JP5034839B2 - Dielectric porcelain composition and electronic component - Google Patents

Dielectric porcelain composition and electronic component Download PDF

Info

Publication number
JP5034839B2
JP5034839B2 JP2007255591A JP2007255591A JP5034839B2 JP 5034839 B2 JP5034839 B2 JP 5034839B2 JP 2007255591 A JP2007255591 A JP 2007255591A JP 2007255591 A JP2007255591 A JP 2007255591A JP 5034839 B2 JP5034839 B2 JP 5034839B2
Authority
JP
Japan
Prior art keywords
oxide
dielectric
tio
mol
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007255591A
Other languages
Japanese (ja)
Other versions
JP2008280231A (en
Inventor
三四郎 阿滿
小島  隆
真理 宮内
雅和 細野
弾 櫻井
弘介 ▲高▼野
信人 森ケ崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2007255591A priority Critical patent/JP5034839B2/en
Priority to TW097104176A priority patent/TW200846300A/en
Priority to DE602008000358T priority patent/DE602008000358D1/en
Priority to AT08151587T priority patent/ATE451335T1/en
Priority to EP08151587A priority patent/EP1980545B1/en
Priority to US12/071,470 priority patent/US7580242B2/en
Priority to KR1020080016764A priority patent/KR101358488B1/en
Publication of JP2008280231A publication Critical patent/JP2008280231A/en
Application granted granted Critical
Publication of JP5034839B2 publication Critical patent/JP5034839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/652Reduction treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Abstract

A dielectric ceramic composition comprising BamTiO2+m (note that "m" satisfies 0. 99 ≤ m ≤ 1.01) and BanZrO2+n (note that "n" satisfies 0. 99 ≤ n ≤ 1.01), an oxide of Mg, an oxide of R (note that R is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu), an oxide of at least one element selected from Mn, Cr, Co and Fe, and an oxide of at least one element selected from Si, Li, Al, Ge and B. With respect to 100 moles of said BamTiO2+m, 35 to 65 moles of BanZro2+n, 4 to 12 moles of an oxide of Mg, 4 to 15 moles of an oxide of R, 0. 5 to 3 moles of an oxide of Mn, Cr, Co and Fe, and 3 to 9 moles of an oxide of Si, Li, Al Ge and B are included therein.

Description

本発明は、耐還元性を有する誘電体磁器組成物、およびこの誘電体磁器組成物を誘電体層に有する電子部品に係り、さらに詳しくは、定格電圧の高い(たとえば100V以上)中高圧用途に好適に用いられる誘電体磁器組成物および電子部品に関する。   The present invention relates to a dielectric ceramic composition having resistance to reduction and an electronic component having the dielectric ceramic composition in a dielectric layer. More specifically, the present invention is suitable for medium to high voltage applications having a high rated voltage (for example, 100 V or more). The present invention relates to a dielectric ceramic composition and an electronic component that are suitably used.

電子部品の一例である積層セラミックコンデンサは、たとえば、所定の誘電体磁器組成物からなるセラミックグリーンシートと、所定パターンの内部電極層とを交互に重ね、その後一体化して得られるグリーンチップを、同時焼成して製造される。積層セラミックコンデンサの内部電極層は、焼成によりセラミック誘電体と一体化されるために、セラミック誘電体と反応しないような材料を選択する必要があった。このため、内部電極層を構成する材料として、従来では白金やパラジウムなどの高価な貴金属を用いることを余儀なくされていた。   A multilayer ceramic capacitor, which is an example of an electronic component, includes, for example, a ceramic green sheet made of a predetermined dielectric ceramic composition and an internal electrode layer having a predetermined pattern alternately stacked, and then integrated into a green chip obtained simultaneously. Manufactured by firing. Since the internal electrode layer of the multilayer ceramic capacitor is integrated with the ceramic dielectric by firing, it is necessary to select a material that does not react with the ceramic dielectric. For this reason, as a material constituting the internal electrode layer, conventionally, an expensive noble metal such as platinum or palladium has been inevitably used.

しかしながら、近年ではニッケルや銅などの安価な卑金属を用いることができる誘電体磁器組成物が開発され、大幅なコストダウンが実現した。   However, in recent years, dielectric ceramic compositions that can use inexpensive base metals such as nickel and copper have been developed, and a significant cost reduction has been realized.

一方、電子回路の高密度化に伴う電子部品の小型化に対する要求は高く、積層セラミックコンデンサの小型・大容量化が急速に進んでいる。それに伴い、積層セラミックコンデンサにおける1層あたりの誘電体層の薄層化が進み、薄層化してもコンデンサとしての信頼性を維持できる誘電体磁器組成物が求められている。特に、高い定格電圧(たとえば、100V以上)で使用される中高圧用コンデンサの小型・大容量化には、誘電体層を構成する誘電体磁器組成物に対して非常に高い信頼性が要求される。   On the other hand, there is a high demand for miniaturization of electronic components accompanying the increase in density of electronic circuits, and miniaturization and large capacity of multilayer ceramic capacitors are rapidly progressing. Accordingly, the dielectric layer per layer in the multilayer ceramic capacitor has been thinned, and a dielectric ceramic composition that can maintain the reliability as a capacitor even when the layer is thinned is demanded. In particular, in order to reduce the size and increase the capacity of a medium- and high-voltage capacitor used at a high rated voltage (for example, 100 V or higher), very high reliability is required for the dielectric ceramic composition constituting the dielectric layer. The

これに対して、たとえば、特許文献1には、高周波・高電圧交流下で使用されるコンデンサ用の誘電体磁器組成物として、組成式:ABO+aR+bM(ただし、ABOはチタン酸バリウム系固溶体、RはLa等の金属元素の酸化物、MはMn等の金属元素の酸化物)で表わされる主成分に対し、副成分として、B元素およびSi元素のうち少なくとも1種を含む焼結助材を含有してなる誘電体磁器組成物が開示されている。そして、この特許文献1では、主成分中の添加成分として、XZrO(ただし、XはBa,Sr,Caから選ばれる少なくとも1種の金属元素)を、主成分中のABOで表わされるチタン酸バリウム固溶体1モルに対して、0.35モル以下の範囲で添加する点が記載されている。 On the other hand, for example, in Patent Document 1, as a dielectric ceramic composition for a capacitor used under high frequency and high voltage alternating current, a composition formula: ABO 3 + aR + bM (where ABO 3 is a barium titanate solid solution) , R is an oxide of a metal element such as La, and M is an oxide of a metal element such as Mn). A dielectric ceramic composition containing a material is disclosed. In Patent Document 1, XZrO 3 (where X is at least one metal element selected from Ba, Sr, and Ca) is added as an additive component in the main component, and titanium represented by ABO 3 in the main component. The point which adds in 0.35 mol or less with respect to 1 mol of barium acid solid solutions is described.

しかしながら、この特許文献1では、耐圧(破壊電圧)が低く、寿命特性(絶縁抵抗の加速寿命)が不十分であり、そのため、信頼性に劣るという問題があった。特に、この問題は、積層セラミックコンデンサを小型・大容量化した場合に顕著となるため、小型・大容量化を達成するためには、耐圧および寿命特性(絶縁抵抗の加速寿命)の向上が望まれていた。
特許第3567759号公報
However, this Patent Document 1 has a problem that the withstand voltage (breakdown voltage) is low and the life characteristics (accelerated life of the insulation resistance) are insufficient, and therefore the reliability is poor. In particular, this problem becomes more prominent when the multilayer ceramic capacitor is downsized and increased in capacity. Therefore, in order to achieve downsizing and increased capacity, improvement in breakdown voltage and life characteristics (accelerated life of insulation resistance) is desired. It was rare.
Japanese Patent No. 3567759

本発明は、このような実状に鑑みてなされ、還元性雰囲気中での焼成が可能であり、電圧印加時における電歪量が低く、比誘電率および容量温度特性を良好に保ちながら、耐圧(破壊電圧)および絶縁抵抗の加速寿命を向上できる誘電体磁器組成物、およびこの誘電体磁器組成物を誘電体層として有する電子部品を提供することを目的とする。   The present invention has been made in view of such a situation, and can be fired in a reducing atmosphere, has a low electrostriction amount when a voltage is applied, and maintains a good dielectric constant and capacitance-temperature characteristics while maintaining a withstand voltage ( It is an object of the present invention to provide a dielectric ceramic composition capable of improving the breakdown voltage) and the accelerated lifetime of insulation resistance, and an electronic component having this dielectric ceramic composition as a dielectric layer.

上記目的を達成するために、本発明の第1の観点に係る誘電体磁器組成物は、
BaTiO2+m (ただし、mは、0.99≦m≦1.01)と、
BaZrO2+n (ただし、nは、0.99≦n≦1.01)と、
Mgの酸化物と、
Rの酸化物(ただし、Rは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも1種)と、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物と、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物と、を有する誘電体磁器組成物であって、
前記BaTiO2+m 100モルに対して、各成分の酸化物または複合酸化物換算での比率が、
BaZrO2+n :35〜65モル、
Mgの酸化物:4〜12モル、
Rの酸化物:4〜15モル、
Mn、Cr、CoおよびFeの酸化物:0.5〜3モル、
Si、Li、Al、GeおよびBの酸化物:3〜9モル、
である。
In order to achieve the above object, a dielectric ceramic composition according to the first aspect of the present invention comprises:
Ba m TiO 2 + m (where m is 0.99 ≦ m ≦ 1.01),
Ba n ZrO 2 + n (where n is 0.99 ≦ n ≦ 1.01),
Mg oxide,
R oxide (where R is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) )When,
An oxide of at least one element selected from Mn, Cr, Co and Fe;
A dielectric ceramic composition comprising an oxide of at least one element selected from Si, Li, Al, Ge and B,
The ratio of each component in terms of oxide or composite oxide with respect to 100 moles of Ba m TiO 2 + m ,
Ba n ZrO 2 + n : 35 to 65 mol,
Mg oxide: 4 to 12 mol,
R oxide: 4 to 15 mol,
Mn, Cr, Co and Fe oxides: 0.5-3 mol,
Si, Li, Al, Ge and B oxides: 3-9 mol,
It is.

本発明において、好ましくは、前記BaTiO2+m 100モルに対して、前記BaZrO2+n の比率が、BaZrO2+n 換算で、40〜55モルである。 In the present invention, preferably, relative to the Ba m TiO 2 + m 100 moles, the ratio of the Ba n ZrO 2 + n is in Ba n ZrO 2 + n in terms of a 40 to 55 mol.

本発明の第2の観点に係る誘電体磁器組成物は、
(Baα (TiZrMg)Oの一般式で表わされる第1成分を有する誘電体磁器組成物であって、
上記一般式におけるRが希土類元素であり、
上記一般式では、
0.8≦a≦0.96、
0.04≦b≦0.2、
0.55≦c≦0.7、
0.24≦d≦0.39、
0.02≦e≦0.09、および
1≦α≦1.15であり、
前記第1成分に含まれるBaTiO2+m (ただし、mは、0.99≦m≦1.01)100モルに対して、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物を0.5〜3.0モルと、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物を3〜9モルと、をさらに有する。
The dielectric ceramic composition according to the second aspect of the present invention is:
A dielectric ceramic composition having a first component represented by the general formula of (Ba a R b ) α (Ti c Zr d Mg e ) O 3 ,
R in the above general formula is a rare earth element,
In the above general formula:
0.8 ≦ a ≦ 0.96,
0.04 ≦ b ≦ 0.2,
0.55 ≦ c ≦ 0.7,
0.24 ≦ d ≦ 0.39,
0.02 ≦ e ≦ 0.09, and 1 ≦ α ≦ 1.15,
Ba m TiO 2 + m contained in the first component (where m is 0.99 ≦ m ≦ 1.01) per 100 moles,
0.5 to 3.0 mol of an oxide of at least one element selected from Mn, Cr, Co and Fe;
And 3 to 9 mol of an oxide of at least one element selected from Si, Li, Al, Ge and B.

本発明によれば、誘電体層と内部電極層とを有する電子部品であって、前記誘電体層が、上記第1の観点または第2の観点に係る誘電体磁器組成物で構成された電子部品が提供される。   According to the present invention, there is provided an electronic component having a dielectric layer and an internal electrode layer, wherein the dielectric layer is composed of the dielectric ceramic composition according to the first aspect or the second aspect. Parts are provided.

本発明に係る電子部品としては、特に限定されないが、積層セラミックコンデンサ、圧電素子、チップインダクタ、チップバリスタ、チップサーミスタ、チップ抵抗、その他の表面実装(SMD)チップ型電子部品が例示される。   The electronic component according to the present invention is not particularly limited, and examples thereof include a multilayer ceramic capacitor, a piezoelectric element, a chip inductor, a chip varistor, a chip thermistor, a chip resistor, and other surface mount (SMD) chip type electronic components.

本発明の誘電体磁器組成物は、上記した特定組成を有しているため、還元性雰囲気中での焼成が可能であり、電圧印加時における電歪量が低く、比誘電率および容量温度特性を良好に保ちながら、耐圧および絶縁抵抗の加速寿命を向上させることができる。特に本発明においては、BaZrO2+n の比率を、BaTiO2+m 100モルに対して、35〜65モル、好ましくは40〜55モルと比較的多くすることにより、容量温度特性および耐圧が向上された誘電体磁器組成物を提供することができる。 Since the dielectric ceramic composition of the present invention has the specific composition described above, it can be fired in a reducing atmosphere, has a low electrostriction amount when a voltage is applied, and has a relative dielectric constant and capacitance-temperature characteristics. It is possible to improve the withstand voltage and the accelerated life of the insulation resistance while maintaining good. In particular, in the present invention, the capacity temperature characteristic and the pressure resistance are improved by relatively increasing the ratio of Ba n ZrO 2 + n to 35 to 65 mol, preferably 40 to 55 mol, relative to 100 mol of Ba m TiO 2 + m. An improved dielectric ceramic composition can be provided.

そのため、積層セラミックコンデンサなどの電子部品の誘電体層に、このような本発明の誘電体磁器組成物を適用することにより、たとえば、誘電体層を20μm程度と薄層化し、定格電圧の高い(たとえば100V以上、特に250V以上)中高圧用途に用いた場合においても、高い信頼性を実現することができる。すなわち、小型・大容量化対応で、しかも高い信頼性を有する中高圧用途の電子部品を提供することができる。   Therefore, by applying such a dielectric ceramic composition of the present invention to a dielectric layer of an electronic component such as a multilayer ceramic capacitor, for example, the dielectric layer is thinned to about 20 μm and has a high rated voltage ( For example, high reliability can be achieved even when used for medium-high pressure applications (for example, 100 V or higher, particularly 250 V or higher). That is, it is possible to provide an electronic component for medium- and high-pressure applications that is small and has a large capacity and has high reliability.

このような本発明の電子部品は、たとえば、各種自動車関連用途(燃料噴射装置、HIDランプなど)やデジタルスチールカメラ用途などに好適に用いることができる。   Such an electronic component of the present invention can be suitably used, for example, for various automobile-related applications (fuel injection devices, HID lamps, etc.) and digital still camera applications.

以下、本発明を、図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図である。 FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

(第1実施形態)
積層セラミックコンデンサ1
図1に示すように、本発明の一実施形態に係る積層セラミックコンデンサ1は、誘電体層2と内部電極層3とが交互に積層された構成のコンデンサ素子本体10を有する。このコンデンサ素子本体10の両端部には、素子本体10の内部で交互に配置された内部電極層3と各々導通する一対の外部電極4が形成してある。コンデンサ素子本体10の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。
(First embodiment)
Multilayer ceramic capacitor 1
As shown in FIG. 1, a multilayer ceramic capacitor 1 according to an embodiment of the present invention includes a capacitor element body 10 having a configuration in which dielectric layers 2 and internal electrode layers 3 are alternately stacked. At both ends of the capacitor element body 10, a pair of external electrodes 4 are formed which are electrically connected to the internal electrode layers 3 arranged alternately in the element body 10. The shape of the capacitor element body 10 is not particularly limited, but is usually a rectangular parallelepiped shape. Moreover, there is no restriction | limiting in particular also in the dimension, What is necessary is just to set it as a suitable dimension according to a use.

内部電極層3は、各端面がコンデンサ素子本体10の対向する2端部の表面に交互に露出するように積層してある。また、一対の外部電極4は、コンデンサ素子本体10の両端部に形成され、交互に配置された内部電極層3の露出端面に接続されて、コンデンサ回路を構成する。   The internal electrode layers 3 are laminated so that the end faces are alternately exposed on the surfaces of the two opposite ends of the capacitor element body 10. The pair of external electrodes 4 are formed at both ends of the capacitor element body 10 and connected to the exposed end surfaces of the alternately arranged internal electrode layers 3 to constitute a capacitor circuit.

誘電体層2
誘電体層2は、本発明の誘電体磁器組成物を含有する。
Dielectric layer 2
The dielectric layer 2 contains the dielectric ceramic composition of the present invention.

本発明の誘電体磁器組成物は、
BaTiO2+m (ただし、mは、0.99≦m≦1.01)と、
BaZrO2+n (ただし、nは、0.99≦n≦1.01)と、
Mgの酸化物と、
Rの酸化物(ただし、Rは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも1種)と、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物と、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物と、を有する。
The dielectric ceramic composition of the present invention comprises:
Ba m TiO 2 + m (where m is 0.99 ≦ m ≦ 1.01),
Ba n ZrO 2 + n (where n is 0.99 ≦ n ≦ 1.01),
Mg oxide,
R oxide (where R is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) )When,
An oxide of at least one element selected from Mn, Cr, Co and Fe;
And an oxide of at least one element selected from Si, Li, Al, Ge, and B.

BaTiO2+m における、mは0.99≦m≦1.01である。この際、酸素(O)量は、上記式の化学量論組成から若干偏倚してもよい。BaTiO2+m は主として母材として誘電体磁器組成物中に含有されることとなる。 In the Ba m TiO 2 + m , m is 0.99 ≦ m ≦ 1.01. At this time, the amount of oxygen (O) may be slightly deviated from the stoichiometric composition of the above formula. Ba m TiO 2 + m is mainly contained in the dielectric ceramic composition as a base material.

BaZrO2+n の含有量は、BaTiO2+m 100モルに対して、BaZrO2+n 換算で、35〜65モルであり、好ましくは40〜55モルであり、さらに好ましくは40〜50モルである。また、BaZrO2+n における、nは0.99≦n≦1.01である。この際、酸素(O)量は、上記式の化学量論組成から若干偏倚してもよい。BaZrO2+n を上記範囲で添加することにより、容量温度特性および耐圧の向上を図ることができる。BaZrO2+n の添加量が少なすぎると、容量温度特性および耐圧の低下に加えて、寿命特性が悪化する傾向にある。一方、多すぎると、比誘電率が低下する傾向にある。 The content of Ba n ZrO 2 + n, to the Ba m TiO 2 + m 100 moles, in Ba n ZrO 2 + n in terms of a 35 to 65 mol, preferably 40 to 55 mol, more preferably 40 to 50 mol is there. Moreover, n in Ba n ZrO 2 + n is 0.99 ≦ n ≦ 1.01. At this time, the amount of oxygen (O) may be slightly deviated from the stoichiometric composition of the above formula. By adding Ba n ZrO 2 + n in the above range, the capacity-temperature characteristics and the breakdown voltage can be improved. If the amount of Ba n ZrO 2 + n added is too small, the lifetime characteristics tend to deteriorate in addition to the decrease in capacity-temperature characteristics and breakdown voltage. On the other hand, if the amount is too large, the relative permittivity tends to decrease.

Mgの酸化物の含有量は、BaTiO2+m 100モルに対して、MgO換算で、4〜12モルであり、好ましくは6〜10モルであり、さらに好ましくは7〜9モルである。Mgの酸化物は、BaTiO2+m の強誘電性を抑制する効果を有する。Mgの酸化物の含有量が少なすぎると、容量温度特性や耐圧が低下に加えて、電圧印加時における電歪量が大きくなる傾向にある。一方、多すぎると、比誘電率が低下に加えて、寿命特性および耐圧が悪化する傾向にある。 The content of the oxide of Mg, relative to Ba m TiO 2 + m 100 mol, in terms of MgO, and 4 to 12 moles, preferably from 6 to 10 moles, more preferably from 7 to 9 moles. Mg oxide has the effect of suppressing the ferroelectricity of Ba m TiO 2 + m . If the content of the Mg oxide is too small, the capacitance-temperature characteristics and the breakdown voltage tend to decrease, and the amount of electrostriction during voltage application tends to increase. On the other hand, if the amount is too large, the dielectric constant tends to decrease, and the life characteristics and the breakdown voltage tend to deteriorate.

Rの酸化物の含有量は、BaTiO2+m 100モルに対して、R換算で、4〜15モルであり、好ましくは6〜12モルであり、さらに好ましくは7〜11モルである。Rの酸化物は、主に、BaTiO2+m の強誘電性を抑制する効果を有する。Rの酸化物の含有量が少なすぎると、耐圧が低下したり、電圧印加時における電歪量が大きくなる傾向にある。一方、多すぎると、比誘電率が低下する傾向にある。なお、上記Rの酸化物を構成するR元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも1種であり、これらのなかでも、Gdが特に好ましい。 Content of the oxide of R, to the Ba m TiO 2 + m 100 moles, with R 2 O 3 in terms of a 4 to 15 moles, preferably from 6 to 12 moles, more preferably at 7 to 11 moles is there. R oxide mainly has an effect to suppress the strong dielectric property of Ba m TiO 2 + m. If the content of the R oxide is too small, the withstand voltage tends to decrease or the amount of electrostriction during voltage application tends to increase. On the other hand, if the amount is too large, the relative permittivity tends to decrease. The R element constituting the R oxide is selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Among these, Gd is particularly preferable.

Mn、Cr、CoおよびFeの酸化物の含有量は、BaTiO2+m 100モルに対して、MnO、Cr、CoまたはFe換算で、0.5〜3モルであり、好ましくは0.5〜2.5モルであり、さらに好ましくは1.0〜2.0モルである。これらの酸化物の含有量が少なすぎると、寿命特性が悪化する傾向にある。一方、多すぎると、比誘電率が低下するとともに、容量温度特性が悪化する傾向にある。 The content of oxides of Mn, Cr, Co and Fe is 0.5 to 3 mol in terms of MnO, Cr 2 O 3 , Co 3 O 4 or Fe 2 O 3 with respect to 100 m of Ba m TiO 2 + m. Preferably, it is 0.5-2.5 mol, More preferably, it is 1.0-2.0 mol. If the content of these oxides is too small, the life characteristics tend to deteriorate. On the other hand, when the amount is too large, the relative dielectric constant decreases and the capacity-temperature characteristic tends to deteriorate.

Si、Li、Al、GeおよびBの酸化物の含有量は、BaTiO2+m 100モルに対して、SiO、Li、Al、GeまたはB換算で、3〜9モルであり、好ましくは4〜8モルであり、さらに好ましくは4〜6モルである。これらの酸化物の含有量が少なすぎると、比誘電率が低下するとともに、寿命特性が悪化する傾向にある。一方、多すぎると、容量温度特性が悪化する傾向にある。なお、上記各酸化物のなかでも、特性の改善効果が大きいという点より、Siの酸化物を用いることが好ましい。 The content of oxides of Si, Li, Al, Ge, and B is equivalent to SiO 2 , Li 2 O 3 , Al 2 O 3 , Ge 2 O 2 or B 2 O 3 with respect to 100 moles of Ba m TiO 2 + m. And 3 to 9 mol, preferably 4 to 8 mol, and more preferably 4 to 6 mol. If the content of these oxides is too small, the relative dielectric constant decreases and the life characteristics tend to deteriorate. On the other hand, if the amount is too large, the capacity-temperature characteristic tends to deteriorate. Of the above oxides, it is preferable to use an oxide of Si because the effect of improving the characteristics is great.

本実施形態においては、上記各成分を上記所定量含有させることにより、誘電体磁器組成物を、還元性雰囲気中での焼成が可能であり、電圧印加時における電歪量が低く、容量温度特性、比誘電率、耐圧および絶縁抵抗の加速寿命を良好なものとすることができる。特に、主として母材として含有されるBaTiO2+m に起因する不具合、たとえば、印加電圧に対する容量依存性や、電圧印加時における電歪現象を有効に緩和することができる。加えて、本実施形態では、BaZrO2+n の含有量を比較的に多いものとしているため、上記各特性を良好に保ちながら、容量温度特性および耐圧の向上が可能となる。 In the present embodiment, the dielectric ceramic composition can be fired in a reducing atmosphere by containing the above-mentioned components in the predetermined amounts, and the amount of electrostriction when voltage is applied is low. In addition, the accelerated lifetime of the dielectric constant, withstand voltage, and insulation resistance can be improved. In particular, problems due to Ba m TiO 2 + m contained mainly as a base material, such as capacity dependency with respect to an applied voltage, and electrostriction at the time of voltage application can be effectively alleviated. In addition, in this embodiment, since the content of Ba n ZrO 2 + n is relatively large, it is possible to improve the capacity-temperature characteristics and the breakdown voltage while maintaining the above-mentioned characteristics in good condition.

なお、本明細書では、各成分を構成する各酸化物または複合酸化物を化学量論組成で表しているが、各酸化物または複合酸化物の酸化状態は、化学量論組成から外れるものであってもよい。ただし、各成分の上記比率は、各成分を構成する酸化物または複合酸化物に含有される金属量から上記化学量論組成の酸化物または複合酸化物に換算して求める。   In this specification, each oxide or composite oxide constituting each component is represented by a stoichiometric composition, but the oxidation state of each oxide or composite oxide is out of the stoichiometric composition. There may be. However, the said ratio of each component is calculated | required by converting into the oxide or composite oxide of the said stoichiometric composition from the metal amount contained in the oxide or composite oxide which comprises each component.

誘電体層2の厚みは、特に限定されず、積層セラミックコンデンサ1の用途に応じて適宜決定すれば良い。   The thickness of the dielectric layer 2 is not particularly limited, and may be appropriately determined according to the use of the multilayer ceramic capacitor 1.

内部電極層3
内部電極層3に含有される導電材は特に限定されないが、誘電体層2の構成材料が耐還元性を有するため、比較的安価な卑金属を用いることができる。導電材として用いる卑金属としては、NiまたはNi合金が好ましい。Ni合金としては、Mn,Cr,CoおよびAlから選択される1種以上の元素とNiとの合金が好ましく、合金中のNi含有量は95重量%以上であることが好ましい。なお、NiまたはNi合金中には、P等の各種微量成分が0.1重量%程度以下含まれていてもよい。また、内部電極層3は、市販の電極用ペーストを使用して形成してもよい。内部電極層3の厚さは用途等に応じて適宜決定すればよい。
Internal electrode layer 3
The conductive material contained in the internal electrode layer 3 is not particularly limited, but a relatively inexpensive base metal can be used because the constituent material of the dielectric layer 2 has reduction resistance. As the base metal used as the conductive material, Ni or Ni alloy is preferable. The Ni alloy is preferably an alloy of Ni and one or more elements selected from Mn, Cr, Co and Al, and the Ni content in the alloy is preferably 95% by weight or more. In addition, in Ni or Ni alloy, various trace components, such as P, may be contained about 0.1 wt% or less. The internal electrode layer 3 may be formed using a commercially available electrode paste. What is necessary is just to determine the thickness of the internal electrode layer 3 suitably according to a use etc.

外部電極4
外部電極4に含有される導電材は特に限定されないが、本発明では安価なNi,Cuや、これらの合金を用いることができる。外部電極4の厚さは用途等に応じて適宜決定すればよい。
External electrode 4
The conductive material contained in the external electrode 4 is not particularly limited, but in the present invention, inexpensive Ni, Cu, and alloys thereof can be used. What is necessary is just to determine the thickness of the external electrode 4 suitably according to a use etc.

積層セラミックコンデンサ1の製造方法
本実施形態の積層セラミックコンデンサ1は、従来の積層セラミックコンデンサと同様に、ペーストを用いた通常の印刷法やシート法によりグリーンチップを作製し、これを焼成した後、外部電極を印刷または転写して焼成することにより製造される。以下、製造方法について具体的に説明する。
Manufacturing Method of Multilayer Ceramic Capacitor 1 The multilayer ceramic capacitor 1 of the present embodiment is the same as a conventional multilayer ceramic capacitor. After producing a green chip by a normal printing method or a sheet method using a paste and firing it, It is manufactured by printing or transferring an external electrode and firing. Hereinafter, the manufacturing method will be specifically described.

まず、誘電体層用ペーストに含まれる誘電体原料(誘電体磁器組成物粉末)を準備し、これを塗料化して、誘電体層用ペーストを調製する。誘電体層用ペーストは、誘電体原料と有機ビヒクルとを混練した有機系の塗料であってもよく、水系の塗料であってもよい。   First, a dielectric material (dielectric ceramic composition powder) contained in the dielectric layer paste is prepared, and this is made into a paint to prepare a dielectric layer paste. The dielectric layer paste may be an organic paint obtained by kneading a dielectric material and an organic vehicle, or may be a water-based paint.

誘電体原料としては、上記した各成分の酸化物やその混合物、複合酸化物を用いることができるが、その他、焼成により上記した酸化物や複合酸化物となる各種化合物、たとえば、炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることもできる。誘電体原料中の各化合物の含有量は、焼成後に上記した誘電体磁器組成物の組成となるように決定すればよい。塗料化する前の状態で、誘電体原料の粒径は、通常、平均粒径0.1〜1μm程度である。   As the dielectric material, oxides of the above-described components, mixtures thereof, and composite oxides can be used. In addition, various compounds that become the above-described oxides or composite oxides by firing, such as carbonates and An acid salt, a nitrate, a hydroxide, an organometallic compound, or the like can be appropriately selected and mixed for use. What is necessary is just to determine content of each compound in a dielectric raw material so that it may become a composition of the above-mentioned dielectric ceramic composition after baking. In the state before forming a paint, the particle size of the dielectric material is usually about 0.1 to 1 μm in average particle size.

また、上記各成分の原料のうち、BaTiO2+m 以外の原料のうち少なくとも一部については、各酸化物または複合酸化物、焼成により各酸化物または複合酸化物となる化合物を、そのまま用いても良いし、あるいは、予め仮焼し、焙焼粉として用いても良い。あるいは、BaZrO2+n 以外の原料のうち一部については、BaTiO2+m とともに仮焼しても良い。ただし、BaTiO2+m とBaZrO2+n とを仮焼すると、本発明の効果が得難くなるため、このような組み合わせで仮焼することは好ましくない。 In addition, among the raw materials of the above components, at least a part of the raw materials other than Ba m TiO 2 + m , the respective oxides or composite oxides, and the compounds that become the respective oxides or composite oxides by firing are used as they are. Alternatively, it may be calcined in advance and used as roasted powder. Alternatively, some of the raw materials other than Ba n ZrO 2 + n may be calcined together with Ba m TiO 2 + m . However, if Ba m TiO 2 + m and Ba n ZrO 2 + n are calcined, it is difficult to obtain the effects of the present invention.

なお、BaTiO2+m の原料としては、平均粒子径が、好ましくは0.2〜1μmのものを用いることが好ましい。また、BaZrO2+n を始めとするその他の成分の原料としては、平均粒子径が、好ましくは0.2〜1μmのものを用いることが好ましい。なお、これらを予め仮焼し、焙焼粉とする場合にも、その平均粒子径は上記範囲とすることが好ましい。 As the raw material of Ba m TiO 2 + m, the average particle diameter is preferably is preferably of a 0.2 to 1 [mu] m. Moreover, as a raw material of other components including Ba n ZrO 2 + n , it is preferable to use those having an average particle diameter of preferably 0.2 to 1 μm. In addition, when these are calcined in advance and used as roasted powder, the average particle diameter is preferably within the above range.

有機ビヒクルとは、バインダを有機溶剤中に溶解したものである。有機ビヒクルに用いるバインダは特に限定されず、エチルセルロース、ポリビニルブチラール等の通常の各種バインダから適宜選択すればよい。用いる有機溶剤も特に限定されず、印刷法やシート法など、利用する方法に応じて、テルピネオール、ブチルカルビトール、アセトン、トルエン等の各種有機溶剤から適宜選択すればよい。   An organic vehicle is obtained by dissolving a binder in an organic solvent. The binder used for the organic vehicle is not particularly limited, and may be appropriately selected from usual various binders such as ethyl cellulose and polyvinyl butyral. The organic solvent to be used is not particularly limited, and may be appropriately selected from various organic solvents such as terpineol, butyl carbitol, acetone, toluene, and the like according to a method to be used such as a printing method or a sheet method.

また、誘電体層用ペーストを水系の塗料とする場合には、水溶性のバインダや分散剤などを水に溶解させた水系ビヒクルと、誘電体原料とを混練すればよい。水系ビヒクルに用いる水溶性バインダは特に限定されず、たとえば、ポリビニルアルコール、セルロース、水溶性アクリル樹脂などを用いればよい。   Further, when the dielectric layer paste is used as a water-based paint, a water-based vehicle in which a water-soluble binder or a dispersant is dissolved in water and a dielectric material may be kneaded. The water-soluble binder used for the water-based vehicle is not particularly limited, and for example, polyvinyl alcohol, cellulose, water-soluble acrylic resin, etc. may be used.

内部電極層用ペーストは、上記した各種導電性金属や合金からなる導電材、あるいは焼成後に上記した導電材となる各種酸化物、有機金属化合物、レジネート等と、上記した有機ビヒクルとを混練して調製する。   The internal electrode layer paste is obtained by kneading the above-mentioned organic vehicle with various conductive metals and alloys as described above, or various oxides, organometallic compounds, resinates, etc. that become the above-mentioned conductive materials after firing. Prepare.

外部電極用ペーストは、上記した内部電極層用ペーストと同様にして調製すればよい。   The external electrode paste may be prepared in the same manner as the internal electrode layer paste described above.

上記した各ペースト中の有機ビヒクルの含有量に特に制限はなく、通常の含有量、たとえば、バインダは1〜5重量%程度、溶剤は10〜50重量%程度とすればよい。また、各ペースト中には、必要に応じて各種分散剤、可塑剤、誘電体、絶縁体等から選択される添加物が含有されていてもよい。これらの総含有量は、10重量%以下とすることが好ましい。   There is no restriction | limiting in particular in content of the organic vehicle in each above-mentioned paste, For example, what is necessary is just about 1-5 weight% of binders, for example, about 10-50 weight% of binders. Each paste may contain additives selected from various dispersants, plasticizers, dielectrics, insulators, and the like as necessary. The total content of these is preferably 10% by weight or less.

印刷法を用いる場合、誘電体層用ペーストおよび内部電極層用ペーストを、PET等の基板上に印刷、積層し、所定形状に切断した後、基板から剥離してグリーンチップとする。   When the printing method is used, the dielectric layer paste and the internal electrode layer paste are printed and laminated on a substrate such as PET, cut into a predetermined shape, and then peeled from the substrate to obtain a green chip.

また、シート法を用いる場合、誘電体層用ペーストを用いてグリーンシートを形成し、この上に内部電極層用ペーストを印刷した後、これらを積層してグリーンチップとする。   When the sheet method is used, a dielectric layer paste is used to form a green sheet, the internal electrode layer paste is printed thereon, and these are stacked to form a green chip.

焼成前に、グリーンチップに脱バインダ処理を施す。脱バインダ条件としては、昇温速度を好ましくは5〜300℃/時間、保持温度を好ましくは180〜400℃、温度保持時間を好ましくは0.5〜24時間とする。また、焼成雰囲気は、空気もしくは還元性雰囲気とする。   Before firing, the green chip is subjected to binder removal processing. As binder removal conditions, the temperature rising rate is preferably 5 to 300 ° C./hour, the holding temperature is preferably 180 to 400 ° C., and the temperature holding time is preferably 0.5 to 24 hours. The firing atmosphere is air or a reducing atmosphere.

グリーンチップ焼成時の雰囲気は、内部電極層用ペースト中の導電材の種類に応じて適宜決定されればよいが、導電材としてNiやNi合金等の卑金属を用いる場合、焼成雰囲気中の酸素分圧は、10−14〜10−10MPaとすることが好ましい。酸素分圧が上記範囲未満であると、内部電極層の導電材が異常焼結を起こし、途切れてしまうことがある。また、酸素分圧が前記範囲を超えると、内部電極層が酸化する傾向にある。 The atmosphere at the time of green chip firing may be appropriately determined according to the type of conductive material in the internal electrode layer paste, but when a base metal such as Ni or Ni alloy is used as the conductive material, the oxygen content in the firing atmosphere The pressure is preferably 10 −14 to 10 −10 MPa. When the oxygen partial pressure is less than the above range, the conductive material of the internal electrode layer may be abnormally sintered and may be interrupted. Further, when the oxygen partial pressure exceeds the above range, the internal electrode layer tends to be oxidized.

また、焼成時の保持温度は、好ましくは1000〜1400℃、より好ましくは1100〜1360℃である。保持温度が上記範囲未満であると緻密化が不十分となり、前記範囲を超えると、内部電極層の異常焼結による電極の途切れや、内部電極層構成材料の拡散による容量温度特性の悪化、誘電体磁器組成物の還元が生じやすくなる。   Moreover, the holding temperature at the time of baking becomes like this. Preferably it is 1000-1400 degreeC, More preferably, it is 1100-1360 degreeC. If the holding temperature is lower than the above range, the densification becomes insufficient. If the holding temperature is higher than the above range, the electrode is interrupted due to abnormal sintering of the internal electrode layer, the capacity-temperature characteristic is deteriorated due to diffusion of the internal electrode layer constituent material, Reduction of the body porcelain composition is likely to occur.

これ以外の焼成条件としては、昇温速度を好ましくは50〜500℃/時間、より好ましくは200〜300℃/時間、温度保持時間を好ましくは0.5〜8時間、より好ましくは1〜3時間、冷却速度を好ましくは50〜500℃/時間、より好ましくは200〜300℃/時間とする。また、焼成雰囲気は還元性雰囲気とすることが好ましく、雰囲気ガスとしてはたとえば、NとHとの混合ガスを加湿して用いることができる。 As other firing conditions, the rate of temperature rise is preferably 50 to 500 ° C./hour, more preferably 200 to 300 ° C./hour, and the temperature holding time is preferably 0.5 to 8 hours, more preferably 1 to 3 hours. The time and cooling rate are preferably 50 to 500 ° C./hour, more preferably 200 to 300 ° C./hour. Further, the firing atmosphere is preferably a reducing atmosphere, and as the atmosphere gas, for example, a mixed gas of N 2 and H 2 can be used by humidification.

還元性雰囲気中で焼成した後、コンデンサ素子本体にはアニールを施すことが好ましい。アニールは、誘電体層を再酸化するための処理であり、これによりIR寿命を著しく長くすることができるので、信頼性が向上する。   After firing in a reducing atmosphere, the capacitor element body is preferably annealed. Annealing is a process for re-oxidizing the dielectric layer, and this can significantly increase the IR lifetime, thereby improving the reliability.

アニール雰囲気中の酸素分圧は、10−9〜10−5MPaとすることが好ましい。酸素分圧が前記範囲未満であると誘電体層の再酸化が困難であり、前記範囲を超えると内部電極層の酸化が進行する傾向にある。 The oxygen partial pressure in the annealing atmosphere is preferably 10 −9 to 10 −5 MPa. When the oxygen partial pressure is less than the above range, it is difficult to re-oxidize the dielectric layer, and when it exceeds the above range, oxidation of the internal electrode layer tends to proceed.

アニールの際の保持温度は、1100℃以下、特に500〜1100℃とすることが好ましい。保持温度が上記範囲未満であると誘電体層の酸化が不十分となるので、IRが低く、また、高温負荷寿命が短くなりやすい。一方、保持温度が前記範囲を超えると、内部電極層が酸化して容量が低下するだけでなく、内部電極層が誘電体素地と反応してしまい、容量温度特性の悪化、IRの低下、高温負荷寿命の低下が生じやすくなる。なお、アニールは昇温過程および降温過程だけから構成してもよい。すなわち、温度保持時間を零としてもよい。この場合、保持温度は最高温度と同義である。   The holding temperature at the time of annealing is preferably 1100 ° C. or less, particularly 500 to 1100 ° C. When the holding temperature is lower than the above range, the dielectric layer is not sufficiently oxidized, so that the IR is low and the high temperature load life is likely to be shortened. On the other hand, when the holding temperature exceeds the above range, not only the internal electrode layer is oxidized and the capacity is lowered, but the internal electrode layer reacts with the dielectric substrate, the capacity temperature characteristic is deteriorated, the IR is lowered, and the high temperature is increased. The load life is likely to decrease. Note that annealing may be composed of only a temperature raising process and a temperature lowering process. That is, the temperature holding time may be zero. In this case, the holding temperature is synonymous with the maximum temperature.

これ以外のアニール条件としては、温度保持時間を好ましくは0〜20時間、より好ましくは2〜10時間、冷却速度を好ましくは50〜500℃/時間、より好ましくは100〜300℃/時間とする。また、アニールの雰囲気ガスとしては、たとえば、加湿したNガス等を用いることが好ましい。 As other annealing conditions, the temperature holding time is preferably 0 to 20 hours, more preferably 2 to 10 hours, and the cooling rate is preferably 50 to 500 ° C./hour, more preferably 100 to 300 ° C./hour. . Further, as the annealing atmosphere gas, for example, humidified N 2 gas or the like is preferably used.

上記した脱バインダ処理、焼成およびアニールにおいて、Nガスや混合ガス等を加湿するには、たとえばウェッター等を使用すればよい。この場合、水温は5〜75℃程度が好ましい。また、脱バインダ処理、焼成およびアニールは、連続して行なっても、独立に行なってもよい。 In the above-described binder removal processing, firing and annealing, for example, a wetter or the like may be used to wet the N 2 gas or mixed gas. In this case, the water temperature is preferably about 5 to 75 ° C. Further, the binder removal treatment, firing and annealing may be performed continuously or independently.

上記のようにして得られたコンデンサ素子本体に、例えばバレル研磨やサンドブラストなどにより端面研磨を施し、外部電極用ペーストを塗布して焼成し、外部電極4を形成する。そして、必要に応じ、外部電極4表面に、めっき等により被覆層を形成する。   The capacitor element main body obtained as described above is subjected to end face polishing, for example, by barrel polishing or sand blasting, and the external electrode paste is applied and fired to form the external electrode 4. Then, if necessary, a coating layer is formed on the surface of the external electrode 4 by plating or the like.

このようにして製造された本実施形態の積層セラミックコンデンサは、ハンダ付等によりプリント基板上などに実装され、各種電子機器等に使用される。   The multilayer ceramic capacitor of this embodiment manufactured in this way is mounted on a printed circuit board or the like by soldering or the like and used for various electronic devices.

(第2実施形態)
本発明の第2実施形態に係る積層セラミックコンデンサおよびその製造方法は、誘電体磁器組成物の組成およびその製造方法が、第1実施形態に係る誘電体磁器組成物の組成およびその製造方法と、以下に示すように異なる以外は、同じであり、重複する部分の説明は省略する。
(Second Embodiment)
The multilayer ceramic capacitor and the manufacturing method thereof according to the second embodiment of the present invention are the same as the composition of the dielectric ceramic composition and the manufacturing method thereof, and the composition of the dielectric ceramic composition and the manufacturing method thereof according to the first embodiment; Except for the differences as described below, they are the same, and the description of the overlapping parts is omitted.

この第2実施形態に係る誘電体磁器組成物は、
(Baα (TiZrMg)Oの一般式で表わされる第1成分と、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物から成る第2成分と、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物から成る第3成分と、を有する誘電体磁器組成物である。上記一般式におけるRは、第1実施形態と同様な希土類元素であり、好ましくはGdである。
The dielectric ceramic composition according to the second embodiment is
A first component represented by the general formula of (Ba a R b ) α (Ti c Zr d Mg e ) O 3 ;
A second component comprising an oxide of at least one element selected from Mn, Cr, Co and Fe;
And a third component made of an oxide of at least one element selected from Si, Li, Al, Ge, and B. R in the above general formula is the same rare earth element as in the first embodiment, preferably Gd.

上記一般式では、
0.8≦a≦0.96、好ましくは0.83≦a≦0.93、さらに好ましくは0.86≦a≦0.91、
0.04≦b≦0.2、好ましくは0.08≦b≦0.15、さらに好ましくは0.09≦b≦0.13、
0.55≦c≦0.7、好ましくは0.62≦c≦0.69、さらに好ましくは0.64 ≦c≦0.68、
0.24≦d≦0.39、好ましくは0.26≦d≦0.36、さらに好ましくは0.27≦d≦0.31、
0.02≦e≦0.09、好ましくは0.03≦e≦0.08、さらに好ましくは0.04≦e≦0.07、および
1≦α≦1.15、好ましくは1.02≦α≦1.12、さらに好ましくは1.03≦α≦1.10である。
In the above general formula:
0.8 ≦ a ≦ 0.96, preferably 0.83 ≦ a ≦ 0.93, more preferably 0.86 ≦ a ≦ 0.91
0.04 ≦ b ≦ 0.2, preferably 0.08 ≦ b ≦ 0.15, more preferably 0.09 ≦ b ≦ 0.13,
0.55 ≦ c ≦ 0.7, preferably 0.62 ≦ c ≦ 0.69, more preferably 0.64 ≦ c ≦ 0.68,
0.24 ≦ d ≦ 0.39, preferably 0.26 ≦ d ≦ 0.36, more preferably 0.27 ≦ d ≦ 0.31,
0.02 ≦ e ≦ 0.09, preferably 0.03 ≦ e ≦ 0.08, more preferably 0.04 ≦ e ≦ 0.07, and 1 ≦ α ≦ 1.15, preferably 1.02 ≦ α ≦ 1.12, more preferably 1.03 ≦ α ≦ 1.10.

この誘電体磁器組成物は、第1成分に含まれるBaTiO2+m (ただし、mは、0.99≦m≦1.01)100モルに対して、
前記第2成分を、酸化物換算で、0.5〜3.0モルと、
前記第3成分を、酸化物換算で、3〜9モルと、を有する。
This dielectric ceramic composition has a Ba m TiO 2 + m contained in the first component (where m is 0.99 ≦ m ≦ 1.01) 100 mol,
The second component is 0.5 to 3.0 mol in terms of oxide,
The third component has 3 to 9 mol in terms of oxide.

本実施形態に係る誘電体磁器組成物では、焼成後の状態において、第1成分に含まれるBaTiO2+m は、ペロブスカイト型結晶構造内に十分に固溶しており、そのAサイトには、希土類Rが入り込み、そのBサイトには、ZrおよびMgが入り込んでいる。 In the dielectric ceramic composition according to the present embodiment, in the state after firing, Ba m TiO 2 + m contained in the first component is sufficiently dissolved in the perovskite crystal structure, and the A site contains Rare earth R enters, and Zr and Mg enter the B site.

上記の一般式において、aが小さすぎると、比誘電率が低下する傾向にあり、aが大きすぎると、温度特性、高温加速寿命、破壊電圧および電歪量が悪化する傾向にある。また、bが大きすぎると、比誘電率が低下する傾向にあり、bが小さすぎると、温度特性、高温加速寿命、破壊電圧および電歪量が悪化する傾向にある。   In the above general formula, if a is too small, the relative permittivity tends to decrease, and if a is too large, the temperature characteristics, the high temperature accelerated life, the breakdown voltage, and the amount of electrostriction tend to deteriorate. If b is too large, the relative permittivity tends to decrease, and if b is too small, the temperature characteristics, the high temperature accelerated life, the breakdown voltage, and the amount of electrostriction tend to deteriorate.

上記の一般式において、cが大きすぎると、比誘電率が低下する傾向にあり、cが小さすぎると、温度特性、高温加速寿命、破壊電圧および電歪量が悪化する傾向にある。また、dが大きすぎると、比誘電率が低下する傾向にあり、dが小さすぎると、温度特性、高温加速寿命および電歪量が悪化する傾向にある。   In the above general formula, if c is too large, the relative permittivity tends to decrease, and if c is too small, the temperature characteristics, the high temperature accelerated life, the breakdown voltage, and the amount of electrostriction tend to deteriorate. If d is too large, the relative permittivity tends to decrease, and if d is too small, the temperature characteristics, the high temperature accelerated life, and the amount of electrostriction tend to deteriorate.

上記の一般式において、eが大きすぎると、温度特性が悪化する傾向にあり、eが小さすぎると、高温加速寿命が悪化する傾向にある。さらに、αが小さすぎると、温度特性が悪化する傾向にあり、αが大きすぎると、信頼性が悪化する傾向にある。   In the above general formula, if e is too large, the temperature characteristics tend to deteriorate, and if e is too small, the high temperature accelerated life tends to deteriorate. Furthermore, if α is too small, temperature characteristics tend to deteriorate, and if α is too large, reliability tends to deteriorate.

また、この実施形態では、第2成分の添加量が少なすぎると、温度特性、高温加速寿命、破壊電圧および電歪量が悪化する傾向にあり、多すぎると、比誘電率が低下する傾向にある。また、第3成分の添加利用が少なすぎると、高温加速寿命、破壊電圧および電歪量が悪化する傾向にあり、多すぎると、比誘電率が低下する傾向にある。   In this embodiment, if the amount of the second component added is too small, the temperature characteristics, the high temperature accelerated life, the breakdown voltage, and the amount of electrostriction tend to deteriorate. If the amount is too large, the relative dielectric constant tends to decrease. is there. Moreover, when there is too little addition use of a 3rd component, there exists a tendency for a high temperature accelerated lifetime, a breakdown voltage, and the amount of electrostriction to deteriorate, and when too much, there exists a tendency for a dielectric constant to fall.

本実施形態の誘電体磁器組成物を製造するには、前述した第1実施形態に係る誘電体磁器組成物の製造方法と同様な方法を採用することができ、好ましくは、各成分の原料のうち、BaTiO2+m 以外の原料のうち少なくとも一部については、各酸化物または複合酸化物、焼成により各酸化物または複合酸化物となる化合物を、予め仮焼し、焙焼粉として用いることが好ましい。 In order to manufacture the dielectric ceramic composition of the present embodiment, a method similar to the method of manufacturing the dielectric ceramic composition according to the first embodiment described above can be employed. Among them, for at least a part of the raw materials other than Ba m TiO 2 + m , each oxide or composite oxide and a compound that becomes each oxide or composite oxide by firing are calcined in advance and used as roasted powder. Is preferred.

本実施形態のその他の構成および作用効果は、第1実施形態と同様である。   Other configurations and operational effects of the present embodiment are the same as those of the first embodiment.

以上、本発明の実施形態について説明してきたが、本発明は、上述した実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々に改変することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the embodiment mentioned above at all, and can be variously modified within the range which does not deviate from the summary of this invention.

たとえば、上述した実施形態では、本発明に係る電子部品として積層セラミックコンデンサを例示したが、本発明に係る電子部品としては、積層セラミックコンデンサに限定されず、上記構成の誘電体層を有するものであれば何でも良い。   For example, in the above-described embodiment, the multilayer ceramic capacitor is exemplified as the electronic component according to the present invention. However, the electronic component according to the present invention is not limited to the multilayer ceramic capacitor, and has a dielectric layer having the above configuration. Anything is fine.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

実施例1
まず、平均粒子径0.5μmのBaTiO2+m 、BaZrO2+n 、MgCO、Gd、MnO、およびSiOを準備し、これらをボールミルにて混合し、得られた混合粉を1200℃で予め仮焼して、平均粒子径0.6μmの仮焼粉を調製した。次いで、得られた仮焼粉を、ボールミルで15時間、湿式粉砕し、乾燥して、誘電体材料を得た。なお、MgCOは、焼成後には、MgOとして誘電体磁器組成物中に含有されることとなる。また、BaTiO2+m内部にBaZrO2+n 、MgCO、Gd、MnO、およびSiOが固溶したり、BaTiO2+m表面にMgCO、Gd、MnO、およびSiOが拡散したり、BaTiO2+m表面にMgCO粒子、Gd粒子、MnO粒子、およびSiO粒子が固着したりと、その粉体の状態に制限はない。この製法により得られる粉体を粉体Aとする。
Example 1
First, Ba m TiO 2 + m , Ba n ZrO 2 + n , MgCO 3 , Gd 2 O 3 , MnO, and SiO 2 having an average particle diameter of 0.5 μm were prepared, and these were mixed in a ball mill, and the resulting mixed powder was obtained. Preliminarily calcined at 1200 ° C. to prepare calcined powder having an average particle diameter of 0.6 μm. Next, the obtained calcined powder was wet pulverized with a ball mill for 15 hours and dried to obtain a dielectric material. Incidentally, MgCO 3, after firing, and thus included in the dielectric ceramic composition as MgO. Moreover, Ba m TiO 2 + m inside the Ba n ZrO 2 + n, MgCO 3, Gd 2 O 3, MnO, and SiO 2 is or a solid solution, MgCO 3 in Ba m TiO 2 + m surface, Gd 2 O 3, MnO, and SiO There are no restrictions on the state of the powder, such as when 2 diffuses or MgCO 3 particles, Gd 2 O 3 particles, MnO particles, and SiO 2 particles adhere to the surface of Ba m TiO 2 + m . The powder obtained by this production method is designated as powder A.

各成分の添加量を表1に示す。本実施例では、表1に示すようにそれぞれ添加量の異なる誘電体材料(試料番号1〜35)を調製した。表1において、各成分の添加量は、BaTiO2+m 100モルに対して、複合酸化物または各酸化物換算での添加量である。また、本実施例では、BaTiO2+m としてはm=1.001のものを、BaZrO2+n としてはn=1.000のものを、それぞれ使用した。 Table 1 shows the amount of each component added. In this example, as shown in Table 1, dielectric materials (sample numbers 1 to 35) having different addition amounts were prepared. In Table 1, the addition amount of each component is the addition amount in terms of composite oxide or each oxide with respect to 100 mol of Ba m TiO 2 + m . In this example, Ba m TiO 2 + m with m = 1.001 was used, and Ba n ZrO 2 + n with n = 1.000 was used.

次いで、得られた誘電体材料:100重量部と、ポリビニルブチラール樹脂:10重量部と、可塑剤としてのジオクチルフタレート(DOP):5重量部と、溶媒としてのアルコール:100重量部とをボールミルで混合してペースト化し、誘電体層用ペーストを得た。 Next, the obtained dielectric material: 100 parts by weight, polyvinyl butyral resin: 10 parts by weight, di-Ok Chirufutareto as a plasticizer (DOP): 5 parts by weight, and alcohol as a solvent: and 100 parts by weight The paste was mixed by a ball mill to obtain a dielectric layer paste.

また、上記とは別に、Ni粒子:44.6重量部と、テルピネオール:52重量部と、エチルセルロース:3重量部と、ベンゾトリアゾール:0.4重量部とを、3本ロールにより混練し、スラリー化して内部電極層用ペーストを作製した。   In addition to the above, Ni particles: 44.6 parts by weight, terpineol: 52 parts by weight, ethyl cellulose: 3 parts by weight, and benzotriazole: 0.4 parts by weight are kneaded with three rolls to obtain a slurry. To prepare an internal electrode layer paste.

そして、上記にて作製した誘電体層用ペーストを用いて、PETフィルム上に、乾燥後の厚みが30μmとなるようにグリーンシートを形成した。次いで、この上に内部電極層用ペーストを用いて、電極層を所定パターンで印刷した後、PETフィルムからシートを剥離し、電極層を有するグリーンシートを作製した。次いで、電極層を有するグリーンシートを複数枚積層し、加圧接着することによりグリーン積層体とし、このグリーン積層体を所定サイズに切断することにより、グリーンチップを得た。   Then, using the dielectric layer paste prepared above, a green sheet was formed on the PET film so that the thickness after drying was 30 μm. Next, the electrode layer was printed in a predetermined pattern using the internal electrode layer paste thereon, and then the sheet was peeled off from the PET film to produce a green sheet having the electrode layer. Next, a plurality of green sheets having electrode layers were laminated and pressure-bonded to obtain a green laminated body, and the green laminated body was cut into a predetermined size to obtain a green chip.

次いで、得られたグリーンチップについて、脱バインダ処理、焼成およびアニールを下記条件にて行って、積層セラミック焼成体を得た。   Next, the obtained green chip was subjected to binder removal treatment, firing and annealing under the following conditions to obtain a multilayer ceramic fired body.

脱バインダ処理条件は、昇温速度:25℃/時間、保持温度:260℃、温度保持時間:8時間、雰囲気:空気中とした。   The binder removal treatment conditions were temperature rising rate: 25 ° C./hour, holding temperature: 260 ° C., temperature holding time: 8 hours, and atmosphere: in the air.

焼成条件は、昇温速度:200℃/時間、保持温度:1220〜1380℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気ガス:加湿したN+H混合ガス(酸素分圧:10−12MPa)とした。 Firing conditions are: temperature rising rate: 200 ° C./hour, holding temperature: 1220 to 1380 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmospheric gas: humidified N 2 + H 2 mixed gas (oxygen content) Pressure: 10 −12 MPa).

アニール条件は、昇温速度:200℃/時間、保持温度:1000〜1100℃、温度保持時間:2時間、冷却速度:200℃/時間、雰囲気ガス:加湿したNガス(酸素分圧:10−7MPa)とした。なお、焼成およびアニールの際の雰囲気ガスの加湿には、ウェッターを用いた。 The annealing conditions were as follows: temperature rising rate: 200 ° C./hour, holding temperature: 1000-1100 ° C., temperature holding time: 2 hours, cooling rate: 200 ° C./hour, atmospheric gas: humidified N 2 gas (oxygen partial pressure: 10 −7 MPa). A wetter was used for humidifying the atmospheric gas during firing and annealing.

次いで、得られた積層セラミック焼成体の端面をサンドブラストにて研磨した後、外部電極としてIn−Gaを塗布し、図1に示す積層セラミックコンデンサの試料を得た。本実施例では、表1に示すように、誘電体層をそれぞれ組成の異なる複数の誘電体磁器組成物から構成した複数のコンデンサ試料(試料番号1〜35)を作製した。得られたコンデンサ試料のサイズは、3.2mm×1.6mm×3.2mmであり、誘電体層の厚み20μm、内部電極層の厚み1.5μm、内部電極層に挟まれた誘電体層の数は10とした。   Next, after polishing the end face of the obtained multilayer ceramic fired body by sand blasting, In-Ga was applied as an external electrode to obtain a sample of the multilayer ceramic capacitor shown in FIG. In this example, as shown in Table 1, a plurality of capacitor samples (sample numbers 1 to 35) each having a dielectric layer composed of a plurality of dielectric ceramic compositions having different compositions were prepared. The size of the obtained capacitor sample is 3.2 mm × 1.6 mm × 3.2 mm, the thickness of the dielectric layer is 20 μm, the thickness of the internal electrode layer is 1.5 μm, and the dielectric layer sandwiched between the internal electrode layers is The number was 10.

得られた各コンデンサ試料について、比誘電率(εs)、容量温度特性(TC)、高温加速寿命(HALT)、破壊電圧(耐圧)、および電圧印加による電歪量を下記に示す方法により測定した。   About each obtained capacitor | condenser sample, the dielectric constant ((epsilon) s), the capacitance temperature characteristic (TC), the high temperature accelerated lifetime (HALT), the breakdown voltage (breakdown voltage), and the amount of electrostriction by voltage application were measured by the method shown below. .

比誘電率εs
コンデンサ試料に対し、基準温度25℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの信号を入力し、静電容量Cを測定した。そして、比誘電率εs(単位なし)を、誘電体層の厚みと、有効電極面積と、測定の結果得られた静電容量Cとに基づき算出した。比誘電率は高いほうが好ましく、本実施例では、230以上、好ましくは250以上を良好とした。結果を表1に示す。
Dielectric constant εs
A capacitor with a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms was input with a digital LCR meter (YHP 4284A) at a reference temperature of 25 ° C., and the capacitance C was measured. The relative dielectric constant εs (no unit) was calculated based on the thickness of the dielectric layer, the effective electrode area, and the capacitance C obtained as a result of the measurement. A higher relative dielectric constant is preferable. In this example, 230 or more, preferably 250 or more was considered good. The results are shown in Table 1.

容量温度特性(TC)
コンデンサ試料に対し、125℃において、デジタルLCRメータ(YHP社製4284A)にて、周波数1kHz、入力信号レベル(測定電圧)1Vrmsの条件で静電容量を測定し、基準温度25℃における静電容量に対する変化率を算出した。本実施例では、±15%以内を良好とした。結果を表1に示す。
Capacity temperature characteristics (TC)
The capacitance of the capacitor sample was measured at 125 ° C. with a digital LCR meter (YHP 4284A) under the conditions of a frequency of 1 kHz and an input signal level (measurement voltage) of 1 Vrms. The rate of change with respect to was calculated. In the present example, a value within ± 15% was considered good. The results are shown in Table 1.

高温加速寿命(HALT)
コンデンサ試料に対し、200℃にて、40V/μmの電界下で直流電圧の印加状態に保持し、寿命時間を測定することにより、高温加速寿命(HALT)を評価した。本実施例においては、印加開始から絶縁抵抗が一桁落ちるまでの時間を寿命と定義した。また、この高温加速寿命は、10個のコンデンサ試料について行った。本実施例では、10時間以上、好ましくは20時間以上を良好とした。結果を表1に示す。
High temperature accelerated life (HALT)
A high temperature accelerated lifetime (HALT) was evaluated by maintaining a DC voltage applied to a capacitor sample at 200 ° C. under an electric field of 40 V / μm and measuring the lifetime. In this example, the time from the start of application until the insulation resistance drops by an order of magnitude was defined as the lifetime. Further, this high temperature accelerated life was performed for 10 capacitor samples. In this example, 10 hours or longer, preferably 20 hours or longer was considered good. The results are shown in Table 1.

破壊電圧(耐圧)
コンデンサ試料に対し、温度25℃において、直流電圧を昇速度100V/sec.で印加し、10mAの電流が流れた時の誘電体層厚みに対する電圧値(単位:V/μm)を破壊電圧とし、破壊電圧を測定することにより、コンデンサ試料の耐圧を評価した。本実施例では、破壊電圧50V/μm以上を良好とした。結果を表1に示す。
Breakdown voltage (withstand voltage)
To capacitor samples at a temperature 25 ° C., a DC voltage boost rate 100 V / sec. The voltage value (unit: V / μm) relative to the thickness of the dielectric layer when a current of 10 mA flows was used as the breakdown voltage, and the breakdown voltage was measured to evaluate the withstand voltage of the capacitor sample. In this example, a breakdown voltage of 50 V / μm or more was considered good. The results are shown in Table 1.

電圧印加による電歪量
まず、コンデンサ試料を、所定パターンの電極がプリントしてあるガラスエポキシ基板にハンダ付けすることにより固定した。次いで、基板に固定したコンデンサ試料に対して、AC:10Vrms/μm、周波数3kHzの条件で電圧を印加し、電圧印加時におけるコンデンサ試料表面の振動幅を測定し、これを電歪量とした。なお、コンデンサ試料表面の振動幅の測定には、レーザードップラー振動計を使用した。また、本実施例では、10個のコンデンサ試料を用いて測定した値の平均値を電歪量とした。電歪量は低いほうが好ましく、本実施例では、10ppm未満を良好とした。結果を表1に示す。

Figure 0005034839
Electrostriction due to voltage application First, the capacitor sample was fixed by soldering to a glass epoxy substrate on which electrodes of a predetermined pattern were printed. Next, a voltage was applied to the capacitor sample fixed on the substrate under the conditions of AC: 10 Vrms / μm and a frequency of 3 kHz, and the vibration width of the capacitor sample surface at the time of voltage application was measured. A laser Doppler vibrometer was used to measure the vibration width of the capacitor sample surface. In this example, the average value of values measured using 10 capacitor samples was used as the amount of electrostriction. The electrostriction amount is preferably as low as possible. In this example, less than 10 ppm was considered good. The results are shown in Table 1.
Figure 0005034839

表1より、誘電体磁器組成物組成を本発明の所定の範囲とすることにより、比誘電率(εs)、容量温度特性(TC)、および電歪量を良好に保ちながら、破壊電圧(耐圧)および高温加速寿命(HALT)の向上が可能となることが確認できる。   From Table 1, by setting the dielectric ceramic composition composition within the predetermined range of the present invention, the dielectric constant (εs), the capacity-temperature characteristic (TC), and the amount of electrostriction are kept good, while the breakdown voltage (withstand voltage) ) And high temperature accelerated life (HALT) can be confirmed.

これに対して、誘電体磁器組成物組成を本発明の範囲外とすると、各特性に劣る結果となった。   On the other hand, when the dielectric ceramic composition was out of the scope of the present invention, the results were inferior to each characteristic.

実施例2
BaTiO2+m およびBaZrO2+n の代わりに、BaTiO2+m およびBaZrO2+n を予め仮焼したBa(Ti,Zr)Oを用い、添加物成分を仮焼きせずに混合した以外は実施例1の試料番号9と同様にして、コンデンサ試料を作製し、実施例1と同様に評価を行った。なお、本実施例においては、誘電体磁器組成物中へのBa(Ti,Zr)Oの添加量は、実施例1の試料番号9におけるBaTiO2+m とBaZrO2+n との添加量の合計と同じ量とした。また、Ba(Ti,Zr)Oとしては、Ti/Zr比が、実施例1の試料番号9におけるBaTiO2+m とBaZrO2+n との比と同じ比率のものを使用した(すなわち、Ti/Zr=約100/41のものを使用した)。結果を表2に示す。

Figure 0005034839
Example 2
Ba m instead of TiO 2 + m and Ba n ZrO 2 + n, except that mixed Ba m TiO 2 + m and Ba n ZrO 2 + n and calcinated the Ba (Ti, Zr) using O 3, the additive component without calcination Produced a capacitor sample in the same manner as Sample No. 9 in Example 1, and evaluated it in the same manner as in Example 1. In this example, the addition amount of Ba (Ti, Zr) O 3 in the dielectric ceramic composition is the addition amount of Ba m TiO 2 + m and Ba n ZrO 2 + n in sample number 9 of Example 1. The same amount as the total. Further, as Ba (Ti, Zr) O 3 , a Ti / Zr ratio having the same ratio as the ratio of Ba m TiO 2 + m and Ba n ZrO 2 + n in sample number 9 of Example 1 was used (ie, Ti / Zr = about 100/41 was used). The results are shown in Table 2.
Figure 0005034839

表2より、BaTiO2+m およびBaZrO2+n の代わりに、Ba(Ti,Zr)Oを用いた場合には、容量温度特性や電圧印加による電歪量、信頼性に劣る結果となることが確認できる。なお、この理由としては、必ずしも明らかではないが、本発明の誘電体磁器組成物においては、BaTiO2+m とBaZrO2+n とを別々に添加することにより、GdがBaTiO2+m粒子へ拡散しやすくなり、粒子内にGdが一様に分布した構造となる。そのことで還元雰囲気での焼成中の酸素欠陥の発生が抑制されることで、信頼性が良好となるのに対し、Ba(Ti,Zr)Oを用いた場合には、このような構成とならないことによると考えられる。 From Table 2, when Ba (Ti, Zr) O 3 is used instead of Ba m TiO 2 + m and Ba n ZrO 2 + n , the results are inferior in capacity-temperature characteristics, electrostriction due to voltage application, and reliability. I can confirm that. The reason for this is not necessarily clear, but in the dielectric ceramic composition of the present invention, Gd is added to Ba m TiO 2 + m particles by adding Ba m TiO 2 + m and Ba n ZrO 2 + n separately. It becomes easy to diffuse and has a structure in which Gd is uniformly distributed in the particles. This improves the reliability by suppressing the generation of oxygen defects during firing in a reducing atmosphere, whereas such a configuration is obtained when Ba (Ti, Zr) O 3 is used. It is thought that it is because it does not become.

実施例3
実施例1と同様な粉体Aを用い、下記に示す以外は実施例1と同様にしてコンデンサ試料を作成し、実施例1と同様に評価を行った。
Example 3
A powder sample similar to that in Example 1 was used, and a capacitor sample was prepared in the same manner as in Example 1 except for the following, and evaluated in the same manner as in Example 1.

表3および表4においては、表1とは異なり、焼成後の誘電体磁器組成物の組成を、下記のように表現している。   In Tables 3 and 4, unlike Table 1, the composition of the dielectric ceramic composition after firing is expressed as follows.

すなわち、この実施例に係る誘電体磁器組成物は、
(Baα (TiZrMg)Oの一般式で表わされる第1成分と、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物から成る第2成分と、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物から成る第3成分と、を有するものとして表現している。
That is, the dielectric ceramic composition according to this example is
A first component represented by the general formula of (Ba a R b ) α (Ti c Zr d Mg e ) O 3 ;
A second component comprising an oxide of at least one element selected from Mn, Cr, Co and Fe;
And a third component made of an oxide of at least one element selected from Si, Li, Al, Ge and B.

表3および表4において、第2成分(Mn)および第3成分(Si)のモル比は、第1成分に含まれるBaTiO2+m 100モルに対して、酸化物換算でのモル比である。 In Table 3 and Table 4, the molar ratio of the second component (Mn) and the third component (Si) is a molar ratio in terms of oxide to 100 mol of Ba m TiO 2 + m contained in the first component. .

表3および表4に示す結果から、誘電体磁器組成物組成を本発明の所定の範囲とすることにより、比誘電率(εs)、容量温度特性(TC)、および電歪量を良好に保ちながら、破壊電圧(耐圧)および高温加速寿命(HALT)の向上が可能となることが確認できる。   From the results shown in Tables 3 and 4, by setting the dielectric ceramic composition within the predetermined range of the present invention, the relative dielectric constant (εs), the capacity-temperature characteristic (TC), and the amount of electrostriction can be kept good. However, it can be confirmed that the breakdown voltage (breakdown voltage) and the high temperature accelerated life (HALT) can be improved.

これに対して、誘電体磁器組成物組成を本発明の範囲外とすると、各特性に劣る結果となった。   On the other hand, when the dielectric ceramic composition was out of the scope of the present invention, the results were inferior to each characteristic.

実施例4
まず、平均粒子径0.5μmのBaTiO2+m (ただし、m=1.001)、BaZrO2+n (ただし、n=1.000)、MgCO、Gd、MnO、およびSiOを準備し、これらをボールミルにて混合し、混合粉を得る。この製法により得られる粉体を粉体Bとする。
Example 4
First, Ba m TiO 2 + m (where m = 1.001), Ba n ZrO 2 + n (where n = 1.000), MgCO 3 , Gd 2 O 3 , MnO, and SiO 2 having an average particle diameter of 0.5 μm. Are prepared and mixed with a ball mill to obtain a mixed powder. The powder obtained by this production method is designated as powder B.

粉体Aの代わりに粉体Bを用いた以外は実施例3と同様にしてコンデンサ試料を作成し、実施例3と同様に評価を行った。粉体Bにおける各成分の添加量および評価結果を表5に示す。   A capacitor sample was prepared in the same manner as in Example 3 except that powder B was used instead of powder A, and evaluation was performed in the same manner as in Example 3. Table 5 shows the amount of each component added to the powder B and the evaluation results.

表3および表4に比較して、表5に示す結果から、粉体Bを用いた場合においても、粉体Aを用いた場合と同様な結果が得られたが、同様な組成を比較した場合には、粉体Aを用いた場合の方が、高温加速寿命および破壊電圧の点で優れていることが確認された。   Compared to Table 3 and Table 4, from the results shown in Table 5, the same results as in the case of using the powder A were obtained when the powder B was used, but the same compositions were compared. In this case, it was confirmed that the powder A was superior in terms of high temperature accelerated life and breakdown voltage.

実施例5
BaCO、ZrO、MgCO、Gd、MnO、SiOおよびTiOを準備し、ボールミルで15時間、湿式粉砕し、乾燥して、誘電体材料を得た。この製法により得られる粉体を粉体Cとする。
Example 5
BaCO 3 , ZrO 2 , MgCO 3 , Gd 2 O 3 , MnO, SiO 2 and TiO 2 were prepared, wet-ground in a ball mill for 15 hours, and dried to obtain a dielectric material. The powder obtained by this production method is designated as powder C.

粉体Aの代わりに粉体Cを用いた以外は実施例3と同様にしてコンデンサ試料を作成し、実施例3と同様に評価を行った。各成分の添加量および評価結果を表5に示す。表5に示すように、粉体Cを用いた場合においても、粉体Aを用いた場合と同様な結果が得られた。   A capacitor sample was prepared in the same manner as in Example 3 except that powder C was used instead of powder A, and evaluation was performed in the same manner as in Example 3. Table 5 shows the amount of each component added and the evaluation results. As shown in Table 5, when the powder C was used, the same results as when the powder A was used were obtained.

実施例6
MgCO、Gd、MnO、およびSiOを予め1000℃にて仮焼きしたものを準備し、これを平均粒子径0.3μmのBaCO、ZrO、TiO粉末とともに、ボールミルで15時間、湿式粉砕し、乾燥して、誘電体材料を得た。この製法により得られる粉体を粉体Dとする。
Example 6
MgCO 3 , Gd 2 O 3 , MnO, and SiO 2 preliminarily calcined at 1000 ° C. were prepared, and this was mixed with BaCO 3 , ZrO 2 , and TiO 2 powders having an average particle diameter of 0.3 μm in a ball mill at 15 Dielectric material was obtained by wet-grinding for a time and drying. The powder obtained by this production method is designated as powder D.

粉体Aの代わりに粉体Dを用いた以外は実施例3と同様にしてコンデンサ試料を作成し、実施例3と同様に評価を行った。各成分の添加量および評価結果を表5に示す。表5に示すように、粉体Dを用いた場合においても、粉体Aを用いた場合と同様な結果が得られた。

Figure 0005034839
Figure 0005034839
Figure 0005034839
A capacitor sample was prepared in the same manner as in Example 3 except that powder D was used instead of powder A, and evaluation was performed in the same manner as in Example 3. Table 5 shows the amount of each component added and the evaluation results. As shown in Table 5, when the powder D was used, the same results as when the powder A was used were obtained.
Figure 0005034839
Figure 0005034839
Figure 0005034839

実施例7
MnOの代替物としてCr、CoまたはFeを用い、SiOの代替物としてLi、Al、GeまたはBを用いた以外は、実施例3と同様にしてコンデンサ試料を作成し、実施例3と同様に評価を行った。各成分の添加量および評価結果を表6に示す。
Example 7
Cr 2 O 3 , Co 3 O 4 or Fe 2 O 3 was used as a substitute for MnO, and Li 2 O 3 , Al 2 O 3 , Ge 2 O 2 or B 2 O 3 was used as a substitute for SiO 2 . Except for this, a capacitor sample was prepared in the same manner as in Example 3 and evaluated in the same manner as in Example 3. The amount of each component added and the evaluation results are shown in Table 6.

表6に示すように、MnOの代替物としてCr、CoまたはFe
を用い、SiOの代替物としてLi、Al、GeまたはBを用いた場合でも、同様な特性が得られることが確認できた。

Figure 0005034839
As shown in Table 6, Cr 2 O 3 , Co 3 O 4 or Fe as an alternative to MnO
Using 2 O 3, even when using the Li 2 O 3, Al 2 O 3, Ge 2 O 2 or B 2 O 3 as a substitute for SiO 2, it was confirmed that the same characteristics can be obtained.
Figure 0005034839

実施例8
実施例3の粉体Aの製法において、(BaGdα(TiZrMg)O のαの値が0.08〜1.20の範囲でそれぞれ異なる粉体を調整し、実施例3と同様にしてコンデンサ試料を作成し、実施例3と同様に評価を行った。各成分の添加量および評価結果を表7に示す。
Example 8
In the production method of the powder A of Example 3, different powders were prepared in the range where the value of α of (Ba a Gd b ) α (Ti c Zr d Mg e ) O 3 was 0.08 to 1.20. A capacitor sample was prepared in the same manner as in Example 3 and evaluated in the same manner as in Example 3. Table 7 shows the amount of each component added and the evaluation results.

表7に示すように、1.00≦α≦1.15の場合において、良好な特性が得られることが確認できた。

Figure 0005034839
As shown in Table 7, it was confirmed that good characteristics were obtained when 1.00 ≦ α ≦ 1.15.
Figure 0005034839

実施例9
Gdの代替物として、Sm、Eu、TbまたはDyの酸化物を用いた以外は、実施例3と同様にしてコンデンサ試料を作製し、実施例3と同様に評価を行った。各成分の添加量および評価結果を表8に示す。
Example 9
A capacitor sample was prepared in the same manner as in Example 3 except that an oxide of Sm, Eu, Tb, or Dy was used as an alternative to Gd 2 O 3 , and evaluation was performed in the same manner as in Example 3. The amount of each component added and the evaluation results are shown in Table 8.

表8に示すように、Gdの代替物として、Sm、Eu、TbまたはDyの酸化物を用いた場合でも、同様な特性が得られることが確認できた。

Figure 0005034839

As shown in Table 8, it was confirmed that similar characteristics were obtained even when an oxide of Sm, Eu, Tb or Dy was used as an alternative to Gd 2 O 3 .
Figure 0005034839

実施例10
まず、BaZrO2+n 、MgCO、Gd、MnO、およびSiOを準備し、これらをボールミルにて混合し、得られた混合粉を1000℃で予め仮焼して、平均粒子径0.2μmの焙焼粉を調製した。次いで、得られた焙焼粉を、平均粒子径0.6μmのBaTiO2+m 粉末とともに、ボールミルで15時間、湿式粉砕し、乾燥して、誘電体材料を得た。この製法により得られる粉体を粉体Eとする。
Example 10
First, Ba n ZrO 2 + n , MgCO 3 , Gd 2 O 3 , MnO, and SiO 2 are prepared, these are mixed in a ball mill, and the resulting mixed powder is pre-calcined at 1000 ° C. to obtain an average particle size A 0.2 μm roasted powder was prepared. Next, the obtained roasted powder was wet pulverized with a ball mill for 15 hours together with Ba m TiO 2 + m powder having an average particle diameter of 0.6 μm and dried to obtain a dielectric material. The powder obtained by this production method is designated as powder E.

粉体Aの代わりに粉体Eを用いた以外は実施例1と同様にしてコンデンサ試料を作成し、実施例1と同様に評価を行った。各成分の添加量および評価結果を表9に示す。

Figure 0005034839



A capacitor sample was prepared in the same manner as in Example 1 except that the powder E was used instead of the powder A, and evaluation was performed in the same manner as in Example 1. Table 9 shows the amount of each component added and the evaluation results.
Figure 0005034839



表9より、誘電体磁器組成物組成を本発明所定の範囲とすることにより、比誘電率(εs)、容量温度特性(TC)、および電歪量を良好に保ちながら、破壊電圧(耐圧)および高温加速寿命(HALT)の向上が可能となることが確認できた。   From Table 9, by setting the dielectric ceramic composition composition within the predetermined range of the present invention, the dielectric constant (εs), the capacity-temperature characteristic (TC), and the electrostriction amount are kept good, and the breakdown voltage (withstand voltage) is maintained. It was also confirmed that the high temperature accelerated life (HALT) can be improved.

図1は本発明の一実施形態に係る積層セラミックコンデンサの断面図である。FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

符号の説明Explanation of symbols

1… 積層セラミックコンデンサ
10… コンデンサ素子本体
2… 誘電体層
3… 内部電極層
4… 外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 10 ... Capacitor element main body 2 ... Dielectric layer 3 ... Internal electrode layer 4 ... External electrode

Claims (3)

BaTiO2+m (ただし、mは、0.99≦m≦1.01)と、
BaZrO2+n (ただし、nは、0.99≦n≦1.01)と、
Mgの酸化物と、
Rの酸化物(ただし、Rは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも1種)と、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物と、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物と、を有する誘電体磁器組成物であって、
前記BaTiO2+m 100モルに対して、各成分の酸化物または複合酸化物換算での比率が、
BaZrO2+n 40〜55モル、
Mgの酸化物:4〜12モル、
Rの酸化物:4〜15モル、
Mn、Cr、CoおよびFeの酸化物:0.5〜3モル、
Si、Li、Al、GeおよびBの酸化物:3〜9モル、
である誘電体磁器組成物。
Ba m TiO 2 + m (where m is 0.99 ≦ m ≦ 1.01),
Ba n ZrO 2 + n (where n is 0.99 ≦ n ≦ 1.01),
Mg oxide,
R oxide (where R is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) )When,
An oxide of at least one element selected from Mn, Cr, Co and Fe;
A dielectric ceramic composition comprising an oxide of at least one element selected from Si, Li, Al, Ge and B,
The ratio of each component in terms of oxide or composite oxide with respect to 100 moles of Ba m TiO 2 + m ,
Ba n ZrO 2 + n : 40 to 55 mol,
Mg oxide: 4 to 12 mol,
R oxide: 4 to 15 mol,
Mn, Cr, Co and Fe oxides: 0.5-3 mol,
Si, Li, Al, Ge and B oxides: 3-9 mol,
A dielectric ceramic composition.
(Baα (TiZrMg)Oの一般式で表わされる第1成分を有する誘電体磁器組成物であって、
上記一般式におけるRが希土類元素であり、
上記一般式では、
0.8≦a≦0.96、
0.04≦b≦0.2、
0.62≦c≦0.69
0.24≦d≦0.39、
0.02≦e≦0.07、および
1≦α≦1.15であり、
前記第1成分に含まれるBaTiO2+m (ただし、mは、0.99≦m≦1.01)100モルに対して、
Mn、Cr、CoおよびFeから選択される少なくとも1種の元素の酸化物を0.5〜3.0モルと、
Si、Li、Al、GeおよびBから選択される少なくとも1種の元素の酸化物を3〜9モルと、をさらに有する誘電体磁器組成物。
A dielectric ceramic composition having a first component represented by the general formula of (Ba a R b ) α (Ti c Zr d Mg e ) O 3 ,
R in the above general formula is a rare earth element,
In the above general formula:
0.8 ≦ a ≦ 0.96,
0.04 ≦ b ≦ 0.2,
0.62 ≦ c ≦ 0.69 ,
0.24 ≦ d ≦ 0.39,
0.02 ≦ e ≦ 0.07 and 1 ≦ α ≦ 1.15,
Ba m TiO 2 + m contained in the first component (where m is 0.99 ≦ m ≦ 1.01) per 100 moles,
0.5 to 3.0 mol of an oxide of at least one element selected from Mn, Cr, Co and Fe;
A dielectric ceramic composition further comprising 3 to 9 mol of an oxide of at least one element selected from Si, Li, Al, Ge, and B.
請求項1または2のいずれかに記載の誘電体磁器組成物からなる誘電体層と、内部電極層と、を有する電子部品。 Electronic component having a dielectric layer comprising a dielectric ceramic composition according to claim 1 or 2, and an internal electrode layer.
JP2007255591A 2007-04-12 2007-09-28 Dielectric porcelain composition and electronic component Active JP5034839B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2007255591A JP5034839B2 (en) 2007-04-12 2007-09-28 Dielectric porcelain composition and electronic component
TW097104176A TW200846300A (en) 2007-04-12 2008-02-04 Dielectric ceramic composition and electronic device
AT08151587T ATE451335T1 (en) 2007-04-12 2008-02-19 DIELECTRIC CERAMIC COMPOSITION AND ELECTRONIC DEVICE
EP08151587A EP1980545B1 (en) 2007-04-12 2008-02-19 Dielectric ceramic composition and electronic device
DE602008000358T DE602008000358D1 (en) 2007-04-12 2008-02-19 Dielectric ceramic composition and electronic device
US12/071,470 US7580242B2 (en) 2007-04-12 2008-02-21 Dielectric ceramic composition and electronic device
KR1020080016764A KR101358488B1 (en) 2007-04-12 2008-02-25 Dielectric ceramic composition and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007105189 2007-04-12
JP2007105189 2007-04-12
JP2007255591A JP5034839B2 (en) 2007-04-12 2007-09-28 Dielectric porcelain composition and electronic component

Publications (2)

Publication Number Publication Date
JP2008280231A JP2008280231A (en) 2008-11-20
JP5034839B2 true JP5034839B2 (en) 2012-09-26

Family

ID=40057176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007255591A Active JP5034839B2 (en) 2007-04-12 2007-09-28 Dielectric porcelain composition and electronic component

Country Status (6)

Country Link
JP (1) JP5034839B2 (en)
KR (1) KR101358488B1 (en)
CN (1) CN101284732A (en)
AT (1) ATE451335T1 (en)
DE (1) DE602008000358D1 (en)
TW (1) TW200846300A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4967963B2 (en) * 2007-09-28 2012-07-04 Tdk株式会社 Dielectric porcelain composition and electronic component
JP2010109747A (en) 2008-10-30 2010-05-13 Panasonic Corp Portable radio device
JP5311045B2 (en) * 2009-08-25 2013-10-09 株式会社村田製作所 Translucent ceramic
EP2957547B1 (en) * 2009-12-16 2019-07-31 Skyworks Solutions, Inc. Dielectric ceramic materials and associated methods
JP5146492B2 (en) * 2010-06-14 2013-02-20 Tdk株式会社 Dielectric ceramic composition and manufacturing method thereof
JP5664228B2 (en) * 2010-12-28 2015-02-04 Tdk株式会社 Dielectric porcelain composition and electronic component
DE112015003592T5 (en) 2014-08-04 2017-06-08 Murata Manufacturing Co., Ltd. Multilayer ceramic capacitor
WO2016137790A1 (en) * 2015-02-27 2016-09-01 Ferro Corporation Low-k and mid-k ltcc dielectric compositions and devices
WO2017012798A1 (en) 2015-07-17 2017-01-26 Epcos Ag Dielectric composition, dielectric element, electronic component and laminated electronic component
US10504650B2 (en) 2015-07-17 2019-12-10 Tdk Electronics Ag Multi-layer ceramic capacitor
WO2017073621A1 (en) * 2015-10-28 2017-05-04 京セラ株式会社 Capacitor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050536A (en) * 2000-07-31 2002-02-15 Murata Mfg Co Ltd Reduction-resistant dielectric ceramic and laminated ceramic capacitor
TWI240288B (en) * 2003-01-31 2005-09-21 Murata Manufacturing Co Dielectric ceramic and the manufacturing method thereof, and the laminated ceramic condenser
JP4513278B2 (en) * 2003-05-26 2010-07-28 株式会社村田製作所 Non-reducing dielectric ceramic manufacturing method, non-reducing dielectric ceramic and multilayer ceramic capacitor
JP4572628B2 (en) * 2004-08-30 2010-11-04 Tdk株式会社 Dielectric ceramic composition and electronic component
WO2006025205A1 (en) * 2004-09-02 2006-03-09 Murata Manufacturing Co., Ltd. Dielectric ceramic composition, process for producing the same, and stacked type ceramic capacitor
JP4720193B2 (en) * 2005-01-24 2011-07-13 株式会社村田製作所 Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP2007297258A (en) * 2006-04-28 2007-11-15 Taiyo Yuden Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP4863005B2 (en) * 2006-12-27 2012-01-25 Tdk株式会社 Dielectric porcelain composition and electronic component
JP4858248B2 (en) * 2007-03-14 2012-01-18 Tdk株式会社 Dielectric porcelain composition and electronic component
JP2008247657A (en) * 2007-03-29 2008-10-16 Tdk Corp Dielectric porcelain composition and electronic component
JP5132972B2 (en) * 2007-04-09 2013-01-30 太陽誘電株式会社 Dielectric ceramics, manufacturing method thereof, and multilayer ceramic capacitor

Also Published As

Publication number Publication date
JP2008280231A (en) 2008-11-20
ATE451335T1 (en) 2009-12-15
KR101358488B1 (en) 2014-02-05
KR20080092836A (en) 2008-10-16
DE602008000358D1 (en) 2010-01-21
TW200846300A (en) 2008-12-01
CN101284732A (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4967963B2 (en) Dielectric porcelain composition and electronic component
JP5034839B2 (en) Dielectric porcelain composition and electronic component
JP5217405B2 (en) Dielectric porcelain composition and electronic component
US7580242B2 (en) Dielectric ceramic composition and electronic device
JP5018604B2 (en) Dielectric porcelain composition and electronic component
JP2005145791A (en) Electronic components, dielectric porcelain composition, and method for manufacturing the same
KR20070096957A (en) Laminated electronic component and method for manufacturing the same
JP5446880B2 (en) Dielectric porcelain composition and electronic component
JP4863005B2 (en) Dielectric porcelain composition and electronic component
JP5194370B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4576807B2 (en) Dielectric porcelain composition and electronic component
JP4863007B2 (en) Dielectric porcelain composition and electronic component
JP4556924B2 (en) Dielectric porcelain composition and electronic component
JP4661203B2 (en) Ceramic electronic component and manufacturing method thereof
JP4951896B2 (en) Dielectric porcelain composition and electronic component
JP2008162862A (en) Dielectric porcelain composition and electronic component
JP2008227093A (en) Manufacturing method of multilayer electronic component
JP2007258476A (en) Laminated electronic component and manufacturing method thereof
JP2008174434A (en) Dielectric porcelain composition and electronic component
JP5167591B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP5067531B2 (en) Dielectric porcelain composition and electronic component
JP2007258475A (en) Laminated electronic component and manufacturing method thereof
JP4529409B2 (en) Dielectric porcelain composition and electronic component
JP2011201710A (en) Dielectric ceramic composition and electronic component
JP2007084419A (en) Electronic component, dielectric ceramic composition and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120605

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5034839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150