JP2000026161A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition

Info

Publication number
JP2000026161A
JP2000026161A JP10195380A JP19538098A JP2000026161A JP 2000026161 A JP2000026161 A JP 2000026161A JP 10195380 A JP10195380 A JP 10195380A JP 19538098 A JP19538098 A JP 19538098A JP 2000026161 A JP2000026161 A JP 2000026161A
Authority
JP
Japan
Prior art keywords
mol
capacitance
added
dielectric
dielectric ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10195380A
Other languages
Japanese (ja)
Inventor
Kazuhiro Komatsu
和博 小松
Hidenori Kuramitsu
秀紀 倉光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10195380A priority Critical patent/JP2000026161A/en
Publication of JP2000026161A publication Critical patent/JP2000026161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dielectric ceramic compsn. based on BaTiO3, less liable to deteriorate the insulation resistance in mass firing in a neutral or reducing atmosphere and having a high dielectric constant, a low temp. variation of the capacitance and high reliability. SOLUTION: The dielectric ceramic compsn. is obtd. by adding BaO or BaCO3 to 100 mol BaTiO3 in such an amt. as to give a Ba to Ti ratio of 1.001-1.04, adding 0.5-5.0 mol MgO, 0.1-3.0 mol Y2O3, 0.01-0.4 mol MnO2 and 0.6-5.0 mol BaSiO3 compd. and further adding 0.01-0.26 mol (expressed in terms of V2O5) V atoms and 0.1-3.0 mol (expressed in terms of Al2O3) Al atoms.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ニッケル等の卑金
属を内部電極に用いる積層セラミックコンデンサ(以
降、積層コンデンサと称する)用の誘電体磁器組成物に
関する。
The present invention relates to a dielectric ceramic composition for a multilayer ceramic capacitor (hereinafter, referred to as a multilayer capacitor) using a base metal such as nickel for an internal electrode.

【0002】[0002]

【従来の技術】積層コンデンサは、内部電極とセラミッ
クグリーンシートを交互に複数枚積層した積層体を所定
形状に切断した後、一体焼成し作製される。
2. Description of the Related Art A multilayer capacitor is manufactured by cutting a laminate in which a plurality of internal electrodes and ceramic green sheets are alternately laminated into a predetermined shape, and then firing the laminate integrally.

【0003】前記内部電極材料には、従来Pdあるいは
Pd合金が使用されていたが、Pdは高価であるため、
近年比較的安価なNi等の卑金属材料が用いられつつあ
る。
Conventionally, Pd or a Pd alloy has been used as the internal electrode material. However, since Pd is expensive,
In recent years, relatively inexpensive base metal materials such as Ni have been used.

【0004】[0004]

【発明が解決しようとする課題】内部電極材料に卑金属
材料を用いた場合、大気中で誘電体と一体焼成を行うと
内部電極が酸化されてしまうため、焼成は中性雰囲気ま
たは還元性雰囲気中で行う必要がある。ところが、従来
の誘電体材料は還元性雰囲気中で焼成すると、誘電体が
還元され絶縁抵抗が低くなり、所望の特性が得られな
い。この対策として特開昭61−155255号公報で
耐還元性の誘電体磁器組成物が提案されているが、この
耐還元性誘電体磁器組成物を用いた積層セラミックコン
デンサは、絶縁抵抗特性(IR寿命特性)の劣化が大き
く信頼性に課題があった。
When a base metal material is used as the internal electrode material, the internal electrode is oxidized if it is integrally fired with a dielectric material in the air. Therefore, firing is performed in a neutral atmosphere or a reducing atmosphere. Must be done in However, when the conventional dielectric material is fired in a reducing atmosphere, the dielectric is reduced, the insulation resistance is reduced, and desired characteristics cannot be obtained. As a countermeasure, Japanese Patent Application Laid-Open No. 61-155255 proposes a reduction-resistant dielectric porcelain composition. A multilayer ceramic capacitor using this reduction-resistant dielectric porcelain composition has an insulation resistance characteristic (IR (Lifetime characteristic) is greatly deteriorated.

【0005】本発明の誘電体組成物は、中性あるいは還
元性雰囲気中で焼成を行っても、絶縁抵抗特性の劣化が
少ない信頼性の高い積層コンデンサが得られる誘電体磁
器組成物を提供することを目的とするものである。
The dielectric composition of the present invention provides a dielectric ceramic composition which can provide a highly reliable multilayer capacitor with little deterioration in insulation resistance characteristics even when fired in a neutral or reducing atmosphere. The purpose is to do so.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に本発明は、BaTiO3100モルに対し、Ba/T
i比が1.001〜1.04になるようにBaOあるい
はBaCO3を添加し、MgOを0.5〜5.0モル、
23を0.1〜3.0モル、MnO2を0.01〜
0.4モル、BaSiO3を0.6〜5.0モル添加す
ることにより中性あるいは還元性雰囲気中で焼成を行っ
ても、絶縁抵抗特性の劣化しない信頼性の高い積層コン
デンサが得られる誘電体機器材料を提供することができ
るものである。
In order to solve the above-mentioned problems, the present invention provides a method in which Ba / T is added to 100 moles of BaTiO 3.
BaO or BaCO 3 is added so that the i ratio becomes 1.001 to 1.04, and MgO is added to 0.5 to 5.0 mol,
Y 2 O 3 0.1 to 3.0 moles, 0.01 and MnO 2
By adding 0.4 mol and 0.6 to 5.0 mol of BaSiO 3 , a highly reliable multilayer capacitor can be obtained without deterioration of insulation resistance characteristics even when firing in a neutral or reducing atmosphere. It can provide body device materials.

【0007】[0007]

【発明の実施の形態】本発明の請求項1に記載の発明
は、BaTiO3100モルに対し、Ba/Ti比が
1.001〜1.04になるようにBaOあるいはBa
CO3を添加し、さらにMgOを0.5〜5.0モル、
23を0.1〜3.0モル、MnO2を0.01〜
0.4モル、BaSiO3を0.6〜5.0モル添加す
ることを特徴とする誘電体磁器組成物であり、基本成分
のBa/Ti比を調整するために加えた過剰のBaOあ
るいはBaCO3とMnO2は誘電体組成物の耐還元性を
強化し、特にMnO2の添加は中性雰囲気中、あるいは
還元性雰囲気中での焼成において、誘電体磁器組成物の
絶縁抵抗特性の劣化を防ぐとともに、積層コンデンサの
静電容量のバラツキを抑制して均質な焼結体が得られる
効果がある。MgO,Y 23の添加は誘電率、静電容量
温度特性、静電正接等の電気特性を満足させるという効
果を有し、BaSiO3の添加は比較的焼成温度が低い
場合でも誘電体組成物の焼結を促進し緻密な焼結体が得
られるので、絶縁抵抗を安定させ電気的性能を満足させ
ることができるという作用を有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention
Is BaTiOThreeFor 100 moles, the Ba / Ti ratio is
BaO or Ba so as to be 1.001 to 1.04
COThreeIs added, and 0.5 to 5.0 mol of MgO is further added.
YTwoOThree0.1-3.0 mol, MnOTwoFrom 0.01 to
0.4 mol, BaSiOThree0.6 to 5.0 mol of
A dielectric porcelain composition characterized by comprising:
Excessive BaO added to adjust the Ba / Ti ratio of
Or BaCOThreeAnd MnOTwoIndicates the reduction resistance of the dielectric composition.
Strengthening, especially MnOTwoAddition in a neutral atmosphere or
During firing in a reducing atmosphere, the dielectric porcelain composition
In addition to preventing deterioration of insulation resistance characteristics,
A homogeneous sintered body can be obtained by suppressing variation in capacitance
effective. MgO, Y TwoOThreeAddition of dielectric constant and capacitance
The effect of satisfying electrical characteristics such as temperature characteristics and electrostatic tangent
Fruit, BaSiOThreeIs relatively low firing temperature
Promotes sintering of the dielectric composition and obtains a dense sintered body
To stabilize insulation resistance and satisfy electrical performance.
It has the effect of being able to

【0008】本発明の請求項2に記載の発明は、アルミ
ニウム原子をAl23に換算して、BaTiO3100
モルに対して0.1〜3.0モル添加することを特徴と
する請求項1に記載の誘電体磁器組成物であり、Al2
3を添加することにより、焼成過程において均一な成
分相を形成する作用を有し、焼結性と電気特性を安定さ
せるものである。
According to the invention of claim 2 of the present invention, aluminum atoms are converted to Al 2 O 3 , and BaTiO 3 100
A dielectric ceramic composition according to claim 1, characterized in that 0.1 to 3.0 mol per mol moles, Al 2
The addition of O 3 has the effect of forming a uniform component phase in the firing process, and stabilizes sinterability and electrical characteristics.

【0009】本発明の請求項3に記載の発明は、バナジ
ウム原子をV25に換算し、BaTiO3100モルに
対し、0.01モル〜0.26モル添加することを特徴
とする請求項1または2に記載の誘電体磁器組成物であ
り、V25の添加は、還元雰囲気の焼成で還元されやす
い基本成分のTiO2の還元を抑制して積層コンデンサ
の絶縁抵抗の低下を防ぎ、静電容量バラツキの小さい積
層コンデンサを得ることができるという作用を有するも
のである。
The invention according to claim 3 of the present invention is characterized in that vanadium atoms are converted to V 2 O 5 and 0.01 mol to 0.26 mol is added to 100 mol of BaTiO 3. Item 3. The dielectric ceramic composition according to Item 1 or 2, wherein the addition of V 2 O 5 suppresses the reduction of TiO 2, a basic component that is easily reduced by firing in a reducing atmosphere, and reduces the insulation resistance of the multilayer capacitor. This has the effect of preventing the occurrence of a multilayer capacitor having small capacitance variations.

【0010】(実施の形態1)先ず(表1)に示す組成
となるように、各出発原料としてBaTiO3100モ
ルに対し、BaO,Y23,MgO,MnO2,BaS
iO3をそれぞれ秤量し、これらの出発原料に純水を加
え、部分安定化ジルコニア玉石を媒体としてボールミル
で17時間湿式混合粉砕を行った後、脱水乾燥する。B
aTiO3、およびBaSiO3は予め固相法にて合成し
た微粉砕材料を用いた。また(表1)において試料N
o.に*を付したものは本発明の範囲外であるが、比較
のために示している。
(Embodiment 1) First, BaO, Y 2 O 3 , MgO, MnO 2 , and BaS are used with respect to 100 moles of BaTiO 3 as starting materials so as to have a composition shown in (Table 1).
Each of iO 3 is weighed, pure water is added to these starting materials, and wet mixing and pulverization is performed for 17 hours by a ball mill using partially stabilized zirconia balls as a medium, followed by dehydration drying. B
For aTiO 3 and BaSiO 3 , finely pulverized materials synthesized in advance by a solid phase method were used. In Table 1, the sample N
o. Those marked with * are outside the scope of the present invention, but are shown for comparison.

【0011】[0011]

【表1】 [Table 1]

【0012】次に、この脱水乾燥した混合材料を解砕
し、32メッシュ篩を全通させた後、アルミナ質の坩堝
に入れ、1100℃の温度で2時間保持し仮焼した。こ
のとき、仮焼温度が高すぎると得られた積層コンデンサ
の静電容量の容量温度変化率が大きくなりすぎることが
あり注意が必要である。
Next, the dehydrated and dried mixed material was crushed, passed through a 32-mesh sieve, put into an alumina crucible, and calcined at a temperature of 1100 ° C. for 2 hours. At this time, if the calcining temperature is too high, the capacitance-temperature change rate of the capacitance of the obtained multilayer capacitor may be too large, and care must be taken.

【0013】次いで、仮焼原料を混合と同様にボールミ
ルで平均粒径が1.0μm以下になるように湿式粉砕を
行った後、脱水乾燥と32メッシュ篩を全通させ、誘電
体磁器材料を得た。
Next, the calcined raw material is wet-pulverized in a ball mill in the same manner as in the mixing so that the average particle size is 1.0 μm or less, and then dehydrated and dried and passed through a 32 mesh sieve to remove the dielectric ceramic material. Obtained.

【0014】この誘電体磁器材料にバインダーとしてポ
リビニルブチラール樹脂、溶剤として酢酸nブチル、可
塑剤としてフタル酸ジブチルを加え、イットリア部分安
定化ジルコニアボールと共にボールミルで72時間混合
しスラリーを作製した。
A polyvinyl butyral resin as a binder, n-butyl acetate as a solvent, and dibutyl phthalate as a plasticizer were added to this dielectric ceramic material, and mixed with a yttria partially stabilized zirconia ball in a ball mill for 72 hours to prepare a slurry.

【0015】得られたスラリーを公知のドクターブレー
ド法を用いてポリエステルフィルム上に誘電体セラミッ
クグリーンシート(以降、グリーンシートと称する)を
作製した。
Using the obtained slurry, a dielectric ceramic green sheet (hereinafter, referred to as a green sheet) was formed on a polyester film using a known doctor blade method.

【0016】作製したグリーンシート表面にNiを主成
分とする内部電極ペーストをスクリーンで印刷し、乾燥
を行う。このNi内部電極ペーストを印刷したグリーン
シートを、公知の積層コンデンサ製造方法に従って、複
数枚積み重ねて熱圧着してグリーン積層体を形成した
後、3.3mm×1.7mmの積層コンデンサグリーンチッ
プ(以降、グリーンチップと称する)形状に切断を行
う。
An internal electrode paste containing Ni as a main component is printed on a surface of the produced green sheet by a screen and dried. A plurality of the green sheets on which the Ni internal electrode pastes are printed are stacked and thermocompression-bonded according to a known method for manufacturing a multilayer capacitor to form a green multilayer body, and then a 3.3 mm × 1.7 mm multilayer capacitor green chip (hereinafter referred to as a “green chip”). (Referred to as green chips).

【0017】これらのグリーンチップをジルコニア敷粉
と混ぜ合わせアルミナ質のサヤに1万個入れ、400℃
の温度で12時間、窒素混合空気雰囲気中でバインダー
除去を行った後、引き続き窒素、水素の混合グリーンガ
スを用い酸素濃度が調整されたNiが酸化されない還元
性雰囲気中で、温度1220〜1340℃で2時間保持
し焼結を行う。この後、降温冷却過程の900℃の温度
で1時間、窒素、水素、酸素で調整した雰囲気中で保持
し焼結体の再酸化を行った後、室温まで冷却し積層コン
デンサの焼結体を作製した。尚、各組成の焼成温度は、
前記1220〜1340℃の温度範囲においてそれぞれ
の組成の焼結体密度が最大となる最適焼成温度を用い
た。
[0017] These green chips are mixed with zirconia bedding powder, and 10,000 pieces are put into an alumina-based sheath.
After removing the binder in a nitrogen-mixed air atmosphere at a temperature of 12 hours, and then using a mixed green gas of nitrogen and hydrogen in a reducing atmosphere in which Ni whose oxygen concentration is adjusted is not oxidized, at a temperature of 1220 to 1340 ° C. And sintering for 2 hours. After that, the sintered body of the multilayer capacitor is kept at 900 ° C. for 1 hour in an atmosphere adjusted with nitrogen, hydrogen, and oxygen in a cooling and cooling process, and then reoxidized. Produced. The firing temperature of each composition is
The optimum firing temperature at which the density of the sintered body of each composition was maximized in the temperature range of 1,220 to 1,340 ° C was used.

【0018】次に、得られた積層コンデンサ焼結体をバ
レル研磨した後、焼結体端面に露出した内部電極と電気
的に接続するように、Cuを主成分とする外部電極ペー
ストを焼結体端面に塗布した後、窒素と水素の混合グリ
ーンガスで酸素濃度を調整した雰囲気中において、85
0℃で15分間焼付を行い外部電極を形成した。
Next, after the obtained multilayer capacitor sintered body is barrel-polished, an external electrode paste containing Cu as a main component is sintered so as to be electrically connected to the internal electrode exposed on the end face of the sintered body. After being applied to the body end surface, the atmosphere was adjusted to 85% in an atmosphere in which the oxygen concentration was adjusted with a mixed green gas of nitrogen and hydrogen.
Baking was performed at 0 ° C. for 15 minutes to form external electrodes.

【0019】形成した外部電極表面に、電解メッキ法を
用いてニッケル膜、さらにニッケル膜の表面に半田膜を
形成し積層コンデンサを完成した。
A nickel film was formed on the surface of the formed external electrode by electrolytic plating, and a solder film was further formed on the surface of the nickel film to complete a multilayer capacitor.

【0020】こうして得られた積層コンデンサを、20
℃(室温)、周波数1kHzにおける誘電率、誘電正接
(tanδ)、容量温度変化率(−55〜+125℃間
における20℃の静電容量に対する静電容量の変化
率)、室温においてDC電圧25Vを印加したときの絶
縁抵抗(IR)を測定し、その結果を(表2)に示して
いる。さらに放置試験として積層コンデンサを150℃
の恒温槽に1時間保持した後、室温に戻し48時間室温
に放置した時の静電容量(C)を基準として、その後室
温放置1000時間後の静電容量との差(ΔC)の静電
容量経時変化率(ΔC/C)、加速寿命試験として12
5℃の温度下でDC200Vの電圧を250時間連続印
加した後の絶縁抵抗劣化状況(試料100個中IRが1
×107Ω以下に劣化したものを不良としてカウントし
た個数)、初期特性としての容量のバラツキを(表3)
に示している。尚、(表2)、(表3)の試料No.は
(表1)と共通であり、同一番号は同一組成の試料であ
る。
The multilayer capacitor thus obtained is
° C (room temperature), dielectric constant at 1 kHz frequency, dielectric loss tangent (tan δ), capacitance temperature change rate (change rate of capacitance with respect to capacitance of 20 ° C between -55 and + 125 ° C), and DC voltage of 25 V at room temperature. The insulation resistance (IR) when the voltage was applied was measured, and the results are shown in (Table 2). Further, as a standing test, the multilayer capacitor was heated to 150 ° C.
After holding for 1 hour in a constant temperature bath and returning to room temperature, the capacitance (C) of the capacitance (C) when left at room temperature for 48 hours as a reference and then the difference (ΔC) from the capacitance after 1000 hours at room temperature Change with time of capacity (ΔC / C), 12 as accelerated life test
Degradation of insulation resistance after continuous application of a voltage of 200 V DC at a temperature of 5 ° C. for 250 hours (IR of 100 samples
× 10 7 Ω or less which was counted as defective), and the variation in capacitance as initial characteristics (Table 3)
Is shown in In addition, the sample No. of (Table 2) and (Table 3). Are common to (Table 1), and the same numbers are samples having the same composition.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】(表2)、(表3)から明らかなように、
本発明による誘電体組成物(試料No.3,4,6,9
〜12,15〜18,21〜24,28〜31)は初期
性能として誘電率が2300以上と高く、静電容量バラ
ツキも±5%以内と小さく、さらに容量温度変化率が±
15%以下と小さく、絶縁抵抗(IR)も1×1012Ω
と高く、劣化も認められない。また、放置試験での静電
容量経時変化率は−1.0〜−1.3%と小さく、さら
に焼結体内部に副成分相も発生していないことがわかっ
た。これに対し、主成分のBa/Ti比が1.001よ
り小さいと(試料No.1,2)還元雰囲気中での焼成
で還元されて半導体化し、逆にBa/Ti比が1.04
を越えると(試料No.5)誘電体の焼結が不十分とな
り、逆に5モルを越えると(試料No.8)、積層コン
デンサの容量温度変化率が大きくなってしまうと共に、
静電容量経時変化率が大きくなって好ましくない。Y2
3の添加量が0.1モル未満では(試料No.13)
容量温度変化率が大きくなると共に、静電容量経時変化
率とtanδが大きくなってしまい、逆に3モルを越え
ると(試料No.14)誘電率が低下し実用的でなくな
る。MnO2の添加量が0.01モル未満では(試料N
o.19)焼結体が部分的に半導体化され初期の静電容
量のバラツキが大きく、また絶縁抵抗値が小さくなり、
その結果加速寿命試験において絶縁抵抗値が大幅に劣化
してしまう。添加量が0.4モルを越えると(試料N
o.20)静電容量の温度変化率、経時変化率も大き
く、また絶縁抵抗の劣化も大きくなる。BaSiO3
添加量が0.6モル未満では(試料No.25,2
6)、十分な焼結体密度が得られず、静電容量、絶縁抵
抗にバラツキを生じ、実用的でなくなってしまう。ま
た、添加量が5.0モルを越えると(試料No.27)
焼結性は向上するものの誘電率が低下し、また静電容量
温度変化率が大きくなり実用的でない。
As apparent from (Table 2) and (Table 3),
Dielectric composition according to the present invention (Sample Nos. 3, 4, 6, 9)
~ 12,15 ~ 18,21 ~ 24,28 ~ 31) have an initial performance of a high dielectric constant of 2300 or more, a small variation in capacitance within ± 5%, and a small rate of change in capacitance temperature ±.
15% or less and insulation resistance (IR) is 1 × 10 12 Ω
And no deterioration was observed. Further, the rate of change with time in capacitance in the standing test was as small as -1.0 to -1.3%, and it was found that no subcomponent phase was generated inside the sintered body. On the other hand, if the Ba / Ti ratio of the main component is smaller than 1.001 (Sample Nos. 1 and 2), the material is reduced by firing in a reducing atmosphere to be a semiconductor, and conversely, the Ba / Ti ratio becomes 1.04.
(Sample No. 5), the dielectric sintering becomes insufficient, and if it exceeds 5 moles (Sample No. 8), the rate of temperature change of the multilayer capacitor becomes large, and
The rate of change with time in capacitance is undesirably large. Y 2
When the added amount of O 3 is less than 0.1 mol (Sample No. 13)
The rate of change in capacitance with temperature increases, and the rate of change in capacitance with time and tan δ also increase. Conversely, if it exceeds 3 moles (Sample No. 14), the dielectric constant decreases and is not practical. If the added amount of MnO 2 is less than 0.01 mol (sample N
o. 19) The sintered body is partially converted into a semiconductor, and the initial capacitance variation is large, and the insulation resistance value is small.
As a result, the insulation resistance value is significantly deteriorated in the accelerated life test. If the amount exceeds 0.4 mol (sample N
o. 20) The rate of change of capacitance with temperature and change with time is large, and the deterioration of insulation resistance is also large. If the amount of BaSiO 3 added is less than 0.6 mol (Sample Nos. 25 and 2
6) Sufficient sintered body density cannot be obtained, resulting in variations in capacitance and insulation resistance, which is not practical. On the other hand, when the addition amount exceeds 5.0 mol (Sample No. 27)
Although the sinterability is improved, the dielectric constant is lowered, and the rate of change in capacitance with temperature is increased, which is not practical.

【0024】以上の結果から主成分のBaTiO310
0モルに対し、BaOをBa/Ti比が1.001〜
1.04となるように過剰添加することにより、還元雰
囲気中での大量焼成において誘電体が還元されることな
く良好な焼結体が得られる。MgOを0.5〜5.0モ
ル添加することにより誘電率の温度変化率を小さくする
と共に、絶縁抵抗値を向上させる効果があり、Y23
0.1〜3.0モル添加することにより容量温度変化を
小さくし、また絶縁抵抗値を向上させる効果を有する。
またMnO2を0.01〜0.4モル添加することによ
り主成分のBaTiO3のTiO2の還元を防止し絶縁抵
抗特性を向上させることができる。BaSiO3を0.
6〜5.0モル添加することで焼結が促進され、比較的
低温での焼成が可能なものとなり、静電容量、絶縁抵抗
のバラツキを小さくする効果があることが明らかとな
る。
From the above results, the main component of BaTiO 3 10
BaO has a Ba / Ti ratio of 1.001 to
By adding excessively so as to be 1.04, a good sintered body can be obtained without the dielectric being reduced in large-scale firing in a reducing atmosphere. By adding 0.5 to 5.0 mol of MgO as to reduce the temperature change of the dielectric constant, has the effect of improving the insulation resistance value, the Y 2 O 3 is added 0.1 to 3.0 molar This has the effect of reducing the capacitance temperature change and improving the insulation resistance value.
Further, by adding 0.01 to 0.4 mol of MnO 2 , reduction of TiO 2 of BaTiO 3 as a main component can be prevented and insulation resistance characteristics can be improved. BaSiO 3 was added at 0.
By adding 6 to 5.0 moles, sintering is promoted and firing at a relatively low temperature becomes possible, and it is clear that there is an effect of reducing variations in capacitance and insulation resistance.

【0025】但し、各添加物の添加量が本発明の範囲を
外れると電気特性のバラツキを大きくすると共に、静電
容量温度変化率を大きくする傾向があり好ましくないこ
とがわかる。尚、BaTiO3,BaSiO3化合物を予
め固相法で作製した微粉末を用いたが、固相法以外の方
法で作製した化合物を用いても同様な結果が得られるこ
とを確認している。
However, if the amount of each additive is out of the range of the present invention, the dispersion of the electric characteristics tends to increase, and the rate of change of the capacitance with temperature tends to increase. Although fine powders of BaTiO 3 and BaSiO 3 compounds previously prepared by a solid phase method were used, it has been confirmed that similar results can be obtained by using compounds prepared by a method other than the solid phase method.

【0026】(実施の形態2)先ず、BaTiO310
0モルに対しBaCO3を0.02モル、MgOを2.
5モル、Y23を1.0モル、MnO2を0.2モル、
BaSiO3化合物を2.1モル添加したものに、さら
に(表4)に示す量のAl23、及びV25を各々秤量
し添加する。
(Embodiment 2) First, BaTiO 3 10
0.02 mol of BaCO 3 and MgO of 2. mol per 0 mol.
5 mol, 1.0 mol of Y 2 O 3 , 0.2 mol of MnO 2 ,
The amounts of Al 2 O 3 and V 2 O 5 shown in (Table 4) are each weighed and added to the one containing 2.1 mol of the BaSiO 3 compound.

【0027】[0027]

【表4】 [Table 4]

【0028】次いで、実施の形態1と同条件で誘電体材
料粉末を得た後、積層コンデンサを作製した。但し、焼
成時、一さやあたりのグリーンチップの詰め量を実施の
形態1のときの1.5倍の15000個とし、他の条件
は実施の形態1と同条件で行い、焼成最高温度は122
0〜1340℃の範囲で行った。
Next, after obtaining a dielectric material powder under the same conditions as in the first embodiment, a multilayer capacitor was manufactured. However, at the time of baking, the filling amount of green chips per sheath was set to 15,000 pieces, which is 1.5 times that of the first embodiment, and the other conditions were the same as those of the first embodiment.
The test was performed in the range of 0 to 1340 ° C.

【0029】その後、実施の形態1と同様に得られた積
層コンデンサを評価し、その結果を(表5)、及び(表
6)に示した。
Thereafter, the multilayer capacitor obtained in the same manner as in the first embodiment was evaluated, and the results are shown in (Table 5) and (Table 6).

【0030】[0030]

【表5】 [Table 5]

【0031】[0031]

【表6】 [Table 6]

【0032】(表5)、(表6)に示すように、BaT
iO3100モルに対しBaCO3を0.02モル、Mg
Oを2.5モル、Y23を1.0モル、MnO2を0.
2モル、BaSiO3化合物を2.1モル添加した組成
に、さらにV25を0.01〜0.26モルの範囲添加
した組成物(試料No.32〜34,37,38)は、
焼成時、さや詰め量を増やしたとしてもV25に含まれ
るV原子が主成分中のTiO2の還元を抑制するので、
高い絶縁抵抗と絶縁抵抗の劣化のない優れた積層コンデ
ンサが得られる。このとき、V25の添加量が0.26
モルを越える(V原子としては、0.52モルを越え
る)と(試料No.36)、静電容量の温度変化率が大
きくなってしまうと共に、容量経時変化率も大きくなっ
てしまう。また、0.01モル未満(V原子としては、
0.02モル未満)だと(試料No.35)、大量焼成
した場合、絶縁性にバラツキを生じ、絶縁抵抗が劣化し
てしまう。一方、Al23を0.1〜3.0モル添加し
た組成(試料No.32〜35,37,38、Al原子
としては0.2〜6.0モル添加)は、Al原子の添加
が焼結を促進し、本発明のような多成分系組成で発生し
やすい副成分相の発生しない均一な焼結体を得ることが
できる。これに対し、添加量が3.0モルを越えると
(試料No.40)、容量温度変化率と誘電損失(ta
nδ)が大きくなり好ましくなく、0.1モル未満(試
料No.39)だと副成分相の発生が多くなり、均一な
焼結体が得られず好ましくないことがわかる。
As shown in Tables 5 and 6, BaT
iO 3 100 mol of BaCO 3 0.02 mol, Mg
2.5 mol of O, 1.0 mol of Y 2 O 3 and 0.1 mol of MnO 2 .
2 mol, the composition obtained by adding 2.1 mol of BaSiO 3 compound, further V 2 O 5 and from 0.01 to 0.26 mol per mol of the added composition (Sample Nanba32~34,37,38) is
At the time of firing, the V atoms contained in V 2 O 5 suppress the reduction of TiO 2 in the main component, even if the amount of sheath is increased,
An excellent multilayer capacitor having high insulation resistance and no deterioration of insulation resistance can be obtained. At this time, the added amount of V 2 O 5 was 0.26.
If it exceeds mol (exceeding 0.52 mol as V atom) (Sample No. 36), the rate of change of capacitance with temperature will increase and the rate of change with time of capacitance will also increase. In addition, less than 0.01 mol (as a V atom,
If it is less than 0.02 mol (Sample No. 35), when it is fired in a large amount, the insulation property varies, and the insulation resistance deteriorates. On the other hand, the composition in which 0.1 to 3.0 mol of Al 2 O 3 was added (Sample Nos. 32 to 35, 37, 38, and 0.2 to 6.0 mol as Al atoms) was added. Promotes sintering, and it is possible to obtain a uniform sintered body free from the generation of subcomponent phases which are likely to occur in a multicomponent composition as in the present invention. On the other hand, when the addition amount exceeds 3.0 mol (Sample No. 40), the rate of change in capacitance with temperature and the dielectric loss (ta)
nδ) is undesirably large, and if it is less than 0.1 mol (Sample No. 39), the generation of subcomponent phases increases, and a uniform sintered body cannot be obtained.

【0033】以上の結果から、本発明のBaTiO3
主成分とし、これにBaCO3,MgO,Y23,Mn
2,BaSiO3を添加した組成に、さらにV原子とし
てV25を添加することにより還元性雰囲気での大量焼
成においても誘電体の還元を防止し絶縁抵抗性能を向上
させ、またAl原子としてAl23を添加することによ
り副成分相の発生を抑制し均一な焼結体を得て、電気特
性の良好な積層コンデンサが得られることが明らかであ
る。
From the above results, BaTiO 3 of the present invention is used as a main component, and BaCO 3 , MgO, Y 2 O 3 , Mn
By adding V 2 O 5 as a V atom to the composition to which O 2 and BaSiO 3 are added, reduction of the dielectric is prevented even in mass firing in a reducing atmosphere to improve the insulation resistance performance, and Al atom is added. It is clear that the addition of Al 2 O 3 suppresses the generation of the subcomponent phase, obtains a uniform sintered body, and obtains a multilayer capacitor having good electric characteristics.

【0034】[0034]

【発明の効果】以上、本発明によれば、BaTiO3
00モルに対し、Ba/Ti比が1.001〜1.04
になるようにBaO,BaCO3を添加し、さらにMg
Oを0.5〜5.0モル、Y23を0.1〜3.0モ
ル、MnO2を0.01〜0.4モル、BaSiO3化合
物を0.6〜5.0モル添加することにより、還元雰囲
気中の比較的低温での焼成において、電気特性の安定し
た優れた積層コンデンサ用誘電体磁器組成物が得られる
ので、内部電極材料に卑金属材料を用いた場合でも誘電
体と一体焼成を行うことができるものとなる。またV原
子、Al原子をV 25,Al23として添加することに
より、中性あるいは還元性雰囲気中での大量焼成におい
ても、誘電体の還元を防止することができ、焼成を促進
して均一な焼結体を得ることができるので絶縁抵抗なら
びに静電容量のバラツキが小さく、かつ容量温度変化率
の優れたものとなる。
As described above, according to the present invention, BaTiOThree1
The ratio of Ba / Ti is 1.001 to 1.04 with respect to 00 mol.
BaO, BaCO to becomeThreeAnd further Mg
O is 0.5 to 5.0 mol, YTwoOThree0.1 to 3.0
MnOTwoFrom 0.01 to 0.4 mol, BaSiOThreeCompound
Atmosphere by adding 0.6 to 5.0 moles of the product
When firing at a relatively low temperature in the air, the electrical characteristics are stable.
Excellent dielectric ceramic composition for multilayer capacitors can be obtained
Therefore, even when a base metal material is used for the internal electrode material,
It can be fired integrally with the body. Also V
Child, Al atom to V TwoOFive, AlTwoOThreeTo be added as
Smell in mass firing in neutral or reducing atmosphere
Can prevent dielectric reduction and promote firing
To obtain a uniform sintered body.
Variation in capacitance and capacitance temperature change rate
Will be excellent.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G031 AA03 AA06 AA08 AA11 AA13 AA19 AA29 BA09 GA02 5G303 AA01 AB01 AB06 AB11 AB20 BA12 CA01 CB01 CB03 CB17 CB18 CB30 CB35 CB36 CB40 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4G031 AA03 AA06 AA08 AA11 AA13 AA19 AA29 BA09 GA02 5G303 AA01 AB01 AB06 AB11 AB20 BA12 CA01 CB01 CB03 CB17 CB18 CB30 CB35 CB36 CB40

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 BaTiO3100モルに対し、Ba/
Ti比が1.001〜1.04になるようにBaOある
いはBaCO3を添加し、さらにMgOを0.5〜5.
0モル、Y23を0.1〜3.0モル、MnO2を0.
01〜0.4モル、BaSiO3を0.6〜5.0モル
添加することを特徴とする誘電体磁器組成物。
1. A BaTiO 3 with respect to 100 moles, Ba /
BaO or BaCO 3 is added so that the Ti ratio becomes 1.001 to 1.04, and MgO is further added to 0.5 to 5.0.
0 mol, 0.1 to 3.0 mol of Y 2 O 3, the MnO 2 0.
01 to 0.4 mol, the dielectric ceramic composition characterized in that the BaSiO 3 to 0.6 to 5.0 mol per mol.
【請求項2】 アルミニウム原子をAl23に換算し
て、BaTiO3100モルに対して0.1〜3.0モ
ル添加することを特徴とする請求項1に記載の誘電体磁
器組成物。
2. The dielectric ceramic composition according to claim 1, wherein the aluminum atom is converted to Al 2 O 3, and 0.1 to 3.0 mol is added to 100 mol of BaTiO 3 . .
【請求項3】 バナジウム原子をV25に換算して、B
aTiO3100モルに対して0.01モル〜0.26
モル添加することを特徴とする請求項1または請求項2
に記載の誘電体磁器組成物。
3. Converting a vanadium atom to V 2 O 5 ,
aTiO 3 100 0.01 mol per mol ~0.26
3. The method according to claim 1, wherein the compound is added in a molar amount.
3. The dielectric ceramic composition according to item 1.
JP10195380A 1998-07-10 1998-07-10 Dielectric ceramic composition Pending JP2000026161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10195380A JP2000026161A (en) 1998-07-10 1998-07-10 Dielectric ceramic composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10195380A JP2000026161A (en) 1998-07-10 1998-07-10 Dielectric ceramic composition

Publications (1)

Publication Number Publication Date
JP2000026161A true JP2000026161A (en) 2000-01-25

Family

ID=16340212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10195380A Pending JP2000026161A (en) 1998-07-10 1998-07-10 Dielectric ceramic composition

Country Status (1)

Country Link
JP (1) JP2000026161A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415561B1 (en) * 2001-04-02 2004-01-24 삼성전기주식회사 A Dielectic Composition and a Method of Manufacturing Dielectric Body for Multilayer Ceramic Capacitor Using it
EP1630832A3 (en) * 2004-08-30 2006-04-12 TDK Corporation Ceramic electronic device and the production method
JP2009071960A (en) * 2007-09-12 2009-04-02 Meleagros Corp Power transmitter, transmission device of power transmitter, reception device of power transmitter, and method and device for evaluating performance of capacitor for high frequency power circuit
JP2012036083A (en) * 2011-09-07 2012-02-23 Samsung Electro-Mechanics Co Ltd Sintered compact, ceramic capacitor, and method of manufacturing the same
US8178458B2 (en) * 2009-12-01 2012-05-15 National Taiwan University Technology Dielectric ceramic composition
JP2013103876A (en) * 2011-11-11 2013-05-30 Samsung Electro-Mechanics Co Ltd Dielectric composition and ceramic electronic component including the same
KR101272286B1 (en) * 2005-09-30 2013-06-07 티디케이가부시기가이샤 Dielectric ceramic composition and electronic device
CN109020536A (en) * 2018-09-29 2018-12-18 成都顺康三森电子有限责任公司 A kind of media ceramic resonance manufacturing method
US10354798B2 (en) 2017-10-13 2019-07-16 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
US11315729B2 (en) 2019-11-08 2022-04-26 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100415561B1 (en) * 2001-04-02 2004-01-24 삼성전기주식회사 A Dielectic Composition and a Method of Manufacturing Dielectric Body for Multilayer Ceramic Capacitor Using it
EP1630832A3 (en) * 2004-08-30 2006-04-12 TDK Corporation Ceramic electronic device and the production method
US7419927B2 (en) 2004-08-30 2008-09-02 Tdk Corporation Ceramic electronic device and the production method
US7550402B2 (en) 2004-08-30 2009-06-23 Tdk Corporation Ceramic electronic device and the production method
KR101272286B1 (en) * 2005-09-30 2013-06-07 티디케이가부시기가이샤 Dielectric ceramic composition and electronic device
JP2009071960A (en) * 2007-09-12 2009-04-02 Meleagros Corp Power transmitter, transmission device of power transmitter, reception device of power transmitter, and method and device for evaluating performance of capacitor for high frequency power circuit
US8178458B2 (en) * 2009-12-01 2012-05-15 National Taiwan University Technology Dielectric ceramic composition
JP2012036083A (en) * 2011-09-07 2012-02-23 Samsung Electro-Mechanics Co Ltd Sintered compact, ceramic capacitor, and method of manufacturing the same
JP2013103876A (en) * 2011-11-11 2013-05-30 Samsung Electro-Mechanics Co Ltd Dielectric composition and ceramic electronic component including the same
US9076578B2 (en) 2011-11-11 2015-07-07 Samsung Electro-Mechanics Co., Ltd. Dielectric composition and ceramic electronic component including the same
US10354798B2 (en) 2017-10-13 2019-07-16 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
CN109020536A (en) * 2018-09-29 2018-12-18 成都顺康三森电子有限责任公司 A kind of media ceramic resonance manufacturing method
US11315729B2 (en) 2019-11-08 2022-04-26 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor
US11715596B2 (en) 2019-11-08 2023-08-01 Samsung Electro-Mechanics Co., Ltd. Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JP5034839B2 (en) Dielectric porcelain composition and electronic component
JPH10335169A (en) Unreducing dielectric porcelain material
JP4522025B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP5233763B2 (en) Barium titanate-based dielectric raw material powder, method for producing the same, method for producing ceramic green sheet, and method for producing multilayer ceramic capacitor
JP3620315B2 (en) Dielectric porcelain composition
JP4582973B2 (en) Dielectric porcelain, multilayer electronic component, and manufacturing method of multilayer electronic component
JP2008162830A (en) Dielectric ceramic composition, and electronic component
JP2000026161A (en) Dielectric ceramic composition
JP3613044B2 (en) Dielectric porcelain composition
JP3751146B2 (en) Method for producing composition comprising BaTiO3 as main component and method for producing multilayer ceramic capacitor
JP4511323B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2005029423A (en) Dielectric ceramic composition and electronic component
JP2000026160A (en) Dielectric ceramic composition
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP2008179493A (en) Dielectric porcelain composition and electronic component
JP2000034166A (en) Dielectric porcelain composition
JPWO2010100827A1 (en) Dielectric ceramic and multilayer ceramic capacitors
JP4652595B2 (en) Dielectric porcelain with excellent temperature characteristics
JP2002020165A (en) Dielectric porcelain and layered electronic part
JP3634930B2 (en) Dielectric porcelain composition
JP4837204B2 (en) Dielectric porcelain composition, porcelain capacitor using the same, and manufacturing method thereof
JP2012206885A (en) Method for producing dielectric ceramic composition and electronic part
JP2004022611A (en) Layered ceramic capacitor and method for manufacturing the same
JP2005272262A (en) Dielectric ceramic composition, multilayer ceramic capacitor and method of manufacturing the same
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050408

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051101