JP3630205B2 - Method for manufacturing dielectric ceramic material - Google Patents

Method for manufacturing dielectric ceramic material Download PDF

Info

Publication number
JP3630205B2
JP3630205B2 JP08878997A JP8878997A JP3630205B2 JP 3630205 B2 JP3630205 B2 JP 3630205B2 JP 08878997 A JP08878997 A JP 08878997A JP 8878997 A JP8878997 A JP 8878997A JP 3630205 B2 JP3630205 B2 JP 3630205B2
Authority
JP
Japan
Prior art keywords
average particle
subcomponent
main component
ceramic material
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08878997A
Other languages
Japanese (ja)
Other versions
JPH10270284A (en
Inventor
修 大谷
弥 高原
貴志 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP08878997A priority Critical patent/JP3630205B2/en
Publication of JPH10270284A publication Critical patent/JPH10270284A/en
Application granted granted Critical
Publication of JP3630205B2 publication Critical patent/JP3630205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、内部電極を有する積層セラミックコンデンサの誘電体グリーンシートを形成するための誘電体セラミック材料の製造方法に関する。
【0002】
【従来の技術】
従来、積層セラミックコンデンサを作製する方法として、BaTiO3等を主成分とする誘電体セラミック材料をシート状に形成し、その表面に内部電極となる導体ペーストを塗布し、積層圧着し、焼成し、積層セラミックコンデンサを作る方法が一般的に知られている。
【0003】
前記積層セラミックコンデンサ用誘電体セラミック材料は、通常、前記主成分に、耐還元性付与、温度特性の調整、信頼性等の諸特性を向上させることを目的として、数種類の元素を副成分として添加している。
【0004】
このような副成分は、Ba、Ca、Sr、Mg、Si、Cr、Y、V、Mn、W、Zrの化合物の3種以上からなり、従来はこの副成分を得るため、図1(C)に示すように、この化合物の3種以上のものを調合し(工程(a))、湿式混合、粉砕(工程(b))した後、熱風乾燥(工程(c))により粒子を得ている。このようにして得た副成分を主成分と混合し、前記シート化する。
【0005】
近年、情報機器、通信機器の急激な小型化、高密度化に伴い、積層セラミックコンデンサも、広範囲の電子回路に使用するために、超小型で高静電容量のコンデンサが要求されるようになって来ている。
【0006】
しかし、従来の積層セラミックコンデンサは、誘電体セラミック材料の性状の関係から、内部電極間の誘電体層間厚みが10μm〜20μm必要であり、小型で高静電容量にすることが非常に困難であった。また、無理に誘電体の層間厚みを10μm以下にした場合、内部電極間で導通不良が発生して、非常に歩留りが悪く、更に、ショート不良等が生じ易い等、信頼性が悪く、小型で高静電容量、高信頼性で低コストの製品化の妨げになっていた。
【0007】
特開平5−124857号においては、絶縁破壊電圧の向上を目的として、前記副成分を予め混合粉砕し、平均粒径が0.2μm〜1.0μmに粉砕し、主成分と混合分散させるという製造方法が提案されている。
【0008】
【発明が解決しようとする課題】
誘電体セラミック材料を構成する場合、副成分を混合粉砕し、熱風乾燥する際に、副成分の粒子の凝集が大きく、副成分の平均粒径が大きくなるため、主成分相に完全に分散されず、数μm程度の偏析相(特定の成分元素が他の主要部から異なる集合体を形成して主要部と不均一になった相)や異相(結晶構造が相違する相であり、偏析相をさす場合もある)として存在している。参考資料1(特許願に添付された参考資料参照。以下同じ。)の下から2段目の電子顕微鏡によるSEM図(二次電子像)とCOMP図(特性X線像)は、同じ部分について対応して示すもので、横に条状に現れているものはコンデンサの内部電極であり、また、SEM図の黒点は偏析層を示し、白点は空洞を示す。
【0009】
また、参考資料2は、電子顕微鏡像において、内部電極と基地からの特性X線を元素毎に色分けしてコンピュータ画面に表示したものであり、上段の左から右へ順番に1番目、2番目、3番目、4番目にそれぞれの元素を濃さごとに色分けして示すように、Ba、Siが微量となり、一方、Ti、Znが部分的に濃くなり、偏析相が現れている。
このように、従来の誘電体セラミック材料は、副成分の凝集によって副成分の平均粒径が大きくなり、偏析相や異相が存在するために、ショート不良が大量に生じて歩留りが低下したり、高温加速寿命試験における急激な特性の劣化という問題がある。
【0010】
前記特開平5−124857号に記載のように、副成分の平均粒径を0.2μm〜1.0μmとした場合にも、内部電極間の厚みを10μm以下にはできない。無理に10μm程度の積層セラミックコンデンサを製品化しても、前述したショート不良による急激な歩留りの低下や、高温加速寿命試験での急激な特性の劣化という問題がある。
【0011】
本発明の目的は、上記した従来技術の問題点に鑑み、副成分の分散性を良くし、組成を均一化することにより、偏析相の発生を抑え、誘電体層間厚みが10μm以下であっても、ショート不良がなく、経年による特性劣化が少なく、小型で高静電容量、低コスト、高信頼性の積層セラミックコンデンサを作るための誘電体セラミック材料の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するため、本発明は、
BaTiO、CaTiO、SrTiOあるいは
BaZrOのうちの1種類または2種類以上を主成分とし、
該主成分に混合する副成分として、Ba、Ca、Sr、Mg、Si、Cr、Y、V、Mn、W、Zrの各々の化合物から選ばれる少なくとも3種以上の化合物を含むものを用い、
前記副成分を混合し、粉砕した後に顆粒を作製し、
該副成分の顆粒を、2000℃〜20000℃のプラズマ炎でガス流とした後冷却することにより、平均粒径が0.001μm〜0.15μmの超微粒子にし、
該超微粒子を湿式粉砕した後、凍結乾燥を行い、
該凍結乾燥後の副成分粉末を前記主成分に対して0.2wt%以上、10.0wt%以下混合して誘電体セラミック材料を製造する
ことを特徴とする。
【0013】
本発明において、主成分としてのBaTiO、BaZrOは、高誘電率系材料であり、CaTiO、SrTiOは温度補償低誘電率の材料の主成分である。各種配合の副成分を主成分に対して0.2wt%以上、10.0wt%以下含有させることは、誘電体材料の焼成時の耐還元性付与、誘電体特性および温度特性の調整、高温加速寿命試験の信頼性等を向上させるために必要とされる。本発明においては、副成分を湿式粉砕した後、凍結乾燥することにより、凝集を起こさず、平均粒径の小さな微粒子の状態を維持することができる。
【0014】
このようにして得た微粒子からなる副成分を主成分に混合分散させることにより、副成分を主成分に均一に分散させ、組成が均一で異相や偏析相の発生が殆どなくなるか、異相や偏析相が小さくなり、ショート不良の急激な増加も無く、高温加速寿命試験においても特性の劣化の無い積層セラミックコンデンサを作るための誘電体セラミック材料が得られる。
【0015】
なお、副成分の平均粒径が0.001μmの場合であっても、ショート不良の改善が見られるが、0.001μm未満になると、高価になり、しかも湿式混合、乾燥の際に凝集しやすくなる。また、副成分の平均粒径が0.15μmを超えるとショート不良の増加が見られ、平均粒径は0.15μm以下であることが好ましい。
【0016】
本発明において、3種以上の副成分をプラスマ法により処理すれば、副成分の性状は、特開平5−124857号に記載のように、粉砕によって、個々の粒子がそれぞれ単独の成分からなるのではなく、プラズマ処理により、3種以上の成分が個々の粒子に混在した非晶質とすることができ、所望の特性が得やすくなり、特性が安定する。
【0017】
【発明の実施の形態】
[実施例1]
図1(A)は本発明の誘電体セラミック材料の製造方法の一実施例を示す工程図である。まず副成分の顆粒は、BaCO、CaCO、SiO、Y、MgCO、Cr、V、ZrOをそれぞれ秤量して調合し(工程(a))、ボールミルで有機溶剤を分散媒として用いて湿式混合粉砕し(工程(b))、脱水後・熱風乾燥し(工程(c))、平均粒径が0.5μm〜2.0μmの顆粒を得る。
【0018】
次に、図2に示すような概略構造のプラズマ処理装置(図中、1はプラズマトーチ、2は顆粒の導入口、3はガス導入口、4は冷却炉、5は捕集炉である。)を用い、装置の上方の導入口2から顆粒を導入すると共に、ガス導入口3からアルゴンガスおよび窒素ガスをプラスマトーチ1内に導入し、10000℃に高周波加熱されて発生したプラズマ炎の中を通してガス化した前記副成分のガス流を、冷却炉4において急激に冷却して、一次粒子の平均粒径が0.001μm以上、0.20μm以下の超微粒子を副成分を得た(工程(d))。平均粒径が0.001〜0.20μmの超微粒子は、ガス化した副成分の冷却速度を変えて得た。冷却速度の速い順から、それぞれ0.001、0.01、0.03、0.05、0.10、0.15、0.20μmの平均粒径の副成分顆粒を得た。
【0019】
さらに、副成分をボールミルにて純水を分散媒として用いて湿式混合粉砕した(工程(e))。
【0020】
次に、前記工程eで作った泥奨を金属製のバットに入れ、−10℃で泥奨を凍結し、その後0℃として真空状態にして水分を昇華させ、すなわち凍結乾燥させて、副成分化合物の粒子が凝集しない顆粒を作った(工程(f))。
【0021】
このようにして作製した副成分を用い、図3に示す工程により、積層セラミックコンデンサを作製した。まず、平均粒径が0.7μmのBaTiOの主成分原料に対し、前記副成分を3wt%添加し、ボールミルにて有機溶剤を分散媒として用い、有機系バインダ、可塑剤を添加して十分に湿式混合し、セラミック材料でなるスラリーを作った(工程(a))。
【0022】
前記スラリーを使用して、ドクターブレード法によりシート成形を行って、誘電体セラミックのグリーンシートを得て乾燥した(工程(b)、(c))。
【0023】
得られたグリーンシートの一面に導電ペーストを複数個の内部電極パターンに印刷し(工程(d))、乾燥(工程(e))後、複数のグリーンシートを積層して圧着(工程(f))後、切断し(工程(g))、積層セラミックコンデンサの積層体を作った。
【0024】
この積層体を空気中において320℃で5時間加熱して脱バインダ処理を行った後、H/Nの体積比が3/100の還元ガス流中において約1200℃で2時間焼成することにより、焼結体を作った(工程(h))。
【0025】
次に、前記焼成により欠乏した酸素を補うために、空気雰囲気において、800℃で4時間焼成して再酸化し、焼結体の両端部にCuペーストを塗布して焼き付けることにより、端子電極を形成して(工程(i))、積層セラミックコンデンサとした。
【0026】
積層セラミックコンデンサの内部電極はその厚みを1.5μmとし、内部電極間の誘電体層の厚みを5μmとし、誘電体層の重ね枚数を210層とした。製品の外形寸法は3.2mm×1.6mm×1.2mmである。
【0027】
[比較例1]
一方、前記図1(A)の工程(d)のプラズマ処理の代わりに、図1(B)の(d)に示すように、前記0.5μm〜2.0μmの平均粒径の粉体を、大気雰囲気の焙焼炉において、700℃で加熱した後急冷し、次にこの副成分を、ボールミルにて水を分散媒として湿式粉砕する(図1(B)の(e))ことにより、平均粒径を0.1μmとし、前記と同様の凍結乾燥(図1(B)の(f))により、凝集のほとんど無い副成分を得た。後の工程は実施例1と同様に同様の寸法の積層セラミックコンデンサを作製した。
【0028】
[比較例2]
比較例1において、平均粒径を1.0μmとし、他の工程は比較例1と同様に同様の寸法の積層セラミックコンデンサを作製した。
【0029】
[従来例]
従来例として、図1(C)における工程(a)〜(c)により、副成分として、BaCO、CaCO、SiO、Y、MgCO、Cr、V、ZrOをそれぞれ秤量して調合し、ボールミルで有機溶剤を分散媒として用い、混合粉砕した。そして粉砕した泥奨の乾燥を、バッチ炉を使用して熱風乾燥し、顆粒を作った。作った顆粒は平均粒径が1.5μm〜2.0μmの粉体であった。この顆粒を直接前記BaTiOからなる主成分に混合し、他の工程は前記実施例と同様にして同様の寸法の積層セラミックコンデンサを作製した。
【0030】
[ショート不良率試験および高温加速寿命試験]
前記実施例1、比較例1と従来例によるセラミックコンデンサについて、耐圧不良率(ショート不良率)と高温加速寿命試験で評価した。耐圧不良は、直流10Vを印加し、30秒後の絶縁抵抗が100MΩ以下のものを不良とした。高温加速寿命試験は、雰囲気温度200℃、直流電圧25Vを連続印加して行った。その結果を表1に示す。また、図4は横軸に時間、縦軸にショート不良の発生率を示す。
【0031】
【表1】

Figure 0003630205
【0032】
表1の実施例1は、副成分の一次粒子の平均粒径(凍結乾燥後の平均粒径)0.03μmのものについて、100個について試験した結果である。また、表1の比較例1、2は、副成分の一次粒子の平均粒径0.1μmのものについて、100個について試験した結果である。表1の従来例は、平均粒径1.0μmのものについて、100個について試験した結果である。
【0033】
また、図4の実施例1は、副成分の一次粒子の平均粒径0.03μmのものについての試験結果であり、図4の比較例1は、副成分の一次粒子の平均粒径0.1μmのものについての試験結果であり、図4の従来例は、副成分の一次粒子の平均粒径1.0μmのものについての試験結果である。
【0034】
表1から明らかなように、実施例1によれば、従来例に比較し、ショート不良率で約1/240以下と減少し、比較例1、2と比較しても1/10に減少している。また、高温負荷試験での寿命も実施例1によれば従来例、比較例1、2に比較して約6〜240倍以上に長くなっている。また、図4の実施例1のように、プラズマ処理後凍結乾燥する場合、平均粒径を小さくすれば、高温加速寿命試験の結果やショート不良試験において良好な結果が得られる。
【0035】
プラズマ法を採用する実施例1において、平均粒径が0.15μmの場合、平均粒径が0.2μmの場合に比較し、ショート不良率が約1/6に減少し、加速寿命が倍に伸びた。また、平均粒径が0.001μm〜0.15μmの範囲において、ショート不良の発生率は、平均粒径が小さい程低くなると共に、加速寿命も長くなる。一方、平均粒径が0.001μm未満になると、凝集が起き易くなり、製造も困難となるので、一次粒子の平均粒径が0.001μm〜0.15μmであることが好ましい。
【0036】
参考資料3は、それぞれ従来法、実施例1、比較例1による場合の粒子の分散状態を示す。参考資料3において、右端に示すプラズマ法について示すものは、前記実施例1において、平均粒径0.03μmの副成分を主成分に混合した後の元素の濃度分布を示したものである。また、焙焼法について示すものは、前記焙焼による方法で得られた平均粒径0.1μmの副成分を、主成分に混合した後のCaとSi元素の濃度分布を示したものである。従来法(STD)は、前記従来例で示した副成分を主成分に混合して得たものである。参考資料3から明らかなように、プラズマ法による場合には、副成分の各粒子が各元素の混入された非晶質であることにより、粒子集合全体として各元素が均一に存在した状態にすることができる。また、焙焼法による場合は、副成分の各粒子が、各元素の化合物として存在することにより、プラズマ法と同様に、粒子集合全体として各元素が均一に分布する状態を得ることができる。いずれも従来法による場合に比較し、きめの細かな均一の成分分布が得られ、ショート不良の減少、特性の安定化が達成できる。
【0037】
また、参考資料4は、前記実施例1において、一次粒子の平均粒径0.03μm(BET値30m2/g)の副成分を用い、内部電極間の誘電体層の厚みを7μm、4μm、2μmに変化させた場合の電子顕微鏡によるCOMP写真である。
【0038】
【発明の効果】
本発明は、BaTiO、CaTiO、SrTiOあるいはBaZrOのうちの1種類または2種類以上を主成分とし、該主成分に混合する副成分として、Ba、Ca、Sr、Mg、Si、Cr、Y、V、Mn、W、Zrの各々の化合物から選ばれる少なくとも3種以上の化合物を含むものを用い、前記副成分を混合し、粉砕した後に顆粒を作製し、該副成分の顆粒を、2000℃〜20000℃のプラズマ炎でガス流とした後冷却することにより、平均粒径が0.001μm〜0.15μmの超微粒子にし、該超微粒子を湿式粉砕した後、凍結乾燥を行い、該凍結乾燥後の副成分粉末を前記主成分に対して0.2wt%以上、10.0wt%以下混合して誘電体セラミック材料を製造する製造方法であり、プラズマ法により副成分の超微粒子を得られる上、凍結乾燥によって乾燥するため、副成分の凝集を防止することができ、超微粒子の状態を維持することができる。このため、副成分の主成分に対する分散性を良くし、組成を均一化することにより、偏析相の発生を抑え、誘電体層間厚みが10μm以下であっても、ショート不良がなく、経年変化による特性劣化が少なく、小型で高静電容量、低コスト、高信頼性の積層セラミックコンデンサを作ることができる。
【0039】
また、副成分の顆粒を作製した後、プラズマ法によって平均粒径を0.001μm以上、0.15μm以下の超微粒子化を得るようにしたので、副成分の一部または全部を非晶質とすることができるので、誘電体セラミック材料全体として元素分布が均一化でき、所望の特性が得易くなり、特性の安定したコンデンサを得ることができる。
【図面の簡単な説明】
【図1】(A)、(B)はそれぞれ本発明による誘電体セラミック材料の製造方法の実施例、比較例における副成分の製造工程図、(C)は従来の副成分の製造工程図である。
【図2】本発明において用いるプラズマ法を実施する装置の概略構成図である。
【図3】本発明の製造方法により得た副成分を用いて積層セラミックコンデンサを得る製造工程図である。
【図4】本発明の実施例、比較例および従来例における高温加速寿命試験結果を示す図である。
【符号の説明】
1:プラズマトーチ、2:顆粒の導入口、3:ガス導入口、4:冷却炉、5:捕集炉[0001]
[Industrial application fields]
The present invention relates to a method for manufacturing a dielectric ceramic material for forming a dielectric green sheet of a multilayer ceramic capacitor having internal electrodes.
[0002]
[Prior art]
Conventionally, as a method of manufacturing a multilayer ceramic capacitor, a dielectric ceramic material mainly composed of BaTiO3 or the like is formed into a sheet shape, and a conductive paste serving as an internal electrode is applied to the surface, laminated and pressure-bonded, fired, and laminated. Methods for making ceramic capacitors are generally known.
[0003]
The dielectric ceramic material for a multilayer ceramic capacitor is usually added with several elements as subcomponents for the purpose of improving various properties such as reduction resistance, adjustment of temperature characteristics, and reliability to the main component. doing.
[0004]
Such subcomponents include three or more compounds of Ba, Ca, Sr, Mg, Si, Cr, Y, V, Mn, W, and Zr. Conventionally, in order to obtain this subcomponent, FIG. ) After preparing three or more of these compounds (step (a)), wet mixing and pulverizing (step (b)), particles were obtained by hot air drying (step (c)). Yes. The subcomponent thus obtained is mixed with the main component to form the sheet.
[0005]
In recent years, with the rapid downsizing and high density of information equipment and communication equipment, multilayer ceramic capacitors are also required to be ultra-compact and high-capacitance capacitors for use in a wide range of electronic circuits. Is coming.
[0006]
However, the conventional multilayer ceramic capacitor requires a dielectric interlayer thickness between internal electrodes of 10 μm to 20 μm because of the property of the dielectric ceramic material, and it is very difficult to make it small and have a high capacitance. It was. In addition, when the dielectric interlayer thickness is forcibly set to 10 μm or less, a conduction failure occurs between the internal electrodes, the yield is very poor, and a short circuit failure is likely to occur. This has hindered the commercialization of high capacitance, high reliability and low cost.
[0007]
In JP-A-5-124857, for the purpose of improving the dielectric breakdown voltage, the subcomponents are mixed and pulverized in advance, the average particle size is pulverized to 0.2 μm to 1.0 μm, and mixed and dispersed with the main component. A method has been proposed.
[0008]
[Problems to be solved by the invention]
When composing a dielectric ceramic material, when the subcomponent is mixed and pulverized and dried with hot air, the coagulation of the subcomponent particles is large and the average particle size of the subcomponent is large, so that it is completely dispersed in the main component phase. First, a segregation phase of about several μm (a phase in which a specific component element forms a different aggregate from other main parts and becomes inhomogeneous with the main part) or a different phase (a phase with a different crystal structure). In some cases). Reference material 1 (Refer to the reference material attached to the patent application. The same shall apply hereinafter.) The SEM diagram (secondary electron image) and the COMP diagram (characteristic X-ray image) of the second stage electron microscope from the bottom are the same. Correspondingly shown, the ones appearing in the shape of stripes are the internal electrodes of the capacitor, the black dots in the SEM diagram indicate the segregation layer, and the white dots indicate the cavities.
[0009]
Reference Material 2 shows the characteristic X-rays from the internal electrode and the base color-coded for each element and displayed on the computer screen in the electron microscope image. As shown in the third and fourth colors, each element is color-coded according to the concentration, Ba and Si are in minute amounts, while Ti and Zn are partially concentrated and segregation phases appear.
Thus, in the conventional dielectric ceramic material, the average particle size of the subcomponent increases due to aggregation of the subcomponent, and because there are segregation phases and heterogeneous phases, a large number of short-circuit defects occur and the yield decreases, There is a problem of rapid characteristic deterioration in the high temperature accelerated life test.
[0010]
As described in JP-A-5-124857, even when the average particle size of the subcomponent is 0.2 μm to 1.0 μm, the thickness between the internal electrodes cannot be 10 μm or less. Even if a monolithic ceramic capacitor having a thickness of about 10 μm is commercialized, there are problems such as a rapid decrease in yield due to the short-circuit failure described above and a rapid deterioration of characteristics in a high-temperature accelerated life test.
[0011]
In view of the above-mentioned problems of the prior art, the object of the present invention is to improve the dispersibility of the subcomponents and to make the composition uniform, thereby suppressing the occurrence of segregation phase and having a dielectric interlayer thickness of 10 μm or less. Another object of the present invention is to provide a method for manufacturing a dielectric ceramic material for producing a small-sized, high capacitance, low-cost, high-reliability multilayer ceramic capacitor that has no short-circuit defect and little deterioration with time.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides:
Based on one or more of BaTiO 3 , CaTiO 3 , SrTiO 3 or BaZrO 3 as a main component,
As a subcomponent to be mixed with the main component, one containing at least three or more compounds selected from the compounds of Ba, Ca, Sr, Mg, Si, Cr, Y, V, Mn, W, and Zr is used.
Mixing and crushing the accessory ingredients to produce granules,
The sub-component granules are made into a gas stream with a plasma flame at 2000 ° C. to 20000 ° C. and then cooled to form ultrafine particles having an average particle size of 0.001 μm to 0.15 μm,
After wet pulverizing the ultrafine particles, freeze drying,
A dielectric ceramic material is produced by mixing the lyophilized subcomponent powder in an amount of 0.2 wt% to 10.0 wt% with respect to the main component.
[0013]
In the present invention, BaTiO 3 and BaZrO 3 as main components are high dielectric constant materials, and CaTiO 3 and SrTiO 3 are main components of temperature compensated low dielectric constant materials. Adding subcomponents of various blends in an amount of 0.2 wt% or more and 10.0 wt% or less based on the main component gives reduction resistance during firing of the dielectric material, adjustment of dielectric characteristics and temperature characteristics, high temperature acceleration Required to improve the reliability of the life test. In the present invention, the subcomponents are wet-pulverized and then freeze-dried to maintain the state of fine particles having a small average particle size without causing aggregation .
[0014]
By mixing and dispersing the subcomponents composed of the fine particles obtained in this way into the main component, the subcomponent is uniformly dispersed in the main component, the composition is uniform, and there is almost no occurrence of heterogeneous phase or segregation phase, or heterogeneous phase or segregation. A dielectric ceramic material for producing a multilayer ceramic capacitor in which the phase becomes smaller, the short circuit defect does not increase rapidly, and the characteristics are not deteriorated even in the high temperature accelerated life test can be obtained.
[0015]
In addition, even when the average particle size of the subcomponent is 0.001 μm, the short-circuit defect is improved, but if it is less than 0.001 μm, it becomes expensive, and moreover, it tends to aggregate during wet mixing and drying. Become. Moreover, when the average particle diameter of a subcomponent exceeds 0.15 micrometer, the increase in short circuit defect is seen and it is preferable that an average particle diameter is 0.15 micrometer or less.
[0016]
In the present invention, when three or more kinds of subcomponents are processed by the plasma method, the properties of the subcomponents are such that each particle is composed of a single component by pulverization as described in JP-A-5-124857. Instead, it can be made amorphous by mixing three or more kinds of components in the individual particles by plasma treatment, so that desired characteristics can be easily obtained and the characteristics are stabilized .
[0017]
DETAILED DESCRIPTION OF THE INVENTION
[Example 1]
FIG. 1A is a process diagram showing one embodiment of a method for producing a dielectric ceramic material of the present invention. First, the subcomponent granules are prepared by weighing BaCO 3 , CaCO 3 , SiO 2 , Y 2 O 3 , MgCO 3 , Cr 2 O 3 , V 2 O 5 , and ZrO 2 (step (a)), respectively. A ball mill is used for wet mixing and pulverization using an organic solvent as a dispersion medium (step (b)), and after dehydration and hot-air drying (step (c)), granules having an average particle size of 0.5 μm to 2.0 μm are obtained.
[0018]
Next, a plasma processing apparatus having a schematic structure as shown in FIG. 2 (in the figure, 1 is a plasma torch, 2 is an inlet for granules, 3 is a gas inlet, 4 is a cooling furnace, and 5 is a collection furnace. In the plasma flame generated by introducing the granules from the inlet 2 above the apparatus and introducing argon gas and nitrogen gas into the plasma torch 1 from the gas inlet 3 and heating at a high frequency to 10000 ° C. The gas stream of the subcomponent gasified through was rapidly cooled in the cooling furnace 4 to obtain ultrafine particles having an average primary particle diameter of 0.001 μm or more and 0.20 μm or less (step ( d)). Ultrafine particles having an average particle diameter of 0.001 to 0.20 μm were obtained by changing the cooling rate of the gasified subcomponent. Secondary component granules having average particle diameters of 0.001, 0.01, 0.03, 0.05, 0.10, 0.15, and 0.20 μm were obtained in order of increasing cooling rate.
[0019]
Further, the auxiliary component was wet-mixed and pulverized with a ball mill using pure water as a dispersion medium (step (e)).
[0020]
Next, the mud proof produced in the above step e is put into a metal vat, and the mud proof is frozen at −10 ° C., and then vacuumed at 0 ° C. to sublimate the moisture, that is, freeze-dried. Granules were prepared in which the particles of the compound were not agglomerated (step (f)).
[0021]
A multilayer ceramic capacitor was produced by the process shown in FIG. 3 using the subcomponent thus produced. First, 3 wt% of the subcomponent is added to the main ingredient raw material of BaTiO 3 having an average particle size of 0.7 μm, an organic solvent is used as a dispersion medium in a ball mill, and an organic binder and plasticizer are added. And a slurry made of a ceramic material was prepared (step (a)).
[0022]
Using the slurry, a sheet was formed by a doctor blade method to obtain a dielectric ceramic green sheet and dried (steps (b) and (c)).
[0023]
A conductive paste is printed on a plurality of internal electrode patterns on one surface of the obtained green sheet (step (d)), dried (step (e)), and then laminated with a plurality of green sheets (step (f)). ) And then cut (step (g)) to form a multilayer ceramic capacitor multilayer body.
[0024]
This laminate is heated in air at 320 ° C. for 5 hours to perform a binder removal treatment, and then fired at about 1200 ° C. for 2 hours in a reducing gas flow with a H 2 / N 2 volume ratio of 3/100. Thus, a sintered body was produced (step (h)).
[0025]
Next, in order to compensate for the oxygen deficient due to the firing, firing is performed at 800 ° C. for 4 hours in an air atmosphere to re-oxidize, and a Cu paste is applied to both ends of the sintered body and baked, whereby a terminal electrode is formed. The multilayer ceramic capacitor was formed (step (i)).
[0026]
The thickness of the internal electrode of the multilayer ceramic capacitor was 1.5 μm, the thickness of the dielectric layer between the internal electrodes was 5 μm, and the number of stacked dielectric layers was 210 layers. The external dimensions of the product are 3.2 mm × 1.6 mm × 1.2 mm .
[0027]
[Comparative Example 1]
On the other hand, instead of the plasma treatment in the step (d) of FIG. 1 (A) , as shown in FIG. 1 (B) (d), the powder having an average particle size of 0.5 μm to 2.0 μm is obtained. In an air atmosphere roasting furnace, it is heated at 700 ° C. and then rapidly cooled, and then this auxiliary component is wet pulverized in a ball mill using water as a dispersion medium ((e) in FIG. 1 (B)) , By making the average particle size 0.1 μm and freeze-drying as described above ((f) in FIG. 1 (B)), subcomponents having almost no aggregation were obtained. Subsequent steps produced a monolithic ceramic capacitor having the same dimensions as in Example 1.
[0028]
[Comparative Example 2]
In Comparative Example 1 , the average particle size was 1.0 μm, and in the other steps, a multilayer ceramic capacitor having the same dimensions as in Comparative Example 1 was produced.
[0029]
[Conventional example]
As a conventional example, BaCO 3 , CaCO 3 , SiO 2 , Y 2 O 3 , MgCO 3 , Cr 2 O 3 , V 2 O 5 are used as subcomponents by steps (a) to (c ) in FIG. ZrO 2 was weighed and prepared, and mixed and pulverized with a ball mill using an organic solvent as a dispersion medium. The dried mud scourers were dried with hot air using a batch furnace to form granules. The produced granule was a powder having an average particle diameter of 1.5 μm to 2.0 μm. This granule was directly mixed with the main component composed of BaTiO 3 , and the other steps were performed in the same manner as in the above example to produce a multilayer ceramic capacitor having the same dimensions.
[0030]
[Short defect rate test and high temperature accelerated life test]
The ceramic capacitors according to Example 1, Comparative Example 1, and the conventional example were evaluated by a withstand voltage failure rate (short failure rate) and a high temperature accelerated life test. With regard to the breakdown voltage failure, a DC voltage of 10 V was applied and the insulation resistance after 30 seconds was 100 MΩ or less. The high temperature accelerated life test was performed by continuously applying an ambient temperature of 200 ° C. and a DC voltage of 25V. The results are shown in Table 1. In FIG. 4, the horizontal axis indicates time, and the vertical axis indicates the occurrence rate of short-circuit defects.
[0031]
[Table 1]
Figure 0003630205
[0032]
Example 1 in Table 1 is a result of testing 100 particles having an average particle size (average particle size after lyophilization) of 0.03 μm of primary particles of subcomponents. In addition, Comparative Examples 1 and 2 in Table 1 are the results of testing 100 particles of subcomponents having an average primary particle size of 0.1 μm. The conventional examples in Table 1 are the results of testing 100 samples having an average particle size of 1.0 μm.
[0033]
In addition, Example 1 in FIG. 4 is a test result for a subcomponent having an average primary particle diameter of 0.03 μm, and Comparative Example 1 in FIG. FIG. 4 shows the test results for the 1 μm particles, and the conventional example in FIG. 4 shows the test results for the subcomponent primary particles having an average particle diameter of 1.0 μm.
[0034]
As is apparent from Table 1, according to Example 1 , the short-circuit defect rate is reduced to about 1/240 or less as compared with the conventional example, and compared with Comparative Examples 1 and 2, it is reduced to 1/10. ing. Further , according to Example 1 , the life in the high temperature load test is also about 6 to 240 times longer than that of the conventional example and Comparative Examples 1 and 2 . In addition, in the case of freeze-drying after plasma treatment as in Example 1 of FIG. 4, if the average particle size is reduced, good results can be obtained in the results of the high-temperature accelerated life test and the short-circuit failure test.
[0035]
In Example 1 employing the plasma method, when the average particle size is 0.15 μm, the short-circuit defect rate is reduced to about 1/6 and the accelerated life is doubled compared to the case where the average particle size is 0.2 μm. Extended. In addition, in the range where the average particle diameter is 0.001 μm to 0.15 μm, the occurrence rate of short-circuit failure decreases as the average particle diameter decreases, and the accelerated lifetime also increases. On the other hand, when the average particle size is less than 0.001 μm, aggregation tends to occur and production becomes difficult. Therefore, the average particle size of the primary particles is preferably 0.001 μm to 0.15 μm.
[0036]
Reference Material 3 shows the dispersion state of particles in the case of the conventional method, Example 1, and Comparative Example 1 , respectively. In Reference Material 3, the plasma method shown at the right end shows the element concentration distribution after mixing the subcomponent having an average particle size of 0.03 μm as the main component in Example 1. Moreover, what is shown about the roasting method shows the concentration distribution of Ca and Si elements after the subcomponents with an average particle size of 0.1 μm obtained by the roasting method are mixed with the main component. . The conventional method (STD) is obtained by mixing the subcomponents shown in the above-mentioned conventional example into the main component. As is apparent from Reference Material 3, when the plasma method is used, each element of the subcomponent is amorphous mixed with each element, so that each element is uniformly present in the entire particle assembly. be able to. Further, in the case of the roasting method, since each particle of the subcomponent exists as a compound of each element, it is possible to obtain a state in which each element is uniformly distributed as a whole particle assembly as in the plasma method. In any case, compared with the case of the conventional method, a fine and uniform component distribution can be obtained, and short circuit defects can be reduced and characteristics can be stabilized.
[0037]
Reference Material 4 uses a subcomponent having an average primary particle size of 0.03 μm (BET value 30 m 2 / g) in Example 1 and sets the thickness of the dielectric layer between the internal electrodes to 7 μm, 4 μm, 2 μm. It is the COMP photograph by an electron microscope at the time of changing to .
[0038]
【The invention's effect】
In the present invention, one or more of BaTiO 3 , CaTiO 3 , SrTiO 3, or BaZrO 3 is used as a main component, and subcomponents mixed with the main component include Ba, Ca, Sr, Mg, Si, and Cr. , Y, V, Mn, W, using a compound containing at least three compounds selected from each compound of Zr, mixing the subcomponents, pulverizing to produce granules, , By making it a gas stream with a plasma flame of 2000 ° C. to 20000 ° C. and then cooling it to make ultrafine particles having an average particle diameter of 0.001 μm to 0.15 μm, wet-pulverizing the ultrafine particles, and then freeze-drying, A manufacturing method for manufacturing a dielectric ceramic material by mixing the lyophilized subcomponent powder in an amount of 0.2 wt% to 10.0 wt% with respect to the main component. In addition to being obtained by freeze-drying, it is possible to prevent aggregation of subcomponents and maintain the state of ultrafine particles. For this reason, by improving the dispersibility with respect to the main component of the subcomponent and making the composition uniform, the occurrence of segregation phase is suppressed, and even if the dielectric interlayer thickness is 10 μm or less, there is no short-circuit defect, and due to aging. A small, high capacitance, low cost, highly reliable multilayer ceramic capacitor with little deterioration in characteristics can be produced.
[0039]
Moreover, after preparing the sub-component granules, the average particle diameter 0.001μm or more by the plasma method, since to obtain the following micronized 0.15 [mu] m, and a part or all of the sub-component amorphous Therefore, the element distribution can be made uniform in the entire dielectric ceramic material, desired characteristics can be easily obtained, and a capacitor having stable characteristics can be obtained.
[Brief description of the drawings]
FIGS. 1A and 1B are production process diagrams of subcomponents in an example of a dielectric ceramic material production method according to the present invention and comparative examples, respectively, and FIG. 1C is a production process diagram of conventional subcomponents. is there.
FIG. 2 is a schematic configuration diagram of an apparatus for performing a plasma method used in the present invention.
FIG. 3 is a production process diagram for obtaining a multilayer ceramic capacitor using subcomponents obtained by the production method of the present invention.
FIG. 4 is a diagram showing results of high-temperature accelerated life tests in examples , comparative examples, and conventional examples of the present invention.
[Explanation of symbols]
1: Plasma torch, 2: Granule inlet, 3: Gas inlet, 4: Cooling furnace, 5: Collection furnace

Claims (1)

BaTiO、CaTiO、SrTiOあるいは
BaZrOのうちの1種類または2種類以上を主成分とし、
該主成分に混合する副成分として、Ba、Ca、Sr、Mg、Si、Cr、Y、V、Mn、W、Zrの各々の化合物から選ばれる少なくとも3種以上の化合物を含むものを用い、
前記副成分を混合し、粉砕した後に顆粒を作製し、
該副成分の顆粒を、2000℃〜20000℃のプラズマ炎でガス流とした後冷却することにより、平均粒径が0.001μm〜0.15μmの超微粒子にし、
該超微粒子を湿式粉砕した後、凍結乾燥を行い、
該凍結乾燥後の副成分粉末を前記主成分に対して0.2wt%以上、10.0wt%以下混合して誘電体セラミック材料を製造する
ことを特徴とする誘電体セラミック材料の製造方法。
Based on one or more of BaTiO 3 , CaTiO 3 , SrTiO 3 or BaZrO 3 as a main component,
As a subcomponent to be mixed with the main component, one containing at least three or more compounds selected from the compounds of Ba, Ca, Sr, Mg, Si, Cr, Y, V, Mn, W, and Zr is used.
Mixing and crushing the accessory ingredients to produce granules,
The sub-component granules are made into a gas stream with a plasma flame at 2000 ° C. to 20000 ° C. and then cooled to form ultrafine particles having an average particle size of 0.001 μm to 0.15 μm,
After wet pulverizing the ultrafine particles, freeze drying,
A method for producing a dielectric ceramic material, comprising producing the dielectric ceramic material by mixing the secondary component powder after lyophilization in an amount of 0.2 wt% to 10.0 wt% with respect to the main component.
JP08878997A 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material Expired - Lifetime JP3630205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08878997A JP3630205B2 (en) 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08878997A JP3630205B2 (en) 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material

Publications (2)

Publication Number Publication Date
JPH10270284A JPH10270284A (en) 1998-10-09
JP3630205B2 true JP3630205B2 (en) 2005-03-16

Family

ID=13952617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08878997A Expired - Lifetime JP3630205B2 (en) 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material

Country Status (1)

Country Link
JP (1) JP3630205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951319B1 (en) * 2007-12-25 2010-04-05 삼성전기주식회사 Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355615B1 (en) * 1999-12-30 2002-10-12 안달 Dielectric ceramic compositions
TW492017B (en) * 2000-06-29 2002-06-21 Tdk Corp Dielectrics porcelain composition and electronic parts
US6764976B2 (en) 2000-12-25 2004-07-20 Tdk Corporation Dielectric ceramic composition and electronic device
JP2002201064A (en) * 2000-12-27 2002-07-16 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production method
KR20020094329A (en) * 2001-06-11 2002-12-18 최치준 Method of fabricating ceramic slurry for multi-layer ceramic capacitor
JP4506138B2 (en) * 2003-09-30 2010-07-21 Tdk株式会社 Method for producing slurry, method for producing green sheet, and method for producing multilayer electronic component
CN100359612C (en) * 2004-09-03 2008-01-02 江苏大学 Medium low temperature sintered high voltage ceramic capacitor medium
KR100674846B1 (en) 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP2008162826A (en) * 2006-12-27 2008-07-17 Namics Corp Reduction-resistant dielectric ceramic composition, dielectric using it and laminated ceramic capacitor
KR100822586B1 (en) 2006-12-28 2008-04-16 삼화콘덴서공업주식회사 Dielectric without piezo effect and method for manufacturing multi layer ceramic capacitor without piezo effect using thereof
JP4930149B2 (en) * 2007-03-29 2012-05-16 Tdk株式会社 Manufacturing method of multilayer electronic component
JP5217742B2 (en) * 2008-07-31 2013-06-19 Tdk株式会社 Dielectric porcelain composition and electronic component
KR101058431B1 (en) * 2011-01-20 2011-08-24 주식회사 피에스엠 Plasma treatment system and mlcc manufacturing method using the same
JP5712727B2 (en) * 2011-03-29 2015-05-07 株式会社村田製作所 Dielectric ceramic slurry and multilayer ceramic electronic component
KR102183423B1 (en) * 2014-12-08 2020-11-26 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN107304130B (en) * 2016-04-18 2021-03-09 Tdk株式会社 Dielectric composition, dielectric ceramic, and capacitor
KR102409109B1 (en) * 2018-08-06 2022-06-15 삼성전기주식회사 Dielectric composition and electronic component using the same
KR102319602B1 (en) 2019-11-27 2021-11-02 삼성전기주식회사 Manufacturing method of core-shell particle and multi-layer ceramic electronic parts including core-shell particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951319B1 (en) * 2007-12-25 2010-04-05 삼성전기주식회사 Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby

Also Published As

Publication number Publication date
JPH10270284A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP3630205B2 (en) Method for manufacturing dielectric ceramic material
JP5316642B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
US6303529B1 (en) Dielectric ceramic, method for producing the same, laminated ceramic electronic element, and method for producing the same
TWI402874B (en) Laminated ceramic capacitors
TWI427051B (en) Dielectric ceramic and laminated ceramic capacitor
JPH02225363A (en) Dielectric material porcelain composition, laminate ceramic condenser using same and production thereof
JPH10255549A (en) Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JP2011057511A (en) Ceramic electronic part and method for manufacturing the same
EP1454689B1 (en) Surface-treated ultrafine metal powder
JP3783938B2 (en) Ceramic powder and multilayer ceramic electronic components
JP3620315B2 (en) Dielectric porcelain composition
JP2002321983A (en) Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor
JP3751146B2 (en) Method for producing composition comprising BaTiO3 as main component and method for producing multilayer ceramic capacitor
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
US6479419B2 (en) Electronic device, dielectric ceramic composition, and method for producing same
JP3613044B2 (en) Dielectric porcelain composition
JP2005008471A (en) Method of manufacturing complex oxide powder, complex oxide powder, dielectric ceramic composition and lamination type electronic component
JP2000026161A (en) Dielectric ceramic composition
JP2011132071A (en) Method for producing dielectric ceramic material
KR100703080B1 (en) Method for Manufacturing Dielectric Powder for Low Temperature Sintering and Method for Manufacturing Multilayer Ceramic Condenser Using the Same
JP2009173473A (en) Dielectric porcelain composition and manufacturing method of multilayer ceramic capacitor using the same
JP2004292271A (en) Dielectric porcelain and its manufacturing method, and laminated ceramic capacitor
JP3935762B2 (en) Multilayer electronic component and manufacturing method thereof
JP2004247719A (en) Layered ceramic capacitor
JP3132106B2 (en) Manufacturing method of non-reducing dielectric porcelain

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term