−W3)と、前記ステータ巻線に対して回転するように取付けられたロータ(T)とを有するダイナモエレクトリック機器の電力供給バス上の電流におけるリプル及び過渡電流の影響を低減し整流を制御するための装置であって、
    電力供給手段であって、AC電力源(S)と、AC電力を平均DC値を有する電力に変換するための手段(C)と、前記機器へ前記変換されたAC電力を与えて該AC電力を前記巻線へ供給するバスとを含み、出力供給線(L1)と帰電供給線(L2)とを有する電力供給手段と、
    前記供給線の少なくとも一方において電流波形を検出する手段(19)であって、前記電流波形が前記ロータと前記ステータ巻線との間の整流角の関数である相対的な特性を有するものであり、前記整流角が、前記整流が最適の角度にあるか、遅れにあるか、又は、進みにあるか、どうかの指示を与えるものであり、前記電流波形が前記供給線におけるリプル又は過渡電流によって歪みを受けるものであり、検出された電流波形をディジタル信号流へ変換する手段が設けられている電流波形を検出する手段(19)と、
    前記ステータ巻線の各々に連続的にエネルギーを与えるための整流手段(10)と、
    前記電流波形検出手段から整流角の情報を得て、その得られた情報に基づいて前記整流手段の作動を制御して前記整流角を最適化するよう該整流角を調節し安定的で効率的な態様にて前記機器を作動させる処理手段(25)とを含み、
    前記処理手段に於いて、前記整流角の関数である制御変数を処理して該制御変数に於けるバスリプル又は過渡状態の影響を表す情報と前記制御変数とを結合して前記バス上におけるリプル及び過渡状態により生成される如何なる影響をも前記整流角の情報から除去する手段(24)と、
    各整流間隔期間の初期の区間と、中間の区間と、終期の区間とにおいて、電流波形を、各々第一、第二及び第三のサンプルとして、前記第一及び第二のサンプルの取得時点の間の期間と前記第二及び第三のサンプルの取得時点の間の期間とが実質的に同一となるようにサンプリングして、それらの関数であるバス電流入力信号を生成する整流制御手段(24)とが含まれていることを特徴とする装置。
  2. 請求項1の装置であって、前記整流手段(10)が前記バスと前記機器(M)との間にインバータ(I)を含み、前記処理手段(25)が前記インバータ(I)に制御信号を供給して前記ステータ巻線 W1 W3 への電流の流れを制御することを特徴とする装置。
  3. 請求項2の装置であって、前記整流制御手段(24)が、更に、予め定められた数式にしたがって前記サンプル値を結合するべく、各整流間隔期間でとられた三つのサンプル値に応答する変数制御手段を含んでいることを特徴とする装置。
  4. 請求項3の装置であって、前記変数制御手段数式2E-3M+Bにしたがって前記サンプル値を結合するための手段を含み、ここでEが前記整流間隔の間でとられた最後のサンプル値、Mは中間のサンプル値、Bは初期サンプル値を表わしており、前記制御手段前記数式の関数である特性を有する補正信号を生成することを特徴とする装置。
  5. 請求項4の装置であって、更に前記整流制御手段(24)が、バス電流信号と前記補正信号とを結合し制御変数と基準値との間の誤差を表わす差信号を生成するための加算手段を含んでいることを特徴とする装置。
  6. 請求項5の装置であって、前記整流制御手段が、更に、検出された前記バス電流の波形に於けるリプルの影響を排除するための手段を含んでいることを特徴とする装置。
  7. 請求項6の装置であって、前記リプル排除手段、波形サンプルから得られた前記検出されたバス電圧の波形を表わす値と、インパルスに対する瞬間のダイナモエレクトリック機器の応答を表わす値とについての畳み込みを行うための手段を含むことを特徴とする装置。
  8. 請求項7の装置であって、前記リプル排除手段の出力が前記サ ンプリングされた電流波形信号と結合されるように前記加算手段に加えられる補正信号であることを特徴とする装置。
  9. 請求項8の装置であって、前記リプル排除手段、バス電圧を表わす信号を該バス電圧についてのリプルの影響を表わす関数と結合させ、その結果の信号を基準電圧出力信号と結合させて前記インバータへ供給される電圧出力信号を生成するための手段を含んでいることを特徴とする装置。
  10. 請求項8の装置であって、更に、前記差信号が供給される制限手段を含み、該制限手段、上限界と下限界との間で前記差信号の大きさを制限し、前記限界が前記装置によって実現し得る補正の上限と下限を表わしていることを特徴とする装置。
  11. 請求項9の装置であって、更に、前記差信号を処理して、前記整流間隔を制御するように前記インバータに供給され周波数信号出力を得る処理手段を含むことを特徴とする装置。
  12. 請求項11の装置であって、前記処理手段(25)が更に、前記機器の作動モードに応答して前記整流制御手段(24)に周波数と電圧の信号を供給するモード制御手段(22)を含み、前記周波数と電圧の値が前記機器の作動モードの関数である出力によって表わされ、前記モード制御手段前記機器の速度、トルク、入力電圧、及び前記機器の作動によって動かされた流体の速度を表わす値を入力として有することを特徴とする装置。
  13. 請求項1の装置であって、前記ダイナモエレクトリック機器三相の電気モータであることを特徴とする装置。
  14. ダイナモエレクトリック機器における電力供給バスにおけるリプル及び過渡状態の影響を低減し整流角を制御する方法であって、
    AC電力源から電力を供給し、AC電力を平均DC値を有する電力へ変換し、前記機器へ電流を与えるバスを設ける過程と、
    前記電流により前記機器の巻線へ規則的にエネルギーを与えたり断ったりすることによって前記機器の巻線の整流を行う過程とを含む方法にして、
    前記機器のロータと前記機器の相巻線との間の整流角の関数であり且つバス電圧波形におけるバスリプル又は過渡状態の影響を受けた特性を有するバス電流波形のサンプリングを、各整流間隔の初めの区間、中間の区間及び終わりの区間において、前記初めの区間と前記中間の区間におけるサンプル取得時点の間の期間と前記中間の区間と前記終りの区間におけるサンプル取得時点の間の期間とが実質的に等しくなるよう行う過程と、
    リプル及び過渡状態の影響を低減するよう前記取得された電流波形から得られる値を結合することによってサンプリングされた電流波形からバス電圧の情報を取得する過程と、
    前記取得された情報に応答して前記整流角を制御する過程とを含み、
    該整流角を制御する過程が、前記整流角の関数である制御変数を計算することと、前記計算された制御変数を前記波形上のリプルの関数である値と前記機器の過渡状態に対する応答とに結合することとを含んでいることを特徴とする方法。
  15. 請求項14の方法であって、前記電流波形をサンプリングする過程が、電流波形の情報をアナログ値からディジタル値に変換すること、前記ディジタル信号の流れから前記サンプルを得ることと、その関数であるバス電流の入力信号を生成することを含むことを特徴とする方法。
  16. 請求項14の方法であって、前記サンプリングされた電流波形から整流角度の情報を得る過程が、補正変数を生成することと、該補正変数を前記サンプリングされた波形の情報と結合することを含むことを特徴とする方法。
  17. 請求項15の方法であって、各整流間隔についてのサンプル値が、前記数式2E-3M+Bに従って結合されて補正信号を生成し、ここで、Eは前記整流間隔の間に採られた最終サンプル値を表わし、Mは中間サンプル値、Bは初期サンプル値を表わすことを特徴とする方法。
  18. 請求項17の方法であってバス電流信号と前記補正信号とを加算し、過渡的な影響について補正が為されたバス電流波形を表わす差信号を生成することを特徴とする方法。
  19. 請求項18の方法であって、更に、前記バス電流の波形に於けるACリプルの影響を排除することを含むことを特徴とする方法。
  20. 請求項19の方法であって、前記リプルを排除すること、前記波形又はそのサンプルから得られた前記検知されたバス電圧の波形を表わす値と、インパルスに対する瞬間のダイナモエレクトリック機器の応答を表わす値とについて畳み込みを行うことを含むことを特徴とする方法。
  21. 請求項20の方法であって、前記リプル排除することが、バス電圧を表わす信号を前記バス電圧についての前記リプルを表わす関数と結合すること、その結果の信号を基準電圧出力信号と結合して前記インバータに供給される電圧出力信号を生成することを含むことを特徴とする方法。
  22. 請求項18の方法であって、上限界と下限界との間で前記差信号を制限することを含み、前記限界が前記装置によって実現できる補正の上限と下限とを表わしていることを特徴とする方法。
  23. 請求項19の方法であって、更に、前記差信号を処理して前記整流間隔を制御するために使用され周波数信号の出力を得ることを特徴とする方法。
  24. 請求項23の方法であって、更に、前記電流波形の情報を処理するに当たって使用され基準周波数信号と基準圧信を供給することを含み、前記基準周波数信号と前記基準電圧信号とは前記モータの作動モードの関数である値を有し、前記モード制御手段前記機器の速度、トルク、入力電圧、及び、前記機器の作動によって動かされた流体の速度を表わす値を入力として有することを特徴とする方法。
JP15109595A 1994-05-27 1995-05-25 ダイナモエレクトリック機器の整流制御 Expired - Fee Related JP3677317B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/250,017 US5457375A (en) 1994-05-27 1994-05-27 Sensorless commutation controller for a poly-phase dynamoelectric machine
US250017 1994-05-27

Publications (2)

Publication Number Publication Date
JPH07327388A JPH07327388A (ja) 1995-12-12
JP3677317B2 true JP3677317B2 (ja) 2005-07-27

Family

ID=22945969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15109595A Expired - Fee Related JP3677317B2 (ja) 1994-05-27 1995-05-25 ダイナモエレクトリック機器の整流制御

Country Status (8)

Country Link
US (1) US5457375A (ja)
EP (1) EP0684693B1 (ja)
JP (1) JP3677317B2 (ja)
KR (1) KR100377940B1 (ja)
BR (1) BR9502545A (ja)
CA (1) CA2148634C (ja)
DE (1) DE69521563T2 (ja)
TW (1) TW275162B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913715A (zh) * 2014-04-23 2014-07-09 国家电网公司 高压计量箱误差检定系统及误差检定方法

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274570A (ja) * 1994-03-31 1995-10-20 Aisin Seiki Co Ltd スイッチドレラクタンスモ−タの制御装置
US5606232A (en) * 1994-11-22 1997-02-25 Nidec Corporation DC on line AC brushless motor
US5650709A (en) * 1995-03-31 1997-07-22 Quinton Instrument Company Variable speed AC motor drive for treadmill
US5689162A (en) * 1995-06-07 1997-11-18 Sgs-Thomson Microelectronics, Inc. Apparatus and method for current sensing for motor driver in pwm mode
DE19628585C2 (de) * 1996-07-16 2001-12-20 Danfoss As Verfahren zum Kommutieren eines bürstenlosen Motors und Speiseschaltung für einen bürstenlosen Motor
TW396674B (en) * 1998-12-28 2000-07-01 Delta Electronics Inc Method for converter compensation
IT1308488B1 (it) * 1999-05-14 2001-12-17 Lgl Electronics Spa Metodo e dispositivo di controllo di motori elettrici tipo brushlessalimentati in corrente continua, particolarmente per la
US6285149B1 (en) * 1999-07-12 2001-09-04 Agere Systems Guardian Corp. Double sampled phase detector circuit
US6181091B1 (en) 1999-07-22 2001-01-30 International Business Machines Corporation Apparatus and method for control of a multi-pole brushless DC motor in the event of saturation detection
DE19961798C2 (de) 1999-12-22 2001-11-15 Daimler Chrysler Ag Verfahren und Anordnung zur Regelung des Stroms in einer geschalteten Reluktanzmaschine
JP4575547B2 (ja) * 2000-04-18 2010-11-04 トヨタ自動車株式会社 モータの制御装置
US6621189B1 (en) 2000-06-23 2003-09-16 Emerson Electric Co. Switched reluctance motor having windings separated by a radial line and method of manufacture
US6487769B2 (en) 2000-11-30 2002-12-03 Emerson Electric Co. Method and apparatus for constructing a segmented stator
US6597078B2 (en) 2000-12-04 2003-07-22 Emerson Electric Co. Electric power steering system including a permanent magnet motor
US6700284B2 (en) 2001-03-26 2004-03-02 Emerson Electric Co. Fan assembly including a segmented stator switched reluctance fan motor
US6584813B2 (en) 2001-03-26 2003-07-01 Emerson Electric Co. Washing machine including a segmented stator switched reluctance motor
US6744166B2 (en) 2001-01-04 2004-06-01 Emerson Electric Co. End cap assembly for a switched reluctance electric machine
US6897591B2 (en) 2001-03-26 2005-05-24 Emerson Electric Co. Sensorless switched reluctance electric machine with segmented stator
US7012350B2 (en) 2001-01-04 2006-03-14 Emerson Electric Co. Segmented stator switched reluctance machine
JP3675431B2 (ja) 2002-10-01 2005-07-27 松下電器産業株式会社 電動機駆動装置
US6984948B2 (en) * 2002-12-12 2006-01-10 Matsushita Electric Industrial Co., Ltd. Motor control apparatus
JP2004289985A (ja) * 2003-03-25 2004-10-14 Matsushita Electric Ind Co Ltd モータ駆動用インバータ制御装置および空気調和機
JP3955285B2 (ja) * 2003-03-27 2007-08-08 松下電器産業株式会社 モータ駆動用インバータ制御装置および空気調和機
JP3955287B2 (ja) * 2003-04-03 2007-08-08 松下電器産業株式会社 モータ駆動用インバータ制御装置および空気調和機
JP3955286B2 (ja) * 2003-04-03 2007-08-08 松下電器産業株式会社 モータ駆動用インバータ制御装置および空気調和機
DE10352117A1 (de) * 2003-11-04 2005-06-09 Matsushita Electronic Components (Europe) Gmbh Verfahren und Vorrichtung zur positionssensoriosen Kommutierung eines bürstenlosen Gleichstrommotors unter Verwendung des Stromsignals
US7216049B2 (en) * 2004-06-23 2007-05-08 Whirlpool Corporation Method for calibrating current offset and filtering bad data in a system that detects power output
KR101041072B1 (ko) 2004-07-01 2011-06-13 삼성전자주식회사 브러시리스 직류 모터의 제어 방법
US7119530B2 (en) * 2005-02-04 2006-10-10 Delphi Technologies, Inc. Motor phase current measurement using a single DC bus shunt sensor
DE102005028344A1 (de) * 2005-02-05 2006-08-17 Diehl Ako Stiftung & Co. Kg Verfahren und Schaltungsanordnung zur Regelung eines mehrphasigen bürstenlosen Elektromotors
US7109670B1 (en) * 2005-05-25 2006-09-19 Rockwell Automation Technologies, Inc. Motor drive with velocity-second compensation
US7187142B2 (en) * 2005-05-25 2007-03-06 Rockwell Automation Technologies, Inc. Motor drive with velocity noise filter
US7208895B2 (en) 2005-06-24 2007-04-24 Emerson Electric Co. Control systems and methods for permanent magnet rotating machines
US7342379B2 (en) 2005-06-24 2008-03-11 Emerson Electric Co. Sensorless control systems and methods for permanent magnet rotating machines
US7932693B2 (en) * 2005-07-07 2011-04-26 Eaton Corporation System and method of controlling power to a non-motor load
US20110209431A1 (en) * 2006-12-20 2011-09-01 Jochu Thchnology Co., Ltd. Easy-to-be-assembled double-face bezel structure and assembling method thereof
WO2009077051A1 (de) * 2007-12-18 2009-06-25 Ebm-Papst St. Georgen Gmbh & Co. Kg Elektronisch kommutierter motor
DE102008006370A1 (de) * 2008-01-28 2009-07-30 Prüftechnik Dieter Busch AG Verfahren und Vorrichtung zum Überwachen einer Maschine
US8330405B2 (en) * 2009-06-18 2012-12-11 Rockwell Automation Technologies, Inc. Method and apparatus for increased current stability in a PWM drive
US8358098B2 (en) * 2009-08-10 2013-01-22 Emerson Climate Technologies, Inc. System and method for power factor correction
US8264860B2 (en) * 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. System and method for power factor correction frequency tracking and reference generation
US8264192B2 (en) 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
US8508166B2 (en) 2009-08-10 2013-08-13 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US8476873B2 (en) * 2009-08-10 2013-07-02 Emerson Climate Technologies, Inc. System and method for current balancing
US8698433B2 (en) 2009-08-10 2014-04-15 Emerson Climate Technologies, Inc. Controller and method for minimizing phase advance current
US8406021B2 (en) * 2009-08-10 2013-03-26 Emerson Climate Technologies, Inc. System and method for reducing line current distortion
US8493014B2 (en) * 2009-08-10 2013-07-23 Emerson Climate Technologies, Inc. Controller and method for estimating, managing, and diagnosing motor parameters
US8344706B2 (en) * 2009-08-10 2013-01-01 Emerson Climate Technologies, Inc. System and method for rejecting DC current in power factor correction systems
GB201003456D0 (en) * 2010-03-02 2010-04-14 Trw Ltd Current sensor error compensation
CA2794210C (en) * 2010-03-25 2017-08-22 Gerald K. Langreck High acceleration rotary actuator
GB201006390D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006395D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006397D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006396D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006387D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006386D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006391D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless permanent-magnet motor
GB201006398D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of a brushless motor
GB201006388D0 (en) 2010-04-16 2010-06-02 Dyson Technology Ltd Control of brushless motor
GB2484289B (en) 2010-10-04 2013-11-20 Dyson Technology Ltd Control of an electrical machine
US8692492B2 (en) 2011-03-30 2014-04-08 Panasonic Corporation Lead angle value setting method, motor driving control circuit, and brushless motor
FR2975243B1 (fr) 2011-05-13 2013-04-26 Michelin Soc Tech Dispositif et procede de gestion du freinage electrique d'un vehicule
FR2975244B1 (fr) * 2011-05-13 2013-04-26 Michelin Soc Tech Installation comprenant une source d'energie electrique comportant au moins deux elements de technologies differentes et un onduleur de pilotage d'un moteur electrique a courant alternatif
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
EP2672624B1 (en) * 2012-06-05 2014-10-29 Siemens Aktiengesellschaft Current controller and generator system
WO2014026124A1 (en) 2012-08-10 2014-02-13 Emerson Climate Technologies, Inc. Motor drive control using pulse-width modulation pulse skipping
US9401674B2 (en) * 2014-06-11 2016-07-26 Nidec Motor Corporation Single-shunt current sensing for multi-phase motor
CN106558871A (zh) * 2015-09-25 2017-04-05 光宝电子(广州)有限公司 侦测输出欠相的马达驱动电路与方法
US11128248B2 (en) 2018-02-21 2021-09-21 The Universitv of Akron DC input current ripple reduction in SRM drive for high volumetric power density applications

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330741A (en) * 1979-06-20 1982-05-18 Hitachi, Ltd. Electric control apparatus of induction motor
US4418308A (en) * 1982-08-09 1983-11-29 General Electric Company Scalar decoupled control for an induction machine
US4565957A (en) * 1983-06-30 1986-01-21 Borg-Warner Corporation Method and system for starting a motor-commutated SCR inverter
DE3584603D1 (de) * 1984-08-21 1991-12-12 Hitachi Ltd Verfahren zur regelung eines durch einen wechselrichter angesteuerten induktionsmotors.
JPS6152179A (ja) * 1984-08-22 1986-03-14 Toshiba Corp 電動機駆動用電源装置
JPS61106087A (ja) * 1984-10-17 1986-05-24 Matsushita Electric Ind Co Ltd ブラシレス直流モ−タ
JPS6268090A (ja) * 1985-09-20 1987-03-27 Hitachi Ltd 無刷子直流電動機
JPS62233082A (ja) * 1986-04-03 1987-10-13 Mitsubishi Electric Corp 交流エレベ−タ−の速度制御装置
JPH07118950B2 (ja) * 1986-04-14 1995-12-18 株式会社日立製作所 Pwmインバータの制御方法と装置
US5140248A (en) * 1987-12-23 1992-08-18 Allen-Bradley Company, Inc. Open loop motor control with both voltage and current regulation
JPH0728536B2 (ja) * 1988-08-04 1995-03-29 株式会社日立製作所 周波数変換装置
US4958117A (en) * 1989-09-29 1990-09-18 Allen-Bradley Company, Inc. Frequency control based on sensing voltage fed to an induction motor
US5436819A (en) * 1991-07-25 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Apparatus for and method of compensating for an output voltage error in an inverter output
JP2884880B2 (ja) * 1992-02-12 1999-04-19 株式会社日立製作所 電力変換器の制御装置
US5329217A (en) * 1992-12-30 1994-07-12 Allen-Bradley Company, Inc. Compensated feedforward voltage for a PWM AC motor drive
US5420492A (en) * 1993-01-14 1995-05-30 Emerson Electric Co. Method and apparatus of operating a dynamoelectric machine using DC bus current profile
US5384527A (en) * 1993-05-12 1995-01-24 Sundstrand Corporation Rotor position detector with back EMF voltage estimation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103913715A (zh) * 2014-04-23 2014-07-09 国家电网公司 高压计量箱误差检定系统及误差检定方法

Also Published As

Publication number Publication date
KR950035036A (ko) 1995-12-30
JPH07327388A (ja) 1995-12-12
EP0684693A3 (en) 1997-07-16
US5457375A (en) 1995-10-10
CA2148634C (en) 1998-12-22
EP0684693A2 (en) 1995-11-29
CA2148634A1 (en) 1995-11-28
TW275162B (ja) 1996-05-01
KR100377940B1 (ko) 2003-06-02
EP0684693B1 (en) 2001-07-04
BR9502545A (pt) 1995-12-26
DE69521563T2 (de) 2001-10-31
DE69521563D1 (de) 2001-08-09

Similar Documents

Publication Publication Date Title
JP3677317B2 (ja) ダイナモエレクトリック機器の整流制御
US5689169A (en) Transient inductance identifier for motor control
US5729113A (en) Sensorless rotor velocity estimation for induction motors
EP1728315B1 (en) Adaptive position sensing method and apparatus for synchronous motor generator system
JP4022630B2 (ja) 電力変換制御装置、電力変換制御方法、および電力変換制御用プログラム
KR101739911B1 (ko) 전동기 제어 장치 및 그것의 제어 방법
JPH03155392A (ja) 電流検出装置
JP2004282969A (ja) 交流電動機の制御装置及び制御方法
EP0089208B1 (en) A.c. motor drive apparatus
US3989991A (en) Method and circuit for the derivation of an analog slip frequency signal of an induction motor in a tachometerless motor drive
EP1724913B1 (en) A controller for permanent magnet generator and a generator in combination with such a controller
WO1984001063A1 (en) Improved induction motor controller
JP4663684B2 (ja) 交流電動機の制御装置及び制御方法
EP2166663B1 (en) Sensorless motorcontroller using a negative sequence carrier signal controller
JP3656944B2 (ja) 同期電動機の制御方法
JP4419220B2 (ja) 誘導電動機のベクトル制御装置
JPH0720389B2 (ja) 交流信号発生装置
JP2019083624A (ja) 電動機駆動装置
Jiang et al. Speed sensorless AC drive for high dynamic performance and steady state accuracy
RU2189105C2 (ru) Устройство для управления асинхронизированным синхронным генератором
JPH0799950B2 (ja) 同期電動機の制御方式
Sharkh et al. A new approach to rotor position estimation for a PM brushless motor drive
JP5402106B2 (ja) 電動機の制御装置及び電動機状態推定方法
JPH09131100A (ja) 誘導モータのベクトル制御装置
SU794701A1 (ru) Устройство дл частного управлени элЕКТРОпРиВОдОМ пЕРЕМЕННОгО TOKA

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20041207

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees