JP3620314B2 - Dielectric ceramic composition and multilayer ceramic capacitor using the same - Google Patents

Dielectric ceramic composition and multilayer ceramic capacitor using the same Download PDF

Info

Publication number
JP3620314B2
JP3620314B2 JP31739198A JP31739198A JP3620314B2 JP 3620314 B2 JP3620314 B2 JP 3620314B2 JP 31739198 A JP31739198 A JP 31739198A JP 31739198 A JP31739198 A JP 31739198A JP 3620314 B2 JP3620314 B2 JP 3620314B2
Authority
JP
Japan
Prior art keywords
composition
dielectric
insulation resistance
multilayer ceramic
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31739198A
Other languages
Japanese (ja)
Other versions
JP2000143344A (en
Inventor
雅文 中山
和博 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31739198A priority Critical patent/JP3620314B2/en
Publication of JP2000143344A publication Critical patent/JP2000143344A/en
Application granted granted Critical
Publication of JP3620314B2 publication Critical patent/JP3620314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はニッケルなどの卑金属で内部電極を形成する温度補償用の積層セラミックコンデンサに用いる誘電体磁器組成物およびこれを用いた積層セラミックコンデンサに関するものである。
【0002】
【従来の技術】
従来の積層セラミックコンデンサは、公知の積層セラミックコンデンサの製造方法にしたがって、誘電体磁器組成物を主成分とするセラミック層グリーンシートと内部電極層を交互に複数層積層したグリーン積層体を、所定のグリーンチップ形状に切断した後、所定温度で焼成を行い、得られた焼結体の端面に露出した内部電極と電気的に接続するように、焼結体の端面部に外部電極を形成する方法が一般的に行われている。
【0003】
しかしながら近年、積層セラミックコンデンサの大容量、高積層化に伴い内部電極にニッケル等の卑金属を用いたグリーンチップを非酸化性雰囲気中で焼結を行う方法が主流となって来ている。
【0004】
【発明が解決しようとする課題】
従来の積層セラミックコンデンサを非酸化性雰囲気で焼成を行うのは、ニッケル等の卑金属内部電極の酸化を防ぐためである。しかしながら、積層セラミックコンデンサの内、温度補償用の積層セラミックコンデンサに用いる誘電体磁器組成物は、一般的に主成分のMgTiO、CaTiOに希土類酸化物を添加した組成が多く、この材料は非酸化性雰囲気で焼成すると主成分中の酸化チタンが還元され易く、半導体化して絶縁抵抗が低くなると共に、所望の誘電体特性が得られないという課題を有していた。
【0005】
本発明は非酸化性雰囲気中の焼成においても、安定した電気特性の得られる誘電体磁器組成物およびこれを用いた積層セラミックコンデンサを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
前記目的を達成するため本発明は、一般式として、x(MgCa1−m)O−y(TiZr1−n)O−zNd(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、添加物としてBaSiO、MgSiO、CaSiOの群より選ばれた一つを0.05〜3.00wt%、更にVを0.05〜0.30wt%添加した組成としたものである。
【0007】
この構成により、非酸化性雰囲気中の焼成においても電気特性の安定したものが得られることになる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、一般式として、x(MgCa1−m)O−y(TiZr1−n)O−zNd(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、添加物としてBaSiO、MgSiO、CaSiOの群より選ばれた一つを0.05〜3.00wt%、更にVを0.05〜0.30wt%添加した誘電体磁器組成物である。一般式が、x(MgCa1−m)O−y(TiZr1−n)O−zNdで表され、しかもa(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた本発明の三成分系材料組成は、MgO、CaO、Ndのモル比の和(x+z)が、常にTiO、ZrOのモル比の和(y)と等しいか、又は大きくなるように組成範囲を規定したものである。この組成にVを0.05〜0.30wt%添加することにより、非酸化性雰囲気中で焼成を行ってもVがTiOの還元を防止し、絶縁抵抗が大きく、しかも設計値通りの容量温度係数の小さい焼結体が得られる。従ってニッケル等の卑金属を内部電極に用いる温度補償用の積層セラミックコンデンサの誘電体磁器組成物として好適なものである。また更に、還元されやすいTiOの一部をZrOで置換することで、更に耐還元性を向上させることができる。一方BaSiO、MgSiO、CaSiOの群より選ばれた一つを0.05〜3.00wt%添加することにより、これらが焼結助材として焼結性を促進しQ、絶縁抵抗の高い優れた焼結体を得ることができるものである。
【0009】
本発明の請求項2に記載の発明は、請求項1に記載の誘電体磁器組成物の主成分x(MgCa1−m)O−y(TiZr1−n)O−zNd(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、更にAlを2.0wt%以下、MnOを0.5wt%以下(但し、両方とも同時に0は除く)を添加したことを特徴とする請求項1に記載の誘電体磁器組成物である(尚x、y、m、nはモル比を表す)。前記組成に対しAl及びMnOを添加することにより焼結性を更に向上させる。特にMnOはTiOの還元を防ぎ、絶縁抵抗をより高いものとする効果がある。
【0010】
本発明の請求項3に記載の発明は、請求項1及び請求項2に記載の誘電体磁器組成物からなるセラミック層と、ニッケル等の卑金属の内部電極で構成した積層セラミックコンデンサである。請求項1及び請求項2に記載の耐還元性誘電体磁器組成物でセラミック層を構成することによって、ニッケル等の卑金属を内部電極に用いた積層セラミックコンデンサが非酸化性雰囲気中での焼成が可能となり、Q、絶縁抵抗が共に高く、しかも静電容量温度係数の小さい優れた温度補償用の積層セラミックコンデンサを得ることができるものである。
【0011】
(実施の形態1)
先ず、出発原料として高純度のMgO、CaO、TiO、ZrO、Nd、V、BaSiO粉末を(表1)〜(表5)に示す組成比になるように秤量し、湿式混合後、脱水乾燥を行い、得られた混合材料を高純度アルミナ質の坩堝に入れ、空気中1150℃の温度で2時間仮焼を行う。
【0012】
【表1】

Figure 0003620314
【0013】
【表2】
Figure 0003620314
【0014】
【表3】
Figure 0003620314
【0015】
【表4】
Figure 0003620314
【0016】
【表5】
Figure 0003620314
【0017】
次に、仮焼材料をゴム内張りのボールミルの中に純水とジルコニアボールと共に入れ、湿式粉砕後、脱水乾燥を行い温度補償用の誘電体磁器組成物を作製した。得られた温度補償用の誘電体磁器組成物に、有機バインダーを加え造粒後、油圧プレスを用い、成形圧力1ton/cmで直径15mm、厚み0.4mmの円板を成形した。
【0018】
次いで、成形した円板をアルミナ質のサヤに入れ、空気中にて700℃で2時間脱脂した後、非酸化性雰囲気中にて(表6)〜(表10)に示す温度で2時間焼成し、焼結体を得た。
【0019】
得られた焼結体の両面に銅電極ペーストを塗布した後、非酸化性雰囲気において900℃の温度で焼付けた後、誘電率、Q、絶縁抵抗、静電容量温度係数の測定を行い、その結果を(表6)〜(表10)に示した。尚、誘電率、Qの測定は温度20℃、測定電圧1.0Vrms、測定周波数1MHzで行い、絶縁抵抗は電極間にDC50Vを1分間印加した後の抵抗値より、また静電容量温度係数は20℃と125℃における静電容量を測定し(数1)より求めた。
【0020】
【表6】
Figure 0003620314
【0021】
【表7】
Figure 0003620314
【0022】
【表8】
Figure 0003620314
【0023】
【表9】
Figure 0003620314
【0024】
【表10】
Figure 0003620314
【0025】
【数1】
Figure 0003620314
【0026】
(表6)〜(表10)に示すように、試料2、4、18、22、23、26はTiOが一部還元され絶縁抵抗が極端に低下し、試料8、10、14、19は1350℃の温度で焼結不十分なためQ、絶縁抵抗が共に低下し、試料5、7は1350℃の温度で焼結しない。さらに、試料15は、静電容量温度係数がプラス281ppm/℃と大きい。これに対し、試料1、3、6、9、11、12、13、16、17、20、21、24、25の本発明の組成範囲内のものは、Qが大きく、絶縁抵抗も高く、さらに静電容量温度係数が小さい優れた誘電体特性が得られることが明らかとなる。
【0027】
以下、それぞれの組成範囲を限定した理由について述べる。
はじめに、主成分のx、y、zの範囲を限定した理由について述べる。(表1)の試料2、4のように、MgOとCaO及びNdのモル比の和(x+z)よりも、TiOとZrOのモル比の和(y)が大きい範囲、即ちy>0.50の組成は、非還元雰囲気で焼成すると、主成分のTiOが還元され絶縁抵抗が低く、安定した誘電体特性が得られず実用的でなくなる。
【0028】
また、試料8のように、TiOとZrOのモル比の和(y)が0.01の組成は1350℃の焼成では焼結が不十分でQ、絶縁抵抗共が低くなる。従って、yの範囲は0.02≦y≦0.50とする必要がある。また、試料5、7、8のように、zのモル数の2倍の値がyのモル数と等しいか又は大きくなると、焼結不十分か焼結が困難となり、Q、絶縁抵抗が低下することがわかる。即ち、y(Ti、Zr)OとzNdとの関係において、Ndのモル数zの2倍が、(Ti、Zr)Oのモル数yより大きくなると、焼結が困難になることから、y≧2zとする必要がある。但し、yの範囲は0.02≦y≦0.50とする。従って、yの値が0.02から0.50の範囲で変化すると、zの値は常にy≧2zを満たし0.01〜0.25の範囲で変化することになる。
【0029】
また、x+y+z=1の関係からxの範囲はy、zの値より必然的に決定され、本発明の主成分のx、y、zの範囲は図1に示す点a、b、cを直線で囲まれたモル比の範囲に限定される。次にMgのモル比mの範囲を限定した理由は、(表2)、(表7)に示すようにmの値が0.30より小さいか、または0.70より大きい組成の試料10、14は1350℃の焼成でも焼結不十分なために、Q、絶縁抵抗が共に低下し実用的でなくなる。従って、mの範囲は0.30≦m≦0.70に限定する必要がある。
【0030】
また、Tiのモル比nの範囲を限定した理由は、(表3)、(表8)に示す試料15のように、nの値が0.60の場合は静電容量温度係数がプラス方向に極めて大きくなり、温度補償用誘電体磁器組成物として実用的でなく、試料18のようにnの値が1.00、即ちTiO100%の場合は、非酸化性雰囲気中の焼成でTiOが還元され、絶縁抵抗が低くなると共に、安定した誘電特性が得られなくなる。従って、nの値は0.70≦n≦0.90の範囲に限定する必要がある。
【0031】
一方、添加物のBaSiOの添加量を限定した理由は(表4)、(表9)に示す試料19のように添加量が零の組成は、1350℃の焼成においても焼結不十分なためにQ、絶縁抵抗が共に低下し、また、試料22のように添加量が3.0を超えると焼成温度を低下する効果があるが、添加したBaSiOのSi成分の一部がTi位置に入り込み、置換されたTiが還元されてQと絶縁抵抗を低下させる。従って、BaSiOの添加範囲は、0.2〜3.0wt%の範囲に限定する必要がある。
【0032】
更に、Vの添加量を限定した理由は、(表5)、(表10)に示す試料23のように添加量が零の組成は、主成分のTiOの還元を防御することができず、非酸化性雰囲気中の焼成でTiOが還元され、絶縁抵抗が低下すると共に、安定した誘電特性が得られなくなる。また試料26のように添加量が0.3wt%を超えると逆にTiOを還元させ、Qと絶縁抵抗を低下させるため、好ましくない。この原因は定かではないが、VがTiOを原子価制御し、半導体化するためと思われる。従って、Vの添加量は、0.05〜0.3wt%の範囲に限定する必要がある。
【0033】
(実施の形態2)
実施の形態1の試料12の組成のBaSiOに替えてMgSiOまたはCaSiOを(表11)の示す組成比になるように秤量した後、以降の工程を実施の形態1と同条件で処理し、作製した試料について実施の形態1と同様に評価し、その結果を(表12)に示した。
【0034】
【表11】
Figure 0003620314
【0035】
【表12】
Figure 0003620314
【0036】
(表12)に示すように、BaSiOに替えてMgSiOを添加した試料27〜29、またはCaSiOを添加した試料31〜33は、BaSiO添加の場合と同様にQ、絶縁抵抗共に高く、しかも静電容量温度係数が小さい優れた誘電体特性が得られることが分かる。また、MgSiOを添加した場合、BaSiOの添加に比べ、より絶縁抵抗が高く、CaSiOの添加はBaSiOの添加に比べ、よりQの大きい誘電体磁器組成物が得られることが分かる。しかしながら何れの場合とも添加量が3wt%を超えると、焼成温度を低下させる効果があるもののBaSiOと同様に絶縁抵抗を低下させるために好ましくない。
【0037】
(実施の形態3)
実施の形態1の試料12の組成に、更にAl、及びMnOを(表13)に示す組成となるように秤量し、以降の工程条件を実施の形態1と同条件で処理し、作製した試料について実施の形態1と同様に評価しその結果を(表14)に示した。
【0038】
【表13】
Figure 0003620314
【0039】
【表14】
Figure 0003620314
【0040】
(表14)に示すように、本発明のAl、及びMnOを添加した試料35〜38と40、41、43は、Q、絶縁抵抗共に更に高くなり、しかも静電容量温度係数が小さい優れた誘電体特性が得られることが分かる。これに対しAlの添加量が2.0wt%を超える試料39は焼結温度を低下させる効果はあるものの、Qが低下し、またMnOの添加量が0.5wt%を超える試料42の焼結体は8μm以上の異常成長粒子が認められ実用上好ましくない。従ってAl、及びMnOの添加は夫々2.0wt%、0.5wt%以下(但し、両方とも同時に0は除く)に限定する必要があることが分かる。
【0041】
(実施の形態4)
実施の形態1から実施の形態3で作製した、本発明の誘電体磁器組成物の試料12、19、28、32、42、43の各誘電体磁器組成物に酢酸ブチル、ポリビニルブチラール、可塑剤からなるビヒクルを加えて、公知のドクターブレード法により厚さ30μmのセラミックグリーンシートを作製した。
【0042】
次に、得られたそれぞれの組成のセラミックグリーンシートを用い、公知の積層セラミックコンデンサの製造方法に従い、内部電極とセラミックグリーンシートを交互に15層積層したグリーン積層体を600kg/cmの圧力で加圧圧着した後、1608タイプの積層セラミックコンデンサのグリーンチップ形状に切断を行った。尚、内部電極にはニッケル電極ペーストを用いた。
【0043】
次いで、グリーンチップを空気中にて350℃の温度で2時間脱脂した後、非酸化性雰囲気中の1350℃で2時間焼成を行った。
【0044】
その後、得られた焼結体の内部電極が露出した端面に外部電極を設けてそれぞれ積層セラミックコンデンサを完成させた。
【0045】
得られた各積層セラミックコンデンサについて静電容量、Q、静電容量温度係数、絶縁抵抗を、実施の形態1と同様の方法で測定を行った。また寿命試験として125℃の恒温槽中で50Vの直流電圧を積層セラミックコンデンサの外部電極間に1000時間連続印加を行い、その結果を(表15)に示した。
【0046】
【表15】
Figure 0003620314
【0047】
(表15)から明らかなように、本発明の範囲内の誘電体磁器組成物12、28、32、43を用い作製した積層セラミックコンデンサは、Q、絶縁抵抗が共に高く、寿命試験においても特性劣化が認められないのに対し、本発明の範囲外の誘電体磁器組成物の試料19、42で作製した積層セラミックコンデンサは絶縁抵抗が低下し、しかも寿命試験においても特性劣化が認められた。尚、特性劣化は寿命試験後の絶縁抵抗値が1×1010(Ω)以下に低下したものを不良としてカウントした。
【0048】
以上本発明の誘電体磁器組成物は、内部電極にニッケル等の卑金属を用い積層セラミックコンデンサ用グリーンチップを作製し、これを非酸化性雰囲気中で焼成を行っても、Q、絶縁抵抗が共に高く、また静電容量温度変化率の小さい、しかも寿命試験においても特性劣化が発生しない優れた積層セラミックコンデンサが得られることが明らかである。
【0049】
また、実施の形態1から3で誘電体磁器組成物の作製にMgO、CaO、TiO、ZrO、Nd、BaSiO、MgSiO、CaSiO、Vの粉末を使用したが、Mg−Ca−Ti−Zr−Oの化合物、あるいはMg、Ca、Ti、Zr、Ndの炭酸塩、水酸化物等を本発明の組成となるように用いても、また、主成分をあらかじめ仮焼した後、添加物を添加しても実施の形態と同程度の特性を得ることができる。
【0050】
【発明の効果】
以上の結果に示すように、本発明の誘電体磁器組成物は非酸化性雰囲気中で焼成してもQ及び絶縁抵抗が共に高く、しかも静電容量温度係数の小さい優れた誘電体特性を有する焼結体が得られ、ニッケル等の卑金属を内部電極に用いる積層セラミックコンデンサ用の誘電体磁器組成物として使用が可能である。特に、Q特性が優れ、静電容量温度係数が小さいため高周波回路などで使用する温度補償用の積層セラミックコンデンサの誘電体磁器組成物として実用性が高いものである。
【図面の簡単な説明】
【図1】本発明の誘電体磁器組成物の範囲を示す三成分系図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dielectric ceramic composition used for a temperature-compensating multilayer ceramic capacitor in which an internal electrode is formed of a base metal such as nickel, and a multilayer ceramic capacitor using the dielectric ceramic composition.
[0002]
[Prior art]
In the conventional multilayer ceramic capacitor, a green multilayer body in which a plurality of ceramic layer green sheets mainly composed of a dielectric ceramic composition and internal electrode layers are alternately laminated according to a known multilayer ceramic capacitor manufacturing method, A method of forming an external electrode on the end face of the sintered body so as to be electrically connected to the internal electrode exposed on the end face of the obtained sintered body after being cut into a green chip shape and fired at a predetermined temperature Is generally done.
[0003]
However, in recent years, a method of sintering a green chip using a base metal such as nickel as an internal electrode in a non-oxidizing atmosphere has become a mainstream as the multilayer ceramic capacitor has a large capacity and a high multilayer.
[0004]
[Problems to be solved by the invention]
The reason why conventional multilayer ceramic capacitors are fired in a non-oxidizing atmosphere is to prevent oxidation of base metal internal electrodes such as nickel. However, among the multilayer ceramic capacitors, the dielectric ceramic composition used for the temperature-compensated multilayer ceramic capacitor generally has a composition in which rare earth oxides are added to the main components MgTiO 3 and CaTiO 3. When fired in an oxidizing atmosphere, titanium oxide in the main component is easily reduced, resulting in a semiconductor that has a low insulation resistance and a desired dielectric property cannot be obtained.
[0005]
An object of the present invention is to provide a dielectric ceramic composition capable of obtaining stable electrical characteristics even in firing in a non-oxidizing atmosphere and a multilayer ceramic capacitor using the same.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is represented by a general formula: x (Mg m Ca 1-m ) Oy (Ti n Zr 1-n ) O 2 -zNd 2 O 3 (where x + y + z = 1). A (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (X = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0.90) Range) 100 wt%, 0.05 to 3.00 wt% of one selected from the group of BaSiO 3 , MgSiO 3 and CaSiO 3 as an additive, and 0.05 to 0.30 wt V 2 O 5 % Added composition.
[0007]
With this configuration, a product having stable electrical characteristics can be obtained even in firing in a non-oxidizing atmosphere.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is represented by the general formula: x (Mg m Ca 1-m ) O-y (Ti n Zr 1-n ) O 2 -zNd 2 O 3 (where x + y + z = 1). In the ternary composition represented, a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25) , C (x = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0) .90 range) with respect to 100 wt%, 0.05 to 3.00 wt% of one selected from the group of BaSiO 3 , MgSiO 3 and CaSiO 3 as an additive, and 0.05 to 0 V 2 O 5 A dielectric ceramic composition containing 30 wt%. General formula, x (Mg m Ca 1- m) is represented by O-y (Ti n Zr 1 -n) O 2 -zNd 2 O 3, yet a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (x = 0.97, y = 0.02, z = 0.01) In the three-component material composition of the present invention, the sum (x + z) of the molar ratios of MgO, CaO, and Nd 2 O 3 is always equal to or larger than the sum (y) of the molar ratios of TiO 2 and ZrO 2. The composition range is defined as follows. By the V 2 O 5 added 0.05~0.30Wt% in this composition, a non-oxidizing atmosphere V 2 O 5 even if fired in is prevented the reduction of TiO 2, a large insulation resistance, Moreover, a sintered body having a small capacity temperature coefficient as designed can be obtained. Therefore, it is suitable as a dielectric ceramic composition for a temperature-compensated multilayer ceramic capacitor using a base metal such as nickel for the internal electrode. Furthermore, the reduction resistance can be further improved by substituting a part of TiO 2 that is easily reduced with ZrO 2 . On the other hand, by adding 0.05 to 3.00 wt% of one selected from the group of BaSiO 3 , MgSiO 3 , and CaSiO 3 , these promote sinterability as a sintering aid, thereby improving Q E and insulation resistance. A high and excellent sintered body can be obtained.
[0009]
The invention according to claim 2 of the present invention is the main component x (Mg m Ca 1-m ) Oy (Ti n Zr 1-n ) O 2 -zNd of the dielectric ceramic composition according to claim 1. In the ternary composition represented by 2 O 3 (where x + y + z = 1), a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (x = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70) , N is in the range of 0.70 ≦ n ≦ 0.90) 100 wt%, Al 2 O 3 is further 2.0 wt% or less, and MnO 2 is 0.5 wt% or less (however, both are excluded at the same time) The dielectric ceramic composition according to claim 1, wherein x, y, m, and n represent molar ratios. Sinterability is further improved by adding Al 2 O 3 and MnO 2 to the composition. In particular, MnO 2 has an effect of preventing the reduction of TiO 2 and increasing the insulation resistance.
[0010]
A third aspect of the present invention is a multilayer ceramic capacitor comprising a ceramic layer made of the dielectric ceramic composition according to the first and second aspects and an internal electrode of a base metal such as nickel. By forming a ceramic layer with the reduction-resistant dielectric ceramic composition according to claim 1 and claim 2, a multilayer ceramic capacitor using a base metal such as nickel as an internal electrode can be fired in a non-oxidizing atmosphere. Thus, it is possible to obtain an excellent temperature compensating multilayer ceramic capacitor having both a high Q E and an insulation resistance and a small capacitance temperature coefficient.
[0011]
(Embodiment 1)
First, high-purity MgO, CaO, TiO 2 , ZrO 2 , Nd 2 O 3 , V 2 O 5 , and BaSiO 3 powders as starting materials are weighed so as to have the composition ratios shown in (Table 1) to (Table 5). Then, after wet mixing, dehydration drying is performed, and the obtained mixed material is put into a high-purity alumina crucible and calcined in air at a temperature of 1150 ° C. for 2 hours.
[0012]
[Table 1]
Figure 0003620314
[0013]
[Table 2]
Figure 0003620314
[0014]
[Table 3]
Figure 0003620314
[0015]
[Table 4]
Figure 0003620314
[0016]
[Table 5]
Figure 0003620314
[0017]
Next, the calcined material was placed in a rubber-lined ball mill together with pure water and zirconia balls, wet-pulverized, dehydrated and dried to produce a temperature-compensating dielectric ceramic composition. An organic binder was added to the obtained temperature-compensating dielectric ceramic composition, and after granulation, a disk having a diameter of 15 mm and a thickness of 0.4 mm was molded at a molding pressure of 1 ton / cm 2 using a hydraulic press.
[0018]
Next, the molded disc is put into an alumina-based sheath, degreased in air at 700 ° C. for 2 hours, and then fired at a temperature shown in (Table 6) to (Table 10) for 2 hours in a non-oxidizing atmosphere. As a result, a sintered body was obtained.
[0019]
After applying the copper electrode paste on both sides of the obtained sintered body, after baking at 900 ° C. in a non-oxidizing atmosphere, the dielectric constant, Q E , insulation resistance, capacitance temperature coefficient are measured, The results are shown in (Table 6) to (Table 10). Incidentally, the dielectric constant, measurement of the Q E is the temperature 20 ° C., measured voltage 1.0 V rms, measured performed at a frequency 1 MHz, than the resistance value after application of 1 minute DC50V between the insulation resistance of the electrode, also capacitance Temperature The coefficient was obtained from (Equation 1) by measuring the capacitance at 20 ° C. and 125 ° C.
[0020]
[Table 6]
Figure 0003620314
[0021]
[Table 7]
Figure 0003620314
[0022]
[Table 8]
Figure 0003620314
[0023]
[Table 9]
Figure 0003620314
[0024]
[Table 10]
Figure 0003620314
[0025]
[Expression 1]
Figure 0003620314
[0026]
As shown in (Table 6) to (Table 10), in Samples 2, 4, 18, 22, 23, and 26, TiO 2 is partially reduced and the insulation resistance is extremely reduced. Is insufficiently sintered at a temperature of 1350 ° C., so that both Q E and insulation resistance decrease, and Samples 5 and 7 do not sinter at a temperature of 1350 ° C. Furthermore, the sample 15 has a large capacitance temperature coefficient of plus 281 ppm / ° C. In contrast, those in the composition range of the present invention the sample 1,3,6,9,11,12,13,16,17,20,21,24,25, large Q E, higher insulation resistance Further, it becomes clear that excellent dielectric properties having a smaller capacitance temperature coefficient can be obtained.
[0027]
Hereinafter, the reason for limiting each composition range will be described.
First, the reason why the ranges of x, y, and z of the main component are limited will be described. As in Samples 2 and 4 of Table 1, a range in which the sum (y) of the molar ratios of TiO 2 and ZrO 2 is larger than the sum (x + z) of the molar ratios of MgO, CaO and Nd 2 O 3 , that is, When the composition of y> 0.50 is fired in a non-reducing atmosphere, TiO 2 as a main component is reduced, insulation resistance is low, and stable dielectric characteristics cannot be obtained, making it impractical.
[0028]
In addition, as in Sample 8, a composition having a sum (y) of molar ratios of TiO 2 and ZrO 2 of 0.01 is not sufficiently sintered when fired at 1350 ° C., and both Q E and insulation resistance are low. Therefore, the range of y needs to be 0.02 ≦ y ≦ 0.50. Also, as in Samples 5, 7, and 8, when the value twice the number of moles of z is equal to or larger than the number of moles of y, sintering becomes insufficient or difficult, and Q E and insulation resistance are reduced. It turns out that it falls. That is, in the relationship between y (Ti, Zr) O 2 and zNd 2 O 3 , if the number of moles z of Nd 2 O 3 is larger than the number of moles y of (Ti, Zr) O 2 , sintering Therefore, it is necessary to satisfy y ≧ 2z. However, the range of y is 0.02 ≦ y ≦ 0.50. Therefore, if the value of y changes in the range of 0.02 to 0.50, the value of z always satisfies y ≧ 2z and changes in the range of 0.01 to 0.25.
[0029]
Further, from the relationship of x + y + z = 1, the range of x is inevitably determined from the values of y and z, and the range of x, y and z of the main component of the present invention is obtained by straightening points a, b and c shown in FIG. It is limited to the range of the molar ratio surrounded by. Next, the reason why the range of the molar ratio m of Mg is limited is that, as shown in (Table 2) and (Table 7), the value of m is less than 0.30 or a sample 10 having a composition greater than 0.70, No. 14 is not practical because sintering is insufficient even when fired at 1350 ° C., so that both Q E and insulation resistance decrease. Therefore, the range of m needs to be limited to 0.30 ≦ m ≦ 0.70.
[0030]
Further, the reason for limiting the range of the molar ratio n of Ti is that the capacitance temperature coefficient is positive when the value of n is 0.60 as in Sample 15 shown in (Table 3) and (Table 8). When the value of n is 1.00, that is, 100% TiO 2 as in the sample 18, the TiO 2 is fired in a non-oxidizing atmosphere. 2 is reduced, the insulation resistance is lowered, and stable dielectric properties cannot be obtained. Therefore, the value of n needs to be limited to a range of 0.70 ≦ n ≦ 0.90.
[0031]
On the other hand, the reason why the additive amount of BaSiO 3 is limited is that the composition with the additive amount of zero as in Sample 19 shown in (Table 4) and (Table 9) is insufficiently sintered even at 1350 ° C. firing. Therefore, both Q E and insulation resistance are reduced, and when the amount of addition exceeds 3.0 as in sample 22, there is an effect of lowering the firing temperature, but a part of the Si component of the added BaSiO 3 is Ti. It enters the position and the substituted Ti is reduced to lower the QE and insulation resistance. Therefore, it is necessary to limit the addition range of BaSiO 3 to a range of 0.2 to 3.0 wt%.
[0032]
Furthermore, the reason for limiting the amount of V 2 O 5 added is that the composition with a zero added amount as in Sample 23 shown in (Table 5) and (Table 10) prevents reduction of the main component TiO 2. However, TiO 2 is reduced by firing in a non-oxidizing atmosphere, the insulation resistance is lowered, and stable dielectric properties cannot be obtained. Since the addition amount as in Sample 26 was reduced to TiO 2 in the reverse exceeds 0.3 wt%, to lower the insulation resistance and Q E, undesirable. Although this cause is not certain, it seems that V 2 O 5 controls the valence of TiO 2 to make it a semiconductor. Therefore, the addition amount of V 2 O 5, it is necessary to limit the range of 0.05~0.3wt%.
[0033]
(Embodiment 2)
In place of BaSiO 3 having the composition of sample 12 of the first embodiment, MgSiO 3 or CaSiO 3 is weighed so as to have the composition ratio shown in (Table 11), and the subsequent steps are processed under the same conditions as in the first embodiment. The produced samples were evaluated in the same manner as in Embodiment 1, and the results are shown in Table 12.
[0034]
[Table 11]
Figure 0003620314
[0035]
[Table 12]
Figure 0003620314
[0036]
As shown in Table 12, samples 27 to 29 to which MgSiO 3 was added instead of BaSiO 3 or samples 31 to 33 to which CaSiO 3 was added had both Q E and insulation resistance as in the case of BaSiO 3 addition. It can be seen that excellent dielectric properties with high capacitance temperature coefficient are obtained. Also, in the case of adding MgSiO 3, compared with the addition of BaSiO 3, higher insulation resistance, the addition of CaSiO 3 compared to the addition of BaSiO 3, it can be seen that a large dielectric ceramic composition of more Q E is obtained . However, in any case, if the addition amount exceeds 3 wt%, although there is an effect of lowering the firing temperature, it is not preferable because the insulation resistance is lowered similarly to BaSiO 3 .
[0037]
(Embodiment 3)
The composition of the sample 12 of the first embodiment is further weighed so that Al 2 O 3 and MnO 2 have the composition shown in (Table 13), and the subsequent process conditions are processed under the same conditions as in the first embodiment. The prepared samples were evaluated in the same manner as in Embodiment 1, and the results are shown in Table 14.
[0038]
[Table 13]
Figure 0003620314
[0039]
[Table 14]
Figure 0003620314
[0040]
As shown in (Table 14), samples 35-38 and 40, 41, 43 to which Al 2 O 3 and MnO 2 of the present invention were added had both higher Q E and insulation resistance, and the capacitance temperature It can be seen that excellent dielectric properties with a small coefficient can be obtained. Although this to the sample 39 amount of Al 2 O 3 exceeds 2.0 wt% is effective to lower the sintering temperature is, reduces the Q E, also the addition amount of MnO 2 exceeds 0.5 wt% The sintered body of the sample 42 is not practically preferable because abnormally grown particles of 8 μm or more are observed. Therefore, it can be seen that the addition of Al 2 O 3 and MnO 2 needs to be limited to 2.0 wt% and 0.5 wt% or less (however, both are excluded at the same time).
[0041]
(Embodiment 4)
Dielectric porcelain compositions 12, 19, 28, 32, 42, and 43 of the dielectric porcelain composition of the present invention produced in Embodiments 1 to 3 were each added with butyl acetate, polyvinyl butyral, plasticizer A ceramic green sheet having a thickness of 30 μm was prepared by a known doctor blade method.
[0042]
Next, using the obtained ceramic green sheets of the respective compositions, according to a known method for producing a multilayer ceramic capacitor, a green laminated body in which 15 layers of internal electrodes and ceramic green sheets are alternately laminated is formed at a pressure of 600 kg / cm 2 . After pressure bonding, the green chip shape of a 1608 type multilayer ceramic capacitor was cut. A nickel electrode paste was used as the internal electrode.
[0043]
Next, the green chip was degreased in air at a temperature of 350 ° C. for 2 hours, and then fired at 1350 ° C. in a non-oxidizing atmosphere for 2 hours.
[0044]
Thereafter, an external electrode was provided on the end face where the internal electrode of the obtained sintered body was exposed to complete each multilayer ceramic capacitor.
[0045]
For each of the obtained multilayer ceramic capacitors, the capacitance, Q E , capacitance temperature coefficient, and insulation resistance were measured in the same manner as in the first embodiment. As a life test, a DC voltage of 50 V was continuously applied between the external electrodes of the multilayer ceramic capacitor in a constant temperature bath at 125 ° C. for 1000 hours, and the results are shown in Table 15.
[0046]
[Table 15]
Figure 0003620314
[0047]
As is clear from Table 15, the multilayer ceramic capacitors produced using the dielectric ceramic compositions 12, 28, 32, and 43 within the scope of the present invention have both high Q E and insulation resistance. In contrast to the fact that no deterioration of properties was observed, the multilayer ceramic capacitors produced in samples 19 and 42 of the dielectric ceramic composition outside the scope of the present invention showed a decrease in insulation resistance, and the deterioration of properties was also observed in the life test. . Incidentally, the characteristic deterioration was counted as a failure when the insulation resistance value after the life test decreased to 1 × 10 10 (Ω) or less.
[0048]
As described above, even when the dielectric ceramic composition of the present invention produces a green chip for a multilayer ceramic capacitor using a base metal such as nickel as an internal electrode, and fires it in a non-oxidizing atmosphere, the Q E and the insulation resistance are high. It is clear that an excellent multilayer ceramic capacitor can be obtained which is both high, has a low rate of change in capacitance temperature, and does not cause characteristic deterioration even in a life test.
[0049]
In addition, the powders of MgO, CaO, TiO 2 , ZrO 2 , Nd 2 O 3 , BaSiO 3 , MgSiO 3 , CaSiO 3 , and V 2 O 5 were used for the production of the dielectric ceramic composition in the first to third embodiments. However, Mg—Ca—Ti—Zr—O compound, Mg, Ca, Ti, Zr, Nd carbonate, hydroxide, etc. may be used so as to have the composition of the present invention. Even if an additive is added after calcining in advance, the same characteristics as in the embodiment can be obtained.
[0050]
【The invention's effect】
As shown in the above results, the dielectric ceramic composition of the present invention has excellent dielectric properties with high QE and insulation resistance and low capacitance temperature coefficient even when fired in a non-oxidizing atmosphere. And can be used as a dielectric ceramic composition for a multilayer ceramic capacitor using a base metal such as nickel as an internal electrode. In particular, since it has excellent QE characteristics and a small capacitance temperature coefficient, it is highly practical as a dielectric ceramic composition for multilayer ceramic capacitors for temperature compensation used in high frequency circuits and the like.
[Brief description of the drawings]
FIG. 1 is a ternary diagram showing the range of the dielectric ceramic composition of the present invention.

Claims (3)

一般式として、x(MgCa1−m)O−y(TiZr1−n)O−zNd(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、添加物としてBaSiO、MgSiO、CaSiOの群より選ばれた一つを0.05〜3.00wt%、更にVを0.05〜0.30wt%添加した誘電体磁器組成物(尚x、y、m、nはモル比を表す)。As a general formula, the ternary composition represented by x (Mg m Ca 1-m ) O-y (Ti n Zr 1-n) O 2 -zNd 2 O 3 ( where x + y + z = 1) , a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (x = 0.97, y = 0) 0.02 and z = 0.01) (where m is in the range of 0.30 ≦ m ≦ 0.70 and n is in the range of 0.70 ≦ n ≦ 0.90) with respect to 100 wt%. As a dielectric ceramic composition in which 0.05 to 3.00 wt% of one selected from the group of BaSiO 3 , MgSiO 3 , and CaSiO 3 and 0.05 to 0.30 wt% of V 2 O 5 are added. x, y, m, and n represent a molar ratio). 請求項1に記載の誘電体磁器組成物の主成分x(MgCa1−m)O−y(TiZr1−n)O−zNd(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、更にAlを2.0wt%以下、及びMnOを0.5wt%以下(但し両方とも同時に0の場合は除く)を添加した請求項1に記載の誘電体磁器組成物(尚x、y、m、nはモル比を表す)。Represented by principal component x of the dielectric ceramic composition according to claim 1 (Mg m Ca 1-m ) O-y (Ti n Zr 1-n) O 2 -zNd 2 O 3 ( where x + y + z = 1) A (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (X = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0.90) The dielectric according to claim 1, wherein Al 2 O 3 is added in an amount of 2.0 wt% or less and MnO 2 is added in an amount of 0.5 wt% or less (except when both are 0 at the same time) to 100 wt%. A body porcelain composition (where x, y, m, and n represent molar ratios). 請求項1及び請求項2に記載の誘電体磁器組成物からなるセラミック層と、ニッケル等の卑金属の内部電極で構成した積層セラミックコンデンサ。A multilayer ceramic capacitor comprising a ceramic layer comprising the dielectric ceramic composition according to claim 1 and a base metal internal electrode such as nickel.
JP31739198A 1998-11-09 1998-11-09 Dielectric ceramic composition and multilayer ceramic capacitor using the same Expired - Lifetime JP3620314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31739198A JP3620314B2 (en) 1998-11-09 1998-11-09 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31739198A JP3620314B2 (en) 1998-11-09 1998-11-09 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Publications (2)

Publication Number Publication Date
JP2000143344A JP2000143344A (en) 2000-05-23
JP3620314B2 true JP3620314B2 (en) 2005-02-16

Family

ID=18087737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31739198A Expired - Lifetime JP3620314B2 (en) 1998-11-09 1998-11-09 Dielectric ceramic composition and multilayer ceramic capacitor using the same

Country Status (1)

Country Link
JP (1) JP3620314B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514895B1 (en) * 2000-06-15 2003-02-04 Paratek Microwave, Inc. Electronically tunable ceramic materials including tunable dielectric and metal silicate phases
TW492017B (en) * 2000-06-29 2002-06-21 Tdk Corp Dielectrics porcelain composition and electronic parts
JP3874278B2 (en) * 2002-12-25 2007-01-31 Tdk株式会社 DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
JP4776913B2 (en) 2004-01-08 2011-09-21 Tdk株式会社 Multilayer ceramic capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP2000143344A (en) 2000-05-23

Similar Documents

Publication Publication Date Title
KR100464588B1 (en) Dielectric ceramic, methods for making and evaluating the same, and monolithic ceramic electronic component
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
KR100444230B1 (en) Nonreducible dielectric ceramic composition
KR100418601B1 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
KR100444229B1 (en) Nonreducible dielectric ceramic composition
JPH06206765A (en) Nonreducing dielectric ceramic composition
JP3642282B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
KR19980070404A (en) Monolithic ceramic capacitors
JP2566995B2 (en) High dielectric constant porcelain composition and ceramic capacitor
JPH11302072A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JP3419713B2 (en) Manufacturing method of multilayer ceramic chip capacitor
JP3620314B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3613044B2 (en) Dielectric porcelain composition
JP3698951B2 (en) Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
JP3698953B2 (en) Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same
JP2000026160A (en) Dielectric ceramic composition
JP3634930B2 (en) Dielectric porcelain composition
JP3575294B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JPH11302071A (en) Dielectric ceramic, laminated ceramic capacitor and its production
JP3575298B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3575299B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3287980B2 (en) Multilayer capacitors
JP2000034166A (en) Dielectric porcelain composition
KR20020085761A (en) Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof
JPH04188506A (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

EXPY Cancellation because of completion of term