JP3648878B2 - D/a変換装置およびセンサの特性調整回路 - Google Patents

D/a変換装置およびセンサの特性調整回路 Download PDF

Info

Publication number
JP3648878B2
JP3648878B2 JP27454696A JP27454696A JP3648878B2 JP 3648878 B2 JP3648878 B2 JP 3648878B2 JP 27454696 A JP27454696 A JP 27454696A JP 27454696 A JP27454696 A JP 27454696A JP 3648878 B2 JP3648878 B2 JP 3648878B2
Authority
JP
Japan
Prior art keywords
resistor
power supply
output terminal
resistance
resistance element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27454696A
Other languages
English (en)
Other versions
JPH09172374A (ja
Inventor
敏雄 生田
精一郎 大竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP27454696A priority Critical patent/JP3648878B2/ja
Publication of JPH09172374A publication Critical patent/JPH09172374A/ja
Application granted granted Critical
Publication of JP3648878B2 publication Critical patent/JP3648878B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analogue/Digital Conversion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、定電流駆動形でR/2Rラダー形の抵抗回路網を用いたD/A変換装置およびデジタル信号に対応したアナログ電圧出力を必要とするセンサの特性調整回路に関する。
【0002】
【発明が解決しようとする課題】
この種のD/A(デジタル・アナログ)変換装置としては、例えば、図8に示すようなものがある。すなわち、これはバイポーラICなどで用いられる定電流2進減衰方式のR/2R型ラダー抵抗回路網と呼ばれるもので、例えば、5Vの直流電源(Vcc=5V)に対して、変換出力としては、4.5V±32mVの範囲で分解能が2mVのものが要求されている場合のものを示している。
【0003】
図8において、抵抗値がR(Ω)である抵抗体1が梯子状に接続された状態で周知のラダー抵抗回路網2が構成されており、各ビットに対応する接続点にはビットデータを与えるスイッチ部3および定電流源4が直列に接続されてアースされている。そして、抵抗回路網2の出力端子5にはデジタルデータに応じたアナログ電圧出力が得られるようになっている。この場合、デジタルデータは、各スイッチ部3のうちの出力端子5に近い側がMSB(最上位ビット)が割り当てられており、出力端子5から最も遠い側がLSB(最下位ビット)が割り当てられている。
【0004】
上述した構成によれば、アナログ電圧出力VDは、次式(1)のように表すことができる。この場合、デジタル信号の各ビットデータを示すSi(i=1〜n)は、「1」または「0」の値を示すデータである。回路上では、ビットデータの値に応じてスイッチ部3のオンオフ状態が変化されるようになっている。
【0005】
【数1】
Figure 0003648878
【0006】
ところで、上述のようなD/A変換回路においては、変換出力が4.5V±32mVの範囲で分解能が2mVのものが要求されている場合に、電源電圧が5Vであるから、まず、4.468Vまで到達させるために、
IR×2≧0.532V
である必要がある。これは、上述の式(1)において、入力データのすべてのビットが「1」である場合には、nの値が大きくなると右辺のIRの係数の総和が「2」に近似できることからわかる。
【0007】
すると、例えば抵抗回路網の抵抗体1の抵抗値Rの値が8kΩとすると、上式から電流Iが33.25μAとなり、これによって、2mVの分解能を得るためには、式(1)で最小分解能を決定するのはLSB(最下位ビット)の部分であるから、
Figure 0003648878
となる。したがって、上式の右辺の累乗の数を満たすことができるようにするためには、つまり、2mv以下の分解能を得るためには、8乗の値を達成可能なビット数となるので、全体として必要なビット数は9ビットとなる。
【0008】
ところが、実際には、必要としている出力電圧の範囲内で2mVの分解能では、4.5Vを中心として±32mVだから、64mVの範囲となるから、
64mV/2mV=32
となり、2mVのステップで5ビットが必要なビット数となっているのである。つまり、実際に必要なビット数に加えて、電源電圧との関係で実際の回路においては9ビットつまり4ビット分だけ余分なビットを設定するための回路が必要になるのである。
【0009】
このことは、ICチップにおいては、チップ面積の増大を意味し、ひいてはチップサイズを大きくする要因となると共に、ビット数が増えることで定電流源が増えて消費電力も増大することになる。この場合に、電源電圧を必要な電圧に対してあらかじめ抵抗等により分圧して供給することも考えられるが、デジタルデータに応じてラダー抵抗回路網の電流値が変化することにより所定の電圧を供給する構成を得ることが難しく、簡単には電源電圧をシフトさせる構成を得ることができないという事情がある。
【0010】
一方、例えば圧力センサなどにより圧力を検出する場合などにおいて、その検出回路では、デジタル信号に基づいてセンサに精度の高い電圧を供給するために、D/A変換回路を用いる構成とする場合がある。これは、圧力センサの製品ばらつきなどによる特性の変動に対して所望の検出特性が得られるように、その特性に応じた電圧を印加して所定の出力を得るように調整を行うようにするものである。
【0011】
この場合に、圧力センサの特性調整を精度良く行うためには、電圧値の設定精度が高いことが必要である。ところが、上述のような事情から、電源電圧に対して必要な電圧の中心が離れていると、分解能を高くするために必要なビット数が増加してしまうため、センサを組み込むアッセンブリー全体が大形化すると共にビット数が増加する分だけそれらで消費される電力も増大してしまうという不具合が新たに発生する。
【0012】
本発明は、上記事情に鑑みてなされたもので、その目的は、電源電圧に対して任意の電圧を中心として任意の分解能で出力を得ることができるようにして、所要ビット数を最小限としてチップ面積の低減を図ることができるようにしたD/A変換装置およびセンサの特性調整回路を提供することにある。
【0013】
【課題を解決するための手段】
請求項1あるいは請求項7のようにすることにより、R/2Rラダー形の抵抗回路網の出力端子に現れるアナログ出力電圧に対して、第1ないし第3の抵抗要素を介して電流が流れるようになることから、変換出力端子には調整された変換アナログ出力電圧が得られるようになる。この場合において、第1ないし第3の抵抗要素の抵抗値を適当に選択設定することにより、電源電圧の大きさに無関係に所望の出力電圧範囲および分解能を設定することができるようになるので、設定するビット数を最小限にした状態で構成することができ、これによって、例えば、ICなどを形成する場合にはビット数を少なくすることによってチップ面積の増大を抑制することができると共にその分の消費電流の増加を抑制することができ、ひいてはチップサイズを小形化したり、あるいは、他の機能回路を同一チップ内に配置するといったこともできるようになる。
【0014】
請求項2のようにすることにより、所望の変換アナログ出力電圧を得られるように適当に第1ないし第3の抵抗体の抵抗値を選択設定することにより、上述の効果に加えて、インピーダンスをある程度高く設定することができるようになることから、電流条件を満たしながら電磁波障害にも耐え得る構成を得ることができるようになる。
【0015】
請求項3のようにすることにより、所望の変換アナログ出力電圧を得られるように適当に第2,第4および第5の抵抗体の抵抗値を選択設定することにより、上述のものとは逆にインピーダンスを低く設定する構成のものが得られるようになる。
【0016】
請求項5のようにすることにより、センサの特性調整用回路においては、そのセンサの検出動作で必要となる電圧を上述したD/A変換装置を用いることによりデジタルデータによって厳密に設定することができるようになる。
【0017】
請求項6では、D/A変換装置に入力する設定デジタルデータをメモリに記憶させておくので、例えば、特性調整が完了してそのセンサに対する最適な設定デジタルデータが得られた後には、常に、メモリに記憶させた固定的な設定状態とすることができるようになり、安定した検出動作を行なわせることができるようになる。
【0018】
【発明の実施の形態】
以下、本発明を圧力センサの特性調整用回路に適用した場合の第1の実施例について図1ないし図4を参照しながら説明する。
すなわち、図2は、全体の電気的構成を示すもので、圧力センサ11は、半導体チップ内に4つの抵抗体12a〜12dがブリッジ接続されるように設けられており、圧力に応じて各抵抗値ra,rb,rc,rdが変化してその変化に応じた信号を検出できるようになっている。そして、圧力センサ11には、ブリッジ接続された状態の各端子が、電源を印加するための2つの入力端子11a,11bおよびセンサ出力を得るための出力端子11c,11dとして設けられている。
【0019】
特性調整回路13は、論理回路14,メモリ15,D/A変換装置としてのD/A変換回路16および電圧印加用のオペアンプ17から構成されている。論理回路14はデジタルデータを設定する回路で、特性調整を行うと共にその調整を行った後にメモリ15に設定すべきデジタルデータを与えて記憶させるようになっている。D/A変換回路16は、メモリ15を介して与えられるデジタルデータをアナログ電圧信号として出力するもので、図1に示すような回路構成となっている。
【0020】
オペアンプ17は、D/A変換回路16により与えられる電圧に応じて圧力センサ11の入力端子11a,11b間に電圧を印加するもので、その反転入力端子は抵抗18を介して直流電源端子19に接続されると共に圧力センサ11の入力端子11aに接続され、出力端子は圧力センサ11の入力端子11bに接続されている。また、圧力センサの出力端子11c,11dはそれぞれ差動増幅回路20の差動入力端子に接続されている。なお、図中、圧力センサ11を除いた部分の構成が特性調整用回路を含んだ検出回路として1個のICチップから構成されるようになっている。
【0021】
次に、図1を参照してD/A変換回路16の電気的構成について説明する。 すなわち、基本的な構成としては、周知の定電流2進減衰方式のR/2Rラダー抵抗回路網形D/A変換回路を用いており、一方(正)の直流電源端子19と他方(負)の直流電源端子としてのアース端子に接続された抵抗回路網21は、抵抗値がR(Ω)である抵抗体22が梯子状に接続された状態に形成されており、各ビットに対応する接続点にはビットデータを与えるスイッチ部23および定電流源24が直列に接続されてアースされている。そして、抵抗回路網21の出力端子部25にはデジタルデータに応じたアナログ電圧出力が得られるようになっている。この場合、デジタルデータは、各スイッチ部23のうちの出力端子部25に近い側がMSB(最上位ビット)が割り当てられており、出力端子部25から最も遠い側がLSB(最下位ビット)が割り当てられている。
【0022】
さて、この抵抗回路網21の出力端子部25に対して、変換出力端子26は、第1ないし第3の抵抗要素としての抵抗体27ないし29からなる抵抗回路網30を介した状態で接続されている。この場合、変換出力端子26は、第1の抵抗体27を介して直流電源端子19に接続され、第2の抵抗体28を介してアースされ、第3の抵抗体29を介して出力端子部25に接続されている。また、第1ないし第3の抵抗体27ないし29の各抵抗値R1,R2,R3については、後述するようにしてその値が設定されている。
【0023】
図3はスイッチ部23および定電流源24の具体的な構成を示すもので、抵抗回路網21側から図示極性のダイオード31を介して定電流源24としてのnpn形トランジスタ32,抵抗33を直列に介してアースされている。ダイオード31のカソード側にはデジタルデータとしての電圧信号を与える電圧制御手段としての信号電圧発生回路34が接続されており、メモリ15から与えられるデジタルデータに応じた電圧信号を出力するようになっている。定電流源24のトランジスタ32は動作状態で所定電流Iを通電するように動作されるようになっている。
【0024】
上述の場合に、信号電圧発生回路34は、入力されるデジタル信号に応じて、「H」レベルの電圧を出力するかあるいはオープン状態となるように構成されている。そして、信号電圧発生回路34が「H」レベルの電圧を出力するときには、トランジスタ32への電流は信号電圧発生回路34側から供給され、ダイオード31のカソード側がアノード側よりも高い電位となるので抵抗回路網21側から電流が流れることがなくなり、スイッチ23はオフした状態とされる。また、信号電圧発生回路34がオープン状態になる場合には、トランジスタ32への電流はダイオード31を介して抵抗回路網21側から供給されるようになり、スイッチ部23はオンした状態とされる。
【0025】
次に、上述した抵抗回路網30の第1ないし第3の抵抗体27ないし29の各抵抗値R1,R2,R3の設定について、図4も参照して説明する。
すなわち、まず、変換出力端子26に現れる変換出力電圧VDは、従来例の項で説明した式(1)に示される出力電圧Vdに対して、次式(2)で示すような値として得られるようになる。
【0026】
【数2】
Figure 0003648878
【0027】
この場合に、抵抗回路網21において、出力端子部25から抵抗回路網21側を見た抵抗値は、周知のように回路網を構成する抵抗体22の抵抗値R(Ω)と等しくなる。そして、抵抗回路網30を付加していない状態での出力端子部25の電位は前述の式(1)で示した出力電圧Vdであるから、抵抗回路網30を付加した構成で変換出力端子26に現れる電圧VDは、図4に示す関係から、次のような関係で示される式(3)〜(6)をVDについて解くことにより得られる。ここでは、第1ないし第3の抵抗体27,28,29のそれぞれに流れる電流をI0,I2,I1としている。
【0028】
【数3】
Figure 0003648878
【0029】
そして、上記した式(4)〜(6)から電流値I1を求めると次式(7)が得られ、式(3)から電流値I1を求めると次式(8)が得られる。そして、式(7)のI1に式(8)のI1を代入してVDについて求め、式(1)で示したVdの値を代入すると、前述した式(2)が得られるようになる。
【0030】
【数4】
Figure 0003648878
【0031】
さて、上述のようにして式(2)のように得られた変換出力電圧VDにおいて、所望の出力電圧範囲および分解能を設定する際には、次のようにして各抵抗値を求める。すなわち、式(2)において、出力電圧範囲の最大値をVDmax として式(2)中の第2項のΣの入った項を「0」と置き、最小値をVDmin として式(2)中の第2項のΣの入った項を「2IR」と置き、これらにより2つの式を得る。
【0032】
そして、これらの式中のIRの値を適当に設定すると、3つの未知数R1,R2,R3に対して、2つの式から方程式を解くことになるので、一義的に解を得ることはできない。そこで、相対的な値として得られるR1〜R3に基づいて、実際の消費電流等を考慮して一つの値を設定すれば他の値も決定することができるようになる。
【0033】
このような設定方法にしたがって、例えば、従来例の項でも述べた特性として、直流電源Vccの電圧値が5Vの場合で、出力電圧の範囲を4.5V±32mVとして分解能が2mVの場合を例にとってみる。抵抗体22の抵抗値Rを8kΩ,電流値Iを62.5μAに設定し、各抵抗値R1,R2,R3を、
R1=2kΩ, R2=18kΩ, R3=16kΩ
のように決定すると、全体として5ビットで特性を満足する構成を得ることができるようになる。
【0034】
実際に上記抵抗値および電流値を式(2)に代入して検証すると、VDの値は次式のようになり、これによってダイナミックレンジは、4.53488V〜4.47480Vとなり、したがって4.5048V±30mVの調整範囲となることがわかった。
【0035】
【数5】
Figure 0003648878
【0036】
また、このときの分解能は、n=5であるから、上式の右辺第2項の係数を2の4乗で割ったときの値となるから、1.938mVと計算される。実際には、目標値4.5V±32mV、分解能2mVに対して若干の相違はあるが、5ビットでほぼ目標を満たすことができる。
【0037】
なお、これによって、ICチップ全体のチップ面積として、この場合においては従来構成のものに比べて4ビット少なくできることから、30%程度の減縮を図ることができるようになる。
【0038】
次に本実施例の作用について説明する。
圧力センサ11の電気的特性には個々にばらつきがあるので、印加電圧を画一的な値に設定することができないため、製品として完成させる段階で、特性調整作業を行うように構成されている。この場合に、例えば、圧力センサ11に対して一定の圧力環境を設定した状態で、論理回路14側から基準となるデジタルデータを出力する。これにより、メモリ15を介してD/A変換回路16にデジタルデータが与えられ、オペアンプ17にアナログ電圧信号が出力されるようになる。なお、特性調整段階ではメモリ15にはデジタルデータの記憶を行わせないようになっている。
【0039】
そして、この状態では、オペアンプ17からデジタルデータに対応したアナログ電圧信号が出力されるようになり、圧力センサ11の入力端子11a,11b間にその電圧信号が与えられるようになる。圧力センサ11においては、その状態における検出信号を出力端子11c,11d間から出力するようになる。
【0040】
差動増幅回路20を介して得られる検出出力が所定条件を満たしている場合には、そのときのデジタルデータを特性調整設定値とし、満たしていない場合には、条件を満足するようにデジタルデータを変更設定して与え、上述の調整作業を繰り返すようになる。この後、特性調整設定値としてデジタルデータが設定されると、メモリ15にそのデジタルデータを記憶させるようになる。この場合に、デジタルデータは不揮発性のメモリで構成しても良いし、電源によりバックアップした状態で記憶しているメモリで構成しても良い。
【0041】
これによって、その圧力センサ11に固有の特性に沿った印加電圧を厳密に設定して印加させることができるようになり、個々のばらつきによる特性の変動を防止して高精度の検出動作を行うことができるようになる。
【0042】
このような本実施例によれば、抵抗回路網21の出力段に第1ないし第3の抵抗体27,28,29からなる抵抗回路網30を設けてそれらの抵抗値R1,R2,R3を式(2)に基づいて適切に設定することにより、直流電源電圧Vccに無関係に所望の出力電圧範囲と分解能とを最小限のビット数で構成することができるようになり、従来構成のものに比べて設けるべきビット数を必要最小限にすることができ、ICチップを作成する場合において、場合によってはそのチップ面積を大幅に減縮することができ、これによって消費電力の低減も図ることができるようになる。
【0043】
図5および図6は本発明の第2の実施例を示すもので、第1の実施例と異なるところは、抵抗回路網30に代えて、抵抗回路網35を設けたところである。この場合、抵抗回路網35は、直流電源端子19から第1ないし第3の抵抗要素としての機能を担っている第4の抵抗体36,第5の抵抗体37,第2の抵抗体38を直列に接続してアースした回路として設けられており、抵抗体36と37との共通接続点を抵抗回路網21の出力端子部25に接続し、抵抗体37と抵抗体38との共通接続点を変換出力端子26に接続した構成とされている。
【0044】
そして、この場合において、第1の抵抗要素は第4の抵抗体36と第5の37の直列回路に相当し、第2の抵抗要素は第2の抵抗体38に相当し、第3の抵抗要素は第5の抵抗体37に相当している。抵抗体36,37,38の各抵抗値をR1,R2,R3(Ω)とすると、変換出力端子26に得られる変換出力電圧VDは、次式(9)に示すような関係式で与えられる。
【0045】
【数6】
Figure 0003648878
【0046】
上述した式(9)は、次のようにして得られる。第1の実施例と同様にして、図6に示すような関係から、電流値I0,I1,I2および各部の電圧値Vd,Vd′を設定すると、以下に示すような5つの関係式(10)〜(14)が成り立つ。これらの式(10)〜(14)から、I0,I1,I2およびVd′を消去してVDについて解き、Vdの値に式(1)を代入すると、上述した式(9)の解が得られる。
【0047】
【数7】
Figure 0003648878
【0048】
したがって、このような第2の実施例によっても第1の実施例と同様の作用効果を得ることができるようになる。なお、実際には、抵抗値R=8kΩ、電流値I=50μAとして計算すると、
R1=800Ω, R2=4.4kΩ, R3=50kΩ
となる。これらの値を式(9)に代入して検証すると、VDの値は次式のようになる。
【0049】
【数8】
Figure 0003648878
【0050】
これによって、ダイナミックレンジは4.53498V〜4.47106Vとなり、4.50301V±31.95mVの調整範囲となる。また、分解能は、上式の右辺の第2項の係数を2の4乗で割ったときの値となるから、2.061mVとなり、この場合においても5ビットでほぼ目標を満たす結果となる。
【0051】
以上、第1の実施例および第2の実施例を説明してきたが、ここでこれらの実施例における回路構成の相違点について説明する。
実際、上記第1および第2の実施例におけるR/2Rラダー形D/A変換器は車両のエンジンなどの内燃機関の燃料圧や車両等のオートマチックトランスミッション内部の油圧、あるいは車両等のブレーキ油圧などを検出する高圧センサに用いた際に特にその効果が現れるものである。
【0052】
すなわち、高圧センサは10気圧〜1000気圧(1気圧=101kPa)程度の圧力を検出するものであるが、このような高圧を検出するためのセンサ構造において信頼性の向上を図るために、部品点数を減らしたり回路を簡単化するなどして小形化を図ることにより外来ノイズの悪影響を低減させるなどの対策が要求されている。これに伴って、センサチップの小形化を図ることが要求されてくるので、センサチップに集積化して設けられるD/A変換回路についてもチップにおける占有面積を極力小さくすることが必須条件となってくるのである。
【0053】
本発明においては、このような点に対応して、上記した第1および第2の実施例に示したようなD/A変換回路の構成が僅かな抵抗要素を追加するのみで実現できるように構成したことから、全体の回路構成を必要最小限のビット数を設定した構成としながら、電源電圧に関係なく所望の分解能でD/A変換を行うことができるのである。
【0054】
しかしながら、エンジン等の内燃機関に取り付けたり、あるいはオートマチックトランスミッション内部の油圧を検出するものでは、高温状況下にさらされることになるので、センサチップも例えば100℃以上の環境下に置かれることになる。この場合、センサチップは通常シリコン半導体を基板として形成されるものであるから、このような高温状況下に置かれる場合に、pn接合を介してリーク電流が発生することになる。
【0055】
つまり、スイッチ部23,定電流源24のトランジスタなどの半導体素子から、この半導体素子と半導体基板との間に形成されるpn接合部を通じて半導体基板側にリーク電流の経路が形成されることになり、定電流源24で設定されている電流以外にリーク電流が生じることになる。これに起因してD/A変換回路の分解能が低下することになり、結果としてD/A変換回路の変換精度が低下することにつながる。
【0056】
このような不具合を解決するためには、D/A変換回路の設定電流を大きくすることによってリーク電流による悪影響を抑制することが必要になる。その設定電流値は発明者らの経験によると、50μA程度となる。したがって、上記第1および第2の実施例に示した回路構成においては目標とする設定電流値を満たしていることになる。
【0057】
また、車両等の外部環境下に置かれる電子回路においては、電磁波障害(EMI;Electromagnetic Interference)についても考慮する必要がある。通常の回路においてはEMI対策として抵抗とコンデンサとを用いたローパスフィルタにより電磁波ノイズが回路内に侵入することを防止することができるが、D/A変換回路においては電源からR/2Rラダー回路における線路において抵抗やコンデンサを挿入するとD/A変換出力に抵抗やコンデンサによる回路定数の悪影響が出てしまって単純に採用できない事情にあり、この点から、D/A変換回路においては電源からスイッチや定電流源に至る経路におけるインピーダンスをある程度高く設定しておく必要がある。
【0058】
上記第1の実施例においては、直流電源端子19の正極端子からスイッチ部23を介して定電流源24までのインピーダンスは抵抗回路網21の抵抗と第1の抵抗要素27と第3の抵抗要素29との合成インピーダンスとなり、具体的には前述の抵抗値から計算すると、約6kΩとなる。
【0059】
一方、第2の実施例においては直流電源端子19の正極端子からスイッチ部23を介して定電流源24までのインピーダンスは抵抗回路網21と第1の抵抗要素36との合成インピーダンスとなり、具体的には前述の抵抗値から計算すると、1kΩに満たない値となる。したがって、第1の実施例の回路構成は、第2の実施例の回路構成に比べてEMIによる電磁波ノイズを抑制する効果が高くすることができる。
【0060】
この点で、第1の実施例においては、第1ないし第3の抵抗体27〜29の抵抗値を適当に設定することにより、インピーダンスを高めた状態としながら所望の特性を得ることができるので、リーク電流の悪影響とEMIの悪影響とを抑制する構成とすることができる。また、第2の実施例においては、第4,第5の抵抗体36,37および第2の抵抗体38の抵抗値を適当に設定することにより所望の特性を得ることができ、このときに第1の実施例に比べてインピーダンスを低く設定する用途に好適な構成とすることができるようになる。
【0061】
図7は本発明の第3の実施例を示すもので、第1の実施例と異なるところは、電源端子19とアースとを入れ替えた構成としたもので、この場合には、基準となる電位がアース電位つまり「0V」となり、変換出力電圧VDは、第1の実施例と同様にして計算することができ、抵抗値R1〜R3を決定することにより所望の出力電圧範囲で所望の分解能の変換出力電圧を得ることができるようになるものである。なお、図5に示した第2の実施例のものについても、同様にして直流電源端子19とアースとを入れ替えた構成としたものを得ることができる。
【0062】
本発明は、上記実施例にのみ限定されるものではなく、次のように変形また拡張できる。
抵抗回路網30あるいは35において、第1ないし第3の抵抗要素として用いた抵抗体27〜29あるいは抵抗体36〜38に代えて、他の抵抗体を用いる構成とすることもできるし、ひとつの抵抗要素を複数の抵抗体により構成することもできる。
ダイオードは、電圧調整用を兼ねて複数個設ける構成としても良い。
【0063】
バイポーラIC以外に、本実施例が対象とする方式のD/A変換装置であれば、MOSFETを用いたIC例えばCMOSICなどにおいても利用することができる。
センサであれば、圧力センサ11以外に種々のセンサに適用できる。この場合に、適用できる特性調整用回路としては、D/A変換回路16により出力される電圧信号を参照電圧として用いる構成のものでも良く、必ずしも印加電圧として使用する構成のものに限らない。
【図面の簡単な説明】
【図1】本発明の第1の実施例を示す電気的構成図
【図2】センサの特性調整回路の電気的構成図
【図3】スイッチ部および定電流回路の電気的構成図
【図4】変換出力電圧を計算する場合の説明図
【図5】本発明の第2の実施例を示す図1相当図
【図6】図4相当図
【図7】本発明の第3の実施例を示す図1相当図
【図8】従来例を示す図1相当図
【符号の説明】
11は圧力センサ、12a〜12dは抵抗体、13は特性調整回路、14は論理回路、15はメモリ、16はD/A変換回路(D/A変換装置)、17はオペアンプ、19は直流電源端子、20は差動増幅回路、21は抵抗回路網、22は抵抗体、23はスイッチ部、24は定電流源、26は変換出力端子、27は第1の抵抗体(第1の抵抗要素)、28は第2の抵抗体(第2の抵抗要素)、29は第3の抵抗体(第3の抵抗要素)、30は抵抗回路網、31はダイオード、32はトランジスタ、34は信号電圧発生回路(電圧制御手段)、35は抵抗回路網、36は第4の抵抗体(第1の抵抗要素)、37は第5の抵抗体(第1の抵抗要素,第3の抵抗要素)、38は第2の抵抗体(第2の抵抗要素)である。

Claims (7)

  1. 入力されるデジタル信号のビット数に対応させて抵抗要素を梯子状に接続した抵抗回路網として形成され、直流電源の正負の端子間に電源端子を接続した状態で入力データを各ビット毎に前記抵抗要素に対して電流を流すことにより出力端子にアナログ電圧信号を得るようにしたR/2Rラダー形のD/A変換装置において、
    前記直流電源の正負の端子との間に電気的に直列に接続される第1および第2の抵抗要素と、
    これら第1および第2の抵抗要素の共通接続部と前記出力端子との間に電気的に接続される第3の抵抗要素と、
    前記第1および第2の抵抗要素の共通接続部に設けられる変換出力端子とを具備し、
    前記第1ないし第3の抵抗要素の各抵抗値は、所望するアナログ電圧出力の設定範囲に対して前記直流電源の電圧に基づいて選択的に設定されることを特徴とするD/A変換装置。
  2. 前記第1および第2の抵抗要素は、前記直流電源の正負の端子との間に直列に接続される第1および第2の抵抗体とし、
    前記第3の抵抗要素は、前記第1および第2の抵抗体の共通接続点と前記出力端子との間に接続される第3の抵抗体として構成していることを特徴とする請求項1記載のD/A変換装置。
  3. 前記第1および第2の抵抗要素は、前記直流電源の正負の端子間に直列に接続される第4,第5の抵抗体および第2の抵抗体とし、
    前記第3の抵抗要素は、前記第1の抵抗要素を構成している第5の抵抗体を兼用する構成とし、
    前記出力端子を前記第4および第5の抵抗体の共通接続点に接続すると共に、前記変換出力端子を前記第5の抵抗体および前記第2の抵抗体の共通接続点に接続して構成したことを特徴とする請求項1記載のD/A変換装置。
  4. 前記抵抗回路網の各ビットデータに対応して電流を流すためのデータ入力回路として、
    定電流源と、
    この定電流源と前記抵抗回路網との間に接続されたダイオードと、
    前記ビットデータに応じて前記ダイオードと定電流源との間の電位を制御する電圧制御手段とを設けた構成としたことを特徴とする請求項1ないし3のいずれかに記載のD/A変換装置。
  5. 検出信号を電気信号として出力するようにしたセンサに対して、その検出信号を所定条件で調整するためにデジタル信号によりアナログ電圧を設定するようにしたセンサの特性調整用回路において、
    請求項1ないし4のいずれかに記載のD/A変換装置を用いてデジタル信号に対するアナログ電圧の設定を行うように構成したことを特徴とするセンサの特性調整回路。
  6. 前記センサの特性を設定するためのデジタルデータを記憶するメモリを設け、
    前記デジタル信号は前記メモリから与えるように構成されていることを特徴とする請求項5記載のセンサの特性調整回路。
  7. 入力されるデジタル信号のビット数に対応させて抵抗要素を梯子状に接続した抵抗回路網として形成され、直流電源の正負の端子間に電源端子を接続した状態で入力データを各ビット毎に前記抵抗要素に対して電流を流すことにより出力端子にアナログ電圧信号を得るようにしたR/2Rラダー形のD/A変換装置において、
    前記直流電源の正負の端子間に電気的に直列に接続される高電位側の第1の抵抗要素および低電位側の第2の抵抗要素と、
    前記出力端子と前記第2の抵抗要素との間に設けられる第3の抵抗要素と、
    この第3の抵抗要素と前記第2の抵抗要素との接続部に設けられる変換出力端子とを備えた構成としたことを特徴とするD/A変換装置。
JP27454696A 1995-10-20 1996-10-17 D/a変換装置およびセンサの特性調整回路 Expired - Fee Related JP3648878B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27454696A JP3648878B2 (ja) 1995-10-20 1996-10-17 D/a変換装置およびセンサの特性調整回路

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-272474 1995-10-20
JP27247495 1995-10-20
JP27454696A JP3648878B2 (ja) 1995-10-20 1996-10-17 D/a変換装置およびセンサの特性調整回路

Publications (2)

Publication Number Publication Date
JPH09172374A JPH09172374A (ja) 1997-06-30
JP3648878B2 true JP3648878B2 (ja) 2005-05-18

Family

ID=26550226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27454696A Expired - Fee Related JP3648878B2 (ja) 1995-10-20 1996-10-17 D/a変換装置およびセンサの特性調整回路

Country Status (1)

Country Link
JP (1) JP3648878B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100555473B1 (ko) * 1999-05-12 2006-03-03 삼성전자주식회사 반도체 집적회로에서의 전압강하를 고속으로 해석하기 위한 선형회로망 해석방법
JP5880493B2 (ja) * 2013-07-04 2016-03-09 株式会社デンソー 温度検出装置

Also Published As

Publication number Publication date
JPH09172374A (ja) 1997-06-30

Similar Documents

Publication Publication Date Title
KR101031434B1 (ko) 초저전력 아날로그 보상 회로 및 보상 방법
JP3864864B2 (ja) クランプ回路
JP2002048651A (ja) 半導体温度検出方法およびその回路
JP2003240620A (ja) 気体流量測定装置
US7965128B2 (en) Semiconductor device, and power source and processor provided with the same
JPH0661432A (ja) 半導体装置
JP3648878B2 (ja) D/a変換装置およびセンサの特性調整回路
US5781141A (en) Digital-to-analog converter and sensor-characteristic adjustment circuit
US6236320B1 (en) Determination of an ambient temperature through the comparison of divided voltages
US20020149984A1 (en) Semiconductor physical quantity sensing device
US6957278B1 (en) Reference -switch hysteresis for comparator applications
JP5315386B2 (ja) 温度測定回路
JPH05727B2 (ja)
US7496458B2 (en) Electrical transducer
US6691568B2 (en) Air meter
JP2002185268A (ja) 漏れ電流補償回路及びこれを用いたic
JP2005003596A (ja) 抵抗測定装置、抵抗測定用集積回路及び抵抗測定方法
KR100569555B1 (ko) 온도 감지 회로
JPH036054A (ja) 半導体電圧検出回路
JP2004071864A (ja) 半導体集積回路の温度検出装置
JPS61263324A (ja) プッシュプル出力回路
JPH08247815A (ja) パルス出力型熱線式空気流量計
JP2018147931A (ja) 半導体装置
JP2023113320A (ja) 電源電圧調整回路
JPH0993912A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees