JPH10270284A - Manufacture of dielectric ceramic material - Google Patents

Manufacture of dielectric ceramic material

Info

Publication number
JPH10270284A
JPH10270284A JP9088789A JP8878997A JPH10270284A JP H10270284 A JPH10270284 A JP H10270284A JP 9088789 A JP9088789 A JP 9088789A JP 8878997 A JP8878997 A JP 8878997A JP H10270284 A JPH10270284 A JP H10270284A
Authority
JP
Japan
Prior art keywords
ceramic material
dielectric ceramic
particle size
average particle
main component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9088789A
Other languages
Japanese (ja)
Other versions
JP3630205B2 (en
Inventor
Osamu Otani
修 大谷
Wataru Takahara
弥 高原
Takashi Kamiya
貴志 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP08878997A priority Critical patent/JP3630205B2/en
Publication of JPH10270284A publication Critical patent/JPH10270284A/en
Application granted granted Critical
Publication of JP3630205B2 publication Critical patent/JP3630205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing dielectric ceramic material for manufacturing a small-sized multilayer ceramic capacitor of low cost, wherein generation of a segregation phase is restrained, short-circuiting failures do not exist, characteristics deterioration in time is small, electrostatic capacity is large and reliability is high by improving dispersion of subcomponent to main component of dielectric ceramic material, and making composition uniform. SOLUTION: One or at least two kinds from among BaTiO3 , CaTiO3 , SrTiO3 or BaZrO3 are made to be the main component. Component containing at least three kinds of compounds selected out of the respective compounds of Ba, Ca, Sr, Mg, Si, Cr, Y, V, Mn, W, Zr is used as subcomponents, to be mixed in the above main component. Dielectric ceramic material wherein the above subcomponent of at least 0.2 wt.% and at most 10.0 wt.% is contained in the main component is manufactured. After the subcomponent is made into fine powder by water grinding, granule of the subcomponent is made by freezing and drying.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、内部電極を有する積層
セラミックコンデンサの誘電体グリーンシートを形成す
るための誘電体セラミック材料の製造方法に関する。
The present invention relates to a method for producing a dielectric ceramic material for forming a dielectric green sheet of a multilayer ceramic capacitor having internal electrodes.

【0002】[0002]

【従来の技術】従来、積層セラミックコンデンサを作製
する方法として、BaTiO3等を主成分とする誘電体
セラミック材料をシート状に形成し、その表面に内部電
極となる導体ペーストを塗布し、積層圧着し、焼成し、
積層セラミックコンデンサを作る方法が一般的に知られ
ている。
2. Description of the Related Art Conventionally, as a method of manufacturing a laminated ceramic capacitor, a dielectric ceramic material mainly composed of BaTiO 3 or the like is formed in a sheet shape, a conductor paste serving as an internal electrode is applied on the surface thereof, and a laminated pressure bonding is performed. And bake,
A method for making a multilayer ceramic capacitor is generally known.

【0003】前記積層セラミックコンデンサ用誘電体セ
ラミック材料は、通常、前記主成分に、耐還元性付与、
温度特性の調整、信頼性等の諸特性を向上させることを
目的として、数種類の元素を副成分として添加してい
る。
[0003] The dielectric ceramic material for a multilayer ceramic capacitor usually has the following components:
For the purpose of adjusting temperature characteristics and improving various characteristics such as reliability, several types of elements are added as subcomponents.

【0004】このような副成分は、Ba、Ca、Sr、
Mg、Si、Cr、Y、V、Mn、W、Zrの化合物の
3種以上からなり、従来はこの副成分を得るため、図1
(C)に示すように、この化合物の3種以上のものを調
合し(工程(a))、湿式混合、粉砕(工程(b))し
た後、熱風乾燥(工程(c))により粒子を得ている。
このようにして得た副成分を主成分と混合し、前記シー
ト化する。
[0004] Such subcomponents include Ba, Ca, Sr,
It consists of three or more compounds of Mg, Si, Cr, Y, V, Mn, W, and Zr.
As shown in (C), three or more of these compounds are prepared (step (a)), wet-mixed and pulverized (step (b)), and then dried with hot air (step (c)) to obtain particles. It has gained.
The subcomponent thus obtained is mixed with the main component to form the sheet.

【0005】近年、情報機器、通信機器の急激な小型
化、高密度化に伴い、積層セラミックコンデンサも、広
範囲の電子回路に使用するために、超小型で高静電容量
のコンデンサが要求されるようになって来ている。
In recent years, with the rapid miniaturization and high density of information equipment and communication equipment, multilayer ceramic capacitors are also required to be ultra-small and have high capacitance in order to be used for a wide range of electronic circuits. It is coming.

【0006】しかし、従来の積層セラミックコンデンサ
は、誘電体セラミック材料の性状の関係から、内部電極
間の誘電体層間厚みが10μm〜20μm必要であり、
小型で高静電容量にすることが非常に困難であった。ま
た、無理に誘電体の層間厚みを10μm以下にした場
合、内部電極間で導通不良が発生して、非常に歩留りが
悪く、更に、ショート不良等が生じ易い等、信頼性が悪
く、小型で高静電容量、高信頼性で低コストの製品化の
妨げになっていた。
However, the conventional multilayer ceramic capacitor requires a dielectric interlayer thickness of 10 μm to 20 μm between the internal electrodes due to the properties of the dielectric ceramic material.
It was very difficult to achieve a small size and high capacitance. Further, if the interlayer thickness of the dielectric is forcibly set to 10 μm or less, conduction failure occurs between the internal electrodes, and the yield is extremely poor. High capacitance, high reliability and low cost were hindered from commercialization.

【0007】特開平5−124857号においては、絶
縁破壊電圧の向上を目的として、前記副成分を予め混合
粉砕し、平均粒径が0.2μm〜1.0μmに粉砕し、
主成分と混合分散させるという製造方法が提案されてい
る。
In Japanese Patent Application Laid-Open No. 5-124857, for the purpose of improving the dielectric breakdown voltage, the subcomponents are previously mixed and pulverized, and pulverized to an average particle size of 0.2 μm to 1.0 μm.
A production method of mixing and dispersing with a main component has been proposed.

【0008】[0008]

【発明が解決しようとする課題】誘電体セラミック材料
を構成する場合、副成分を混合粉砕し、熱風乾燥する際
に、副成分の粒子の凝集が大きく、副成分の平均粒径が
大きくなるため、主成分相に完全に分散されず、数μm
程度の偏析相(特定の成分元素が他の主要部から異なる
集合体を形成して主要部と不均一になった相)や異相
(結晶構造が相違する相であり、偏析相をさす場合もあ
る)として存在している。参考資料1の下から2段目の
電子顕微鏡によるSEM図(二次電子像)とCOMP図
(特性X線像)は、同じ部分について対応して示すもの
で、横に条状に現れているものはコンデンサの内部電極
であり、また、SEM図の黒点は偏析層を示し、白点は
空洞を示す。
When the dielectric ceramic material is formed, the sub-components are mixed and pulverized, and when subjected to hot-air drying, the coagulation of the sub-component particles is large and the average particle size of the sub-components is large. Several μm, not completely dispersed in the main component phase
A degree of segregation phase (a phase in which a specific component element forms a different aggregate from other main parts and becomes non-uniform with the main part) or a heterogeneous phase (a phase in which the crystal structure is different. Exists). The SEM diagram (secondary electron image) and the COMP diagram (characteristic X-ray image) by the second stage electron microscope from the bottom of Reference Material 1 correspond to the same part, and appear in a horizontal stripe shape. Those are the internal electrodes of the capacitor. In the SEM diagram, the black dots indicate the segregation layer, and the white dots indicate the cavities.

【0009】また、参考資料2は、電子顕微鏡像におい
て、内部電極と基地からの特性X線を元素毎に色分けし
てコンピュータ画面に表示したものであり、上段の左か
ら右へ順番に1番目、2番目、3番目、4番目にそれぞ
れの元素を濃さごとに色分けして示すように、Ba、S
iが微量となり、一方、Ti、Znが部分的に濃くな
り、偏析相が現れている。このように、従来の誘電体セ
ラミック材料は、副成分の凝集によって副成分の平均粒
径が大きくなり、偏析相や異相が存在するために、ショ
ート不良が大量に生じて歩留りが低下したり、高温加速
寿命試験における急激な特性の劣化という問題がある。
Reference material 2 shows the characteristic X-rays from the internal electrodes and the base in the electron microscope image, which are displayed on a computer screen by color-coding the elements for each element. The second, third, and fourth elements are represented by Ba, S,
The amount of i becomes small, while the amount of Ti and Zn partially increases, and a segregation phase appears. As described above, in the conventional dielectric ceramic material, the average particle size of the sub-components increases due to the aggregation of the sub-components, and a segregation phase or a heterogeneous phase is present. There is a problem that the characteristics are rapidly deteriorated in the high temperature accelerated life test.

【0010】前記特開平5−124857号に記載のよ
うに、副成分の平均粒径を0.2μm〜1.0μmとし
た場合にも、内部電極間の厚みを10μm以下にはでき
ない。無理に10μm程度の積層セラミックコンデンサ
を製品化しても、前述したショート不良による急激な歩
留りの低下や、高温加速寿命試験での急激な特性の劣化
という問題がある。
As described in JP-A-5-124857, even when the average particle size of the sub-components is 0.2 μm to 1.0 μm, the thickness between the internal electrodes cannot be reduced to 10 μm or less. Even if a multilayer ceramic capacitor having a thickness of about 10 μm is forcibly commercialized, there are problems such as a rapid decrease in yield due to the short circuit described above and a rapid deterioration in characteristics in a high-temperature accelerated life test.

【0011】本発明の目的は、上記した従来技術の問題
点に鑑み、副成分の分散性を良くし、組成を均一化する
ことにより、偏析相の発生を抑え、誘電体層間厚みが1
0μm以下であっても、ショート不良がなく、経年によ
る特性劣化が少なく、小型で高静電容量、低コスト、高
信頼性の積層セラミックコンデンサを作るための誘電体
セラミック材料の製造方法を提供することにある。
An object of the present invention is to improve the dispersibility of subcomponents and to make the composition uniform so as to suppress the generation of a segregation phase and reduce the dielectric interlayer thickness to 1 in view of the above-mentioned problems of the prior art.
Provided is a method for manufacturing a dielectric ceramic material for producing a multilayer ceramic capacitor having a small size, high capacitance, low cost, and high reliability, with no short-circuit failure, little deterioration of characteristics due to aging even when the thickness is 0 μm or less. It is in.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、BaTiO3、CaTiO3、SrTiO
3、あるいはBaZrO3のうちの1種類または2種類以
上を主成分とし、該主成分に混合する副成分として、B
a、Ca、Sr、Mg、Si、Cr、Y、V、Mn、
W、Zrの各々の化合物から選ばれる少なくとも3種以
上の化合物(化合物は酸化物、炭化物または水酸化物か
らなる)を含むものを用い、前記主成分に対して前記副
成分を0.2wt%以上、10.0wt%以下含有した
誘電体セラミック材料を製造する場合、前記副成分を湿
式粉砕して微粉化した後、凍結乾燥して副成分の顆粒を
作ることを特徴とする(請求項1)。
In order to achieve the above object, the present invention provides BaTiO 3 , CaTiO 3 , SrTiO
3, or a one or mainly of two or more of the BaZrO 3, as an accessory component to be mixed into the main component, B
a, Ca, Sr, Mg, Si, Cr, Y, V, Mn,
A compound containing at least three or more compounds selected from the respective compounds of W and Zr (compounds are composed of oxides, carbides or hydroxides) is used, and the sub-component is 0.2 wt% with respect to the main component. When producing a dielectric ceramic material containing 10.0 wt% or less as described above, the auxiliary component is wet-pulverized, pulverized, and then freeze-dried to produce a subcomponent granule. ).

【0013】また本発明は、前記副成分の粒子を、20
00℃〜20000℃のプラズマ炎で加熱溶融処理する
ことにより、平均粒径が0.001μm〜0.15μm
の超微粒子にし、該超微粒子を湿式粉砕した後、前記凍
結乾燥を行うことを特徴とする(請求項2)。
[0013] The present invention also relates to the present invention, wherein:
The average particle size is 0.001 μm to 0.15 μm by heat melting treatment with a plasma flame of 00 ° C. to 20,000 ° C.
Wherein the freeze-drying is performed after the ultrafine particles are wet-pulverized (claim 2).

【0014】また本発明は、前記複数種類の副成分の粒
子を混合し、600℃〜1600℃で熱処理し、湿式粉
砕により、平均粒径が0.05μm〜1.0μmに微粒
子化した後、前記凍結乾燥を行うことを特徴とする(請
求項3)。
In the present invention, the particles of the plural types of subcomponents are mixed, heat-treated at 600 ° C. to 1600 ° C., and finely pulverized to an average particle diameter of 0.05 μm to 1.0 μm by wet pulverization. The freeze-drying is performed (claim 3).

【0015】本発明において、主成分としてのBaTi
3、BaZrO3は、高誘電率系材料であり、CaTi
3、SrTiO3は温度補償低誘電率の材料の主成分で
ある。各種配合の副成分を主成分に対して0.2wt%
以上、10.0wt%以下含有させることは、誘電体材
料の焼成時の耐還元性付与、誘電体特性および温度特性
の調整、高温加速寿命試験の信頼性等を向上させるため
に必要とされる。本発明においては、副成分を湿式粉砕
した後、凍結乾燥することにより、凝集を起こさず、平
均粒径の小さな微粒子の状態を維持することができる。
In the present invention, BaTi as a main component is used.
O 3 and BaZrO 3 are high dielectric constant materials,
O 3 and SrTiO 3 are the main components of a temperature-compensated low dielectric constant material. 0.2% by weight of various components
The content of 10.0 wt% or less is necessary for imparting reduction resistance during firing of the dielectric material, adjusting dielectric characteristics and temperature characteristics, and improving the reliability of a high-temperature accelerated life test and the like. . In the present invention, after the auxiliary component is wet-pulverized and freeze-dried, the state of fine particles having a small average particle size can be maintained without causing aggregation.

【0016】本発明において、プラズマ法により副成分
の微粒子を得ることとすれば、副成分の一次粒子の平均
粒径が0.001μm〜0.15μmの超微粒子を容易
に得ることができ、超微粒子であっても凍結乾燥によっ
て水分を除去することにより、粒子の凝集を防止でき
る。
In the present invention, if the fine particles of the auxiliary component are obtained by the plasma method, ultrafine particles having an average primary particle size of 0.001 μm to 0.15 μm of the auxiliary component can be easily obtained. Even if the particles are fine particles, aggregation of the particles can be prevented by removing water by freeze-drying.

【0017】このようにして得た微粒子からなる副成分
を主成分に混合分散させることにより、副成分を主成分
に均一に分散させ、組成が均一で異相や偏析相の発生が
殆どなくなるか、異相や偏析相が小さくなり、ショート
不良の急激な増加も無く、高温加速寿命試験においても
特性の劣化の無い積層セラミックコンデンサを作るため
の誘電体セラミック材料が得られる。
By mixing and dispersing the subcomponent composed of fine particles obtained as described above in the main component, the subcomponent is uniformly dispersed in the main component, and the composition is uniform and almost no generation of a heterogeneous phase or a segregation phase occurs. A dielectric ceramic material for producing a multilayer ceramic capacitor having less heterogeneous phase and segregated phase, no sharp increase in short-circuit failure, and no deterioration in characteristics even in a high-temperature accelerated life test can be obtained.

【0018】なお、副成分の平均粒径が0.001μm
の場合であっても、ショート不良の改善が見られるが、
0.001μm未満になると、高価になり、しかも湿式
混合、乾燥の際に凝集しやすくなる。また、副成分の平
均粒径が0.15μmを超えるとショート不良の増加が
見られ、平均粒径は0.15μm以下であることが好ま
しい。
The average particle size of the sub-components is 0.001 μm
Even in the case of, short defect improvement can be seen,
When the thickness is less than 0.001 μm, it becomes expensive and tends to aggregate during wet mixing and drying. When the average particle size of the sub-components exceeds 0.15 μm, an increase in short-circuit failure is observed, and the average particle size is preferably 0.15 μm or less.

【0019】本発明において、3種以上の副成分をプラ
スマ法により処理すれば、副成分の性状は、特開平5−
124857号に記載のように、粉砕によって、個々の
粒子がそれぞれ単独の成分からなるのではなく、プラズ
マ処理により、3種以上の成分が個々の粒子に混在した
非晶質とすることができ、所望の特性が得やすくなり、
特性が安定する。
In the present invention, if three or more types of sub-components are treated by the plasma method, the properties of the sub-components will be described in
As described in JP-A-124857, the individual particles are not made up of individual components by pulverization, but can be made into an amorphous state in which three or more components are mixed in individual particles by plasma treatment, The desired properties are easily obtained,
Characteristics are stable.

【0020】また、本発明において、焙焼法により60
0℃以上1600℃以下で副成分を加熱処理することに
より、複数種類の副成分の一部または全部を、溶融また
は焼結させることにより、原子レベルで分散させること
ができる。なお、焙焼温度は600℃未満であると3種
状の副成分が溶融または焼結されない。また、焙焼温度
が1600℃を超えると、粒成長あるいは溶融が著るし
くなるため、粒径が大きくなり、副成分の微粒化が困難
となるため、焙焼温度範囲は600℃以上、1600℃
以下とすることが好ましい。
[0020] In the present invention, the roasting method is used.
By subjecting the subcomponents to heat treatment at 0 ° C. or more and 1600 ° C. or less, some or all of the plurality of types of subcomponents can be dispersed at the atomic level by melting or sintering. If the roasting temperature is lower than 600 ° C., the three types of subcomponents are not melted or sintered. On the other hand, if the roasting temperature exceeds 1600 ° C., the grain growth or melting becomes remarkable, so that the particle size increases, and it becomes difficult to atomize the subcomponents. ° C
It is preferable to set the following.

【0021】また、焙焼法による場合、平均粒径を0.
05未満とする事は困難である。また、1.0μmを超
えると、前記ショート不良等が起き易くなる。このた
め、焙焼法による場合、平均粒径を0.05μm以上、
1.0μm以下に微粒子化して主成分と混合分散させ
る。平均粒径を0.05μm以上、1.0μm以下とす
ることにより、誘電体層間の厚みが10μm未満、特に
1μm〜8μmであっても、ショート不良の急激な増加
がなく、高温加速寿命が大幅に向上する。
In the case of the roasting method, the average particle size is set at 0.1.
It is difficult to make it less than 05. On the other hand, when the thickness exceeds 1.0 μm, the short-circuit failure or the like easily occurs. Therefore, in the case of the roasting method, the average particle size is 0.05 μm or more,
Fine particles of 1.0 μm or less are mixed and dispersed with the main component. When the average particle size is 0.05 μm or more and 1.0 μm or less, even if the thickness between the dielectric layers is less than 10 μm, particularly 1 μm to 8 μm, there is no sharp increase in short-circuit failure, and the high-temperature accelerated life is greatly increased. To improve.

【0022】[0022]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

[実施例1]図1(A)は本発明の誘電体セラミック材
料の製造方法の一実施例を示す工程図である。まず副成
分の顆粒は、BaCO3、CaCO3、SiO2、Y
23、MgCO3、Cr23、V25、ZrO2をそれぞ
れ秤量して調合し(工程(a))、ボールミルで有機溶
剤を分散媒として用いて湿式混合粉砕し(工程
(b))、脱水後・熱風乾燥し(工程(c))、平均粒
径が0.5μm〜2.0μmの顆粒を得る。
[Embodiment 1] FIG. 1A is a process chart showing an embodiment of a method for producing a dielectric ceramic material according to the present invention. First, the granules of the auxiliary components are BaCO 3 , CaCO 3 , SiO 2 , Y
2 O 3 , MgCO 3 , Cr 2 O 3 , V 2 O 5 , and ZrO 2 are each weighed and mixed (step (a)), and wet-mixed and pulverized with a ball mill using an organic solvent as a dispersion medium (step (a)). b)), after dehydration / drying with hot air (step (c)), to obtain granules having an average particle size of 0.5 μm to 2.0 μm.

【0023】次に、図2に示すような概略構造のプラズ
マ処理装置(図中、1はプラズマトーチ、2は顆粒の導
入口、3はガス導入口、4は冷却炉、5は捕集炉であ
る。)を用い、装置の上方の導入口2から顆粒を導入す
ると共に、ガス導入口3からアルゴンガスおよび窒素ガ
スをプラスマトーチ1内に導入し、10000℃に高周
波加熱されて発生したプラズマ炎の中を通してガス化し
た前記副成分のガス流を、冷却炉4において急激に冷却
して、一次粒子の平均粒径が0.001μm以上、0.
20μm以下の超微粒子を副成分を得た(工程
(d))。平均粒径が0.001〜0.20μmの超微
粒子は、ガス化した副成分の冷却速度を変えて得た。冷
却速度の速い順から、それぞれ0.001、0.01、
0.03、0.05、0.10、0.15、0.20μ
mの平均粒径の副成分顆粒を得た。
Next, a plasma processing apparatus having a schematic structure as shown in FIG. 2 (in the figure, 1 is a plasma torch, 2 is a granule inlet, 3 is a gas inlet, 4 is a cooling furnace, 5 is a collecting furnace ), Granules are introduced from the inlet 2 above the apparatus, and argon gas and nitrogen gas are introduced into the plasma torch 1 from the gas inlet 3 and plasma generated by high-frequency heating to 10,000 ° C. The gas stream of the subcomponent gasified through the flame is rapidly cooled in the cooling furnace 4 so that the average particle size of the primary particles is 0.001 μm or more and 0.1 mm.
An ultrafine particle having a particle size of 20 μm or less was obtained as an auxiliary component (step (d)). Ultrafine particles having an average particle size of 0.001 to 0.20 μm were obtained by changing the cooling rate of the gasified subcomponent. 0.001, 0.01,
0.03, 0.05, 0.10, 0.15, 0.20μ
Thus, subcomponent granules having an average particle size of m were obtained.

【0024】さらに、副成分をボールミルにて純水を分
散媒として用いて湿式混合粉砕した(工程(e))。
Further, the auxiliary component was wet-mixed and pulverized with a ball mill using pure water as a dispersion medium (step (e)).

【0025】次に、前記工程eで作った泥奨を金属製の
バットに入れ、−10℃で泥奨を凍結し、その後0℃と
して真空状態にして水分を昇華させ、すなわち凍結乾燥
させて、副成分化合物の粒子が凝集しない顆粒を作った
(工程(f))。
Next, the mud made in the step e is put into a metal vat, the mud is frozen at -10 ° C., and then the temperature is reduced to 0 ° C. to make a vacuum to sublimate the water, ie, freeze-dry. Then, granules in which the particles of the auxiliary component compound were not aggregated were produced (step (f)).

【0026】このようにして作製した副成分を用い、図
3に示す工程により、積層セラミックコンデンサを作製
した。まず、平均粒径が0.7μmのBaTiO3の主
成分原料に対し、前記副成分を3wt%添加し、ボール
ミルにて有機溶剤を分散媒として用い、有機系バイン
ダ、可塑剤を添加して十分に湿式混合し、セラミック材
料でなるスラリーを作った(工程(a))。
A multilayer ceramic capacitor was manufactured by the steps shown in FIG. 3 using the sub-components manufactured as described above. First, 3 wt% of the above sub-components is added to a main component material of BaTiO 3 having an average particle size of 0.7 μm, and an organic solvent is used as a dispersion medium in a ball mill, and an organic binder and a plasticizer are added. To obtain a slurry made of a ceramic material (step (a)).

【0027】前記スラリーを使用して、ドクターブレー
ド法によりシート成形を行って、誘電体セラミックのグ
リーンシートを得て乾燥した(工程(b)、(c))。
Using the slurry, a sheet was formed by a doctor blade method to obtain a dielectric ceramic green sheet and dried (steps (b) and (c)).

【0028】得られたグリーンシートの一面に導電ペー
ストを複数個の内部電極パターンに印刷し(工程
(d))、乾燥(工程(e))後、複数のグリーンシー
トを積層して圧着(工程(f))後、切断し(工程
(g))、積層セラミックコンデンサの積層体を作っ
た。
A conductive paste is printed on one surface of the obtained green sheet on a plurality of internal electrode patterns (step (d)), dried (step (e)), and then a plurality of green sheets are laminated and pressed (step (d)). (F)) After that, cutting (step (g)), a multilayer body of the multilayer ceramic capacitor was produced.

【0029】この積層体を空気中において320℃で5
時間加熱して脱バインダ処理を行った後、H2/N2の体
積比が3/100の還元ガス流中において約1200℃
で2時間焼成することにより、焼結体を作った(工程
(h))。
This laminate is heated at 320 ° C. in air for 5 hours.
After heating for a time to remove the binder, the mixture is heated to about 1200 ° C. in a reducing gas flow having a volume ratio of H 2 / N 2 of 3/100.
For 2 hours to produce a sintered body (step (h)).

【0030】次に、前記焼成により欠乏した酸素を補う
ために、空気雰囲気において、800℃で4時間焼成し
て再酸化し、焼結体の両端部にCuペーストを塗布して
焼き付けることにより、端子電極を形成して(工程
(i))、積層セラミックコンデンサとした。
Next, in order to compensate for the oxygen deficient by the above-mentioned calcination, calcination is performed at 800 ° C. for 4 hours in an air atmosphere to re-oxidize, and Cu paste is applied to both ends of the sintered body and baked. Terminal electrodes were formed (step (i)) to obtain a multilayer ceramic capacitor.

【0031】積層セラミックコンデンサの内部電極はそ
の厚みを1.5μmとし、内部電極間の誘電体層の厚み
を5μmとし、誘電体層の重ね枚数を210層とした。
製品の外形寸法は3.2mm×1.6mm×1.2mm
である。
The internal electrodes of the multilayer ceramic capacitor had a thickness of 1.5 μm, the thickness of the dielectric layer between the internal electrodes was 5 μm, and the number of superposed dielectric layers was 210.
The external dimensions of the product are 3.2mm x 1.6mm x 1.2mm
It is.

【0032】[実施例2]一方、前記工程(d)のプラ
ズマ処理の代わりに、前記0.5μm〜2.0μmの平
均粒径の粉体を、大気雰囲気の焙焼炉において、700
℃で加熱した後急冷し、次にこの副成分を、ボールミル
にて水を分散媒として湿式粉砕することにより、平均粒
径を0.1μmとし、前記と同様の凍結乾燥により、凝
集のほとんど無い副成分を得た。後の工程は実施例1と
同様に同様の寸法の積層セラミックコンデンサを作製し
た。
Example 2 On the other hand, instead of the plasma treatment in the step (d), the powder having an average particle size of 0.5 μm to 2.0 μm was placed in a roasting furnace in an air atmosphere for 700 hours.
After heating at 0 ° C., the mixture was rapidly cooled, and then this subcomponent was wet-pulverized with water as a dispersion medium in a ball mill to make the average particle size 0.1 μm. A minor component was obtained. In the subsequent steps, a multilayer ceramic capacitor having the same dimensions as in Example 1 was manufactured.

【0033】[実施例3]実施例2において、平均粒径
を1.0μmとし、他の工程は実施例2と同様に同様の
寸法の積層セラミックコンデンサを作製した。
Example 3 A multilayer ceramic capacitor having the same dimensions as in Example 2 except that the average particle size was set to 1.0 μm and the other steps were the same as in Example 2 was produced.

【0034】[従来例]従来例として、図1(C)にお
ける工程により、副成分として、BaCO3、CaC
3、SiO2、Y23、MgCO3、Cr23、V
25、ZrO2をそれぞれ秤量して調合し、ボールミル
で有機溶剤を分散媒として用い、混合粉砕した。そして
粉砕した泥奨の乾燥を、バッチ炉を使用して熱風乾燥
し、顆粒を作った。作った顆粒は平均粒径が1.5μm
〜2.0μmの粉体であった。この顆粒を直接前記Ba
TiO3からなる主成分に混合し、他の工程は前記実施
例と同様にして同様の寸法の積層セラミックコンデンサ
を作製した。
[Conventional example] As a conventional example, BaCO 3 , CaC
O 3 , SiO 2 , Y 2 O 3 , MgCO 3 , Cr 2 O 3 , V
2 O 5 and ZrO 2 were each weighed and prepared, and mixed and pulverized with a ball mill using an organic solvent as a dispersion medium. Then, the dried mud powder was dried with hot air using a batch furnace to produce granules. The granules made have an average particle size of 1.5 μm
2.02.0 μm. The granules are directly transferred to the Ba
A multi-layer ceramic capacitor having the same dimensions was manufactured by mixing with the main component composed of TiO 3 and the other steps were the same as in the above embodiment.

【0034】[ショート不良率試験および高温加速寿命
試験]前記実施例と従来例によるセラミックコンデンサ
について、耐圧不良率(ショート不良率)と高温加速寿
命試験で評価した。耐圧不良は、直流10Vを印加し、
30秒後の絶縁抵抗が100MΩ以下のものを不良とし
た。高温加速寿命試験は、雰囲気温度200℃、直流電
圧25Vを連続印加して行った。その結果を表1に示
す。また、図4は横軸に時間、縦軸にショート不良の発
生率を示す。
[Short Failure Rate Test and High-Temperature Accelerated Life Test] The ceramic capacitors according to the above embodiment and the conventional example were evaluated by a withstand voltage failure rate (short failure rate) and a high-temperature accelerated life test. Withstand voltage failure, apply DC 10V,
Those having an insulation resistance of 100 MΩ or less after 30 seconds were regarded as defective. The high-temperature accelerated life test was performed by continuously applying an ambient temperature of 200 ° C. and a DC voltage of 25 V. Table 1 shows the results. FIG. 4 shows time on the horizontal axis and the occurrence rate of short-circuit failure on the vertical axis.

【0035】[0035]

【表1】 [Table 1]

【0036】表1の実施例1は、副成分の一次粒子の平
均粒径(凍結乾燥後の平均粒径)0.03μmのものに
ついて、100個について試験した結果である。また、
表1の実施例2は、副成分の一次粒子の平均粒径0.1
μmのものについて、100個について試験した結果で
ある。表1の従来例は、平均粒径1.0μmのものにつ
いて、100個について試験した結果である。
Example 1 in Table 1 shows the results of a test of 100 primary particles having an average particle size of the auxiliary component (average particle size after freeze-drying) of 0.03 μm. Also,
Example 2 in Table 1 shows that the average particle size of the primary particles of the sub-component is 0.1
It is the result of having tested about 100 micrometer thing. The conventional examples in Table 1 are the results of testing 100 samples with an average particle size of 1.0 μm.

【0037】また、図4の実施例1は、副成分の一次粒
子の平均粒径0.03μmのものについての試験結果で
あり、図4の実施例2は、副成分の一次粒子の平均粒径
0.1μmのものについての試験結果であり、図4の従
来例は、副成分の一次粒子の平均粒径1.0μmのもの
についての試験結果である。
In addition, Example 1 in FIG. 4 shows the test results for those having an average particle size of the primary particles of the sub-component of 0.03 μm, and Example 2 in FIG. 4 shows the average particle size of the primary particles of the sub-component. FIG. 4 shows the test results for those having a diameter of 0.1 μm, and the conventional example in FIG. 4 shows the test results for those having an average primary particle diameter of 1.0 μm of the subcomponent.

【0038】表1から明らかなように、実施例1〜3に
よれば、ショート不良率で約1/240〜1/24以下
と減少している。また、高温負荷試験での寿命も14〜
240倍以上に長くなっている。また、図4の実施例1
のように、プラズマ処理後凍結乾燥する場合、平均粒径
を小さくすれば、高温加速寿命試験の結果やショート不
良試験において良好な結果が得られる。
As is clear from Table 1, according to Examples 1 to 3, the short-circuit defect rate is reduced to about 1/240 to 1/24 or less. In addition, the life in a high temperature load test is 14 ~
It is longer than 240 times. Further, Embodiment 1 of FIG.
In the case of freeze-drying after plasma treatment as described above, if the average particle size is reduced, good results can be obtained in a high-temperature accelerated life test and a short-circuit failure test.

【0039】プラズマ法を採用する実施例1において、
平均粒径が0.15μmの場合、平均粒径が0.2μm
の場合に比較し、ショート不良率が約1/6に減少し、
加速寿命が倍に伸びた。また、平均粒径が0.001μ
m〜0.15μmの範囲において、ショート不良の発生
率は、平均粒径が小さい程低くなると共に、加速寿命も
長くなる。一方、平均粒径が0.001μm未満になる
と、凝集が起き易くなり、製造も困難となるので、一次
粒子の平均粒径が0.001μm〜0.15μmである
ことが好ましい。
In the first embodiment employing the plasma method,
When the average particle size is 0.15 μm, the average particle size is 0.2 μm
The short-circuit failure rate is reduced to about 1/6,
Accelerated life has doubled. The average particle size is 0.001μ.
In the range of m to 0.15 μm, the incidence of short-circuit failure decreases as the average particle diameter decreases, and the accelerated life also increases. On the other hand, if the average particle size is less than 0.001 μm, aggregation is likely to occur and production becomes difficult. Therefore, the average particle size of the primary particles is preferably 0.001 μm to 0.15 μm.

【0040】参考資料3は、それぞれ従来法、実施例
1、実施例2による場合の粒子の分散状態を示す。参考
資料3において、右端に示すプラズマ法について示すも
のは、前記実施例1において、平均粒径0.03μmの
副成分を主成分に混合した後の元素の濃度分布を示した
ものである。また、焙焼法について示すものは、前記焙
焼による方法で得られた平均粒径0.1μmの副成分
を、主成分に混合した後のCaとSi元素の濃度分布を
示したものである。従来法(STD)は、前記従来例で
示した副成分を主成分に混合して得たものである。参考
資料3から明らかなように、プラズマ法による場合に
は、副成分の各粒子が各元素の混入された非晶質である
ことにより、粒子集合全体として各元素が均一に存在し
た状態にすることができる。また、焙焼法による場合
は、副成分の各粒子が、各元素の化合物として存在する
ことにより、プラズマ法と同様に、粒子集合全体として
各元素が均一に分布する状態を得ることができる。いず
れも従来法による場合に比較し、きめの細かな均一の成
分分布が得られ、ショート不良の減少、特性の安定化が
達成できる。
Reference Material 3 shows the dispersion state of the particles in the case of the conventional method, Example 1, and Example 2, respectively. In Reference Material 3, the plasma method shown on the right end shows the concentration distribution of the element after mixing the sub-component having an average particle size of 0.03 μm as the main component in Example 1 above. In addition, what shows about the roasting method shows the concentration distribution of Ca and Si elements after mixing the sub-component having an average particle size of 0.1 μm obtained by the above-mentioned roasting method with the main component. . The conventional method (STD) is obtained by mixing the sub-component shown in the above-mentioned conventional example with the main component. As is apparent from Reference Material 3, when the plasma method is used, each element of the subcomponent is amorphous mixed with each element, so that each element is uniformly present as a whole particle aggregate. be able to. Further, in the case of the roasting method, since each particle of the subcomponent is present as a compound of each element, it is possible to obtain a state in which each element is uniformly distributed over the entire particle aggregate, similarly to the plasma method. In each case, a finer and more uniform component distribution can be obtained as compared with the case of the conventional method, and short-circuit defects can be reduced and characteristics can be stabilized.

【0041】また、参考資料4は、前記実施例1におい
て、一次粒子の平均粒径0.03μm(BET値30m
2/g)の副成分を用い、内部電極間の誘電体層の厚み
を7μm、4μm、2μmに変化させた場合の電子顕微
鏡によるCOMP写真である。
Reference material 4 shows that the average particle size of the primary particles in Example 1 was 0.03 μm (BET value 30 m
4 is a COMP photograph by an electron microscope when the thickness of the dielectric layer between the internal electrodes is changed to 7 μm, 4 μm, and 2 μm using the 2 / g) subcomponent.

【0042】[実施例4]前記実施例と異なり、組成
が、(BawCax)(TiyZrz)O3+(MnCO3
23+V25+WO3+SiO2)で表示され、(Ba
wCax)(TiyZrz)O3を主成分とし、副成分とし
て、BaO、CaO、MnCO3、Y23、V25、W
3、SiO2をそれぞれ秤量して調合した後、前記と同
様のプラズマ処理等の工程により、平均粒径が0.5μ
mの副成分を得、主成分としての前記(BawCax
(TiyZrz)O3に混合し、前記同様にショート不良
試験、高温加速寿命試験を行った結果、前記実施例と同
様のショート不良の減少、特性劣化の低減効果が得られ
た。
[0042] [Example 4] Unlike the above embodiment, the composition is, (Ba w Ca x) ( Ti y Zr z) O 3 + (MnCO 3 +
Y 2 O 3 + V 2 O 5 + WO 3 + SiO 2 ) and (Ba
w Ca x ) (Ti y Zr z ) O 3 as a main component, and as subcomponents, BaO, CaO, MnCO 3 , Y 2 O 3 , V 2 O 5 , W
After weighing and blending O 3 and SiO 2 , respectively, the average particle diameter is 0.5 μm by the same process as the plasma treatment as described above.
give subcomponents of m, said as the main component (Ba w Ca x)
(Ti y Zr z ) O 3 , and a short-circuit failure test and a high-temperature accelerated life test were performed in the same manner as described above. As a result, the same effect of reducing short-circuit failures and characteristic deterioration as in the above example was obtained.

【0043】[0043]

【発明の効果】請求項1は、BaTiO3、CaTi
3、SrTiO3、あるいはBaZrO3のうちの1種
類または2種類以上を主成分とし、副成分として、主成
分に対して0.2wt%以上、10.0wt%以下含有
した誘電体セラミック材料の製造方法であって、副成分
を製造する際に、湿式粉砕後、凍結乾燥によって乾燥し
て超微粒子を得るようにしたので、副成分の凝集を防止
することができ、超微粒子の状態を維持することができ
る。このため、副成分の主成分に対する分散性を良く
し、組成を均一化することにより、偏析相の発生を抑
え、誘電体層間厚みが10μm以下であっても、ショー
ト不良がなく、経年変化による特性劣化が少なく、小型
で高静電容量、低コスト、高信頼性の積層セラミックコ
ンデンサを作ることができる。
According to the present invention, BaTiO 3 , CaTi
A dielectric ceramic material containing one or more of O 3 , SrTiO 3 , or BaZrO 3 as a main component and a sub-component of 0.2 wt% or more and 10.0 wt% or less with respect to the main component. In the production method, when producing the sub-components, after wet pulverization, freeze drying is performed to obtain ultrafine particles, so that aggregation of the sub-components can be prevented, and the state of the ultrafine particles is maintained. can do. For this reason, by improving the dispersibility of the sub-components to the main component and making the composition uniform, the generation of segregation phase is suppressed, and even if the dielectric interlayer thickness is 10 μm or less, there is no short-circuit failure, and aging does not occur. It is possible to manufacture a small-sized multilayer ceramic capacitor with small characteristic deterioration, high capacitance, low cost and high reliability.

【0044】請求項2によれば、副成分粒子を調合後、
プラズマ法によって平均粒径を0.001μm以上、
0.15μm以下の超微粒子化を得るようにしたので、
請求項1の効果がより助長される。また、副成分の一部
または全部を非晶質とすることができるので、誘電体セ
ラミック材料全体として元素分布が均一化でき、所望の
特性が得易くなり、特性の安定したコンデンサを得るこ
とができる。
According to the second aspect, after blending the auxiliary component particles,
The average particle size is 0.001 μm or more by plasma method,
0.15 μm or less ultrafine particles were obtained.
The effect of claim 1 is further promoted. In addition, since part or all of the sub-components can be made amorphous, the element distribution can be made uniform throughout the dielectric ceramic material, and desired characteristics can be easily obtained, and a capacitor having stable characteristics can be obtained. it can.

【0045】請求項3によれば、調合した副成分を60
0℃〜1600℃によって焙焼し、湿式粉砕により0.
05μmかつ凍結乾燥によって凝集を防止することによ
り、ショート不良の防止、延命化を達成することができ
る。また、焙焼によって3種以上の副成分の一部または
全部が互いに化合物となることにより、誘電体セラミッ
ク材料全体として元素分布が均一化でき、所望の特性が
得易くなり、特性の安定したコンデンサを得ることがで
きる。
According to the third aspect, the blended sub-components are
It is roasted at 0 ° C. to 1600 ° C. and wet-pulverized to 0.
By preventing agglomeration by freeze-drying at 05 μm, prevention of short-circuit failure and extension of life can be achieved. In addition, by roasting, a part or all of the three or more types of subcomponents become compounds with each other, so that the element distribution can be uniformed as a whole of the dielectric ceramic material, desired characteristics can be easily obtained, and capacitors having stable characteristics can be obtained. Can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(A)、(B)はそれぞれ本発明による誘電体
セラミック材料の製造方法の各実施例における副成分の
製造工程図、(C)は従来の副成分の製造工程図であ
る。
1 (A) and 1 (B) are each a diagram showing a manufacturing process of a sub-component in each embodiment of the method for manufacturing a dielectric ceramic material according to the present invention, and FIG. 1 (C) is a diagram showing a conventional process of manufacturing a sub-component.

【図2】本発明において用いるプラズマ法を実施する装
置の概略構成図である。
FIG. 2 is a schematic configuration diagram of an apparatus for performing a plasma method used in the present invention.

【図3】本発明の製造方法により得た副成分を用いて積
層セラミックコンデンサを得る製造工程図である。
FIG. 3 is a manufacturing process diagram for obtaining a multilayer ceramic capacitor using the subcomponent obtained by the manufacturing method of the present invention.

【図4】本発明の実施例と従来例における高温加速寿命
試験結果を示す図である。
FIG. 4 is a diagram showing the results of a high-temperature accelerated life test in an example of the present invention and a conventional example.

【符号の説明】[Explanation of symbols]

1:プラズマトーチ、2:顆粒の導入口、3:ガス導入
口、4:冷却炉、5:捕集炉
1: plasma torch, 2: granule inlet, 3: gas inlet, 4: cooling furnace, 5: collection furnace

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C04B 35/46 E 35/48 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C04B 35/46 E 35/48 D

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】BaTiO3、CaTiO3、SrTiO3
あるいはBaZrO3のうちの1種類または2種類以上
を主成分とし、 該主成分に混合する副成分として、Ba、Ca、Sr、
Mg、Si、Cr、Y、V、Mn、W、Zrの各々の化
合物から選ばれる少なくとも3種以上の化合物を含むも
のを用い、 前記主成分に対して前記副成分を0.2wt%以上、1
0.0wt%以下含有した誘電体セラミック材料を製造
する場合、 前記副成分を湿式粉砕して微粉化した後、凍結乾燥して
副成分の顆粒を作ることを特徴とする誘電体セラミック
材料の製造方法。
1. BaTiO 3 , CaTiO 3 , SrTiO 3
Alternatively, one or more of BaZrO 3 is used as a main component, and Ba, Ca, Sr,
Mg, Si, Cr, Y, V, Mn, W, and Zr are used, each containing at least three or more compounds selected from the compounds. 1
When producing a dielectric ceramic material containing 0.0 wt% or less, the sub-component is wet-pulverized and pulverized, and then freeze-dried to produce a granule of the sub-component, the production of the dielectric ceramic material. Method.
【請求項2】請求項1において、 前記副成分の粒子を、2000℃〜20000℃のプラ
ズマ炎で加熱溶融処理することにより、平均粒径が0.
001μm〜0.15μmの超微粒子にし、 該超微粒子を湿式粉砕した後、前記凍結乾燥を行うこと
を特徴とする誘電体セラミック材料の製造方法。
2. The method according to claim 1, wherein the particles of the auxiliary component are subjected to a heating and melting treatment with a plasma flame at 2,000 ° C. to 20,000 ° C. so as to have an average particle size of 0.1.
A method for producing a dielectric ceramic material, comprising forming ultrafine particles of 001 μm to 0.15 μm, wet-grinding the ultrafine particles, and freeze-drying.
【請求項3】請求項1において、 前記複数種類の副成分の粒子を混合し、600℃〜16
00℃で熱処理し、 湿式粉砕により、平均粒径が0.05μm〜1.0μm
に微粒子化した後、前記凍結乾燥を行うことを特徴とす
る誘電体セラミック材料の製造方法。
3. The method according to claim 1, wherein the particles of the plurality of types of subcomponents are mixed,
Heat treated at 00 ° C, average particle size is 0.05μm ~ 1.0μm by wet grinding
A method for producing a dielectric ceramic material, comprising the steps of:
JP08878997A 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material Expired - Lifetime JP3630205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08878997A JP3630205B2 (en) 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08878997A JP3630205B2 (en) 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material

Publications (2)

Publication Number Publication Date
JPH10270284A true JPH10270284A (en) 1998-10-09
JP3630205B2 JP3630205B2 (en) 2005-03-16

Family

ID=13952617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08878997A Expired - Lifetime JP3630205B2 (en) 1997-03-24 1997-03-24 Method for manufacturing dielectric ceramic material

Country Status (1)

Country Link
JP (1) JP3630205B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002000568A1 (en) * 2000-06-29 2002-01-03 Tdk Corporation Dielectrics porcelain composition and electronic parts
WO2002051770A1 (en) * 2000-12-25 2002-07-04 Tdk Corporation Dielectric porcelain composition and electronic parts
JP2002201064A (en) * 2000-12-27 2002-07-16 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production method
KR100355615B1 (en) * 1999-12-30 2002-10-12 안달 Dielectric ceramic compositions
KR20020094329A (en) * 2001-06-11 2002-12-18 최치준 Method of fabricating ceramic slurry for multi-layer ceramic capacitor
JP2005104782A (en) * 2003-09-30 2005-04-21 Tdk Corp Slurry, green sheet, stacked electronic component and their manufacturing methods
KR100674846B1 (en) 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
CN100359612C (en) * 2004-09-03 2008-01-02 江苏大学 Medium low temperature sintered high voltage ceramic capacitor medium
KR100822586B1 (en) 2006-12-28 2008-04-16 삼화콘덴서공업주식회사 Dielectric without piezo effect and method for manufacturing multi layer ceramic capacitor without piezo effect using thereof
JP2008162826A (en) * 2006-12-27 2008-07-17 Namics Corp Reduction-resistant dielectric ceramic composition, dielectric using it and laminated ceramic capacitor
JP2008251699A (en) * 2007-03-29 2008-10-16 Tdk Corp Manufacturing method of multilayer electronic part
JP2010037112A (en) * 2008-07-31 2010-02-18 Tdk Corp Dielectric ceramic composition and electronic component
KR101058431B1 (en) * 2011-01-20 2011-08-24 주식회사 피에스엠 Plasma treatment system and mlcc manufacturing method using the same
JP2012209307A (en) * 2011-03-29 2012-10-25 Murata Mfg Co Ltd Dielectric ceramic slurry and multilayer ceramic electronic component
CN107304130A (en) * 2016-04-18 2017-10-31 Tdk株式会社 Dielectric composition, dielectric ceramics and capacitor
KR20200034977A (en) * 2018-08-06 2020-04-01 삼성전기주식회사 Dielectric composition and electronic component using the same
CN111362694A (en) * 2014-12-08 2020-07-03 三星电机株式会社 Ceramic dielectric composition and multilayer ceramic capacitor comprising the same
US11538630B2 (en) 2019-11-27 2022-12-27 Samsung Electro-Mechanics Co., Ltd. Method of producing core-shell particles and multilayer ceramic electronic component including core-shell particles

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5459952B2 (en) * 2007-12-25 2014-04-02 サムソン エレクトロ−メカニックス カンパニーリミテッド. Method for manufacturing dielectric ceramic material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100355615B1 (en) * 1999-12-30 2002-10-12 안달 Dielectric ceramic compositions
US6962888B2 (en) 2000-06-29 2005-11-08 Tdk Corporation Dielectric ceramic composition and electronic device
WO2002000568A1 (en) * 2000-06-29 2002-01-03 Tdk Corporation Dielectrics porcelain composition and electronic parts
WO2002051770A1 (en) * 2000-12-25 2002-07-04 Tdk Corporation Dielectric porcelain composition and electronic parts
US6764976B2 (en) 2000-12-25 2004-07-20 Tdk Corporation Dielectric ceramic composition and electronic device
JP2002201064A (en) * 2000-12-27 2002-07-16 Nippon Chemicon Corp Dielectric ceramic composition, multilayer ceramic capacitor and its production method
KR20020094329A (en) * 2001-06-11 2002-12-18 최치준 Method of fabricating ceramic slurry for multi-layer ceramic capacitor
JP4506138B2 (en) * 2003-09-30 2010-07-21 Tdk株式会社 Method for producing slurry, method for producing green sheet, and method for producing multilayer electronic component
JP2005104782A (en) * 2003-09-30 2005-04-21 Tdk Corp Slurry, green sheet, stacked electronic component and their manufacturing methods
CN100359612C (en) * 2004-09-03 2008-01-02 江苏大学 Medium low temperature sintered high voltage ceramic capacitor medium
KR100674846B1 (en) 2005-03-29 2007-01-26 삼성전기주식회사 Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
JP2008162826A (en) * 2006-12-27 2008-07-17 Namics Corp Reduction-resistant dielectric ceramic composition, dielectric using it and laminated ceramic capacitor
KR100822586B1 (en) 2006-12-28 2008-04-16 삼화콘덴서공업주식회사 Dielectric without piezo effect and method for manufacturing multi layer ceramic capacitor without piezo effect using thereof
JP2008251699A (en) * 2007-03-29 2008-10-16 Tdk Corp Manufacturing method of multilayer electronic part
JP2010037112A (en) * 2008-07-31 2010-02-18 Tdk Corp Dielectric ceramic composition and electronic component
KR101058431B1 (en) * 2011-01-20 2011-08-24 주식회사 피에스엠 Plasma treatment system and mlcc manufacturing method using the same
JP2012209307A (en) * 2011-03-29 2012-10-25 Murata Mfg Co Ltd Dielectric ceramic slurry and multilayer ceramic electronic component
CN111362694A (en) * 2014-12-08 2020-07-03 三星电机株式会社 Ceramic dielectric composition and multilayer ceramic capacitor comprising the same
CN111362694B (en) * 2014-12-08 2023-04-07 三星电机株式会社 Ceramic dielectric composition and multilayer ceramic capacitor comprising the same
CN107304130A (en) * 2016-04-18 2017-10-31 Tdk株式会社 Dielectric composition, dielectric ceramics and capacitor
KR20200034977A (en) * 2018-08-06 2020-04-01 삼성전기주식회사 Dielectric composition and electronic component using the same
US11538630B2 (en) 2019-11-27 2022-12-27 Samsung Electro-Mechanics Co., Ltd. Method of producing core-shell particles and multilayer ceramic electronic component including core-shell particles

Also Published As

Publication number Publication date
JP3630205B2 (en) 2005-03-16

Similar Documents

Publication Publication Date Title
JP3630205B2 (en) Method for manufacturing dielectric ceramic material
JP5316642B2 (en) Manufacturing method of multilayer ceramic capacitor and multilayer ceramic capacitor
JPH065460A (en) Porcelain capacitor and manufacture thereof
JPH10255549A (en) Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
EP1454689B1 (en) Surface-treated ultrafine metal powder
KR20030076373A (en) Ceramic powder and laminated ceramic electronic component
JP2002321983A (en) Manufacturing method of dielectric ceramic material and dielectric ceramic capacitor
JP2001307940A (en) Laminated ceramic capacitor and its manufacturing method
JP3751146B2 (en) Method for producing composition comprising BaTiO3 as main component and method for producing multilayer ceramic capacitor
US6479419B2 (en) Electronic device, dielectric ceramic composition, and method for producing same
JP2009173473A (en) Dielectric porcelain composition and manufacturing method of multilayer ceramic capacitor using the same
JP4910812B2 (en) Dielectric porcelain composition and electronic component
JP5151039B2 (en) Dielectric ceramic, manufacturing method thereof, and multilayer ceramic capacitor
KR100703080B1 (en) Method for Manufacturing Dielectric Powder for Low Temperature Sintering and Method for Manufacturing Multilayer Ceramic Condenser Using the Same
JP2001307939A (en) Laminated ceramic capacitor and its manufacturing method
JP2004247719A (en) Layered ceramic capacitor
JP2004292271A (en) Dielectric porcelain and its manufacturing method, and laminated ceramic capacitor
JP3132106B2 (en) Manufacturing method of non-reducing dielectric porcelain
JP3935762B2 (en) Multilayer electronic component and manufacturing method thereof
JP2004022611A (en) Layered ceramic capacitor and method for manufacturing the same
JP2004063912A (en) Laminated electronic component and its producing process
JP3180439B2 (en) Manufacturing method of non-reducing dielectric porcelain
JP2016145119A (en) Dielectric porcelain and method for producing the same
JP6451293B2 (en) Multilayer ceramic capacitor
KR20020094329A (en) Method of fabricating ceramic slurry for multi-layer ceramic capacitor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

EXPY Cancellation because of completion of term