JP3672674B2 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP3672674B2
JP3672674B2 JP17638396A JP17638396A JP3672674B2 JP 3672674 B2 JP3672674 B2 JP 3672674B2 JP 17638396 A JP17638396 A JP 17638396A JP 17638396 A JP17638396 A JP 17638396A JP 3672674 B2 JP3672674 B2 JP 3672674B2
Authority
JP
Japan
Prior art keywords
motor
output
rotation speed
signal
rotational speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17638396A
Other languages
English (en)
Other versions
JPH1023776A (ja
Inventor
義彦 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Ten Ltd
Original Assignee
Denso Ten Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Ten Ltd filed Critical Denso Ten Ltd
Priority to JP17638396A priority Critical patent/JP3672674B2/ja
Publication of JPH1023776A publication Critical patent/JPH1023776A/ja
Application granted granted Critical
Publication of JP3672674B2 publication Critical patent/JP3672674B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、モータの回転速度制御を行うモータ制御装置に関する。
【0002】
【従来の技術】
従来から電子機器には直流モータが多く用いられているが、これら直流モータの回転速度制御を行うために、モータの起電力を検出し、この供給電圧を一定に保つように制御してモータの回転数を一定に維持するDCサーボ回路や、モータの回転数を検出して、このモータ回転数が一定になるようにモータへの供給電源を制御するFGサーボ回路等の各種のモータ制御装置が用いられている。
【0003】
【発明が解決しようとする課題】
しかし、DCサーボ回路は、広いサーボ帯域を備えてワウフラッタの少ない制御は可能であるが、モータコイルや制御素子(IC)の温度上昇に起因した温度ドリフトやモータのブラシ磨耗等の経時変化によるドリフトに問題があった。
又、FGサーボ回路に於いてはモータの回転速度(周波数)の検出を行うセンサが必要となりセンサの構造上小型化が困難である問題やコスト高になる問題があった。又、回転ムラを抑えるためにサーボ帯域を広げることが必要であるが、このためには制御周波数をかなり高い周波数とすることが必要となり、高い周波数に対応する部品等が必要となる関係でコスト高になる問題があった。
【0004】
本発明は、このような問題点を解決するもので、経時変化や温度変化に対処でき、小型化の可能な低コストのモータ制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は上記課題を解決するもので、モータの逆起電力と設定電圧を比較し、該比較結果に応じて該モータの回転速度を制御するモータ制御装置であって、前記モータ回転速度をモータに流れる電流波形により検出する回転速度検出手段と、前記回転速度検出手段により検出された前記モータの回転速度に応じて基準電圧を補正して前記設定電圧を生成する設定電圧生成手段と、前記モータ電流に流れる電流波形により出力異常を検出する異常検出手段と、前記回転速度検出手段により異常が検出されたときに、前記回転速度検出手段の出力に応じた前記設定電圧生成手段による前記基準電圧の補正を停止する補正停止手段と、を有することを特徴とする。
【0006】
また、モータに流れる電流波形により回転速度を検出し、該回転速度に応じて生成された逆起電力と設定電圧を比較し、該比較結果に応じて該モータの回転速度を制御するモータ制御装置であって、
前記モータに流れる前記電流波形が所定値を越えている時間に相当する信号を、回転速度信号として出力する回転速度検出手段と、前記回転速度検出手段から出力される回転速度信号を保持するサンプルホールド手段と、前記サンプルホールド手段により保持された回転速度信号に応じて設定電圧を補正して新たな設定電圧とする設定電圧生成手段と、を備えることを特徴とする。
【0007】
また、モータに流れる電流波形により回転速度を検出し、該回転速度に応じて生成された逆起電力と設定電圧を比較し、該比較結果に応じて該モータの回転速度を制御するモータ制御装置であって、
前記モータに流れる前記電流波形が所定値を越えている時間に相当する信号を、回転速度信号として出力する回転速度検出手段と、前記回転速度検出手段から出力される回転速度信号を保持するサンプルホールド手段と、前記サンプルホールド手段により保持された回転速度信号に応じて設定電圧を補正して新たな設定電圧とする設定電圧生成手段とを備え、前記回転速度検出手段は前記モータに流れる前記電流波形が前記所定値を越えない出力異常の場合、回転速度信号を出力しないものであり、前記サンプルホールド手段は前記回転速度検出手段から回転速度信号が入力されない間は前回入力された回転速度検出信号を保持するものであることを特徴とする。
【0010】
【実施例】
以下、本発明の実施例を図面を用いて説明する。図1は本発明の一実施例の構成図である。1は所定の基準電圧を発生する基準電源で、(DC)モータ4の設定回転速度に対応した電圧を供給する。2は入力される設定電圧Eとモータの逆起電力に応じてモータ4への印加電圧を変え、モータの回転速度を制御するDCサーボ部である。5は非反転入力(+)と反転入力(−)間の差電圧が0となるように電圧を出力する差動アンプで、非反転入力(+)には入力抵抗7を介して設定電圧Eが印加されている。6は差動アンプ5の出力とモータ4間に接続された抵抗で、そのモータ4側端部は差動アンプ5の反転入力(−)に接続されている。また、差動アンプ5の出力端子と非反転入力(+)間には帰還抵抗12が接続されており、これら入力抵抗7、や帰還抵抗12、差動アンプ5等によりDCサーボ部2が構成されている。
【0011】
3は基準電圧1の電圧をモータ4の回転速度に応じて補正するための補正電圧を出力する補正回路である。7はモータ4の回転速度に比例した周波数の信号を出力するセンサである。そしてこのセンサ7は受発光素子からなりモータ4の回転に応じて移動する遮蔽板により受光素子に入射される発光素子からの光が遮蔽される構造の光学センサや、モータ4の回転に同期して回転する磁石とこの磁石の回転により変動する磁束変化を検出するホール素子等の磁気感応素子からなる磁気センサ等により構成される。
【0012】
8はアンプでセンサ7からの信号を増幅し出力する。9はコンパレータでアンプ8で増幅されたアナログ信号を比較電圧と比較してデジタル化する。10はコンパレータ9からのパルス信号の周波数を電圧に変換するF/Vコンバータで、一定期間のパルス数を計数するカウンタとカウンタの計数値をアナログ値(電圧)に変換するデジタル/アナログ変換器等により構成される。11は補正回路3からの出力電圧と基準電圧1を加算し、この加算により得られた制御電圧をDCサーボ部2に出力する加算器である。
次に回路の動作について説明する。DCサーボ部2の差動アンプ5からモータ4に電圧が印加されると、モータ4に電流が流れ、モータ4は回転を始める。モータ4にはその回転数NU 比例した逆起電力Emが発生する。
【0013】
Em = Ke・N Ke:逆起電力定数
モータ両端電圧Vmは次のようになる
Vm = Em + I・Rm Rm:モータ抵抗
従ってこれらの関係により、モータ回転数Nは次のようになる。
N = (Vm − I・Rm) / Ke
つまり、モータ電流Iを検出して、その増分を打ち消すようにモータ電圧Vmを増やせば、回転数は一定に保たれる。そして、図に示す回路はそのような動作、モータ電流Iを検出して、その増分を打ち消すようにモータ電圧Vmを増やす動作を行う。尚、抵抗7,12の値を適当に選択することにより、抵抗6で検出したモータ電流を補正することができる。
【0014】
一方、センサ7から出力されたモータ4の回転数に応じた信号はアンプ8で増幅された後コンパレータ9でパルス化され、さらにF/Vコンバータ10で電圧値に変換される。そして、この電圧が加算器11で基準電圧に加算され、設定電圧EとしてDCサーボ部2入力される。
つまり、本実施例では、基本的にはモータ4の逆起電力を一定にするDCサーボ動作を行い、そして温度変化等によりドリフトをモータ4の回転数を検出しその回転数に応じてDCサーボ動作のための基準電圧を補正している。
【0015】
このように本実施例においては、基本的にはDCサーボ部2によってDCサーボによるモータ4の回転速度制御が行われ、それに加えて補正回路3によるFGサーボ的な補正制御が行われる。即ち、DCサーボ方式における、モータ4のコイルや制御IC等の温度上昇に起因する温度ドリフトやブラシの磨耗等の経時変化によるドリフトを、補正回路3によって補正している。そして、この補正回路3による補正は、温度ドリフト、経時変化によるドリフトに対応するものであるため制御周波数を高くする必要はなく、比較的低価格の部品で実現できる。
【0016】
従って、本実施例によれば、経時変化や温度変化に対処でき、そして小型化の可能な低コストのモータ制御装置を提供することをができる。
次に本発明の第2実施例について説明する。尚、図1に示した第1実施例と同様の構成については、その説明を省略する。
図2は本発明の第2実施例の構成図である。20はモータ4に流れる電流波形に重畳している雑音(整流子が切り換わる時やブラシのバウンズによるクリック雑音等)を除去するフィルタで、その通過帯域がモータ4に流れる電流の周波数付近に設定され、モータ4に流れる電流の基本波を抽出して出力するようになっている。そして、フィルタ20はモータ4に流れる電流を検出するための抵抗R1、差動増幅器CM1、差動増幅器CM1の入力に接続された抵抗R2とコンデンサC1、差動増幅器CM1の帰還路に接続された抵抗R3とコンデンサC2、そして差動増幅器CM1の基準電圧を供給するために電源電圧(+V)を分割する分割抵抗R4,R5から構成される。
【0017】
21はフィルタ20の出力をパルス(デジタル)信号に変換するためのヒステリシスコンパレータでフィルタ20で、入力信号が閾値付近の時にノイズ等に影響で判定(出力)がチャッタリング(判定出力が短時間で繰り返し反転する)しないようにヒステリシス特性を持っている。このフィルタ20は、差動増幅器CM2、差動増幅器CM2の入力に接続された抵抗R、そして差動増幅器CM2の帰還路に接続された抵抗R7により構成され、差動増幅器CM2の基準電圧として分割抵抗R4,R5による分圧電圧が印加されている。
【0018】
31は過去の信号波形から今後の信号波形を予測して処理することにより、ノイズ等による影響を排除する、つまりパルスのエッジ(立ち下がりあるいは立ち上がり)があるであろう期間以外の部分では入力信号のエッジをノイズによるものとして扱うようにする予測回路で、直列に接続されたモノマルチバイブレータ23,24と、モノマルチバイブレータ24の出力および予測回路31の入力信号を入力とするAND回路22から構成される。モノマルチバイブレータ23,24は、入力信号の立下がりから一定時間(τ1,τ2)高レベル(H)信号を出力する回路で、H信号出力時における入力信号の立ち下がりには反応しない(H信号出力時間は延長されない)。
【0019】
25は入力信号(予測回路31出力)の周波数を電圧に変換するF/V(周波数−電圧)コンバータで、積分回路や、一定周期のパルス数を計数するカウンタとカウンタ値をデジタル値に変換するデジタル/アナログコンバータ等により構成される。
26はサンプルホールド回路(S/H)で、制御信号に応じてF/Vコンバータ25の出力(電圧)を保持し(本実施例ではHレベル信号入力時)、その保持電圧を出力する。このサンプルホールド回路は、充放電回路等により構成できる。そして、このサンプルホールド回路(S/H)26の出力保持タイミングは後述の制御回路32の制御信号により制御される。
【0020】
32はサンプルホールド回路26の動作を制御するための制御回路で、予測回路出力が出力されなくなったとき、つまりモータ負荷の急変等によりモータ電流が大きく変化したことを検出して、サンプルホールド回路26の保持動作を開始させる。制御回路32は、AND回路22出力を入力とする1/2分周回路27(入力信号の立ち下がりを2回検出するとH出力、リセットRS入力LレベルのときL出力)、モノマルチバイブレータ23出力をデータ入力(D)とし、またモノマルチバイブレータ24出力をタイミング入力(CK)とするDフリップフロップ28(CK入力立ち下がり時のD入力の反転信号を出力)、Dフリップフロップ28の反転出力(Qバー:以降−Qと記載)をSET入力、分周回路27出力をRESET入力とするRSフリップフロップ29から構成され、また分周回路27のRESET(RS)入力にはRSフリップフロップ29の出力が供給されている。そして、RSフリップフロップ29の出力がサンプルホールド回路26の制御出力となっている。
【0021】
31はサンプルホールド回路26の出力信号が所定範囲にあるかどうかを検出する、つまり補正電圧の異常を検出するウインドコンパレータで、複数のコンパレータ及び論理回路等により構成される。32はサンプルホールド回路26の出力電圧が異常な場合に、補正電圧として用いられる補正基準電源で、動作に支障が出ないような標準的な電圧が設定されている。30はスイッチで、ウインドコンパレータ31の出力により制御され、サンプルホールド回路26の出力電圧の異常がウインドコンパレータ31により検出された時には補助基準電源32を加算器11に接続し、異常が検出されなかった時にはサンプルホールド回路26を加算器11に接続する。これらウインドコンパレータ31、補助基準電源32、スイッチ31からなる回路は、主に電源立ち上げ時に動作するもので、モータ4の回転速度検知によるFGサーボ動作が適切な動作を行うまでの間、適当な電圧をモータ4の回転速度を示す電圧として出力することにより、停止状態から所定回転数への移行をスムーズに行うためのものである。
【0022】
次に図2に示した構成の動作を図3に示した波形図を用いて説明する。図3中、aはフィルタ20の出力波形で、モータ4に流れる電流を示し、フィルタ20により、雑音等が除去された波形となっている。また、bはヒステリシスコンパレータ21の出力波形、dはモノマルチバイブレータ23の出力波形、eはモノマルチバイブレータ24の出力波形、fはAND回路22の出力波形、gはF/Vコンバータ25の出力波形、hはDフリップフロップ28の出力波形、iは1/2分周回路27の出力波形、jはRSフリップフロップ29の出力波形、kはサンプルホールド回路26の出力波形を示している。
【0023】
正常状態では、モータ4の回転数は略一定で安定しており、フィルタ20出力aは一定周期の山形波がとなる。そして、ヒステリシスコンパレータ21出力bはフィルタ20出力aがαを越えβを下回るまでHレベルとなる。そして、モノマルチバイブレータ23出力dはヒステリシスコンパレータ21出力bの立ち下がりから一定時間τ1の間Hレベルとなる。またマルチバイブレータ24出力eはマルチバイブレータ23出力dの立ち下がりから一定時間τ2の間Lレベルとなる。つまりマルチバイブレータ24出力eは、ヒステリシスコンパレータ21出力bの立ち下がり時から一定時間τ1経過後の所定時間範囲τ2を示す信号となっており、τ1、τ2をそれぞれ、モータ4の電流変化周期およびマージンをに対応した時間に設定することにより、モータ4の正常回転動作時にヒステリシスコンパレータ21出力bの立ち下がりが発生する期間を推定できる(τ2期間)。換言すれば、τ2期間にヒステリシスコンパレータ21出力bの立ち下がりが無い時およびτ2期間以外の期間にヒステリシスコンパレータ21出力bの立ち下がりが有れば異常であると判断できる。
【0024】
そしてAND回路22出力fは、マルチバイブレータ23出力dがHレベル期間で、ヒステリシスコンパレータ21出力bがHレベルの時にHレベルとなるので、モータ4正常動作時には、モータ4の回転周期に同期したパルス信号がAND回路22出力fとなり、F/Vコンバータ25に出力される。従って、F/Vコンバータ25出力gはモータ4の回転速度に応じた電圧となり、サンプルホールド回路26に出力される。
【0025】
一方Dフリップフロップ28hは、マルチバイブレータ24出力e立ち下がり時のマルチバイブレータ23出力dのレベルの反転レベルを出力する。このため、正常動作中は、マルチバイブレータ24出力e立ち下がり時にマルチバイブレータ23出力dは常にHレベルとなる(このような関係となるようにτ1,τ2が設定されている)。従って、Dフリップフロップ28出力hは正常時には常にLレベルとなる。
【0026】
また正常動作時には、RSフリップフロップ29にはDフリップフロップ28から常にLレベルが入力されるので、RSフリップフロップ29はセットされずリセット状態となる。従って、RSフリップフロップ29出力jはLレベルとなる。また1/2分周回路27のリセット端子(RSバー)にはRSフリップフロップ29出力jが入力されるので、正常時には常にLレベルが入力されることとなる。このため、1/2分周回路27は常にリセット状態となり(リセット端子入力Lレベルの場合はリセット)、RSフリップフロップ29出力jは常にLレベルとなる。従って、1/2分周回路27出力iがリセット端子(R)に入力されるRSフリップフロップ29はその状態(正常時はLレベル)が保持される。
【0027】
そして、正常時にはサンプルホールド回路26に常にLレベルの制御信号が入力されるので、サンプルホールド回路26は出力信号を保持せず、入力信号をそのまま出力する。
従って、加算器11にはモータ4の回転数に応じた電圧の信号がサンプルホールド回路26より供給され、モータ4の回転数がFGサーボ的に制御される。
【0028】
次に何らかの異常(モータ4回転異常、ノイズ等)が起きフィルタ20出力aのレベルが低下した場合を説明する。
フィルタ20出力aが低下した場合、ヒステリシスコンパレータ21出力bはHレベルとならず、Lレベルのままである。一方、マルチバイブレータ23およびマルチバイブレータ24は前回のヒステリシスコンパレータ21出力bの立ち下がりにより動作する(Hレベルとなる)。従って、異常発生後のマルチバイブレータ24出力eがHレベルの時のヒステリシスコンパレータ21出力bはLレベルであるため、AND回路22出力fはHレベルとはならない。従って、F/Vコンバータ25には、周期が大きな信号が入力され(次の立ち下がり(t2)迄の期間が長くなり)、F/Vコンバータ25出力gは次の立ち下がり(t2)時に異常に高い電圧出力となる。
【0029】
Dフリップフロップ28では、マルチバイブレータ24出力e立ち下がり時にマルチバイブレータ23出力dがLレベルとなっているので、Dフリップフロップ28出力はHレベルとなる。このためRSフリップフロップ29がセットされ、RSフリップフロップ29出力jはHレベルとなる。従って、サンプルホールド回路26の出力がt1時点の電圧に保持される。また、1/2分周回路27へのリセット信号(RSフリップフロップ29出力j)がHレベルであるので、1/2分周回路27のリセット状態が解除されるが、AND回路22出力fがLレベルであるため、1/2分周回路27出力iはLレベルのままである。従って、異常状態では、サンプルホールド回路26により異常発生前の電圧の信号が加算器11に供給され、モータ4がこの異常前の状態に応じて制御される。
【0030】
異常状態から正常状態にもどり、フィルタ20出力が正常値になると、ヒステリシスコンパレータ21出力bも略一定の周期のパルスとなる。すると、マルチバイブレータ23出力dおよびマルチバイブレータ24出力eの出力も異常状態となる前の状態となり、AND回路22出力fも同様にもモータ4の回転に同期したパルスを出力するようになる。また、Dフリップフロップ28hも異常状態となる前の状態となり(t3:Lレベル)、それによりRSフリップフロップ29のセット状態が解除される。しかし、リセット信号が入力されないため、RSフリップフロップ29出力jはHレベルのままである。
【0031】
一方1/2分周回路27にはAND回路22出力f(モータ4回転に同期したパルス)が供給されているので、AND回路22から2回パルスが入力されると1/2分周回路27はRSフリップフロップ29にリセット信号を出力し、RSフリップフロップ29がリセットされる(t4)。従って、t4時点でサンプルホールド回路26の保持状態が解除され、F/Vコンバータ25出力gが加算器11に供給される。
【0032】
つまり、正常状態に戻った直後は、F/Vコンバータ25出力が異常な値となっているが(前回のパルスから今回のパルスまでの時間が長いため)、本実施例では、正常状態復帰直後にはサンプルホールド回路26の出力をモータ4制御に用いるようにし、F/Vコンバータ25出力gに異常の影響がなくなるタイミングでF/Vコンバータ25出力gをモータ4制御に用いることになる。
【0033】
このように、本実施例によれば、DCサーボ的な制御とFGサーボ的な制御を併用し、そして特別なモータ回転速度検出器を設けずにモータ4の電流を検知する方法で、ノイズ等の影響を少なくしてモータ4の制御を行うので、構成が簡単で、応答性がよく、また温度ドリフト等に対しても良好な特性のモータ4回転数制御を行うことができる。
【0034】
次に第3の実施例について図4を用いて説明する。尚、図2に示した第2実施例と同様の構成については、説明を省略する。
本実施例の特徴(図2の実施例と異なる点)は、モータ4の回転速度の検知方法として、モータ4に流れる電流ではなく、モータ4の回転により変化する磁界をホール素子を用いて検知し、モータ4の回転速度を検出する点にある。
【0035】
52はホール素子で、モータ4の回転に伴い変化する磁界に応じた信号を出力する。そして、ホール素子52には動作電流を流すための電源が(+V)が接続されている。53は差動アンプで、ホール素子52の出力信号を増幅する。差動アンプ53には入力抵抗、バイアス抵抗、帰還抵抗等が必要に応じて接続されている。そして、差動アンプ53の出力信号はフィルタ20に接続されている。
【0036】
次に動作を説明する。モータ4が回転すると、ロータの回転に伴いモータ4の回転に同期して磁界の変化が生じる。この磁界を変化により、ホール素子52の出力信号に変化が生じる、その出力信号はモータ4の回転に同期した信号波形となる。このホール素子52の出力信号が差動アンプ53により増幅され、フィルタ20に供給される。つまり、図2に示した実施例と同様の信号がフィルタ20に入力され、以下同様の動作が行われる。
【0037】
次に第4の実施例について図5を用いて説明する。尚、図2に示した第2実施例と同様の構成については、説明を省略する。
本実施例の特徴(図2の実施例と異なる点)は、FGサーボ的制御、つまりモータ4の回転に応じた信号を処理してモータ4の回転に応じた電圧の信号をPLL回路で構成した点にある。図5はこの部分を図示し、他の部分を省略している。
【0038】
60は位相比較器(フェイズコンパレータ)でヒステリシスコンパレータ21出力bの位相と後述する分周器63の出力信号rの位相を比較し、位相の遅進に応じた信号を出力する。61はローパスフイルタで位相比較器60の出力信号を濾波し、その低域を加算器11と電圧可変発振器62に出力する。62は電圧可変発振器で入力電圧に応じた周波数の信号で発振する。63は電圧可変発振器62の出力信号をN分周する分周器で、カウンタにより構成される。
【0039】
次に、その動作について説明する。位相比較器60は、ヒステリシスコンパレータ21出力bと分周器63出力rの位相を比較し、その遅進に応じた信号を出力する。ローパスフィルタ61は位相比較器60の出力信号の低域成分を取り出し電圧可変発振器62に出力する。つまり、ローパスフィルタ61からは、ノイズ等が除去され、そしてある程度平均化された位相の遅進信号を出力される。そして、電圧可変発振器62にはこのローパスフィルタ61からの信号を制御信号として与えられ、その制御電圧に応じた周波数の信号を出力する。そして、電圧可変発振器62の出力信号は、分周器63によりめN分周され、位相比較器60に与えられる。この分周器63の分周比(カウンタのカウント値)は、モータ4の設定回転数と電圧可変発振器62の発振特性に応じて設定される。
【0040】
従って、PLL回路はモータ4の回転に伴い、モータ4の設定回転速度に応じた動作となる(発振周波数がモータ4の回転数に応じたものとなり、また電圧可変発振器62の制御電圧がモータ4の回転数に応じたものとなる)。このため、加算器11には、モータ4の回転数に応じたローパスフィルタ61の出力(電圧可変発振器62の制御電圧)が供給され、モータ4はその回転数に応じた制御、つまりFGサーボ的な制御が行われることになる。
【0041】
【発明の効果】
以上詳細に説明したように、本発明に於いてはモータにおけるDCサーボ的制御と、FGサーボ的制御を、比較的簡単な構成で実現したので、制御精度が高く、小型で、ローコストのモータ定速制御装置が実現できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す構成図
【図2】本発明における第2実施例の構成図
【図3】動作を示す波形図
【図4】本発明における第3実施例の構成図
【図5】本発明における第4実施例の構成図
【符号の説明】
1・・・・・・・基準電圧
2・・・・・・・DCサーボ部
3・・・・・・・補正回路
4・・・・・・・モータ

Claims (3)

  1. モータの逆起電力と設定電圧を比較し、該比較結果に応じて該モータの回転速度を制御するモータ制御装置であって、
    前記モータ回転速度を前記モータに流れる電流波形により検出する回転速度検出手段と、
    前記回転速度検出手段により検出された前記モータの回転速度に応じて基準電圧を補正して前記設定電圧を生成する設定電圧生成手段と、
    前記モータ電流に流れる電流波形により出力異常を検出する異常検出手段と、
    前記回転速度検出手段により異常が検出されたときに、前記回転速度検出手段の出力に応じた前記設定電圧生成手段による前記基準電圧の補正を停止する補正停止手段と、
    を有することを特徴とするモータ制御装置。
  2. モータに流れる電流波形により回転速度を検出し、該回転速度に応じて生成された逆起電力と設定電圧を比較し、該比較結果に応じて該モータの回転速度を制御するモータ制御装置であって、
    前記モータに流れる前記電流波形が所定値を越えている時間に相当する信号を、回転速度信号として出力する回転速度検出手段と、
    前記回転速度検出から出力される回転速度信号を保持するサンプルホールド手段と、
    前記サンプルホールド手段により保持された回転速度信号に応じて設定電圧を補正して新たな設定電圧とする設定電圧生成手段と、
    を備えることを特徴とするモータ制御装置。
  3. モータに流れる電流波形により回転速度を検出し、該回転速度に応じて生成された逆起電力と設定電圧を比較し、該比較結果に応じて該モータの回転速度を制御するモータ制御装置であって、
    前記モータに流れる前記電流波形が所定値を越えている時間に相当する信号を、回転速度信号として出力する回転速度検出手段と、
    前記回転速度検出手段から出力される回転速度信号を保持するサンプルホールド手段と、
    前記サンプルホールド手段により保持された回転速度信号に応じて設定電圧を補正して新たな設定電圧とする設定電圧生成手段と
    を備え、
    前記回転速度検出手段は前記モータに流れる前記電流波形が前記所定値を越えない出力異常の場合、回転速度信号を出力しないものであり、
    前記サンプルホールド手段は前記回転速度検出手段から回転速度信号が入力されない間は前回入力された回転速度検出信号を保持するものであることを特徴とするモータ制御装置。
JP17638396A 1996-07-05 1996-07-05 モータ制御装置 Expired - Fee Related JP3672674B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17638396A JP3672674B2 (ja) 1996-07-05 1996-07-05 モータ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17638396A JP3672674B2 (ja) 1996-07-05 1996-07-05 モータ制御装置

Publications (2)

Publication Number Publication Date
JPH1023776A JPH1023776A (ja) 1998-01-23
JP3672674B2 true JP3672674B2 (ja) 2005-07-20

Family

ID=16012690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17638396A Expired - Fee Related JP3672674B2 (ja) 1996-07-05 1996-07-05 モータ制御装置

Country Status (1)

Country Link
JP (1) JP3672674B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226930B1 (fr) * 2009-03-06 2015-05-13 Pompes Salmson Procédé de régulation d'un moteur ayant plusieurs vitesses de fonctionnement
JP7428522B2 (ja) * 2020-01-24 2024-02-06 株式会社神戸製鋼所 溶接ワイヤの送給制御方法、溶接ワイヤの送給装置及び溶接システム

Also Published As

Publication number Publication date
JPH1023776A (ja) 1998-01-23

Similar Documents

Publication Publication Date Title
TWI552511B (zh) 馬達驅動電路及使用其之冷卻裝置、電子機器
JP5917801B2 (ja) モータ駆動回路およびそれを用いた冷却装置、電子機器
JP2974646B2 (ja) センサレス・ブラシレスdcモータ
JP2002058274A (ja) 直流モータのモータ回転パルス生成回路
JPS5947991A (ja) 無刷子型直流電動機を制御する方法並びに装置
JP3672674B2 (ja) モータ制御装置
US4380723A (en) Digital velocity servo
US7061193B2 (en) Motor drive apparatus
JP2003111485A (ja) ブラシレスモータの駆動制御装置
JP2667216B2 (ja) ブラシレスモータの駆動回路
JPH11178380A (ja) モータ速度制御装置
JP3309884B2 (ja) モータ駆動回路の位相補正方法
JP2005218213A (ja) 電力用半導体装置
JP3985362B2 (ja) 直流モータのモータ回転パルス生成回路
JP2007336653A (ja) モータの速度制御回路
JPS61293496A (ja) ミシン制御装置
JP3275148B2 (ja) モ−タの制御装置
SU1693696A1 (ru) Стабилизированный вентильный электропривод
JPS5815979B2 (ja) アナログ・デイジタル変換器
JP2772855B2 (ja) ビデオ機器の位相パルス分離回路
JP2754807B2 (ja) 回転体の制御装置
JPH0767303B2 (ja) ブラシレスモータ
JP2604914B2 (ja) モータの速度制御装置
JPH09247999A (ja) 可変速駆動装置
JP2712665B2 (ja) 回転体の制御装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees