JP3575299B2 - Dielectric ceramic composition and multilayer ceramic capacitor using the same - Google Patents
Dielectric ceramic composition and multilayer ceramic capacitor using the same Download PDFInfo
- Publication number
- JP3575299B2 JP3575299B2 JP32055898A JP32055898A JP3575299B2 JP 3575299 B2 JP3575299 B2 JP 3575299B2 JP 32055898 A JP32055898 A JP 32055898A JP 32055898 A JP32055898 A JP 32055898A JP 3575299 B2 JP3575299 B2 JP 3575299B2
- Authority
- JP
- Japan
- Prior art keywords
- composition
- dielectric
- insulation resistance
- multilayer ceramic
- dielectric ceramic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はニッケルなどの卑金属で内部電極を形成する温度補償用の積層セラミックコンデンサに用いる誘電体磁器組成物およびこれを用いた積層セラミックコンデンサに関するものである。
【0002】
【従来の技術】
従来の積層セラミックコンデンサは、公知の積層セラミックコンデンサの製造方法にしたがって、誘電体磁器組成物を主成分とするセラミック層グリーンシートと内部電極層を交互に複数層積層したグリーン積層体を、所定のグリーンチップ形状に切断した後、所定温度で焼成を行い、得られた焼結体の端面に露出した内部電極と電気的に接続するように焼結体の端面部に外部電極を形成する方法が一般的に行われている。
【0003】
しかしながら近年、積層セラミックコンデンサの大容量、高積層化に伴い内部電極にニッケル等の卑金属を用いたグリーンチップを非酸化性雰囲気中で焼結を行う方法が主流となってきている。
【0004】
【発明が解決しようとする課題】
従来の積層セラミックコンデンサを非酸化性雰囲気で焼成を行うのは、ニッケル等の卑金属内部電極の酸化を防ぐためである。しかしなが積層セラミックコンデンサの内、温度補償用の積層セラミックコンデンサに用いる誘電体磁器組成物は、一般的に主成分のMgTiO3,CaTiO3に希土類酸化物を添加した組成が多く、この材料は非酸化性雰囲気で焼成すると主成分中の酸化チタンが還元され易く、半導体化して絶縁抵抗が低くなると共に所望の誘電体特性が得られないという課題を有していた。
【0005】
本発明は非酸化性雰囲気中の焼成においても、安定した電気特性の得られる誘電体磁器組成物およびこれを用いた積層セラミックコンデンサを提供することを目的とするものである。
【0006】
【課題を解決するための手段】
前記目的を達成するため本発明は、一般式として、x(MgmCa1−m)O−y(TinZr1−n)O2−zSm2O3(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、添加物としてBaSiO3,MgSiO3,CaSiO3の群より選ばれた一つを0.05〜3.00wt%、更にV2O5を0.05〜0.30wt%添加した組成としたものである。
【0007】
この構成により、非酸化性雰囲気中の焼成においても電気特性の安定したものが得られることになる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、一般式として、x(MgmCa1−m)O−y(TinZr1−n)O2−zSm2O3(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、添加物としてBaSiO3,MgSiO3,CaSiO3の群より選ばれた一つを0.05〜3.00wt%、更にV2O5を0.05〜0.30wt%添加した誘電体磁器組成物である。一般式が、x(MgmCa1−m)O−y(TinZr1−n)O2−zSm2O3で表され、しかもa(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた本発明の三成分系材料組成は、MgO,CaO,Sm2O3のモル比の和(x+z)が、常にTiO2,ZrO2のモル比の和(y)と等しいか、又は大きくなるように組成範囲を規定したものである。この組成にV2O5を0.05〜0.30wt%添加することにより、非酸化性雰囲気中で焼成を行ってもV2O5がTiO2の還元を防止し、絶縁抵抗が大きく、しかも設計値通りの容量温度係数の小さい焼結体が得られる。従ってニッケル等の卑金属を内部電極に用いる温度補償用の積層セラミックコンデンサの誘電体磁器組成物として好適なものである。また更に、還元されやすいTiO2の一部をZrO2で置換することで、更に耐還元性を向上させることができる。一方BaSiO3,MgSiO3,CaSiO3の群より選ばれた一つを0.05〜3.00wt%添加することにより、これらが焼結助材として焼結性を促進しQE、絶縁抵抗の高い優れた焼結体を得ることができるものである。
【0009】
本発明の請求項2に記載の発明は、請求項1に記載の誘電体磁器組成物の主成分x(MgmCa1−m)O−y(TinZr1−n)O2−zSm2O3(但しx+y+z=1)で表される三成分系組成において、a(x=0.49、y=0.50、z=0.01)、b(x=0.25、y=0.50、z=0.25)、c(x=0.97、y=0.02、z=0.01)で囲まれた組成(但し、mは0.30≦m≦0.70、nは0.70≦n≦0.90の範囲)100wt%に対し、更にAl2O3を2.0wt%以下、MnO2を0.5wt%以下(但し、両方とも同時に0は除く)を添加したことを特徴とする請求項1に記載の誘電体磁器組成物である(尚x,y,m,nはモル比を表す)。前記組成に対しAl2O3及びMnO2を添加することにより焼結性を更に向上させる。特にMnO2はTiO2の還元を防ぎ、絶縁抵抗をより高いものとする効果がある。
【0010】
本発明の請求項3に記載の発明は、請求項1及び請求項2に記載の誘電体磁器組成物からなるセラミック層と、ニッケル等の卑金属の内部電極で構成した積層セラミックコンデンサである。請求項1及び請求項2に記載の耐還元性誘電体磁器組成物でセラミック層を構成することによって、ニッケル等の卑金属を内部電極に用いた積層セラミックコンデンサが非酸化性雰囲気中での焼成が可能となり、QE、絶縁抵抗が共に高く、しかも静電容量温度係数の小さい優れた温度補償用の積層セラミックコンデンサを得ることができるものである。
【0011】
(実施の形態1)
先ず、出発原料として高純度のMgO,CaO,TiO2,ZrO2,Sm2O3,V2O5,BaSiO3粉末を(表1)〜(表5)に示す組成比になるように秤量し、湿式混合後、脱水乾燥を行い、得られた混合材料を高純度アルミナ質の坩堝に入れ、空気中1150℃の温度で2時間仮焼を行う。
【0012】
【表1】
【0013】
【表2】
【0014】
【表3】
【0015】
【表4】
【0016】
【表5】
【0017】
次に、仮焼材料をゴム内張りのボールミルの中に純水とジルコニアボールと共に入れ、湿式粉砕後、脱水乾燥を行い温度補償用の誘電体磁器組成物を作製した。得られた温度補償用の誘電体磁器組成物に、有機バインダーを加え造粒後、油圧プレスを用い、成形圧力1ton/cm2で直径15mm、厚み0.4mmの円板を成形した。
【0018】
次いで、成形した円板をアルミナ質のサヤに入れ、空気中にて700℃で2時間脱脂した後、非酸化雰囲気中にて(表6)〜(表10)に示す温度で2時間焼成し、焼結体を得た。
【0019】
得られた焼結体の両面に銅電極ペーストを塗布した後、非酸化雰囲気において900℃の温度で焼付けた後、誘電率、QE、絶縁抵抗、静電容量温度係数の測定を行い、その結果を(表6)〜(表10)に示した。尚、誘電率、QEの測定は温度20℃、測定電圧1.0Vrms、測定周波数1MHzで行い、絶縁抵抗は電極間にDC50Vを1分間印加した後の抵抗値より、また静電容量温度係数は20℃と125℃における静電容量を測定し(数1)より求めた。
【0020】
【表6】
【0021】
【表7】
【0022】
【表8】
【0023】
【表9】
【0024】
【表10】
【0025】
【数1】
【0026】
(表6)〜(表10)に示すように、試料2,4,18,22,23,26はTiO2が一部還元され絶縁抵抗が極端に低下し、試料8,10,14,19は1350℃の温度で焼結不十分なためQE、絶縁抵抗が共に低下し、試料5,7は1350℃の温度で焼結しない。さらに、試料15は、静電容量温度係数がプラス351ppm/℃と大きい。これに対し、試料1,3,6,9,11,12,13,16,17,20,21,24,25の本発明の組成範囲内のものは、QEが大きく、絶縁抵抗も高く、さらに静電容量温度係数が小さい優れた誘電体特性が得られることが明らかとなる。
【0027】
以下、それぞれの組成範囲を限定した理由について述べる。
はじめに、主成分のx,y,zの範囲を限定した理由について述べる。(表1)の試料2,4のように、MgOとCaO及びSm2O3のモル比の和(x+z)よりも、TiO2とZrO2のモル比の和(y)が大きい範囲、即ちy>0.50の組成は、非還元雰囲気で焼成すると、主成分のTiO2が還元され絶縁抵抗が低く、安定した誘電体特性が得られず実用的でなくなる。
【0028】
また、試料8のように、TiO2とZrO2のモル比の和(y)が0.01の組成は1350℃の焼成では焼結が不十分でQE、絶縁抵抗共に低くなる。従って、yの範囲は0.02≦y≦0.50とする必要がある。また、試料5,7,8のように、zのモル数の2倍の値がyのモル数と等しいか又は大きくなると、焼結不十分か焼結が困難となり、QE、絶縁抵抗が低下することがわかる。即ち、y(Ti,Zr)O2とzSm2O3との関係において、Sm2O3のモル数zの2倍が、(Ti,Zr)O2のモル数yより大きくなると、焼結が困難になることから、y≧2zとする必要がある。但し、yの範囲は0.02≦y≦0.50とする。従って、yの値が0.02から0.50の範囲で変化すると、zの値は常にy≧2zを満たし0.01〜0.25の範囲で変化することになる。
【0029】
また、x+y+z=1の関係からxの範囲はy,zの値より必然的に決定され、本発明の主成分のx,y,zの範囲は図1に示す点a,b,cを直線で囲まれたモル比の範囲に限定される。
【0030】
次にMgのモル比mの範囲を限定した理由は、(表2)、(表7)に示すようにmの値が0.30より小さいか、または0.70より大きい組成の試料10,14は1350℃の焼成でも焼結不十分なために、QE、絶縁抵抗が共に低下し実用的でなくなる。従って、mの範囲は0.30≦m≦0.70に限定する必要がある。
【0031】
また、Tiのモル比nの範囲を限定した理由は、(表3)、(表8)に示す試料15のように、nの値が0.60の場合は静電容量温度係数がプラス方向に極めて大きくなり、温度補償用の誘電体磁器組成物として実用的でなく、試料18のようにnの値が1.00、即ちTiO2100%の場合は、非酸化雰囲気中の焼成でTiO2が還元され、絶縁抵抗が低くなると共に、安定した誘電特性が得られなくなる。従って、nの値は0.70≦n≦0.90の範囲に限定する必要がある。
【0032】
一方、添加物のBaSiO3の添加量を限定した理由は(表4)、(表9)に示す試料19のように添加量が零の組成は、1350℃の焼成においても焼結不十分なためにQE、絶縁抵抗が共に低下し、また、試料22のように添加量が3.0を超えると焼成温度を低下する効果があるが、添加したBaSiO3のSi成分の一部がTi位置に入り込み、置換されたTiが還元されてQEと絶縁抵抗を低下させる。従って、BaSiO3の添加範囲は、0.2〜3.0wt%の範囲に限定する必要がある。
【0033】
更に、V2O5の添加量を限定した理由は、(表5)、(表10)に示す試料23のように添加量が零の組成は、主成分のTiO2の還元を防御することができず、非酸化性雰囲気中の焼成でTiO2が還元され、絶縁抵抗が低下すると共に安定した誘電特性が得られなくなる。また試料26のように添加量が0.3wt%を超えると逆にTiO2を還元させ、QEと絶縁抵抗を低下させるため好ましくない。この原因は定かではないが、V2O5がTiO2を原子価制御し半導体化するためと思われる。従って、V2O5の添加量は、0.05〜0.3wt%の範囲に限定する必要がある。
【0034】
(実施の形態2)
実施の形態1の試料12の組成のBaSiO3に替えてMgSiO3またはCaSiO3を(表11)の示す組成比になるように秤量した後、以降の工程を実施の形態1と同条件で処理し、作製した試料について実施の形態1と同様に評価し、その結果を(表12)に示した。
【0035】
【表11】
【0036】
【表12】
【0037】
(表12)に示すように、BaSiO3に替えてMgSiO3を添加した試料27〜29、またはCaSiO3を添加した試料31〜33は、BaSiO3添加の場合と同様にQE、絶縁抵抗共に高く、しかも静電容量温度係数が小さい優れた誘電体特性が得られることが分かる。また、MgSiO3を添加した場合、BaSiO3の添加に比べ、より絶縁抵抗が高く、CaSiO3の添加はBaSiO3の添加に比べ、よりQEの大きい誘電体磁器組成物が得られることが分かる。しかしながら何れの場合とも添加量が3wt%を超えると、焼成温度を低下させる効果があるもののBaSiO3と同様に絶縁抵抗を低下させるために好ましくない。
【0038】
(実施の形態3)
実施の形態1の試料12の組成に、更にAl2O3及びMnO2を(表13)に示す組成となるように秤量し、以降の工程条件を実施の形態1と同条件で処理し、作製した試料について実施の形態1と同様に評価しその結果を(表14)に示した。
【0039】
【表13】
【0040】
【表14】
【0041】
(表14)に示すように、本発明のAl2O3及びMnO2を添加した試料35〜38と40,41,43は、QE、絶縁抵抗共に更に高くなり、しかも静電容量温度係数が小さい優れた誘電体特性が得られることが分かる。これに対しAl2O3の添加量が2.0wt%を超える試料39は焼結温度を低下させる効果はあるものの、QEが低下し、またMnO2の添加量が0.5wt%を超える試料42の焼結体は8μm以上の異常成長粒子が認められ実用上好ましくない。従ってAl2O3、及びMnO2の添加は夫々2.0wt%、0.5wt%以下(但し、両方とも同時に0は除く)に限定する必要があることが分かる。
【0042】
(実施の形態4)
実施の形態1から実施の形態3で作製した本発明の誘電体磁器組成物の試料12,19,28,32,42,43の各誘電体粉末に酢酸ブチル、ポリビニルブチラール、可塑剤からなるビヒクルを加えて、公知のドクターブレード法により厚さ30μmのセラミックグリーンシートを作製した。
【0043】
次に、得られたそれぞれの組成のセラミックグリーンシートを用い、公知の積層コンデンサの製造方法に従い、内部電極とセラミックグリーンシートを交互に15層積層したグリーン積層体を600kg/cm2の圧力で加圧圧着した後、1608タイプの積層セラミックコンデンサのグリーンチップ形状に切断を行った。尚、内部電極にはニッケル電極ペーストを用いた。次いで、グリーンチップを空気中にて350℃の温度で2時間脱脂した後、非酸化雰囲気中の1350℃で2時間焼成を行った。
【0044】
その後、得られた焼結体の内部電極が露出した端面に外部電極を設けてそれぞれ積層セラミックコンデンサを完成させた。
【0045】
得られた各積層セラミックコンデンサについて静電容量、QE、静電容量温度係数、絶縁抵抗を、実施の形態1と同様の方法で測定を行った。また寿命試験として125℃の恒温槽中で50Vの直流電圧を積層セラミックコンデンサの外部電極間に1000時間連続印加を行い、その結果を(表15)に示した。
【0046】
【表15】
【0047】
(表15)から明らかなように、本発明の範囲内の誘電体磁器組成物12,28,32,43を用い作製した積層セラミックコンデンサは、QE、絶縁抵抗が共に高く、寿命試験においても特性劣化が認められないのに対し、本発明の範囲外の誘電体磁器組成物の試料19,42で作製した積層セラミックコンデンサは絶縁抵抗が低下し、しかも寿命試験においても特性劣化が認められた。尚、特性劣化は寿命試験後の絶縁抵抗値が1×1010(Ω)以下に低下したものを不良としてカウントした。
【0048】
以上本発明の誘電体磁器組成物は、内部電極にニッケル等の卑金属を用い積層セラミックコンデンサ用グリーンチップを作製し、これを非酸化性雰囲気中で焼成を行っても、QE、絶縁抵抗が共に高く、また静電容量温度変化率の小さい、しかも寿命試験においても特性劣化が発生しない優れた積層セラミックコンデンサが得られることが明らかである。
【0049】
また、実施の形態1から3で誘電体磁器組成物の作製にMgO,CaO,TiO2,ZrO2,Sm2O3,BaSiO3,MgSiO3,CaSiO3,V2O5の粉末を使用したが、Mg−Ca−Ti−Zr−Oの化合物、あるいはMg,Ca,Ti,Zr,Smの炭酸塩、水酸化物等を本発明の組成となるように用いても、また、主成分をあらかじめ仮焼した後、添加物を添加しても実施の形態と同程度の特性を得ることができる。
【0050】
【発明の効果】
以上の結果に示すように、本発明の誘電体磁器組成物は非酸化雰囲気中で焼成してもQE及び絶縁抵抗が共に高く、しかも静電容量温度係数の小さい優れた誘電体特性を有する焼結体が得られ、ニッケル等の卑金属を内部電極に用いる積層セラミックコンデンサ用の誘電体磁器組成物として使用が可能である。特に、QE特性が優れ、静電容量温度係数が小さいため高周波回路などで使用する温度補償用の積層セラミックコンデンサの誘電体磁器組成物として実用性が高いものである。
【図面の簡単な説明】
【図1】本発明の誘電体磁器組成物の範囲を示す三成分系図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dielectric ceramic composition used for a temperature-compensating multilayer ceramic capacitor forming an internal electrode with a base metal such as nickel and a multilayer ceramic capacitor using the same.
[0002]
[Prior art]
A conventional multilayer ceramic capacitor, according to a known method for manufacturing a multilayer ceramic capacitor, a green laminate in which a plurality of ceramic green sheets and internal electrode layers having a dielectric ceramic composition as a main component are alternately laminated, a predetermined green laminate is formed. After cutting into a green chip shape, baking is performed at a predetermined temperature, and an external electrode is formed on the end surface of the sintered body so as to be electrically connected to the internal electrode exposed on the end surface of the obtained sintered body. Generally done.
[0003]
However, in recent years, a method of sintering a green chip using a base metal such as nickel for an internal electrode in a non-oxidizing atmosphere has become mainstream as the multilayer ceramic capacitor has a large capacity and a high lamination.
[0004]
[Problems to be solved by the invention]
The reason why the conventional multilayer ceramic capacitor is fired in a non-oxidizing atmosphere is to prevent oxidation of a base metal internal electrode such as nickel. However, among the multilayer ceramic capacitors, the dielectric ceramic composition used for the multilayer ceramic capacitor for temperature compensation generally has a composition in which rare earth oxides are added to the main components MgTiO 3 and CaTiO 3. When fired in a non-oxidizing atmosphere, titanium oxide in the main component is easily reduced, and there is a problem that a semiconductor is formed, insulation resistance is reduced, and desired dielectric properties cannot be obtained.
[0005]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a dielectric ceramic composition capable of obtaining stable electrical characteristics even when fired in a non-oxidizing atmosphere, and a multilayer ceramic capacitor using the same.
[0006]
[Means for Solving the Problems]
The present invention for achieving the objects, as a general formula, expressed in x (Mg m Ca 1-m ) O-y (Ti n Zr 1-n) O 2 -zSm 2 O 3 ( where x + y + z = 1) A (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (X = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0.90) Range) of 100 wt%, one selected from the group consisting of BaSiO 3 , MgSiO 3 , and CaSiO 3 as an additive is 0.05 to 3.00 wt%, and V 2 O 5 is 0.05 to 0.30 wt%. %.
[0007]
With this configuration, a material having stable electric characteristics can be obtained even when firing in a non-oxidizing atmosphere.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
According to a first aspect of the present invention, as a general formula, with x (Mg m Ca 1-m ) O-y (Ti n Zr 1-n) O 2 -zSm 2 O 3 ( where x + y + z = 1) In the ternary composition represented, a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25) , C (x = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70, n is 0.70 ≦ n ≦ 0) to range) 100 wt% of .90, BaSiO 3, MgSiO 3, CaSiO 0.05~3.00wt% of one selected from the group of 3 as additives, further a V 2 O 5 0.05~0 It is a dielectric porcelain composition to which .30 wt% is added. General formula, x (Mg m Ca 1- m) is represented by O-y (Ti n Zr 1 -n) O 2 -zSm 2 O 3, yet a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), c (x = 0.97, y = 0.02, z = 0.01) In the ternary material composition of the present invention, the sum (x + z) of the molar ratios of MgO, CaO and Sm 2 O 3 is always equal to or larger than the sum (y) of the molar ratios of TiO 2 and ZrO 2. The composition range is defined as follows. By the V 2 O 5 added 0.05~0.30Wt% in this composition, a non-oxidizing atmosphere V 2 O 5 even if fired in is prevented the reduction of TiO 2, a large insulation resistance, Moreover, a sintered body having a small capacity temperature coefficient as designed can be obtained. Therefore, it is suitable as a dielectric ceramic composition for a multilayer ceramic capacitor for temperature compensation using a base metal such as nickel for the internal electrodes. Further, by substituting a part of TiO 2 that is easily reduced with ZrO 2 , the reduction resistance can be further improved. Meanwhile BaSiO 3, MgSiO 3, by adding CaSiO 3 0.05~3.00wt% of one selected from the group of, it promotes Q E sinterability as a sintering material, the insulation resistance It is possible to obtain a high and excellent sintered body.
[0009]
The invention according to claim 2 of the present invention, the main component x (Mg m Ca 1-m ) of the dielectric ceramic composition according to claim 1 O-y (Ti n Zr 1-n) O 2 -zSm In a ternary composition represented by 2 O 3 (where x + y + z = 1), a (x = 0.49, y = 0.50, z = 0.01), b (x = 0.25, y = 0.50, z = 0.25), a composition surrounded by c (x = 0.97, y = 0.02, z = 0.01) (where m is 0.30 ≦ m ≦ 0.70) , N is in the range of 0.70 ≦ n ≦ 0.90) 100 wt%, Al 2 O 3 is 2.0 wt% or less, MnO 2 is 0.5 wt% or less (both are simultaneously excluded from 0). 2. The dielectric ceramic composition according to claim 1, wherein x, y, m, and n represent molar ratios. Sinterability is further improved by adding Al 2 O 3 and MnO 2 to the above composition. In particular, MnO 2 has the effect of preventing the reduction of TiO 2 and increasing the insulation resistance.
[0010]
According to a third aspect of the present invention, there is provided a multilayer ceramic capacitor comprising a ceramic layer made of the dielectric ceramic composition according to the first and second aspects and an internal electrode of a base metal such as nickel. By forming the ceramic layer from the reduction-resistant dielectric porcelain composition according to claim 1 and claim 2, the multilayer ceramic capacitor using a base metal such as nickel for the internal electrode can be fired in a non-oxidizing atmosphere. This makes it possible to obtain an excellent multilayer ceramic capacitor for temperature compensation, which has both high Q E and high insulation resistance and a small capacitance temperature coefficient.
[0011]
(Embodiment 1)
First, weighed so that the composition ratio shown in high purity MgO as starting material, CaO, TiO 2, ZrO 2 , Sm 2 O 3, V 2 O 5, BaSiO 3 powder (Table 1) to (Table 5) After wet mixing, dehydration and drying are performed, and the obtained mixed material is placed in a high-purity alumina crucible and calcined in air at 1150 ° C. for 2 hours.
[0012]
[Table 1]
[0013]
[Table 2]
[0014]
[Table 3]
[0015]
[Table 4]
[0016]
[Table 5]
[0017]
Next, the calcined material was put into a rubber-lined ball mill together with pure water and zirconia balls, wet-pulverized, and then dehydrated and dried to prepare a dielectric ceramic composition for temperature compensation. An organic binder was added to the obtained dielectric ceramic composition for temperature compensation, and after granulation, a disc having a diameter of 15 mm and a thickness of 0.4 mm was formed at a molding pressure of 1 ton / cm 2 using a hydraulic press.
[0018]
Next, the formed disk is placed in an alumina sheath, degreased in air at 700 ° C. for 2 hours, and then baked in a non-oxidizing atmosphere at a temperature shown in (Table 6) to (Table 10) for 2 hours. Thus, a sintered body was obtained.
[0019]
After applying the copper electrode paste on both sides of the obtained sintered body, baking at a temperature of 900 ° C. in a non-oxidizing atmosphere, the dielectric constant, Q E , insulation resistance, and capacitance temperature coefficient were measured. The results are shown in (Table 6) to (Table 10). Incidentally, the dielectric constant, measurement of the Q E is the temperature 20 ° C., measured voltage of 1.0 Vrms, performed at a measuring frequency of 1 MHz, than the resistance value after application of 1 minute DC50V between the insulation resistance of the electrode, also temperature coefficient of capacitance Was obtained by measuring the capacitance at 20 ° C. and 125 ° C. (Equation 1).
[0020]
[Table 6]
[0021]
[Table 7]
[0022]
[Table 8]
[0023]
[Table 9]
[0024]
[Table 10]
[0025]
(Equation 1)
[0026]
As shown in Tables 6 to 10, in Samples 2, 4, 18, 22, 23, and 26, TiO 2 was partially reduced, the insulation resistance was extremely reduced, and Samples 8, 10, 14, 19, Because of insufficient sintering at a temperature of 1350 ° C., both Q E and insulation resistance are reduced, and Samples 5 and 7 do not sinter at a temperature of 1350 ° C. Further, the sample 15 has a large capacitance temperature coefficient of plus 351 ppm / ° C. In contrast, those in the composition range of the present invention the sample 1,3,6,9,11,12,13,16,17,20,21,24,25, large Q E, higher insulation resistance It is clear that excellent dielectric characteristics having a small capacitance temperature coefficient can be obtained.
[0027]
Hereinafter, the reasons for limiting the respective composition ranges will be described.
First, the reason for limiting the ranges of x, y, and z of the main components will be described. As shown in Samples 2 and 4 in Table 1, the range where the sum (y) of the molar ratios of TiO 2 and ZrO 2 is larger than the sum (x + z) of the molar ratios of MgO, CaO and Sm 2 O 3 , that is, When baking in a non-reducing atmosphere, the composition of y> 0.50 reduces the main component TiO 2, lowers the insulation resistance, does not provide stable dielectric properties, and is not practical.
[0028]
Further, as in the sample 8, the composition having the sum (y) of the molar ratios of TiO 2 and ZrO 2 of 0.01 has insufficient sintering at 1350 ° C., resulting in low Q E and low insulation resistance. Therefore, the range of y needs to be 0.02 ≦ y ≦ 0.50. When twice the number of moles of z is equal to or larger than the number of moles of y as in samples 5, 7, and 8, the sintering is insufficient or difficult, and the Q E and the insulation resistance are reduced. It turns out that it falls. That is, in the relationship between y (Ti, Zr) O 2 and zSm 2 O 3 , when twice the number of moles z of Sm 2 O 3 is larger than the number of moles y of (Ti, Zr) O 2 , sintering is performed. Therefore, it is necessary to satisfy y ≧ 2z. However, the range of y is 0.02 ≦ y ≦ 0.50. Therefore, when the value of y changes in the range of 0.02 to 0.50, the value of z always satisfies y ≧ 2z and changes in the range of 0.01 to 0.25.
[0029]
Also, from the relationship x + y + z = 1, the range of x is inevitably determined by the values of y and z, and the range of x, y, and z of the main component of the present invention is obtained by connecting the points a, b, and c shown in FIG. Is limited to the range of the molar ratio.
[0030]
Next, the reason for limiting the range of the molar ratio m of Mg is as shown in (Table 2) and (Table 7), as shown in Samples 10 and 10 in which the value of m is smaller than 0.30 or larger than 0.70. In No. 14, since sintering was insufficient even at 1350 ° C., both Q E and insulation resistance were lowered, making it impractical. Therefore, the range of m needs to be limited to 0.30 ≦ m ≦ 0.70.
[0031]
The reason for limiting the range of the molar ratio n of Ti is that the temperature coefficient of capacitance is positive when the value of n is 0.60, as in Sample 15 shown in Table 3 and Table 8. In the case where the value of n is 1.00, ie, 100% TiO 2 as in sample 18, the TiO 2 is fired in a non-oxidizing atmosphere. 2 is reduced, the insulation resistance is reduced, and stable dielectric properties cannot be obtained. Therefore, it is necessary to limit the value of n to the range of 0.70 ≦ n ≦ 0.90.
[0032]
On the other hand, the reason for limiting the additive amount of BaSiO 3 as an additive is shown in (Table 4), and in the composition with zero additive amount as in Sample 19 shown in (Table 9), sintering is insufficient even at 1350 ° C. For this reason, both Q E and insulation resistance are reduced, and when the addition amount exceeds 3.0 as in sample 22, the firing temperature is lowered, but a part of the Si component of the added BaSiO 3 becomes Ti. Once in place, the substituted Ti is reduced, reducing QE and insulation resistance. Therefore, the addition range of BaSiO 3, it is necessary to limit the range of 0.2~3.0wt%.
[0033]
Furthermore, the reason for limiting the amount of V 2 O 5 added is that a composition with no added amount as in sample 23 shown in (Table 5) and (Table 10) protects the reduction of the main component TiO 2. TiO 2 is reduced by firing in a non-oxidizing atmosphere, so that insulation resistance is reduced and stable dielectric properties cannot be obtained. Also the TiO 2 is reduced the amount is on the contrary more than 0.3 wt% as in Sample 26 is not preferable to reduce the insulation resistance and Q E. Although the cause is not clear, it is considered that V 2 O 5 controls the valence of TiO 2 to turn it into a semiconductor. Therefore, the addition amount of V 2 O 5, it is necessary to limit the range of 0.05~0.3wt%.
[0034]
(Embodiment 2)
After weighing MgSiO 3 or CaSiO 3 so as to have a composition ratio shown in (Table 11) instead of BaSiO 3 of the composition of the sample 12 of the first embodiment, the subsequent steps were processed under the same conditions as the first embodiment. Then, the manufactured samples were evaluated in the same manner as in Embodiment 1, and the results are shown in (Table 12).
[0035]
[Table 11]
[0036]
[Table 12]
[0037]
As shown in (Table 12), samples 27-29 was added MgSiO 3 instead of BaSiO 3 or CaSiO 3 samples 31 to 33 with the addition of, in the case of BaSiO 3 added as well as Q E, the insulation resistance both It can be seen that excellent dielectric characteristics having a high capacitance temperature coefficient and a small capacitance coefficient can be obtained. Also, in the case of adding MgSiO 3, compared with the addition of BaSiO 3, higher insulation resistance, the addition of CaSiO 3 compared to the addition of BaSiO 3, it can be seen that a large dielectric ceramic composition of more Q E is obtained . However, in any case, when the addition amount exceeds 3 wt%, although the effect of lowering the firing temperature is obtained, it is not preferable because the insulation resistance is reduced similarly to BaSiO 3 .
[0038]
(Embodiment 3)
Al 2 O 3 and MnO 2 were further weighed to the composition of Sample 12 of Embodiment 1 so as to have the composition shown in (Table 13), and the subsequent process conditions were processed under the same conditions as in Embodiment 1. The prepared samples were evaluated in the same manner as in Embodiment 1, and the results are shown in (Table 14).
[0039]
[Table 13]
[0040]
[Table 14]
[0041]
As shown in (Table 14), the sample 35-38 and 40, 41 and 43 with the addition of Al 2 O 3 and MnO 2 of the present invention, Q E, the insulation resistance both be higher, moreover temperature coefficient of capacitance It can be seen that excellent dielectric characteristics with a small value can be obtained. Although this to the sample 39 amount of Al 2 O 3 exceeds 2.0 wt% is effective to lower the sintering temperature is, reduces the Q E, also the addition amount of MnO 2 exceeds 0.5 wt% In the sintered body of the sample 42, abnormally grown particles of 8 μm or more are recognized, which is not practically preferable. Therefore, it can be seen that it is necessary to limit the addition of Al 2 O 3 and MnO 2 to 2.0 wt% and 0.5 wt%, respectively (however, simultaneously excluding 0).
[0042]
(Embodiment 4)
Vehicle composed of butyl acetate, polyvinyl butyral, and a plasticizer on each dielectric powder of the dielectric ceramic composition samples 12, 19, 28, 32, 42, and 43 of the dielectric ceramic composition of the present invention produced in the first to third embodiments. Was added to produce a ceramic green sheet having a thickness of 30 μm by a known doctor blade method.
[0043]
Next, using the obtained ceramic green sheets of the respective compositions, according to a known method of manufacturing a multilayer capacitor, a green laminate in which 15 layers of internal electrodes and ceramic green sheets are alternately laminated is applied at a pressure of 600 kg / cm 2. After compression bonding, a 1608 type multilayer ceramic capacitor was cut into a green chip shape. Note that a nickel electrode paste was used for the internal electrodes. Next, the green chip was degreased in air at a temperature of 350 ° C. for 2 hours, and then baked at 1350 ° C. in a non-oxidizing atmosphere for 2 hours.
[0044]
Thereafter, external electrodes were provided on the end faces of the obtained sintered body where the internal electrodes were exposed, thereby completing the multilayer ceramic capacitors.
[0045]
The capacitance, Q E , temperature coefficient of capacitance, and insulation resistance of each of the obtained multilayer ceramic capacitors were measured in the same manner as in the first embodiment. In addition, as a life test, a DC voltage of 50 V was continuously applied between external electrodes of the multilayer ceramic capacitor for 1000 hours in a thermostat at 125 ° C. The results are shown in Table 15.
[0046]
[Table 15]
[0047]
As is clear from (Table 15), the multilayer ceramic capacitor manufactured using the dielectric ceramic composition 12,28,32,43 within the scope of the present invention, Q E, the insulation resistance are both high, also in the life test While no deterioration in the characteristics was observed, the multilayer ceramic capacitors manufactured using the dielectric ceramic compositions samples 19 and 42 outside the scope of the present invention exhibited reduced insulation resistance, and the life was also deteriorated in the life test. . In addition, as for the characteristic deterioration, those whose insulation resistance value after the life test was reduced to 1 × 10 10 (Ω) or less were counted as defective.
[0048]
Above dielectric ceramic composition of the present invention is to prepare a green chip multilayer ceramic capacitor using a base metal such as nickel internal electrodes, even when the baking it in a non-oxidizing atmosphere, Q E, the insulation resistance It is evident that an excellent multilayer ceramic capacitor which is high in both, has a small capacitance temperature change rate, and does not cause characteristic deterioration even in a life test can be obtained.
[0049]
In the first to third embodiments, powders of MgO, CaO, TiO 2 , ZrO 2 , Sm 2 O 3 , BaSiO 3 , MgSiO 3 , CaSiO 3 , and V 2 O 5 were used for producing a dielectric ceramic composition. May use a compound of Mg—Ca—Ti—Zr—O, or a carbonate, hydroxide, or the like of Mg, Ca, Ti, Zr, or Sm so that the composition of the present invention is obtained. After pre-calcination, even if an additive is added, the same characteristics as in the embodiment can be obtained.
[0050]
【The invention's effect】
As shown in the above results, the dielectric ceramic composition of the present invention has a smaller excellent dielectric characteristics nonoxidative be fired in an atmosphere Q E and insulation resistance are both high and temperature coefficient of capacitance A sintered body is obtained, and can be used as a dielectric ceramic composition for a multilayer ceramic capacitor using a base metal such as nickel for an internal electrode. In particular, since it has excellent QE characteristics and a small capacitance temperature coefficient, it is highly practical as a dielectric ceramic composition for a multilayer ceramic capacitor for temperature compensation used in high-frequency circuits and the like.
[Brief description of the drawings]
FIG. 1 is a ternary diagram showing the range of the dielectric ceramic composition of the present invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32055898A JP3575299B2 (en) | 1998-11-11 | 1998-11-11 | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32055898A JP3575299B2 (en) | 1998-11-11 | 1998-11-11 | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000143343A JP2000143343A (en) | 2000-05-23 |
JP3575299B2 true JP3575299B2 (en) | 2004-10-13 |
Family
ID=18122779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32055898A Expired - Lifetime JP3575299B2 (en) | 1998-11-11 | 1998-11-11 | Dielectric ceramic composition and multilayer ceramic capacitor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3575299B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW492017B (en) * | 2000-06-29 | 2002-06-21 | Tdk Corp | Dielectrics porcelain composition and electronic parts |
-
1998
- 1998-11-11 JP JP32055898A patent/JP3575299B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2000143343A (en) | 2000-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100631995B1 (en) | Dielectric ceramic compositions for low temperature sintering and multilayer ceramic condenser using the same | |
JP3346293B2 (en) | Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP4786604B2 (en) | Dielectric porcelain and multilayer ceramic capacitor using the same | |
KR100418601B1 (en) | Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic | |
JP3642282B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
WO1997002221A1 (en) | Dielectric porcelain, process for production thereof, and electronic parts produced therefrom | |
JP2566995B2 (en) | High dielectric constant porcelain composition and ceramic capacitor | |
JP3620314B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3698951B2 (en) | Dielectric ceramic composition, ceramic capacitor using the same, and method for manufacturing the same | |
JP3575294B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3634930B2 (en) | Dielectric porcelain composition | |
JP3575299B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP3575298B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
KR100444225B1 (en) | Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof | |
US7351676B2 (en) | Dielectric porcelain composition, multilayer ceramic capacitor, and electronic component | |
JP3287980B2 (en) | Multilayer capacitors | |
KR100444221B1 (en) | Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof | |
JP2002087879A (en) | Dielectric ceramic composition and laminated ceramic capacitor using the same | |
JP3064518B2 (en) | Dielectric porcelain composition | |
JPH10330163A (en) | Nonreducing dielectric substance ceramic composition | |
JPH04188506A (en) | Dielectric porcelain composition | |
KR100444220B1 (en) | Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof | |
JP2531548B2 (en) | Porcelain composition for temperature compensation | |
KR100452817B1 (en) | Dielectric ceramic composition, ceramic capacitor using the same and process of producing thereof | |
JP3233020B2 (en) | Manufacturing method of multilayer ceramic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040615 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040628 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080716 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090716 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100716 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110716 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120716 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 9 |
|
EXPY | Cancellation because of completion of term |