JP2001307940A - Laminated ceramic capacitor and its manufacturing method - Google Patents

Laminated ceramic capacitor and its manufacturing method

Info

Publication number
JP2001307940A
JP2001307940A JP2000125294A JP2000125294A JP2001307940A JP 2001307940 A JP2001307940 A JP 2001307940A JP 2000125294 A JP2000125294 A JP 2000125294A JP 2000125294 A JP2000125294 A JP 2000125294A JP 2001307940 A JP2001307940 A JP 2001307940A
Authority
JP
Japan
Prior art keywords
main component
ceramic
multilayer ceramic
ceramic capacitor
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000125294A
Other languages
Japanese (ja)
Inventor
Koichi Chazono
広一 茶園
Hisamitsu Shizuno
寿光 静野
Hiroshi Kishi
弘志 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2000125294A priority Critical patent/JP2001307940A/en
Publication of JP2001307940A publication Critical patent/JP2001307940A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To solve a problem in which an electric field is increased in intensity per layer when dielectric layers are each lessened in thickness and increased in number of layers so as to enhance a laminated ceramic capacitor in capacitance and to lessen it in size at the same time, and a dielectric breakdown is liable to occur between inner electrodes, so that the laminated ceramic capacitor is shortened in service life and deteriorated in reliability of electrical properties. SOLUTION: Dielectric layers and inner electrode layers are laminated into a laminated ceramic capacitor of integral structure, where the dielectric layer is made of dielectric porcelain composition formed of sintered bodies that contain main component particles and these of a secondary phase formed at their grain boundaries. The component particles of a secondary phase are set higher in insulation resistance than the main component particles. At this point, a component contained as a solid solution in the main component particles may serve as a main component of the main particles of a secondary phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、寿命特性を向上
させ、薄層化・多層化による更なる小型大容量化を可能
にした積層セラミックコンデンサとその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monolithic ceramic capacitor having improved life characteristics and capable of achieving further miniaturization and large capacity by thinning and multilayering, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】図2は積層セラミックコンデンサの説明
図である。同図に示すように、積層セラミックコンデン
サはチップ状の素体18と、素体18の両端部に形成さ
れた一対の外部電極20,20とからなる。素体18は
一般に誘電体層22と内部電極24とが交互に多数層積
層された積層体からなる。内部電極24のうち、隣り合
う内部電極24,24は誘電体層22を介して対向し、
別々の外部電極20,20と電気的に接続されている。
2. Description of the Related Art FIG. 2 is an explanatory view of a multilayer ceramic capacitor. As shown in the figure, the multilayer ceramic capacitor includes a chip-shaped element body 18 and a pair of external electrodes 20 formed on both ends of the element body 18. The element body 18 is generally formed of a laminate in which a large number of dielectric layers 22 and internal electrodes 24 are alternately laminated. Of the internal electrodes 24, the adjacent internal electrodes 24, 24 face each other via the dielectric layer 22,
It is electrically connected to separate external electrodes 20 and 20.

【0003】ここで、誘電体層22の材料としては、例
えばチタン酸バリウムを主成分とし、これに希土類元素
の酸化物を添加した、耐還元性誘電体磁器組成物が使用
されている。この誘電体磁器組成物は、図3に示すよう
に、セラミック粒子10と焼結助剤26とからなり、セ
ラミック粒子10は中心部のコア部12とコア部12を
囲繞するシェル部14とからなる。また、内部電極24
の材料としては、例えばNi金属粉末を主成分とする導
電性ペーストを焼結させたものが使用されている。
Here, as a material of the dielectric layer 22, for example, a reduction-resistant dielectric porcelain composition containing barium titanate as a main component and an oxide of a rare earth element added thereto is used. As shown in FIG. 3, the dielectric porcelain composition is composed of ceramic particles 10 and a sintering aid 26. The ceramic particles 10 are composed of a core portion 12 at the center and a shell portion 14 surrounding the core portion 12. Become. In addition, the internal electrodes 24
For example, a material obtained by sintering a conductive paste containing Ni metal powder as a main component is used.

【0004】素体18は、セラミックグリーンシートと
内部電極パターンとを交互に一体的に積層させたチップ
状の積層体を脱バインダした後、非酸化性雰囲気中にお
いて1200〜1300℃程度の高温で焼成し、その
後、酸化性雰囲気中で再酸化させることにより製造され
ている。
The element body 18 is obtained by removing a chip-like laminate in which ceramic green sheets and internal electrode patterns are alternately and integrally laminated, and then subjecting the laminate to a high temperature of about 1200 to 1300 ° C. in a non-oxidizing atmosphere. It is manufactured by firing and then reoxidizing in an oxidizing atmosphere.

【0005】[0005]

【発明が解決しようとする課題】ところで、近年におけ
る電子回路の小型化、高密度化の流れに伴い、積層セラ
ミックコンデンサについても小型大容量化が求められ、
小型大容量化のために誘電体層の積層数の更なる増加
と、1層当たりの誘電体層の更なる薄層化が進んでい
る。
With the recent trend of miniaturization and high density of electronic circuits, multilayer ceramic capacitors are also required to have a small size and a large capacity.
To increase the size and the capacity, the number of stacked dielectric layers is further increased, and the thickness of each dielectric layer is further reduced.

【0006】しかし、誘電体層を薄層化させると、1層
当たりの電界強度が大きくなり、積層セラミックコンデ
ンサの寿命が短くなり、所望の寿命の積層セラミックコ
ンデンサが得られなくなるという問題があった。
However, when the thickness of the dielectric layer is reduced, the electric field strength per one layer increases, and the life of the multilayer ceramic capacitor is shortened, so that a multilayer ceramic capacitor having a desired life cannot be obtained. .

【0007】この発明は、誘電体層を多層化・薄層化し
ても所望の寿命を有し、小型大容量化が可能な積層セラ
ミックコンデンサとその製造方法を提供することを目的
とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a multilayer ceramic capacitor which has a desired life even when the dielectric layers are multilayered and thinned, and which can be reduced in size and capacity, and a method of manufacturing the same.

【0008】[0008]

【課題を解決するための手段】この発明に係る積層セラ
ミックコンデンサは、複数の誘電体層と複数の内部電極
とを一体的に積層してなり、該誘電体層は誘電体磁器組
成物からなり、該誘電体磁器組成物は主成分粒子と、該
主成分粒子の粒界(粒子と粒子の間の部分)に形成され
た二次相(主成分粒子以外の部分)とを含む焼結体から
なり、該二次相は該主成分粒子より絶縁抵抗が高いこと
を特徴とするものである。
A multilayer ceramic capacitor according to the present invention is formed by integrally laminating a plurality of dielectric layers and a plurality of internal electrodes, and the dielectric layers are made of a dielectric ceramic composition. A sintered body including a main component particle and a secondary phase (a portion other than the main component particle) formed at a grain boundary (a portion between the particles) of the main component particle; Wherein the secondary phase has a higher insulation resistance than the main component particles.

【0009】ここで、前記主成分粒子中に固溶している
成分が前記二次相の主成分となっていてもよい。また、
前記二次相が結晶体から形成されていてもよい。
[0009] Here, a component that is dissolved in the main component particles may be a main component of the secondary phase. Also,
The secondary phase may be formed from a crystal.

【0010】また、前記主成分粒子が、中心部を形成す
るコア部と、該コア部を囲繞するシェル部とからなり、
該コア部が結晶体からなり、該シェル部が固溶体からな
り、前記二次相の絶縁抵抗が該シェル部の絶縁抵抗より
高くてもよい。
The main component particles include a core portion forming a central portion, and a shell portion surrounding the core portion.
The core may be made of a crystalline material, the shell may be made of a solid solution, and the insulation resistance of the secondary phase may be higher than the insulation resistance of the shell.

【0011】また、前記誘電体磁器組成物は、例えばチ
タン酸バリウム系の誘電体磁器組成物、チタン酸ストロ
ンチウム系の誘電体磁器組成物又は鉛系の誘電体磁器組
成物によって形成することができるが、これら以外の誘
電体磁器組成物によって形成してもよい。
The dielectric porcelain composition may be formed of, for example, a barium titanate-based dielectric porcelain composition, a strontium titanate-based dielectric porcelain composition, or a lead-based dielectric porcelain composition. However, you may form with a dielectric ceramic composition other than these.

【0012】また、前記誘電体磁器組成物は、JISの
温度特性がB特性の誘電体磁器組成物、F特性の誘電体
磁器組成物のいずれでもよい。ここで、F特性とは、−
25〜85℃の温度範囲で静電容量変化率が+20%〜
−80%の範囲内にあること、B特性とは、−25〜+
85℃の温度範囲で静電容量変化率が−10〜+10%
の範囲内にあることをいう。
The dielectric ceramic composition may be either a dielectric ceramic composition having a JIS temperature characteristic of B characteristic or a dielectric ceramic composition having an F characteristic. Here, the F characteristic is-
Capacitance change rate of + 20% to 25-85 ° C
Within the range of −80%, the B characteristic is −25 to +
Capacitance change rate is -10 to + 10% in 85 ° C temperature range
Is within the range.

【0013】また、前記二次相中にSc,Y,Gd,D
y,Ho,Er,Yb,Tm,Luから選択された1種
又は2種以上の希土類元素を含ませてもよい。この場
合、前記誘電体磁器組成物100モル%に対し、前記希
土類元素を2〜18atm%の割合で含ませるのが好ま
しい。希土類元素が2atm%未満では所望の寿命(lif
e)が得られず、18atm%を越えると所望の誘電率
(ε)が得られなくなるからである。
In the secondary phase, Sc, Y, Gd, D
One, two or more rare earth elements selected from y, Ho, Er, Yb, Tm, and Lu may be contained. In this case, the rare earth element is preferably contained at a ratio of 2 to 18 atm% with respect to 100 mol% of the dielectric ceramic composition. If the rare earth element is less than 2 atm%, the desired life (lif
e) is not obtained, and if it exceeds 18 atm%, the desired dielectric constant
This is because (ε) cannot be obtained.

【0014】また、前記二次相中にMgを含ませてもよ
い。この場合、前記誘電体磁器組成物100モル%に対
し、Mgを0.8〜5.0atm%の割合で含ませるの
が好ましい。Mgが0.8atm%未満では所望の寿命
(life)が得られず、5atm%を越えても寿命(life)の
延びがこれ以上期待できないからである。
Further, Mg may be contained in the secondary phase. In this case, it is preferable that Mg is contained in a ratio of 0.8 to 5.0 atm% based on 100 mol% of the dielectric ceramic composition. Desired life if Mg is less than 0.8 atm%
(life) cannot be obtained, and even if it exceeds 5 atm%, the extension of the life cannot be expected any longer.

【0015】また、前記二次相中にMn,V,Cr,C
o,Fe,Ni,Cu,Mo,P,Nb及びTaから選
択された1種又は2種以上の元素を含ませてもよい。ま
た、焼結助剤は、実施例で使用されたBaSiOに限
定されず、LiやBを含むものであってもよい。
Further, Mn, V, Cr, C is contained in the secondary phase.
One, two or more elements selected from o, Fe, Ni, Cu, Mo, P, Nb and Ta may be included. Further, the sintering aid is not limited to BaSiO 3 used in the examples, and may include Li or B.

【0016】また、この発明に係る積層セラミックコン
デンサの製造方法は、主成分化合物を形成する主成分原
料と該主成分化合物に固溶させる副成分原料とを含むセ
ラミック原料を準備する原料工程と、該セラミック原料
を用いてセラミックグリーンシートを形成するシート形
成工程と、該セラミックグリーンシートに内部電極パタ
ーンを印刷する印刷工程と、該印刷工程を経たセラミッ
クグリーンシートを積層して積層体を形成する積層工程
と、該積層体を内部電極パターン毎に裁断してチップ状
の積層体を得る裁断工程と、該裁断工程で得られたチッ
プ状の積層体を焼成する焼成工程とを備え、前記副成分
原料の量を前記主成分化合物に固溶する限度以上とした
ものである。
Further, the method of manufacturing a multilayer ceramic capacitor according to the present invention includes a raw material step of preparing a ceramic raw material including a main component material forming a main component compound and an auxiliary component material forming a solid solution with the main component compound. A sheet forming step of forming a ceramic green sheet using the ceramic raw material, a printing step of printing an internal electrode pattern on the ceramic green sheet, and a stacking step of forming a laminate by stacking the ceramic green sheets after the printing step A step of cutting the laminate into internal electrode patterns to obtain a chip-shaped laminate, and a firing step of firing the chip-shaped laminate obtained in the cutting step. The amount of the raw material is set to be equal to or larger than the limit at which the raw material is dissolved in the main component compound.

【0017】ここで、前記セラミック原料は、例えばチ
タン酸バリウム系のセラミック原料、チタン酸ストロン
チウム系のセラミック原料又は鉛系のセラミック原料を
使用することができるが、これら以外の誘電体磁器組成
物を使用してもよい。
Here, as the ceramic raw material, for example, a barium titanate-based ceramic raw material, a strontium titanate-based ceramic raw material, or a lead-based ceramic raw material can be used. May be used.

【0018】また、前記セラミック原料中にSc,Y,
Gd,Dy,Ho,Er,Yb,Tm,Luから選択さ
れた1種又は2種以上の希土類元素の化合物を含ませて
もよい。ここで、前記セラミック原料100モル%に対
し、前記希土類元素を2〜18atm%の割合で含ませ
るのが好ましい。希土類元素が2atm%未満では寿命
(life)の延びが期待できず、18atm%を越えると所
望の誘電率(ε)が得られなくなるからである。
Further, Sc, Y,
A compound of one or more rare earth elements selected from Gd, Dy, Ho, Er, Yb, Tm, and Lu may be included. Here, it is preferable that the rare earth element is contained in a ratio of 2 to 18 atm% with respect to 100 mol% of the ceramic raw material. Life is less than 2atm% rare earth element
This is because the extension of (life) cannot be expected, and if it exceeds 18 atm%, the desired dielectric constant (ε) cannot be obtained.

【0019】また、前記副成分中にMgを含ませてもよ
い。ここで、前記セラミック原料100モル%に対して
Mgを0.8〜5.0atm%の割合で含ませるのが好
ましい。Mgが0.8atm%未満では所望の寿命(lif
e)が得られず、5atm%を越えても寿命(life)の延び
がこれ以上期待できないからである。
Further, Mg may be contained in the subcomponent. Here, it is preferable that Mg is contained at a ratio of 0.8 to 5.0 atm% with respect to 100 mol% of the ceramic raw material. If the Mg content is less than 0.8 atm%, the desired life (lif
This is because e) cannot be obtained, and even if it exceeds 5 atm%, a longer life can not be expected.

【0020】また、前記二次相中にMn,V,Cr,C
o,Fe,Ni,Cu,Mo,P,Nb及びTaから選
択された1種又は2種以上の元素を含ませてもよい。ま
た、焼結助剤は、実施例で使用されたBaSiOに限
定されず、LiやBを含むものであってもよい。
Further, Mn, V, Cr and C are contained in the secondary phase.
One, two or more elements selected from o, Fe, Ni, Cu, Mo, P, Nb and Ta may be included. Further, the sintering aid is not limited to BaSiO 3 used in the examples, and may include Li or B.

【0021】また、前記焼成工程は、前記チップ状の積
層体を非酸化性雰囲気中で焼成した後、酸化性雰囲気中
で焼成する再酸化工程を有していてもよい。
Further, the firing step may include a re-oxidation step of firing the chip-shaped laminate in a non-oxidizing atmosphere and then firing in an oxidizing atmosphere.

【0022】[0022]

【実施例】まず、BaCO、MgO、SrO、TiO
及び希土類元素(Ho,Dy,Er,Sm)の酸化物
を各々秤量し、これらの化合物をポットミルに、アルミ
ナボール及び水とともに入れ、充分に撹拌混合して、原
料混合物を得た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, BaCO 3 , MgO, SrO, TiO
2 and oxides of rare earth elements (Ho, Dy, Er, Sm) were weighed, and these compounds were put into a pot mill together with alumina balls and water, and sufficiently stirred and mixed to obtain a raw material mixture.

【0023】次に、この原料混合物をステンレスポット
に入れ、熱風式乾燥器を用い、150℃で乾燥し、この
乾燥した原料混合物を粗粉砕し、この粗粉砕した原料混
合物をトンネル炉を用い、大気中において約1200℃
で2時間仮焼し、第1基本成分の粉末を得た。
Next, the raw material mixture is placed in a stainless steel pot, dried at 150 ° C. using a hot air drier, coarsely pulverized, and the coarsely ground raw material mixture is subjected to a tunnel furnace. About 1200 ° C in air
For 2 hours to obtain a powder of the first basic component.

【0024】また、BaCO とZrO とが等モル
となるように、それぞれ秤量し、これ等を混合し、乾燥
し、粉砕した後、大気中において約1250℃で2時間
仮焼して、第2基本成分の粉末を得た。
Further, BaCO 3 and ZrO 2 were weighed so as to be equimolar, mixed, dried and pulverized, and calcined in the atmosphere at about 1250 ° C. for 2 hours. A powder of the second basic component was obtained.

【0025】そして、98モル部(976.28g)の
第1基本成分の粉末と、2モル部(23.85g)の第
2基本成分の粉末とを混合して1000gの基本成分を
得た。
Then, 98 mole parts (976.28 g) of the powder of the first basic component and 2 mole parts (23.85 g) of the powder of the second basic component were mixed to obtain 1000 g of the basic component.

【0026】次に、前記基本成分100モル部に対し、
BaSiO(焼結助剤)を1.5mol%、MnO
(還元防止剤)を0.05mol%添加し、アクリル酸
エステルポリマー、グリセリン、縮合リン酸塩の水溶液
からなる有機バインダーを、15重量%添加し、更に、
50重量%の水を加え、これらをボールミルに入れて、
粉砕及び混合して磁器原料のスラリーを調製した。
Next, with respect to 100 mole parts of the basic component,
1.5 mol% of BaSiO 3 (sintering aid), MnO
(Reduction inhibitor) is added in an amount of 0.05 mol%, and an organic binder composed of an aqueous solution of an acrylate polymer, glycerin and a condensed phosphate is added in an amount of 15% by weight.
Add 50% by weight of water, put them in a ball mill,
The mixture was pulverized and mixed to prepare a porcelain raw material slurry.

【0027】次に、上記セラミックスラリーを真空脱泡
機に入れて脱泡し、このセラミックスラリーをリバース
ロールコータに入れ、ここから得られる薄膜成形物を長
尺なポリエステルフィルム上に連続して受け取らせると
共に、同フィルム上でこれを100℃に加熱して乾燥さ
せ、厚さ約5μmで10cm角の正方形のセラミックグ
リーンシートを得た。
Next, the ceramic slurry is placed in a vacuum defoaming machine to remove bubbles, and the ceramic slurry is placed in a reverse roll coater, and the thin film obtained therefrom is continuously received on a long polyester film. At the same time, the film was heated to 100 ° C. and dried on the same film to obtain a square ceramic green sheet having a thickness of about 5 μm and a square of 10 cm.

【0028】一方、平均粒径1.5μmのニッケル粉末
10gと、エチルセルロース0.9gをブチルカルビト
ール9.1gに溶解させたものとを撹拌機に入れ、10
時間撹拌することにより内部電極用の導電性ペーストを
得た。そして、この導電性ペーストを用い、長さ14m
m、幅7mmのパターンを50個有するスクリーンを介
して上記セラミックグリーンシートの片側に内部電極パ
ターンを印刷し、これを乾燥させた。
On the other hand, 10 g of nickel powder having an average particle size of 1.5 μm and 0.9 g of ethyl cellulose dissolved in 9.1 g of butyl carbitol were placed in a stirrer.
By stirring for a time, a conductive paste for an internal electrode was obtained. Then, using this conductive paste, a length of 14 m
An internal electrode pattern was printed on one side of the ceramic green sheet through a screen having 50 m and 7 mm wide patterns, and this was dried.

【0029】次に、内部電極パターンを印刷したセラミ
ックグリーンシートを内部電極パターンを上にした状態
で11枚積層した。この際、隣接する上下のセラミック
グリーンシートにおいて、その印刷面が内部電極パター
ンの長手方向に約半分程ずれるように配置した。更に、
この積層物の上下両面に内部電極パターンを印刷してな
い保護層用のセラミックグリーンシートを200μmの
厚さで積層した。
Next, eleven ceramic green sheets on which the internal electrode patterns were printed were laminated with the internal electrode patterns facing upward. At this time, the printed surfaces of the adjacent upper and lower ceramic green sheets were arranged so as to be shifted by about half in the longitudinal direction of the internal electrode pattern. Furthermore,
On the upper and lower surfaces of the laminate, ceramic green sheets for a protective layer on which no internal electrode pattern was printed were laminated with a thickness of 200 μm.

【0030】次に、この積層物を約50℃の温度で厚さ
方向に約40トンの荷重を加えて圧着させ、しかる後、
この積層物を内部電極パターン毎に格子状に裁断して、
3.2×1.6mmのチップ状の積層体を50個得た。
Next, the laminate is pressed at a temperature of about 50 ° C. by applying a load of about 40 tons in a thickness direction, and thereafter,
This laminate is cut into a lattice shape for each internal electrode pattern,
Fifty 3.2 × 1.6 mm chip-shaped laminates were obtained.

【0031】次に、このチップ状の積層体を雰囲気焼成
が可能な炉に入れ、大気雰囲気中において100℃/h
の速度で600℃まで昇温させ、有機バインダを燃焼除
去させた。
Next, this chip-shaped laminate is placed in a furnace capable of firing in an atmosphere, and is heated at 100 ° C./h in an air atmosphere.
The temperature was raised to 600 ° C. at a rate of to burn off the organic binder.

【0032】その後、炉の雰囲気を大気雰囲気からH
(2体積%)+N (98体積%)の還元性雰囲気に
変えた。そして、炉をこの還元性雰囲気とした状態を保
って、積層体チップの加熱温度を600℃から焼結温度
の1130℃まで、100℃/hの速度で昇温して11
30℃(最高温度)を3時間保持した。
After that, the atmosphere of the furnace was changed from the air atmosphere to H 2.
The atmosphere was changed to a reducing atmosphere of (2% by volume) + N 2 (98% by volume). Then, while keeping the furnace in the reducing atmosphere, the heating temperature of the laminated chip was raised from 600 ° C. to the sintering temperature of 1130 ° C. at a rate of 100 ° C./h, and 11
30 ° C. (maximum temperature) was maintained for 3 hours.

【0033】そして、100℃/hの速度で600℃ま
で降温し、雰囲気を大気雰囲気(酸化性雰囲気)におき
かえて、600℃を30分間保持して酸化処理を行い、
その後、室温まで冷却して積層セラミックコンデンサの
素体を得た。
Then, the temperature was lowered to 600 ° C. at a rate of 100 ° C./h, the atmosphere was changed to the air atmosphere (oxidizing atmosphere), and the oxidation treatment was carried out at 600 ° C. for 30 minutes.
Thereafter, the resultant was cooled to room temperature to obtain a body of a multilayer ceramic capacitor.

【0034】次に、内部電極の端部が露出する素体の側
面に亜鉛とガラスフリット(glassfrit)とビヒクル(v
ehicle)とからなる導電性ペーストを塗布して乾燥し、
これを大気中で550℃の温度で15分間焼付け、亜鉛
電極層を形成し、更にこの上に無電解メッキ法で銅層を
形成し、更にこの上に電気メッキ法でPb−Sn半田層
を設けて、一対の外部電極を形成した。
Next, zinc, glass frit and vehicle (v) are applied to the side surfaces of the element where the ends of the internal electrodes are exposed.
ehicle) and dried.
This is baked in the air at a temperature of 550 ° C. for 15 minutes to form a zinc electrode layer, a copper layer is further formed thereon by an electroless plating method, and a Pb—Sn solder layer is further formed thereon by an electroplating method. To form a pair of external electrodes.

【0035】そして、このようにして作成した積層セラ
ミックコンデンサの寿命(Life)と、誘電体層の誘電率
(ε)を調べたところ、表1に示す通りであった。
The life of the multilayer ceramic capacitor thus manufactured and the dielectric constant of the dielectric layer
When (ε) was examined, it was as shown in Table 1.

【0036】ここで、寿命は、170℃の恒温槽内で、
積層セラミックコンデンサに70Vの電圧を負荷し、ブ
レークダウンした時間を測定して求めた。なお、表1中
の寿命の数値は試料No.1の値を1とした場合の倍率
で表わしている。
Here, the life is as follows:
A voltage of 70 V was applied to the multilayer ceramic capacitor, and the breakdown time was measured and determined. In addition, the numerical value of the life in Table 1 shows the sample No. It is represented by the magnification when the value of 1 is set to 1.

【0037】また、誘電率(ε)は、温度20℃、周波
数1kHz、電圧1.0Vの条件で積層セラミックコン
デンサの静電容量を測定し、この測定値と、一対の内部
電極の対向面積と誘電体層の厚みから計算で求めた。
The dielectric constant (ε) is obtained by measuring the capacitance of a multilayer ceramic capacitor under the conditions of a temperature of 20 ° C., a frequency of 1 kHz, and a voltage of 1.0 V. It was calculated from the thickness of the dielectric layer.

【0038】[0038]

【表1】 [Table 1]

【0039】以上の結果から、最低でも20%の寿命(L
ife)のアップが認められた。但し、No.6の試料のよ
うに希土類元素の添加量が20atm%を越えると誘電
率(ε)が大幅に低下してしまうこともわかった。
From the above results, at least a 20% life (L
up of ife) was recognized. However, no. It was also found that when the added amount of the rare earth element exceeded 20 atm% as in the sample No. 6, the dielectric constant (ε) was greatly reduced.

【0040】また、この積層セラミックコンデンサの誘
電体層の断面を顕微鏡で観察したところ、図1に示すよ
うに、セラミック粒子10の粒界に二次相16が形成さ
れていることがわかった。そして、二次相16の成分を
分析したところ、セラミック粒子10中に固溶している
添加成分と略同一のものであることがわかった。
When the cross section of the dielectric layer of the multilayer ceramic capacitor was observed with a microscope, it was found that a secondary phase 16 was formed at the grain boundaries of the ceramic particles 10 as shown in FIG. When the components of the secondary phase 16 were analyzed, it was found that they were substantially the same as the additive components dissolved in the ceramic particles 10.

【0041】[0041]

【発明の効果】この発明は、誘電体層を形成している誘
電体磁器組成物中に高絶縁性を有する二次相を分散状態
で存在させたので、誘電体層に印加される電圧の一部が
二次相によって分担され、セラミック粒子の電気的な負
荷が少なくなり、積層セラミックコンデンサの寿命特
性、特に誘電体層を薄層化させた時の寿命特性が向上
し、薄層化・多層化が可能になり、積層セラミックコン
デンサの小型大容量化が可能になるという効果がある。
According to the present invention, the secondary phase having a high insulating property is present in a dispersed state in the dielectric ceramic composition forming the dielectric layer, so that the voltage applied to the dielectric layer can be reduced. Partially shared by the secondary phase, the electrical load on the ceramic particles is reduced, and the life characteristics of the multilayer ceramic capacitor, especially when the dielectric layer is made thinner, are improved. The multilayer ceramic capacitor has an effect that the multilayer ceramic capacitor can be reduced in size and increased in capacity.

【0042】また、この発明は、二次相が結晶体からな
る場合、誘電体層の誘電率の低下を抑えることができ、
積層セラミックコンデンサの小型大容量化に寄与すると
いう効果がある。
Further, according to the present invention, when the secondary phase is made of a crystalline material, a decrease in the dielectric constant of the dielectric layer can be suppressed,
This has the effect of contributing to the miniaturization and large capacity of the multilayer ceramic capacitor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明に係る積層セラミックコンデンサの誘
電体層を形成している磁器組成物の微細構造の説明図で
ある。
FIG. 1 is an explanatory diagram of a fine structure of a porcelain composition forming a dielectric layer of a multilayer ceramic capacitor according to the present invention.

【図2】積層セラミックコンデンサの説明図である。FIG. 2 is an explanatory diagram of a multilayer ceramic capacitor.

【図3】従来の積層セラミックコンデンサの誘電体層を
形成している磁器組成物の微細構造の説明図である。
FIG. 3 is an explanatory view of a fine structure of a porcelain composition forming a dielectric layer of a conventional multilayer ceramic capacitor.

【符号の説明】[Explanation of symbols]

10 セラミック粒子 12 コア部 14 シェル部 16 二次相 18 素体 20 外部電極 22 誘電体層 24 内部電極 26 焼結助剤 DESCRIPTION OF SYMBOLS 10 Ceramic particle 12 Core part 14 Shell part 16 Secondary phase 18 Element body 20 External electrode 22 Dielectric layer 24 Internal electrode 26 Sintering aid

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岸 弘志 東京都台東区上野6丁目16番20号 太陽誘 電株式会社内 Fターム(参考) 5E001 AB03 AD00 AE00 AE01 AE02 AE03 AE04 AF06 AH01 AH06 AH08 AH09 AJ01 AJ02 5E082 AA01 AB03 BC39 EE04 EE35 FG06 FG26 FG54 LL01 LL02 LL03 MM24 PP03  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hiroshi Kishi 6-16-20 Ueno, Taito-ku, Tokyo F-term within Taiyo Denki Co., Ltd. (reference) 5E001 AB03 AD00 AE00 AE01 AE02 AE03 AE04 AF06 AH01 AH06 AH08 AH09 AJ01 AJ02 5E082 AA01 AB03 BC39 EE04 EE35 FG06 FG26 FG54 LL01 LL02 LL03 MM24 PP03

Claims (18)

【特許請求の範囲】[Claims] 【請求項1】 複数の誘電体層と複数の内部電極とを一
体的に積層してなり、該誘電体層は誘電体磁器組成物か
らなり、該誘電体磁器組成物は主成分粒子と、該主成分
粒子の粒界に形成された二次相とを含む焼結体からな
り、該二次相は該主成分粒子より絶縁抵抗が高いことを
特徴とする積層セラミックコンデンサ。
1. A plurality of dielectric layers and a plurality of internal electrodes are integrally laminated, wherein the dielectric layers are made of a dielectric ceramic composition, wherein the dielectric ceramic composition comprises main component particles, A multilayer ceramic capacitor comprising a sintered body including a secondary phase formed at a grain boundary of the main component particles, wherein the secondary phase has a higher insulation resistance than the main component particles.
【請求項2】 前記主成分粒子中に固溶している成分が
前記二次相の主成分となっていることを特徴とする請求
項1に記載の積層セラミックコンデンサ。
2. The multilayer ceramic capacitor according to claim 1, wherein a component dissolved in the main component particles is a main component of the secondary phase.
【請求項3】 前記主成分粒子が、中心部を形成してい
るコア部と、該コア部を囲繞しているシェル部とからな
り、該コア部が結晶体からなり、該シェル部が固溶体か
らなり、前記二次相の絶縁抵抗が該シェル部の絶縁抵抗
より高いことを特徴とする請求項1又は2に記載の積層
セラミックコンデンサ。
3. The main component particles include a core forming a central portion and a shell surrounding the core, wherein the core is formed of a crystalline material and the shell is formed of a solid solution. 3. The multilayer ceramic capacitor according to claim 1, wherein the insulation resistance of the secondary phase is higher than the insulation resistance of the shell portion. 4.
【請求項4】 前記二次相が結晶体からなることを特徴
とする請求項1〜3のいずれかに記載の積層セラミック
コンデンサ。
4. The multilayer ceramic capacitor according to claim 1, wherein the secondary phase is made of a crystalline material.
【請求項5】 前記誘電体磁器組成物がチタン酸バリウ
ム系の誘電体磁器組成物、チタン酸ストロンチウム系の
誘電体磁器組成物又は鉛系の誘電体磁器組成物からなる
ことを特徴とする請求項1〜4のいずれかに記載の積層
セラミックコンデンサ。
5. The dielectric ceramic composition according to claim 1, comprising a barium titanate-based dielectric ceramic composition, a strontium titanate-based dielectric ceramic composition, or a lead-based dielectric ceramic composition. Item 5. The multilayer ceramic capacitor according to any one of Items 1 to 4.
【請求項6】 前記二次相中にSc,Y,Gd,Dy,
Ho,Er,Yb,Tm,Luから選択された1種又は
2種以上の希土類元素が含まれていることを特徴とする
請求項1〜5のいずれかに記載の積層セラミックコンデ
ンサ。
6. In the secondary phase, Sc, Y, Gd, Dy,
The multilayer ceramic capacitor according to any one of claims 1 to 5, further comprising one or more rare earth elements selected from Ho, Er, Yb, Tm, and Lu.
【請求項7】 前記誘電体磁器組成物100モル%に対
し、前記希土類元素が2〜18atm%含まれているこ
とを特徴とする請求項6に記載の積層セラミックコンデ
ンサ。
7. The multilayer ceramic capacitor according to claim 6, wherein the rare earth element is contained in an amount of 2 to 18 atm% based on 100 mol% of the dielectric ceramic composition.
【請求項8】 前記二次相中にMgが含まれていること
を特徴とする請求項1〜7のいずれかに記載の積層セラ
ミックコンデンサ。
8. The multilayer ceramic capacitor according to claim 1, wherein Mg is contained in the secondary phase.
【請求項9】 前記誘電体磁器組成物100モル%に対
し、Mgが0.8〜5.0atm%含まれていることを
特徴とする請求項8に記載の積層セラミックコンデン
サ。
9. The multilayer ceramic capacitor according to claim 8, wherein Mg is contained in an amount of 0.8 to 5.0 atm% based on 100 mol% of the dielectric ceramic composition.
【請求項10】 前記二次相中にMn,V,Cr,C
o,Fe,Ni,Cu,Mo,P,Nb及びTaから選
択された1種又は2種以上の元素が含まれていることを
特徴とする請求項1〜9のいずれかに記載の積層セラミ
ックコンデンサ。
10. Mn, V, Cr, C in the secondary phase
The multilayer ceramic according to any one of claims 1 to 9, wherein one or more elements selected from the group consisting of o, Fe, Ni, Cu, Mo, P, Nb, and Ta are contained. Capacitors.
【請求項11】 主成分化合物を形成する主成分原料と
該主成分化合物に固溶させる副成分原料とを含むセラミ
ック原料を準備する原料工程と、該セラミック原料を用
いてセラミックグリーンシートを形成するシート形成工
程と、該セラミックグリーンシートに内部電極パターン
を印刷する印刷工程と、該印刷工程を経たセラミックグ
リーンシートを積層して積層体を形成する積層工程と、
該積層体を内部電極パターン毎に裁断してチップ状の積
層体を得る裁断工程と、該裁断工程で得られたチップ状
の積層体を焼成する焼成工程とを備え、前記副成分原料
の量を前記主成分化合物に固溶する限度以上としたこと
を特徴とする積層セラミックコンデンサの製造方法。
11. A raw material process for preparing a ceramic raw material including a main component material for forming a main component compound and a subcomponent material for forming a solid solution in the main component compound, and forming a ceramic green sheet using the ceramic material. A sheet forming step, a printing step of printing an internal electrode pattern on the ceramic green sheet, and a laminating step of forming a laminate by laminating the ceramic green sheets after the printing step,
A cutting step of cutting the laminated body for each internal electrode pattern to obtain a chip-shaped laminated body; and a firing step of firing the chip-shaped laminated body obtained in the cutting step. Is more than the limit of solid solution in the main component compound.
【請求項12】 前記セラミック原料がチタン酸バリウ
ム系のセラミック原料、チタン酸ストロンチウム系のセ
ラミック原料又は鉛系のセラミック原料からなることを
特徴とする請求項11に記載の積層セラミックコンデン
サの製造方法。
12. The method according to claim 11, wherein the ceramic material comprises a barium titanate-based ceramic material, a strontium titanate-based ceramic material, or a lead-based ceramic material.
【請求項13】 前記セラミック原料中にSc,Y,G
d,Dy,Ho,Er,Yb,Tm,Luから選択され
た1種又は2種以上の希土類元素の化合物が含まれてい
ることを特徴とする請求項11又は12に記載の積層セ
ラミックコンデンサの製造方法。
13. Sc, Y, G in the ceramic raw material
13. The multilayer ceramic capacitor according to claim 11, wherein the multilayer ceramic capacitor according to claim 11, further comprising one or more compounds of a rare earth element selected from d, Dy, Ho, Er, Yb, Tm, and Lu. Production method.
【請求項14】 前記セラミック原料100モル%に対
し、前記希土類元素が2〜18atm%含まれているこ
とを特徴とする請求項13に記載の積層セラミックコン
デンサの製造方法。
14. The method according to claim 13, wherein the rare earth element is contained in an amount of 2 to 18 atm% based on 100 mol% of the ceramic raw material.
【請求項15】 前記副成分中にMgが含まれているこ
とを特徴とする請求項11〜14のいずれかに記載の積
層セラミックコンデンサの製造方法。
15. The method of manufacturing a multilayer ceramic capacitor according to claim 11, wherein Mg is contained in said subcomponent.
【請求項16】 前記セラミック原料100モル%に対
し、Mgが0.8〜5.0atm%含まれていることを
特徴とする請求項15に記載の積層セラミックコンデン
サの製造方法。
16. The method according to claim 15, wherein Mg is contained in an amount of 0.8 to 5.0 atm% based on 100 mol% of the ceramic raw material.
【請求項17】 前記二次相中にMn,V,Cr,C
o,Fe,Ni,Cu,Mo,P,Nb及びTaから選
択された1種又は2種以上の元素が含まれていることを
特徴とする請求項11〜16のいずれかに記載の積層セ
ラミックコンデンサの製造方法。
17. Mn, V, Cr, C in the secondary phase
The multilayer ceramic according to any one of claims 11 to 16, wherein the multilayer ceramic includes one or more elements selected from o, Fe, Ni, Cu, Mo, P, Nb, and Ta. Manufacturing method of capacitor.
【請求項18】 前記焼成工程が、前記チップ状の積層
体を非酸化性雰囲気中で焼成した後、酸化性雰囲気中で
焼成する再酸化工程を有していることを特徴とする請求
項11〜17のいずれかに記載の積層セラミックコンデ
ンサの製造方法。
18. The method according to claim 11, wherein the firing step includes a re-oxidation step of firing the chip-shaped laminate in a non-oxidizing atmosphere and then firing in an oxidizing atmosphere. 18. The method for manufacturing a multilayer ceramic capacitor according to any one of claims 17 to 17.
JP2000125294A 2000-04-26 2000-04-26 Laminated ceramic capacitor and its manufacturing method Withdrawn JP2001307940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125294A JP2001307940A (en) 2000-04-26 2000-04-26 Laminated ceramic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125294A JP2001307940A (en) 2000-04-26 2000-04-26 Laminated ceramic capacitor and its manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006330404A Division JP4185544B2 (en) 2006-12-07 2006-12-07 Manufacturing method of multilayer ceramic capacitor

Publications (1)

Publication Number Publication Date
JP2001307940A true JP2001307940A (en) 2001-11-02

Family

ID=18635274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125294A Withdrawn JP2001307940A (en) 2000-04-26 2000-04-26 Laminated ceramic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001307940A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062931A (en) * 2002-01-21 2003-07-28 주식회사 바티오테크 High temperature stability compound for integrated ceramic capacitor
JP2006199563A (en) * 2005-01-24 2006-08-03 Murata Mfg Co Ltd Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP2008179493A (en) * 2007-01-23 2008-08-07 Tdk Corp Dielectric porcelain composition and electronic component
JP2009208997A (en) * 2008-03-04 2009-09-17 Tdk Corp Dielectric porcelain composition
JP2011046560A (en) * 2009-08-27 2011-03-10 Kyocera Corp Dielectric ceramic and capacitor
JP5070841B2 (en) * 2004-09-02 2012-11-14 株式会社村田製作所 Dielectric ceramic composition, manufacturing method thereof, and multilayer ceramic capacitor
US10872726B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability
JP2021070596A (en) * 2019-10-29 2021-05-06 Tdk株式会社 Dielectric composition and electronic component
JP2021070595A (en) * 2019-10-29 2021-05-06 Tdk株式会社 Dielectric composition and electronic component
CN112979308A (en) * 2019-12-12 2021-06-18 Tdk株式会社 Dielectric composition and electronic component
CN115403369A (en) * 2021-05-26 2022-11-29 Tdk株式会社 Dielectric composition and laminated ceramic electronic component
CN115403368A (en) * 2021-05-26 2022-11-29 Tdk株式会社 Dielectric composition and laminated ceramic electronic component

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030062931A (en) * 2002-01-21 2003-07-28 주식회사 바티오테크 High temperature stability compound for integrated ceramic capacitor
JP5070841B2 (en) * 2004-09-02 2012-11-14 株式会社村田製作所 Dielectric ceramic composition, manufacturing method thereof, and multilayer ceramic capacitor
JP2006199563A (en) * 2005-01-24 2006-08-03 Murata Mfg Co Ltd Dielectric ceramic, method of manufacturing the same and laminated ceramic capacitor
JP4720193B2 (en) * 2005-01-24 2011-07-13 株式会社村田製作所 Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP2008179493A (en) * 2007-01-23 2008-08-07 Tdk Corp Dielectric porcelain composition and electronic component
JP2009208997A (en) * 2008-03-04 2009-09-17 Tdk Corp Dielectric porcelain composition
JP2011046560A (en) * 2009-08-27 2011-03-10 Kyocera Corp Dielectric ceramic and capacitor
US10872727B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability
US10872726B2 (en) 2018-08-09 2020-12-22 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor including dielectric layers having improved reliability
JP2021070596A (en) * 2019-10-29 2021-05-06 Tdk株式会社 Dielectric composition and electronic component
JP2021070595A (en) * 2019-10-29 2021-05-06 Tdk株式会社 Dielectric composition and electronic component
JP7310542B2 (en) 2019-10-29 2023-07-19 Tdk株式会社 Dielectric compositions and electronic components
JP7310543B2 (en) 2019-10-29 2023-07-19 Tdk株式会社 Dielectric compositions and electronic components
CN112979308A (en) * 2019-12-12 2021-06-18 Tdk株式会社 Dielectric composition and electronic component
US11472742B2 (en) 2019-12-12 2022-10-18 Tdk Corporation Dielectric composition and electronic component
CN115403369A (en) * 2021-05-26 2022-11-29 Tdk株式会社 Dielectric composition and laminated ceramic electronic component
CN115403368A (en) * 2021-05-26 2022-11-29 Tdk株式会社 Dielectric composition and laminated ceramic electronic component

Similar Documents

Publication Publication Date Title
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
KR100738760B1 (en) A multi layer ceramic capacitor and a method of manufacturing thereof
JP2007266223A (en) Laminated ceramic capacitor
JP4480367B2 (en) Dielectric porcelain and its manufacturing method, and multilayer electronic component and its manufacturing method
JP4326102B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2001230146A (en) Laminated ceramic capacitor and method of manufacturing it
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP5046699B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JPH0684692A (en) Multilayer ceramic chip capacitor
JP4663141B2 (en) Dielectric porcelain and multilayer electronic components
JP2001230148A (en) Laminated ceramic capacitor and method of manufacturing it
JP3323801B2 (en) Porcelain capacitors
JP3838845B2 (en) Multilayer ceramic capacitor
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP3134024B2 (en) Multilayer ceramic chip capacitors
JP5046432B2 (en) Dielectric porcelain and multilayer electronic components
JP3806580B2 (en) Porcelain capacitor
JP2001307939A (en) Laminated ceramic capacitor and its manufacturing method
JP2975459B2 (en) Multilayer ceramic chip capacitors
US7351676B2 (en) Dielectric porcelain composition, multilayer ceramic capacitor, and electronic component
JP4185544B2 (en) Manufacturing method of multilayer ceramic capacitor
JP4111754B2 (en) Ceramic capacitor, dielectric composition thereof, and method for producing the same
JP5051937B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP2002293617A (en) Dielectric ceramic, laminated electronic parts and production method for the laminated electronic parts
KR102202462B1 (en) Dielectric composition and multilayer ceramic capacitor comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070131