JP5311045B2 - Translucent ceramic - Google Patents
Translucent ceramic Download PDFInfo
- Publication number
- JP5311045B2 JP5311045B2 JP2009194156A JP2009194156A JP5311045B2 JP 5311045 B2 JP5311045 B2 JP 5311045B2 JP 2009194156 A JP2009194156 A JP 2009194156A JP 2009194156 A JP2009194156 A JP 2009194156A JP 5311045 B2 JP5311045 B2 JP 5311045B2
- Authority
- JP
- Japan
- Prior art keywords
- site
- translucent ceramic
- sample
- rare earth
- earth element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000919 ceramic Substances 0.000 title claims description 28
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 11
- 229910052726 zirconium Inorganic materials 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229910052684 Cerium Inorganic materials 0.000 claims description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052691 Erbium Inorganic materials 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 229910052689 Holmium Inorganic materials 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 4
- 229910052772 Samarium Inorganic materials 0.000 claims description 4
- 229910052771 Terbium Inorganic materials 0.000 claims description 4
- 229910052775 Thulium Inorganic materials 0.000 claims description 4
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 4
- 229910052718 tin Inorganic materials 0.000 claims description 4
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052735 hafnium Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052715 tantalum Inorganic materials 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 20
- 230000003287 optical effect Effects 0.000 description 16
- 238000002189 fluorescence spectrum Methods 0.000 description 13
- 238000010521 absorption reaction Methods 0.000 description 10
- 238000005315 distribution function Methods 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 238000002834 transmittance Methods 0.000 description 5
- 238000000833 X-ray absorption fine structure spectroscopy Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000005469 synchrotron radiation Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017493 Nd 2 O 3 Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Description
この発明は、一般的には透光性セラミックに関し、特定的には光学部品として有用な蛍光特性を有する透光性セラミックに関する。 The present invention relates generally to translucent ceramics, and more particularly to translucent ceramics having fluorescent properties useful as optical components.
従来から、光学部品の材料としてガラス、プラスチック等が用いられている。また、近年、光学部品を用いた光学素子または光学装置には、益々小型化、薄型化が要求されている。しかし、ガラスやプラスチックは屈折率が低いので、これらの材料を用いて光学部品を構成した場合、光学部品を小型化または薄型化するには限界がある。 Conventionally, glass, plastic, and the like are used as materials for optical components. In recent years, optical elements or optical devices using optical components are increasingly required to be smaller and thinner. However, since glass and plastic have a low refractive index, there is a limit to downsizing or thinning the optical component when an optical component is formed using these materials.
このため、光学部品のさらなる小型化、薄型化を実現するために、高い屈折率を有する透光性セラミックの組成が、たとえば、特開2004−75512号公報(以下、特許文献1という)で提案されている。 For this reason, in order to realize further miniaturization and thinning of the optical component, a composition of a translucent ceramic having a high refractive index is proposed in, for example, Japanese Patent Application Laid-Open No. 2004-75512 (hereinafter referred to as Patent Document 1). Has been.
具体的には、特許文献1に記載された透光性セラミックの組成は、Ba{(Sn,Zr),Mg,Ta}O3系の化合物で、屈折率が2.0以上、直線透過率が20%以上で、複屈折を生じないものである。 Specifically, the composition of the translucent ceramic described in Patent Document 1 is a Ba {(Sn, Zr), Mg, Ta} O 3 -based compound having a refractive index of 2.0 or more and a linear transmittance. Is 20% or more and does not cause birefringence.
しかしながら、特許文献1に開示された透光性セラミックの組成では、屈折率が高いが、発光効率が十分でないため、光学部品として有用な蛍光特性を有する透光性セラミックを得ることができない。このため、特許文献1に開示された透光性セラミックは、透光性とともに良好な蛍光特性が要求される光学部品の一例として、たとえば、光増幅器に適用することができない。 However, although the composition of the translucent ceramic disclosed in Patent Document 1 has a high refractive index, the luminous efficiency is not sufficient, so that a translucent ceramic having fluorescent properties useful as an optical component cannot be obtained. For this reason, the translucent ceramic disclosed in Patent Document 1 cannot be applied to, for example, an optical amplifier as an example of an optical component that requires translucency and good fluorescence characteristics.
そこで、この発明の目的は、高い屈折率とともに高い発光効率を有する透光性セラミックを提供することである。 Accordingly, an object of the present invention is to provide a translucent ceramic having a high refractive index and a high luminous efficiency.
この発明に従った透光性セラミックは、ペロブスカイト型化合物ABO3(ただし、AはBaを含む)を主成分とし、希土類元素R(RはCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも一種)を含む組成を有し、希土類元素RがAサイトに含まれ、希土類元素Rが全てBサイトに固溶すると仮定して算出したBサイト平均イオン半径と、XRDにより求めた格子定数との線形相関の傾きが1.0未満であることを特徴とする。
The translucent ceramic according to the present invention has a perovskite type compound ABO 3 (where A includes Ba) as a main component, and a rare earth element R (R is Ce, Pr, Nd, Sm, Eu, Gd, Tb, A B site calculated on the assumption that the rare earth element R is contained in the A site and all the rare earth elements R are solid-solved in the B site, the composition containing at least one selected from Dy, Ho, Er, Tm, and Yb. the average ion radius, the slope of the linear correlation between the lattice constant obtained by XRD is characterized der Rukoto less than 1.0.
また、本発明の透光性セラミックにおいては、BがMg、Zn、Y、Al、Zr、Sn、Ti、Hf、Ta、Nbから選ばれる少なくとも一種を含むことも好ましい。より好ましくは、ABO3がBa(Zr,Mg,Ta)O3系である。 In the translucent ceramic of the present invention, B preferably contains at least one selected from Mg, Zn, Y, Al, Zr, Sn, Ti, Hf, Ta, and Nb. More preferably, ABO 3 is a Ba (Zr, Mg, Ta) O 3 system.
さらに、本発明の透光性セラミックにおいては、希土類元素Rの含有量が、ABO3100モル部に対し、0.1〜10モル部であることが好ましい。特に好ましくは、RはNdである。 Further, in the translucent ceramic of the present invention, the content of the rare earth element R, to ABO 3 100 molar parts, is preferably 0.1 to 10 molar parts. Particularly preferably R is Nd.
また、本発明は、本発明の透光性セラミックを用いた発光素子および発光装置にも向けられる。 The present invention is also directed to a light emitting element and a light emitting device using the translucent ceramic of the present invention.
本発明の透光性セラミックは、高い透光性、高い屈折率とともに高い発光効率を有するので、透光性とともに良好な蛍光特性が要求される光学部品の材料に適用することができ、光学部品を用いた光学素子または光学装置の小型化や薄型化に寄与することができる。 The translucent ceramic of the present invention has high translucency, high refractive index and high luminous efficiency, and therefore can be applied to materials for optical components that require good fluorescence characteristics as well as translucency. This can contribute to miniaturization and thinning of an optical element or an optical device using the.
本発明の透光性セラミックは、ペロブスカイト型化合物ABO3(ただし、AはBaを含む)を主成分とし、希土類元素R(RはCe、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Ybから選ばれる少なくとも一種)を含む組成を有し、希土類元素Rは主としてAサイトに含まれる。希土類元素のうち、本発明の目的を損なわない範囲でなら、若干量、粒界に存在したり、Bサイトに存在していても構わない。 The translucent ceramic of the present invention comprises a perovskite type compound ABO 3 (where A includes Ba) as a main component, and a rare earth element R (R is Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, And at least one selected from Ho, Er, Tm, and Yb), and the rare earth element R is mainly contained in the A site. Of the rare earth elements, a slight amount may be present at the grain boundary or at the B site as long as the object of the present invention is not impaired.
希土類元素がAサイトに含まれることは、放射光を用いたXAFS測定や、XRDによる格子定数の評価により検出され得る。 The presence of rare earth elements in the A site can be detected by XAFS measurement using synchrotron radiation or evaluation of the lattice constant by XRD.
また、希土類元素をAサイトに主として位置させるためには、たとえば、焼成温度を従来より十分に高い1800℃程度に設定するなどの方法がある。 In order to place the rare earth element mainly at the A site, for example, there is a method of setting the firing temperature to about 1800 ° C., which is sufficiently higher than the conventional one.
主成分となるABO3の組成は、AにBaが主として存在していれば、波長633nm、肉厚2mm程度における直線透過率が20%以上を有する限り、特に限定されるものではない。基本的には、Aの価数は+2価に近く、Bの価数は+4価に近く、A/Bのモル比は1前後である。好ましくは、Ba(Zr,Mg,Ta)O3が挙げられる。このうち、4価元素Zrの箇所には、Sn、Hf、Ti等が、Mgの箇所にはZn、Y、Al等が、Taの箇所にはNb等が用いられ得る。 The composition of ABO 3 as the main component is not particularly limited as long as Ba is mainly present in A as long as the linear transmittance at a wavelength of 633 nm and a thickness of about 2 mm has a value of 20% or more. Basically, the valence of A is close to +2, the valence of B is close to +4, and the molar ratio of A / B is around 1. Preferably, Ba (Zr, Mg, Ta) O 3 is used. Among these, Sn, Hf, Ti, or the like can be used for the tetravalent element Zr, Zn, Y, Al, or the like can be used for the Mg, and Nb or the like can be used for the Ta.
[実施例1]まず、出発原料として、高純度のBaCO3、SrCO3、CaCO3、SnO3、ZrO3、HfO3、TiO3、MgCO3、ZnO、Ta2O5、Nb2O5、Y2O3、Al2O3、Nd2O3、を準備した。これらの原料を組成式
[BaA1SrA2CaA3][(ZrB1SnB2TiB3HfB4)(MgC1ZnC2)(YD1AlD2)(TaE1NbE2)]vO3 + αNdO1.5
(A1+A2+A3=1、B1+B2+B3+B4+C1+C2+D1+D2+E1+E2=1、すべての係数はモル比)
において、表1の組成になるよう秤量し、ボールミルで20時間湿式混合した。
[Example 1] First, as starting materials, high-purity BaCO 3 , SrCO 3 , CaCO 3 , SnO 3 , ZrO 3 , HfO 3 , TiO 3 , MgCO 3 , ZnO, Ta 2 O 5 , Nb 2 O 5 , Y 2 O 3 , Al 2 O 3 , and Nd 2 O 3 were prepared. Composition of these ingredients
[Ba A1 Sr A2 Ca A3 ] [(Zr B1 Sn B2 Ti B3 Hf B4 ) (Mg C1 Zn C2 ) (Y D1 Al D2 ) (Ta E1 Nb E2 )] v O 3 + αNdO 1.5
(A1 + A2 + A3 = 1, B1 + B2 + B3 + B4 + C1 + C2 + D1 + D2 + E1 + E2 = 1, all coefficients are molar ratios)
1 were weighed so as to have the composition shown in Table 1, and wet mixed in a ball mill for 20 hours.
この混合物を乾燥した後、1300℃で3時間仮焼し、仮焼物を得た。この仮焼物を、水および有機分散剤とともにボールミルに入れ、12時間湿式粉砕した。この粉砕物を用い、湿式成形にて直径30mm、厚さ5mmの円板状に成形した。 After drying this mixture, it was calcined at 1300 ° C. for 3 hours to obtain a calcined product. This calcined product was placed in a ball mill together with water and an organic dispersant, and wet pulverized for 12 hours. Using this pulverized product, it was formed into a disk shape having a diameter of 30 mm and a thickness of 5 mm by wet molding.
この成形物を同組成からなる粉体に埋め、酸素雰囲気下(約98%酸素濃度)で、1600℃〜1850℃の各温度にて20時間焼成し焼結体を得た。焼結体より、1600℃の焼成でも焼結は十分に進んでいた。得られた焼結体について、t=2.0mmへ両面鏡面研磨加工を行った。研磨後の試料を評価試料とした。 This molded product was embedded in a powder having the same composition and fired for 20 hours at each temperature of 1600 ° C. to 1850 ° C. in an oxygen atmosphere (about 98% oxygen concentration) to obtain a sintered body. From the sintered body, the sintering proceeded sufficiently even when firing at 1600 ° C. The obtained sintered body was subjected to double-side mirror polishing to t = 2.0 mm. The sample after polishing was used as an evaluation sample.
得られた評価試料について、UV−VISの全透過率測定を行った(島津製作所製UV−2500)。得られたスペクトルの最大値で規格化し、基板の内部透過率とした。得られた内部透過率Tを用い、「k=ln(1/T)/0.2」より吸収係数k(cm-1)を算出した。算出した吸収係数の例を図1に示した。 The obtained evaluation sample was subjected to UV-VIS total transmittance measurement (UV-2500, manufactured by Shimadzu Corporation). Normalized by the maximum value of the obtained spectrum, it was set as the internal transmittance of the substrate. Using the obtained internal transmittance T, the absorption coefficient k (cm −1 ) was calculated from “k = ln (1 / T) /0.2”. An example of the calculated absorption coefficient is shown in FIG.
次に、図2に示すようなスペクトル分布を有する808nmを中心波長とするレーザーダイオード(以下LDと記す)を用い、図3のような評価系を用い、LDの出力を100mWに固定して蛍光スペクトル測定を行った。試料2の測定結果の例を図4に示した。図3の評価系は、試料厚みtが2mm以上にてかつ試料が透光性を示せば、接眼レンズの焦点位置を試料中央部に設定することで、試料間のスペクトル強度の相対比較が可能となる。 Next, a laser diode (hereinafter referred to as LD) having a spectral distribution as shown in FIG. 2 and having a center wavelength of 808 nm is used, and an evaluation system as shown in FIG. 3 is used to fix the LD output to 100 mW. Spectrum measurement was performed. An example of the measurement result of Sample 2 is shown in FIG. The evaluation system in FIG. 3 allows relative comparison of spectral intensities between samples by setting the focal position of the eyepiece to the center of the sample if the sample thickness t is 2 mm or more and the sample shows translucency. It becomes.
次に、α>0である試料2〜14において得られた蛍光スペクトル強度を1000nm〜1200nmの範囲で積分し、試料の発光強度IPL(arb.)を求めた。結果を表2に示す。 Next, the fluorescence spectrum intensities obtained in samples 2 to 14 where α> 0 were integrated in the range of 1000 nm to 1200 nm, and the emission intensity IPL (arb.) Of the sample was obtained. The results are shown in Table 2.
また、808nmLDスペクトル分布と吸収係数の積をとり、LDによる吸収量kLD(arb.)を算出し、表3に示した。 Further, the product of the 808 nm LD spectral distribution and the absorption coefficient was calculated, and the amount of absorption kLD (arb.) By LD was calculated and shown in Table 3.
最後に発光効率の簡易指標としてη=IPL/kLD(arb.)を算出し、表4に示した。これより、1800℃以上の焼結体において発光効率が劇的に高くなることが分かった。 Finally, η = IPL / kLD (arb.) Was calculated as a simple index of luminous efficiency and is shown in Table 4. From this, it was found that the luminous efficiency is dramatically increased in the sintered body of 1800 ° C. or higher.
次に、発光効率が向上した原因を調べるため、発光効率の異なる試料について、XAFSによるNdの固溶サイトの同定を行った。ここで用いた基板は、No.3の1600℃焼成の試料、1800℃焼成の試料である。分析方法と測定条件の詳細を以下に示す。
<分析方法>
(1)Ndの含まれていない試料No.1について、Ba−K、Zr−K、Ta−L3のXAFS測定を行い、Ba、Zr、Taの各サイトの動径分布関数を求める。
(2)発光効率の異なる試料について、Nd−L3のXAFS測定を行い、各Ndの動径分布関数を求める。
(3)上記(1)(2)の動径分布関数を比較検討することで、両試料におけるNdの置換サイトを判断する。
<測定条件>
実験施設名称:「大学共同利用機関法人高エネルギー加速器研究機構放射光研究施設」
・Ba−K吸収端(37452eV)
実験ステーション・・・NW10A
分光器・・・Si(3 1 1)2結晶分光器
検出法・・・透過法
・Zr−K吸収端(17998.9eV)
実験ステーション・・・NW10A
分光器・・・Si(3 1 1)2結晶分光器
検出法・・・蛍光収量法
・Ta−L3吸収端(9876.6eV)
実験ステーション・・・BL12C
分光器・・・Si(1 1 1)2結晶分光器
検出法・・・蛍光収量法
・Nd−L3吸収端(6209.2eV)
実験ステーション・・・BL12C
分光器・・・Si(1 1 1)2結晶分光器
検出法・・・蛍光収量法
Ba−K、Zr−K、Ta−L3の動径分布関数を図5に、Nd−L3の動径分布関数を図6に示した。図5より、ピークa、bの強度により、各元素の固溶サイトの判断が可能となる。図6より、1800℃焼成の試料では、1600℃焼成の試料と比較しBサイトに相当するピークaの強度が相対的に小さくなっていることがわかる。すなわち、1800℃焼成の試料では1600℃焼成の試料と比較して、Bサイトに存在するNd量が少なく、Aサイトに存在するNd量が多いことが示唆される。
Next, in order to investigate the cause of the improvement in luminous efficiency, Nd solid solution sites were identified by XAFS for samples having different luminous efficiency. The substrate used here is no. 3 is a sample fired at 1600 ° C. and a sample fired at 1800 ° C. Details of the analysis method and measurement conditions are shown below.
<Analysis method>
(1) Sample No. containing no Nd For 1 performs Ba-K, Zr-K, XAFS measurement of Ta-L 3, obtaining Ba, Zr, the radial distribution function of the site of Ta.
(2) Nd-L 3 XAFS measurement is performed on samples having different luminous efficiencies, and a radial distribution function of each Nd is obtained.
(3) By comparing the radial distribution functions of (1) and (2) above, the substitution site of Nd in both samples is determined.
<Measurement conditions>
Experimental Facility Name: “High Energy Accelerator Research Organization Synchrotron Radiation Research Facility”
・ Ba-K absorption edge (37452eV)
Experiment station: NW10A
Spectrometer: Si (3 1 1) 2 crystal spectrometer Detection method: Transmission method Zr-K absorption edge (17998.9 eV)
Experiment station: NW10A
Spectrometer: Si (3 1 1) 2 crystal spectrometer Detection method: Fluorescence yield method Ta-L 3 absorption edge (9876.6 eV)
Experiment station BL12C
Spectrometer: Si (1 1 1) 2 crystal spectrometer Detection method: Fluorescence yield method Nd-L 3 absorption edge (6209.2 eV)
Experiment station BL12C
Spectrometer ··· Si (1 1 1) 2 crystal monochromator detection method ... fluorescence yield method Ba-K, Zr-K, the radial distribution function of Ta-L 3 in FIG. 5, the Nd-L 3 The radial distribution function is shown in FIG. From FIG. 5, it is possible to determine the solid solution site of each element based on the intensities of the peaks a and b. FIG. 6 shows that the intensity of the peak a corresponding to the B site is relatively small in the sample fired at 1800 ° C. as compared with the sample fired at 1600 ° C. That is, it is suggested that the sample burned at 1800 ° C. has a smaller amount of Nd present at the B site and a larger amount of Nd present at the A site than the sample fired at 1600 ° C.
次いで、XRDにより希土類元素RがAサイトに存在することを確認した。 Next, XRD confirmed that the rare earth element R was present at the A site.
図7にBa系ペロブスカイト材料である、「Ba2+M4+O2- 3系」「Ba2+M13+M25+O2- 3系」(ここでM、M1、M2は図7中の金属元素)についてBサイト平均イオン半径と格子定数の関係を示した。ここでBサイト平均イオン半径とは、各種Bサイト構成元素のイオン半径とその存在比率の積により、平均イオン半径として算出した値である。また、格子定数はF.S.ガラッソー著「ファインセラミックスの結晶化学」より引用した値(単純立方換算)である。図7のように、Bサイト平均イオン半径と格子定数の間には線形相関があり、その傾きは約1.5程度であることがわかる。 Is Ba-based perovskite material 7, "Ba 2+ M4 + O 2- 3 system" "Ba 2+ M1 3+ M2 5+ O 2- 3 system" (wherein M, M1, M2 is shown in FIG. 7 The relationship between the B-site average ionic radius and the lattice constant was shown for the metal element). Here, the B-site average ionic radius is a value calculated as an average ionic radius by the product of the ionic radii of various B-site constituent elements and their abundance ratios. The lattice constant is F.D. S. Values quoted from "Crystal chemistry of fine ceramics" by Garassau (simple cubic conversion). As shown in FIG. 7, there is a linear correlation between the B-site average ion radius and the lattice constant, and the slope is about 1.5.
一方、本実施例における試料No.1〜4についても、Bサイト平均イオン半径を算出し、また、XRDより格子定数を求めた。ここでBサイト平均イオン半径は、添加した希土類が全てBサイトに固溶すると仮定して算出した。結果を表5、表6、図8に示した。 On the other hand, sample No. For 1-4, the B site average ion radius was calculated, and the lattice constant was determined from XRD. Here, the B site average ionic radius was calculated on the assumption that all of the added rare earths were dissolved in the B site. The results are shown in Table 5, Table 6, and FIG.
図8より、1750℃以下焼成の試料では上述の傾きが1.5程度であるものの、1800℃以上の焼成温度になると1.5より大きく下回ることがわかる。このように傾きが変化する原因として、Bサイト平均イオン半径の算出の前提条件であったNdの価数と固溶サイトが変化したと考えられる。このうち価数変化の可能性については、図2の吸収係数の結果より考えにくいため、固溶サイトがBサイトからAサイトに変化したと考えるのが妥当である。 From FIG. 8, it can be seen that in the sample fired at 1750 ° C. or lower, the above-mentioned inclination is about 1.5, but when the firing temperature is 1800 ° C. or higher, it is much lower than 1.5. It is thought that the cause of the change in the slope is that the Nd valence and the solid solution site, which were the preconditions for calculating the B site average ion radius, were changed. Of these, the possibility of valence change is less likely than the results of the absorption coefficient in FIG. 2, so it is reasonable to assume that the solid solution site has changed from the B site to the A site.
[実施例2]
試料No.2の組成において、添加する希土類としてNdの代わりに等量のCe、Pr、Sm、Eu、Tb、Dy、Ho、Er、Tm、Ybの各元素を用い、作製方法は実施例1と同様の方法にて評価試料(試料15〜24)を作製した。
[Example 2]
Sample No. In the composition of No. 2, each element of the same amount of Ce, Pr, Sm, Eu, Tb, Dy, Ho, Er, Tm, and Yb was used instead of Nd as the rare earth to be added, and the manufacturing method was the same as in Example 1. Evaluation samples (samples 15 to 24) were prepared by the method.
各試料のBサイト平均イオン半径の算出値とXRDによる格子定数分析値を表7、表8に示した。 Tables 7 and 8 show the calculated values of the B site average ionic radius of each sample and the lattice constant analysis values by XRD.
得られた表7、8の試料15〜24のデータ、および表5、6の試料1(Nd無添加品)のデータを「Bサイト平均イオン半径vs格子定数」の形でプロットし、試料1と試料15〜24の各点を結ぶ直線の傾きを求めた。結果を表9に示した。 The data of Samples 15 to 24 obtained in Tables 7 and 8 and the data of Sample 1 (Nd-free product) in Tables 5 and 6 were plotted in the form of “B-site average ionic radius vs lattice constant”. And the slope of a straight line connecting each point of samples 15 to 24. The results are shown in Table 9.
得られた試料について、各種励起波長にて蛍光分光測定を行った(堀場製作所製FluoroMax−4P)。得られたスペクトルを図9〜図17に示した。 The obtained sample was subjected to fluorescence spectroscopic measurement at various excitation wavelengths (FluoroMax-4P manufactured by Horiba, Ltd.). The obtained spectra are shown in FIGS.
以上の結果より、Nd以外の希土類元素でも、Aサイト固溶により発光効率が向上することが確認された。 From the above results, it was confirmed that the light emission efficiency was improved by the A-site solid solution even with rare earth elements other than Nd.
本発明の透光性セラミックは、高い透光性、高い屈折率とともに高い発光効率を有するので、透光性とともに良好な蛍光特性が要求される光学部品の材料、たとえば、光増幅器の材料に適用することができる。 Since the translucent ceramic of the present invention has high translucency, high refractive index and high luminous efficiency, it can be applied to materials for optical parts that require good fluorescence characteristics as well as translucency, such as optical amplifier materials. can do.
Claims (6)
希土類元素RがAサイトに含まれ、
希土類元素Rが全てBサイトに固溶すると仮定して算出したBサイト平均イオン半径と、XRDにより求めた格子定数との線形相関の傾きが1.0未満であることを特徴とする、透光性セラミック。 Perovskite type compound ABO 3 (where A includes Ba) as a main component, rare earth element R (R is selected from Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) A translucent ceramic having a composition comprising:
Rare earth element R is included in the A site,
The light transmission characteristic is characterized in that the slope of the linear correlation between the B site average ionic radius calculated on the assumption that all the rare earth elements R are dissolved in the B site and the lattice constant determined by XRD is less than 1.0. Ceramic.
The light emitting element or light-emitting device using the translucent ceramic as described in any one of Claims 1-5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009194156A JP5311045B2 (en) | 2009-08-25 | 2009-08-25 | Translucent ceramic |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009194156A JP5311045B2 (en) | 2009-08-25 | 2009-08-25 | Translucent ceramic |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011046542A JP2011046542A (en) | 2011-03-10 |
JP5311045B2 true JP5311045B2 (en) | 2013-10-09 |
Family
ID=43833284
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009194156A Expired - Fee Related JP5311045B2 (en) | 2009-08-25 | 2009-08-25 | Translucent ceramic |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5311045B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013058066A1 (en) * | 2011-10-18 | 2013-04-25 | 株式会社村田製作所 | Light-emitting ceramic |
JP2014019589A (en) * | 2012-07-13 | 2014-02-03 | Ohara Inc | Material having small variation of optical path length |
EP3505503B1 (en) * | 2017-12-27 | 2020-04-08 | Schott Ag | Optical converter |
CN111739961B (en) * | 2020-06-16 | 2022-03-15 | 湖北文理学院 | Based on ordered SnO2Nanorod array inorganic perovskite solar cell and preparation method thereof |
CN114349505B (en) * | 2022-01-18 | 2023-03-28 | 松山湖材料实验室 | Pr 3+ Application of doped ceramic in dual-mode hybrid anti-counterfeiting and anti-counterfeiting optical device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2557344B2 (en) * | 1986-05-01 | 1996-11-27 | 三井石油化学工業株式会社 | Method for treating inorganic hydroxide precipitate |
WO1990006292A1 (en) * | 1988-12-08 | 1990-06-14 | Mm Piezo Products, Inc. | Process for producing highly crystalline and homogeneous sub-micron doped and undoped piezoelectric ceramic powders with controlled stoichiometry and particle size |
JP2002204016A (en) * | 2000-12-27 | 2002-07-19 | Murata Mfg Co Ltd | Optical oscillation element |
JP3852398B2 (en) * | 2001-11-20 | 2006-11-29 | 株式会社村田製作所 | Translucent ceramics and optical components and optical elements using the same |
JP4457214B2 (en) * | 2004-11-26 | 2010-04-28 | 独立行政法人産業技術総合研究所 | Luminescent material, piezoelectric body, electrostrictive body, ferroelectric body, electroluminescent body, stress luminescent body, and methods for producing them |
JP5034839B2 (en) * | 2007-04-12 | 2012-09-26 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
-
2009
- 2009-08-25 JP JP2009194156A patent/JP5311045B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2011046542A (en) | 2011-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Basore et al. | High‐power broadband NIR LEDs enabled by highly efficient blue‐to‐NIR conversion | |
Lin et al. | Simultaneously achieving high performance of energy storage and transparency via A-site non-stoichiometric defect engineering in KNN-based ceramics | |
Bokolia et al. | Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12 ferroelectric ceramics | |
Zhuang et al. | Enhancement of red persistent luminescence in Cr3+-doped ZnGa2O4 phosphors by Bi2O3 codoping | |
Zhang et al. | Enhanced light extraction of single-surface textured YAG: Ce transparent ceramics for high power white LEDs | |
TWI486254B (en) | Light emissive ceramic laminate and method of making same | |
Wang et al. | Deep-red emitting Mg 2 TiO 4: Mn 4+ phosphor ceramics for plant lighting | |
JP5311045B2 (en) | Translucent ceramic | |
EP3354708B1 (en) | Metal fluoride red phosphor and light emitting element using same | |
JPWO2014077132A1 (en) | Phosphor, light emitting element, and lighting device | |
Tang et al. | Ni 2+-activated MgTi 2 O 5 with broadband emission beyond 1200 nm for NIR-II light source applications | |
JP5527413B2 (en) | LIGHT EMITTING CERAMIC, LIGHT EMITTING ELEMENT, SCINTILLATOR, AND LIGHT EMITTING CERAMIC MANUFACTURING METHOD | |
Sukul et al. | Crystal phase modified blue upconversion on Tm 3+/Yb 3+: BCZT ceramic phosphor benefits multifunctionality in white-light applications | |
Camps et al. | Preparation and broadband white emission of Eu-doped thin films based on SiAlON | |
Wang et al. | Cr3+-Doped La2MgSnO6 Double Perovskite Phosphors for Near-Infrared pc-LEDs | |
JP5415666B2 (en) | Pr-doped inorganic compound, luminescent composition containing the same and luminescent material, light-emitting device, solid-state laser device, ionizing radiation detection device | |
JP5928613B2 (en) | Light emitting ceramics, light emitting element, and light emitting device | |
JP5757336B2 (en) | Luminescent ceramics | |
US11691921B2 (en) | Light-emitting ceramic and wavelength conversion device | |
Tarala et al. | Fabrication and optical properties of garnet ceramics based on Y 3− x Sc x Al 5 O 12 doped with ytterbium and erbium | |
US10689571B2 (en) | Light-emitting ceramic and wavelength conversion device | |
TW201809223A (en) | Red phosphor and production method therefor, and white light source, illumination device, and display device using same | |
JP5728835B2 (en) | LIGHT EMITTING CERAMIC, LIGHT EMITTING ELEMENT, SCINTILLATOR, AND LIGHT EMITTING CERAMIC MANUFACTURING METHOD | |
WO2024006112A1 (en) | Phosphor compositons and light sources for swir spectroscopy | |
JP5240089B2 (en) | Translucent ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130117 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130402 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130510 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130605 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130618 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 5311045 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |