KR20020094329A - Method of fabricating ceramic slurry for multi-layer ceramic capacitor - Google Patents

Method of fabricating ceramic slurry for multi-layer ceramic capacitor Download PDF

Info

Publication number
KR20020094329A
KR20020094329A KR1020010032429A KR20010032429A KR20020094329A KR 20020094329 A KR20020094329 A KR 20020094329A KR 1020010032429 A KR1020010032429 A KR 1020010032429A KR 20010032429 A KR20010032429 A KR 20010032429A KR 20020094329 A KR20020094329 A KR 20020094329A
Authority
KR
South Korea
Prior art keywords
slurry
dielectric ceramic
main component
mixing
wet
Prior art date
Application number
KR1020010032429A
Other languages
Korean (ko)
Inventor
최치준
Original Assignee
최치준
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 최치준 filed Critical 최치준
Priority to KR1020010032429A priority Critical patent/KR20020094329A/en
Publication of KR20020094329A publication Critical patent/KR20020094329A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/04Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Capacitors (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE: A preparation method of ceramic slurry for multilayer ceramic condenser is provided, which improves electrical property and sintered density, and prevents segregation of additives by improving mixing and dispersing methods of ceramic raw materials. CONSTITUTION: A preparation method of dielectric ceramic slurry is characterized by dispersing at least two of auxiliary components(<50wt.%) including Y, Cr, Mn, W, Nd, Nb, Co, etc. without agglomeration prior to mixing with main components(>=50wt.%) including one or more of BaTiO3, (Ba, Ca)(Ti, Zr)O3 and (Ba, Ca, Sr )(Ti, Zr)O3. The dielectric ceramic slurry is prepared by the following steps of: (i) grouping auxiliary components by surface area(or particle size, mechanical fracture strength, morphology, etc.); (ii) wet-milling each group with respective solvent and dispersant, differing from kinds and amounts of dispersants, and dispersion condition; (iii) adding a binder to the milled slurry, and wet-milling; (iv) mixing main components, ground and dispersed, with prepared auxiliary components.

Description

적층 세라믹 콘덴서 용 세라믹 슬러리 제조 방법{METHOD OF FABRICATING CERAMIC SLURRY FOR MULTI-LAYER CERAMIC CAPACITOR}METHODS OF FABRICATING CERAMIC SLURRY FOR MULTI-LAYER CERAMIC CAPACITOR}

본 발명은 적층 세라믹 콘덴서에 관한 것으로, 보다 상세하게는 적층 세라믹 콘덴서 제조에 필요한 세라믹 슬러리 제조 방법에 관한 것이다.The present invention relates to a multilayer ceramic capacitor, and more particularly, to a ceramic slurry production method required for manufacturing a multilayer ceramic capacitor.

본 발명은 세라믹 원료의 혼합 및 분산 방법을 개선함으로써, 종래의 원료를 변경하지 아니하고도 소결 이후에 고밀도 세라믹을 얻을 수 있으며 첨가물의 편석이 억제되는 세라믹 슬러리 제조 방법을 제공한다. 그 결과, 본 발명은 유전체의 박층 및 고적층을 가능하게 함으로써 고용량 및 고신뢰성의 적층 세라믹 콘덴서 제조를 가능하게 한다.The present invention provides a method for producing a ceramic slurry in which a high density ceramic can be obtained after sintering without changing the conventional raw materials by improving the method of mixing and dispersing the ceramic raw materials and segregation of additives is suppressed. As a result, the present invention enables the production of high capacity and high reliability multilayer ceramic capacitors by enabling thin and high lamination of dielectrics.

적층 세라믹 콘덴서를 위한 유전체 세라믹 재료로서 티탄산바륨(BaTiO3), 또는 (Ba, Ca)(Ti, Zr)O3,(Ba, Ca, Sr)(Ti, Zr)O3등을 주성분으로 하고, 여기에 각종 부성분 첨가제를 첨가하여 내환원성을 부여하고 온도 특성을 조정함으로써 신뢰성을 향상시키는 기술이 연구되고 있다.As a dielectric ceramic material for a multilayer ceramic capacitor, the main component is barium titanate (BaTiO 3 ), (Ba, Ca) (Ti, Zr) O 3, (Ba, Ca, Sr) (Ti, Zr) O 3, etc. The technique which improves reliability by adding various subcomponent additives here, providing reduction resistance, and adjusting temperature characteristics is researched.

이와 같은 적층 세라믹 콘덴서를 제조하는 종래 기술로서 티탄산바륨 (BaTiO3)을 주성분으로 하는 유전체 세라믹 원료에 부성분 세라믹 원료 첨가제를 혼합한 후 용제, 분산제 및 바인더(binder)를 첨가하여 습식 혼합하는 방법으로 슬러리화하는 방법이 사용되고 있다.As a conventional technique for manufacturing such a multilayer ceramic capacitor, a slurry is prepared by mixing a subsidiary ceramic raw material additive with a dielectric ceramic material containing barium titanate (BaTiO 3 ) as a main component, and then adding a solvent, a dispersant, and a binder to wet mix. The method of making it is used.

또 다른 종래 기술로서, 일부 또는 전체의 주원료와 첨가제를 혼합하고 하소 처리하여 분쇄한 후 습식 혼합 과정을 통하여 슬러리화한 후, 닥터 블레이드 (doctor blade) 등으로 그린 쉬트(green sheet)를 형성하고, 그 표면에 내부 전극이 되는 도체 페이스트를 도포하여 적층 압착한 후 소성하여 적층 세라믹 콘덴서를 제조하는 기술이 알려져 있다.As another conventional technique, some or all of the main raw materials and the additives are mixed, calcined, pulverized and slurryed through a wet mixing process, and then a green sheet is formed of a doctor blade or the like. BACKGROUND ART A technique has been known in which a conductor paste serving as an internal electrode is coated on a surface thereof, laminated, pressed, and fired to produce a multilayer ceramic capacitor.

그런데, 적층 세라믹 콘덴서가 소형화 및 고용량화 되어짐에 따라 유전체층을 8㎛ 이하로 축소하는 경우, 종래 기술에 따라 적층 세라믹 콘덴서를 제조하는 과정에서 내부 전극간 통전 불량이 발생하여 수율이 급격히 떨어지는 문제가 발생한다.However, when the dielectric ceramic layer is reduced to 8 μm or less due to the miniaturization and high capacity of the multilayer ceramic capacitor, there is a problem in that a poor current yield occurs due to poor conduction between internal electrodes in the process of manufacturing the multilayer ceramic capacitor according to the prior art. .

더욱이, 종래 기술을 적용하는 경우 초기 특성에서 절연 저항이나 절연 파괴 전압 등의 특성치의 표준 편차가 증가하는 경향이 발생되고, 신뢰성면에 있어서도 고온 부하 및 내습 부하의 문제가 발생되기 쉬워 각종 공정 관리의 문제가 발생하는 경향이 있다.Moreover, when the conventional technology is applied, the standard deviation of characteristic values, such as insulation resistance and dielectric breakdown voltage, increases in initial characteristics, and the problems of high temperature load and moisture resistance load are liable to occur in terms of reliability. Problems tend to occur.

즉, 전술한 티탄산바륨을 주성분으로 하는 유전체 세라믹 원료에 첨가제를 혼합한 후 용제, 분산제, 바인더를 첨가하여 습식 혼합하는 종래 기술로는 첨가제들의 비표면적, 입도 등이 다양하여 티탄산바륨 등 주성분의 비표면적, 입도, 파괴 강도 등을 기준으로 한 슬러리 분쇄 배합법으로는 첨가되는 부성분들이 골고루 분쇄 분산되어질 수 없다.That is, the conventional technique of mixing the additives with the above-described dielectric ceramic raw material containing barium titanate as a main component and then adding a solvent, a dispersant, and a binder to perform wet mixing, has various specific surface areas, particle sizes, etc. In the slurry grinding formulation method based on the surface area, particle size, breaking strength, etc., added subcomponents cannot be evenly dispersed and dispersed.

또한, 일부 또는 전체의 주원료와 첨가제를 하소 처리하여 분쇄한 후 습식 혼합에 의하여 슬러리화하는 또 다른 종래 기술은, 하소 후에 단일 상이 형성되어 있는 것이 아니므로, 각 상(phase)마다 비표면적, 입경 등이 서로 다를 뿐 아니라 분쇄 시에 각 상별로 파괴 강도 등이 달라서 상별로 비표면적 차이가 더욱 커지는 것을 막을 수 없다.In addition, another conventional technique in which some or all of the main raw materials and the additives are calcined by calcination and then slurried by wet mixing does not form a single phase after calcination, so that the specific surface area and particle size for each phase are different. Not only are the backs different from each other, but the breakdown strengths of the respective phases are different at the time of grinding, so that the specific surface area difference can not be further increased.

그 결과, 주성분을 위주로 하는 슬러리 배합 방식을 근간으로 하는 종래 기술은 강도가 큰 부성분 상이 용이하게 분쇄되지 않고, 비표면적이 큰 부성분은 분산제 부족 현상으로 골고루 분산되어질 수 없다.As a result, in the prior art based on the slurry blending method mainly on the main component, the high strength subcomponent phase is not easily pulverized, and the subcomponent having a large specific surface area cannot be evenly dispersed due to the dispersant shortage.

전술한 문제점을 해결하기 위하여, 일본 특허 공보 특개평 제5-124857호에는 부성분을 미리 혼합 분산하여 입경이 0.2 ∼ 1.0 ㎛이 되도록 분쇄하여 건조한 후, 주성분과 용제, 분산제, 바인더를 첨가하여 습식 혼합하는 제조 방법이 개시되어 있다.In order to solve the above problems, Japanese Patent Application Laid-Open No. 5-124857 discloses wet mixing by adding and dispersing subcomponents in advance, pulverizing them to a particle diameter of 0.2 to 1.0 μm, and then adding a main component, a solvent, a dispersant, and a binder. A manufacturing method is disclosed.

그러나, 상기 일본 특허 공보 특개평 제5-124857호에 개시된 종래 기술은 건조 단계에서 부성분이 재차 응집되고, 또한 부성분 사이의 분리 현상이 발생하여 부성분이 주성분 상에 완전히 분산되지 않고 수 ㎛ 정도의 편석(偏析)과 이상(異想)을 유발하게 된다. 참고로, 편석이란 특정 성분 원소가 다른 주성분으로부터 다른 집합체를 형성하여 주요부와 불균일하게 형성된 상을 의미한다.However, in the prior art disclosed in Japanese Patent Application Laid-open No. Hei 5-124857, the subcomponents are agglomerated again in the drying step, and the separation phenomenon occurs between the subcomponents, so that the subcomponents are not completely dispersed on the main components, and segregation of several micrometers is performed. (偏析) and abnormal (이상) will cause. For reference, segregation means a phase in which a specific component element forms different aggregates from other main components and is formed non-uniformly with the main part.

전술한 문제점을 해결하기 위하여, 일본국 특허 공보 특개평 제10-255549호에는 부성분을 혼합 분쇄하여 플라즈마(plasma) 처리를 함으로써 혼합 분쇄된 부성분을 0.001 ∼ 0.15 ㎛의 초미립자로 형성한 후 주성분과 혼합하는 제조 기술이 개시되어 있다.In order to solve the above problems, Japanese Patent Application Laid-Open No. 10-255549 discloses mixing and grinding subcomponents by plasma treatment to form mixed and ground subcomponents into ultrafine particles of 0.001 to 0.15 μm and then mixing them with the main component. Disclosed is a manufacturing technique.

또한, 일본국 특허 특개평 제10-270284호에는 부성분을 혼합 후 600 ∼ 1600 ℃에서 열처리하고 분쇄함으로써 평균 입경이 0.05 ∼ 1.0 ㎛의 미립자를 만든후 플라즈마 처리를 하여 0.001 ∼ 0.15 ㎛ 크기의 초미립자로 형성한 후, 동결 건조를 행하여 과립으로 만들어 주성분과 혼합하는 제조 기술이 개시되어 있다.In addition, Japanese Patent Application Laid-open No. Hei 10-270284 discloses ultrafine particles having a particle size of 0.001 to 0.15 μm after plasma treatment by mixing the subcomponents, followed by heat treatment and grinding at 600 to 1600 ° C. to produce fine particles having an average particle diameter of 0.05 to 1.0 μm. After forming, a production technique is disclosed in which lyophilization is carried out to form granules and mixed with the main component.

그러나, 전술한 종래 기술은 도1에 도시되어 있는 바와 같이, 공히 부성분 (21, 22, 23, 24)을 미립자화 한 후 동시에 주성분(25)과 혼합 분산시키고 있어서, 각각의 부성분(21, 22, 23, 24)과 주성분(25)의 비표면적의 차이에 의해 분산제,결합제(30)의 양 또는 종류가 차별화되고 있지 않다.However, in the above-described prior art, as shown in Fig. 1, the subcomponents 21, 22, 23 and 24 are both finely divided and mixed and dispersed with the main component 25 at the same time. , 23, 24) and the amount or type of the dispersant and the binder 30 are not differentiated by the difference in the specific surface area of the main component 25.

따라서, 종래 기술은 각 성분 별로 최적의 분산 혼합 상태를 이루지 못하여, 특히 비표면적이 주성분에 비해 매우 큰 부성분에 대해서는 주성분에 비해 많은 상당량의 분산제가 필요함에도 불구하고 주성분을 기준으로 첨가되는 이유로 인하여, 매우 적은 양의 분산제밖에는 할당되지 못하여 분산 작용을 거의 수행하지 못하는 문제점이 있다.Therefore, the prior art does not achieve an optimal dispersion mixing state for each component, especially because of the fact that a large amount of dispersant compared to the main component is required for the subcomponent having a very large specific surface area compared to the main component, Only a very small amount of dispersant is assigned, which causes a problem of hardly performing a dispersing action.

그 결과, 종래 기술에 따라 유전체의 두께를 8 ㎛ 이하로 축소하는 공정을 진행하는 경우, 부성분의 편석으로 인하여 공정 수율이 하락하는 문제점이 있다. 한편, 주성분 원료에 부성분 원료를 화학적으로 표면 코팅시키는 기술이 제안된 바 있으나, 이 방법은 고가의 공정 비용이 요구되며 부성분을 용해시키는 화학 용액의 증발 건조 과정에서 부성분의 분리 석출이 발생되기 쉽고, 추후 부성분 함량 또는 Ba와 Ti의 몰(mole)비 조정이 필요할 때에 재첨가 되는 원료의 분산에서 다시 화학적 표면 코팅법을 사용하기에는 원가가 지나치게 상승되는 문제가 있다. 더욱이, 코팅된 부성분을 열처리하는 경우에는 부성분의 재응집이 일어나고, 이에 따른 분산 불량을 야기시키게 된다.As a result, when the process of reducing the thickness of the dielectric is reduced to 8 μm or less according to the prior art, there is a problem that the process yield decreases due to segregation of subcomponents. On the other hand, there has been proposed a technique for chemically surface-coating the subsidiary raw material on the main raw material, but this method requires an expensive process cost and is likely to be separated precipitation of the sub-components in the evaporation drying process of the chemical solution dissolving the sub-components, There is a problem that the cost is too high to use the chemical surface coating method again in the dispersion of the raw material to be re-added when it is necessary to adjust the minor component content or the mole ratio of Ba and Ti in the future. Moreover, when heat-treating the coated subcomponents, reaggregation of the subcomponents occurs, thereby causing poor dispersion.

한편, 종래 기술은 전술한 부성분의 응집 편석 문제 이외에도, 내환원성 유전체 소성에 있어서는 소성 온도가 1150 ∼ 1300 ℃ 등으로 비교적 높게 설정되는데, 그 결과 고온에서 세라믹을 환원시켜 신뢰성을 저하시키는 문제점을 발생시킨다. 더욱이, 종래 기술은 부성분이 균일하게 분산되도록 하지 못하므로 전기적 특성의 저하도 발생하게 된다.On the other hand, in the prior art, in addition to the problem of coagulation segregation of the subcomponents described above, the firing temperature is set relatively high at 1150 to 1300 ° C in firing-resistant dielectric firing, resulting in a problem of reducing reliability by reducing ceramic at high temperatures. . Moreover, the prior art does not allow the subcomponents to be uniformly dispersed, resulting in degradation of the electrical properties.

따라서, 본 발명의 제1 목적은 유전체 세라믹 재료의 주성분과 부성분을 혼합하는데 있어서 분산 불량 문제를 해결한 세라믹 슬러리 제조 방법을 제공하는데 있다.Accordingly, a first object of the present invention is to provide a method for producing a ceramic slurry which solves a problem of poor dispersion in mixing a main component and a subcomponent of a dielectric ceramic material.

본 발명의 제2 목적은 상기 제1 목적에 부가하여, 분산 불량 문제로 인한 절연 저항 열화 및 절연 파괴 전압 열화 현상을 해결한 세라믹 슬러리 제조 방법을 제공하는데 있다.A second object of the present invention is to provide a method for producing a ceramic slurry in addition to the first object, which solves the problem of insulation resistance degradation and dielectric breakdown voltage degradation due to poor dispersion.

본 발명의 제3 목적은 유전체 세라믹 재료의 주성분과 부성분을 혼합하는데 있어서, 부성분을 혼합하는데 있어서, 부성분의 편석을 방지하고, 전기적 특성 및 공정 수율 및 신뢰성을 향상시킨 세라믹 슬러리 제조 방법을 제공하는데 있다.It is a third object of the present invention to provide a ceramic slurry production method in which main components and subcomponents of a dielectric ceramic material are mixed, and in admixing the subcomponents, preventing segregation of the subcomponents and improving electrical characteristics, process yield, and reliability. .

도1은 종래 기술에 따라 세라믹 슬러리를 제조하는 과정을 나타낸 도면.1 is a view showing a process for producing a ceramic slurry according to the prior art.

도2는 본 발명의 일 실시예에 따라 부성분을 비표면적별로 분류하여 각각 슬러리화 한 후 주성분과 함께 분산하여 최종 세라믹 슬러리를 제조하는 과정을 나타낸 도면.2 is a view illustrating a process of preparing a final ceramic slurry by classifying subcomponents by specific surface area and slurrying them according to an embodiment of the present invention, and then dispersing the subcomponents together with the main component.

도3은 본 발명의 양호한 실시예에 따라 제작한 세라믹 콘덴서와 종래 기술에 따라 제조된 세라믹 콘덴서의 특성을 비교한 도표.3 is a table comparing characteristics of a ceramic capacitor manufactured according to a preferred embodiment of the present invention and a ceramic capacitor manufactured according to the prior art.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

21, 22, 23, 24 :부성분21, 22, 23, 24: subcomponents

25 :주성분25: main ingredient

30 :바인더(binder)30: binder

상기 목적을 달성하기 위하여, 본 발명은 유전체 세라믹 원료를 주성분으로 하고 첨가되는 복수 개의 부성분으로 하는 유전체 세라믹 제조 방법에 있어서, (a) 상기 복수 개의 부성분을 각각 또는 비표면적 크기별로 선정된 기준에 따라 그룹별로 분류하는 단계; (b) 상기 단계 (a)에서 분류된 각각의 그룹에 대하여 분산제의 종류, 분산제의 양, 또는 분산 조건을 달리하여 분산제와 용제를 넣고 습식 분쇄시키는 단계; (c) 상기 단계 (b)에서 1차 분쇄된 슬러리에 바인더를 첨가하여 2차 습식 혼합 분산하는 단계; 및 (d) 상기 단계 (c)에서 2차 습식 혼합 분산 후, 각각의 부성분 또는 비표면적별로 분류된 슬러리를 동일 제조 방법으로 제조된 주성분과 습식 혼합하는 단계를 포함하는 유전체 세라믹 슬러리 제조 방법을 제공한다.In order to achieve the above object, the present invention provides a method of manufacturing a dielectric ceramic comprising a plurality of subcomponent added as a main component and a dielectric ceramic raw material, the method comprising: (a) the plurality of subcomponents according to the criteria selected for each or specific surface area size; Categorizing by group; (b) wet milling the dispersant and the solvent by varying the type of dispersant, the amount of dispersant, or dispersing conditions for each group classified in step (a); (c) adding a binder to the first milled slurry in step (b) and performing secondary wet mixing and dispersing; And (d) wet mixing the slurry classified by each subcomponent or specific surface area with the main component prepared by the same manufacturing method after the second wet mixed dispersion in step (c). do.

본 발명은 적층 세라믹 콘덴서 제조를 위한 유전체 원료의 중량비 50% 이상을 차지하는 주성분에, 예를 들어 BaTiO3, (Ba, Ca)(Ti, Zr)O3, (Ba, Ca, Sr)(Ti, Zr)O3등에, 첨가되어지는 첨가제를 별도로 분산함으로써 여러 가지 입도 분포 및 비표면적을 갖는 첨가제를 비표면적별로 구분하여 그룹핑한 후에 각각의 그룹별로 1차 및 2차 습식 분쇄 및 분산을 통해 슬러리화 하고, 이를 주성분 등의 슬러리와 최종 혼합 분산하는 것이다.In the present invention, for example, BaTiO 3 , (Ba, Ca) (Ti, Zr) O 3 , (Ba, Ca, Sr) (Ti, By separately dispersing additives added to Zr) O 3, etc., additives having various particle size distributions and specific surface areas are grouped by specific surface area, and then slurryed through primary and secondary wet grinding and dispersion for each group. This is followed by final mixing and dispersion with a slurry such as a main component.

본 발명의 양호한 실시예로서, 그룹핑하는 방법은 비표면적 2 ∼ 5 m2/gr, 5∼ 10 m2/gr, 10 ∼ 20 m2/gr, …, 50 m2/gr 이상 등으로 분류하여 슬러리화 할 수 있다.As a preferred embodiment of the present invention, the grouping method has a specific surface area of 2 to 5 m 2 / gr, 5 to 10 m 2 / gr, 10 to 20 m 2 / gr,. , 50 m 2 / gr or more can be classified into a slurry.

이하에서는, 첨부 도면 도2 및 도3을 참조하여 본 발명에 따른 유전체 세라믹 슬러리 제조 방법의 양호한 실시예를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings Figures 2 and 3 will be described in detail a preferred embodiment of the method for producing a dielectric ceramic slurry according to the present invention.

본 발명은 티탄산바륨(BaTiO3) 등 유전체 세라믹 원료를 주성분으로 하고, 각종 원료 첨가제 등을 부성분(주성분의 50 wt% 미만)으로 하는 유전체 자기의 제조에 있어서, 분쇄 완료 시의 부성분 도달 비표면적을 그룹별로 분류하고, 이에 따라 그룹별로 분산제 및 바인더의 종류, 양, 분쇄 또는 분산 조건을 최적화하여 혼합하는 유전체 자기 제조 방법을 개시한다.According to the present invention, in the production of a dielectric porcelain comprising a dielectric ceramic material such as barium titanate (BaTiO 3 ) as a main component, and various raw material additives as a subcomponent (less than 50 wt% of the main component), the specific component reaching specific surface area at the completion of grinding Disclosed is a method of manufacturing a dielectric ceramic according to a group, and thereby optimizing and mixing the types, amounts, grinding or dispersing conditions of the dispersant and the binder for each group.

본 발명은 용제와 분산제를 첨가하여 습식 분쇄하고, 1차 분쇄된 슬러리에 바인더를 첨가하여 2차 습식 혼합 분산 후 각각의 부성분 또는 비표면적별로 분류된 슬러리를 동일 제조 방법으로 제조된 주성분과 3차 습식 혼합에 의해 다른 상이 발생하지 않고, 균일한 분산성을 지니며 밀도가 향상된 우수한 조직을 얻게 된다.The present invention is wet grinding by adding a solvent and a dispersant, and after adding the binder to the first milled slurry, and the second wet mixed dispersion, the slurry classified by each subcomponent or specific surface area and the main component and the third prepared by the same manufacturing method Wet mixing results in a good structure with no other phases, uniform dispersibility and improved density.

도2는 본 발명의 일 실시예에 따라 부성분을 비표면적별로 분류하여 각각 슬러리화 한 후 주성분과 함께 분산하여 최종 세라믹 슬러리를 제조하는 과정을 나타낸 도면이다.2 is a view illustrating a process of preparing a final ceramic slurry by classifying subcomponents by specific surface area and slurrying them according to an embodiment of the present invention, and then dispersing the subcomponents together with the main component.

도2를 참조하면, 본 발명의 양호한 실시예로서 부성분 BaCO3, CaCO3, SiO2, Y2O3, WO3, Nd2O3, Nb2O5, MgCO3, CrO3, ZrO2을 분산 분쇄 완료 시의 최종 비표면적별로 제Ⅰ그룹(1 ∼ 5 m2/gr), 제Ⅱ 그룹(5 ∼ 10 m2/gr), 제Ⅲ 그룹(10 ∼ 20 m2/gr), 제Ⅳ 그룹(20 ∼ 50 m2/gr), 제Ⅴ 그룹(50 m2/gr 이상)으로 분류하고, 비즈 밀(beads mill)을 사용하여 용제와 0.5 ∼ 50 wt%의 분산제를 넣고 분쇄 분산시킨 후 저분자형 바인더를 넣고 다시 비즈 밀에서 분산 시켜 슬러리를 제조한다.Referring to FIG. 2, as a preferred embodiment of the present invention, the subcomponents BaCO 3 , CaCO 3 , SiO 2 , Y 2 O 3 , WO 3 , Nd 2 O 3 , Nb 2 O 5 , MgCO 3 , CrO 3 , ZrO 2 Group I (1 to 5 m 2 / gr), Group II (5 to 10 m 2 / gr), Group III (10 to 20 m 2 / gr), and IV by the final specific surface area at the end of the dispersion grinding. After dividing into group (20-50 m 2 / gr), Group V (50 m 2 / gr or more), and using a beads mill to add a solvent and a dispersant of 0.5 to 50 wt% Slurry is prepared by adding a low molecular weight binder and dispersing it again in a bead mill.

이어서, 분산제 및 저·고분자형의 바인더를 포함한 주성분 원료의 슬러리에, 그룹별로 분류하여 제조한 부성분 슬러리를 혼합 분산하여 최종 슬러리를 제작한다.Subsequently, the final slurry is prepared by mixing and dispersing the subcomponent slurry, which is classified and grouped into the slurry of the main ingredient raw material including the dispersant and the low-molecular binder.

또한, 제작된 최종 슬러리를 사용하여 평균 두께 5 ㎛의 쉬트(sheet)를 형성한다. 이어서, 쉬트에 내부 전극을 인쇄하고 건조시킨 후 여러층을 적층하여 압착한 다음 절단하여 그린 칩(green chip)을 제작할 수 있다. 또한, 제작된 그린 칩을 가소한 후, 환원 분위기에서 소성하여 소성 칩을 제작한 후 구리 페이스(Cupaste)를 사용하여 외부 전극을 도표·소결시킬 수 있다.In addition, a sheet having an average thickness of 5 μm is formed using the prepared final slurry. Subsequently, the inner electrode is printed on the sheet, dried, laminated, compressed, and then cut into several sheets to produce a green chip. In addition, after the produced green chip is calcined, it is calcined in a reducing atmosphere to produce a calcined chip, and then an external electrode can be charted and sintered using a copper face.

도3은 본 발명의 양호한 실시예에 따라 제작한 세라믹 콘덴서와 종래 기술에 따라 제조된 세라믹 콘덴서의 특성을 비교한 도표이다. 도3을 참조하면, 종래 기술 1은 부성분 BaCO3, CaCO3, SiO2, Y2O3, WO3, Nd2O3, Nb2O5, MgCO3, CrO3, ZrO2와 주성분 원료를 용제, 저·고분자 바인더, 분산제 등과 혼합하여 비즈 밀(beads mill)을 사용하여 분산시켜 슬러리를 만든 시료의 실험 결과이다.3 is a diagram comparing the characteristics of a ceramic capacitor manufactured according to a preferred embodiment of the present invention and a ceramic capacitor manufactured according to the prior art. Referring to FIG. 3, the prior art 1 uses subcomponents BaCO 3 , CaCO 3 , SiO 2 , Y 2 O 3 , WO 3 , Nd 2 O 3 , Nb 2 O 5 , MgCO 3 , CrO 3 , ZrO 2 and a main ingredient of the raw material. Experimental results of a sample prepared by mixing a solvent, a low-polymer binder, a dispersant, and the like and dispersing the mixture using a beads mill.

한편, 종래 기술 2는 부성분 BaCO3, CaCO3, SiO2, Y2O3, WO3, Nd2O3, Nb2O5, MgCO3, ZrO2, CrO3와 주성분 원료를 종래 기술에 따라 모두 혼합·하소한 후 분쇄하여 용제 및 저·고분자 바인더, 분산제 등과 혼합한 후 비즈 밀을 사용하여 분산시켜 슬러리화시킨 시료의 실험 결과이다.Meanwhile, the prior art 2 uses the sub-components BaCO 3 , CaCO 3 , SiO 2 , Y 2 O 3 , WO 3 , Nd 2 O 3 , Nb 2 O 5 , MgCO 3 , ZrO 2 , CrO 3 and the main component raw materials according to the prior art. After mixing and calcining all of them, they are ground, mixed with a solvent, a low-molecular binder, a dispersant, and the like, and then are dispersed using a bead mill and slurried.

도3에는 동일 조건에서 A 조성 및 B 조성으로 적층 세라믹 콘덴서를 만들어 사용하여 실시하였으며, 그 결과를 도표에 표시하고 있다. 도3에서, 내압 불량은 직류 25V를 인가하여 30초 후의 절연 저항이 100 ㏁인 것을 불량으로 판정하였으며, 고속 가속 수명 시험은 분위기 온도 200 ℃에서 직류 전압 25V를 연속 인가하여 실시한 결과이다. 도2를 참조하면, 본 발명에 따라 제작된 적층 세라믹 콘덴서는 내압 불량률이 100배 이상 우수하고, 고속 가속 수명 시간이 700배 이상 개선됨을 알 수 있다.In FIG. 3, multilayer ceramic capacitors were made and used in composition A and B under the same conditions, and the results are shown in a diagram. In Fig. 3, the failure of the breakdown voltage was determined to be a failure of an insulation resistance of 100 kPa after applying a direct current 25V, and the high-speed accelerated life test was a result of continuously applying a DC voltage of 25V at an ambient temperature of 200 deg. Referring to FIG. 2, it can be seen that the multilayer ceramic capacitor manufactured according to the present invention has an excellent breakdown voltage rate of 100 times or more, and a 700-fold improvement in high-speed acceleration life time.

본 발명에 따른 비표면적별 분류에 의한 부성분의 슬러리 제조 방법은, 그룹핑 분류 기준으로서 비표면적 크기 이외에도 입도, 기계적 파괴 강도 또는 형상 모폴로지(morphology)등의 물리화학적 성질을 이용하여 그룹핑을 할 수 있다.According to the present invention, a method for preparing a slurry of subcomponents by classification according to specific surface area may be grouped by using physicochemical properties such as particle size, mechanical fracture strength or shape morphology in addition to specific surface area as a grouping classification criterion.

전술한 내용은 후술할 발명의 특허 청구 범위를 보다 잘 이해할 수 있도록 본 발명의 특징과 기술적 장점을 다소 폭넓게 개설하였다. 본 발명의 특허 청구 범위를 구성하는 부가적인 특징과 장점들이 이하에서 상술될 것이다. 개시된 본 발명의 개념과 특정 실시예는 본 발명과 유사 목적을 수행하기 위한 다른 구조의 설계나 수정의 기본으로서 즉시 사용될 수 있음이 당해 기술 분야의 숙련된 사람들에 의해 인식되어야 한다.The foregoing has outlined rather broadly the features and technical advantages of the present invention to better understand the claims of the invention which will be described later. Additional features and advantages that make up the claims of the present invention will be described below. It should be appreciated by those skilled in the art that the conception and specific embodiments of the invention disclosed may be readily used as a basis for designing or modifying other structures for carrying out similar purposes to the invention.

또한, 본 발명에서 개시된 발명 개념과 실시예가 본 발명의 동일 목적을 수행하기 위하여 다른 구조로 수정하거나 설계하기 위한 기초로서 당해 기술 분야의 숙련된 사람들에 의해 사용되어질 수 있을 것이다. 또한, 당해 기술 분야의 숙련된 사람에 의한 그와 같은 수정 또는 변경된 등가 구조는 특허 청구 범위에서 기술한 발명의 사상이나 범위를 벗어나지 않는 한도 내에서 다양한 변화, 치환 및 변경이 가능하다.In addition, the inventive concepts and embodiments disclosed herein may be used by those skilled in the art as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. In addition, such modifications or altered equivalent structures by those skilled in the art may be variously changed, substituted, and changed without departing from the spirit or scope of the invention described in the claims.

이상과 같이, 본 발명은 세라믹 슬러리 제조 과정에 있어서, 부성분이 응집됨이 없이 골고루 분산되도록 함으로써 치밀한 소결 조직을 얻을 수 있도록 하며, 그 결과 신뢰성 저하 등의 문제없이 고적층 세라믹 콘덴서를 제조할 수 있다.As described above, in the present invention, in the ceramic slurry manufacturing process, the sub-components are uniformly dispersed without aggregation, thereby obtaining a dense sintered structure, and as a result, a highly laminated ceramic capacitor can be manufactured without problems such as deterioration of reliability. .

또한, 본 발명은 소성 온도를 종래 기술 보다 5 ∼ 100℃ 이하에서 유지할 수 있도록 함으로써, 고온에서 강한 환원 분위기에 의해 원료가 환원되어지는 현상을 억제하는 효과가 있다. 또한, 본 발명은 부성분을 골고루 분산되도록 함으로써전기적 특성의 제어가 용이하게 되어 유전율을 50% 정도까지 향상시킬 수 있다.Moreover, this invention has the effect of suppressing the phenomenon that a raw material is reduced by the strong reducing atmosphere at high temperature by making baking temperature maintain at 5-100 degreeC or less than the prior art. In addition, the present invention is to facilitate the control of the electrical properties by allowing the even components to be evenly distributed to improve the dielectric constant up to about 50%.

Claims (8)

유전체 세라믹 원료를 주성분으로 하고 첨가되는 복수 개의 부성분으로 하는 유전체 세라믹 제조 방법에 있어서,In the dielectric ceramic manufacturing method comprising a plurality of subcomponent added as a main component of the dielectric ceramic raw material, (a) 상기 복수 개의 부성분을 각각 또는 비표면적 크기별로 선정된 기준에 따라 그룹별로 분류하는 단계;(a) classifying the plurality of subcomponents into groups according to a criterion selected for each or specific surface area size; (b) 상기 단계 (a)에서 분류된 각각의 그룹에 대하여 분산제의 종류, 분산제의 양, 또는 분산 조건을 달리하여 분산제와 용제를 넣고 습식 분쇄시키는 단계;(b) wet milling the dispersant and the solvent by varying the type of dispersant, the amount of dispersant, or dispersing conditions for each group classified in step (a); (c) 상기 단계 (b)에서 1차 분쇄된 슬러리에 바인더를 첨가하여 2차 습식 혼합 분산하는 단계; 및(c) adding a binder to the first milled slurry in step (b) and performing secondary wet mixing and dispersing; And (d) 상기 단계 (c)에서 2차 습식 혼합 분산 후, 각각의 부성분 또는 비표면적별로 분류된 슬러리를 동일 제조 방법으로 제조된 주성분과 습식 혼합하는 단계(d) after the second wet mixed dispersion in step (c), wet mixing the slurry classified by each subcomponent or specific surface area with the main component prepared by the same production method. 를 포함하는 유전체 세라믹 슬러리 제조 방법.Dielectric ceramic slurry manufacturing method comprising a. 제1항에 있어서, 상기 유전체 세라믹 원료의 주성분은 BaTiO3,(Ba, Ca)(Ti, Zr)O3, (Ba, Ca, Sr)(Ti, Zr)O3중 어느 하나를 포함하고, 그 성분비가 전체의 50% 이상을 구성하는 것을 특징으로 하는 유전체 세라믹 슬러리 제조 방법.The main component of the dielectric ceramic raw material is any one of BaTiO 3 , (Ba, Ca) (Ti, Zr) O 3 , (Ba, Ca, Sr) (Ti, Zr) O 3 , A method for producing a dielectric ceramic slurry, characterized in that the component ratio constitutes 50% or more of the total. 제1항에 있어서, 상기 유전체 세라믹의 부성분은 Y, Cr, Mn, W, Nd, Nb, Co,Si, Mg, Zr, Ba, Ti, Ca, Sr 중 어느 하나 또는 이들의 조합을 포함하고, 그 성분비가 전체의 50% 미만을 구성하는 것을 특징으로 하는 유전체 세라믹 슬러리 제조 방법.The method of claim 1, wherein the secondary component of the dielectric ceramic comprises any one or a combination of Y, Cr, Mn, W, Nd, Nb, Co, Si, Mg, Zr, Ba, Ti, Ca, Sr, A method for producing a dielectric ceramic slurry, characterized in that the component ratio constitutes less than 50% of the total. 유전체 세라믹 원료를 주성분으로 하고 첨가되는 복수 개의 부성분으로 하는 유전체 세라믹 제조 방법에 있어서,In the dielectric ceramic manufacturing method comprising a plurality of subcomponent added as a main component of the dielectric ceramic raw material, (a) 상기 복수 개의 부성분 전체를 동시에 혼합 분쇄하여 슬러리를 형성하는 단계;(a) simultaneously mixing and grinding all of the plurality of subcomponents to form a slurry; (b) 상기 단계 (a)에서 1차 분쇄된 슬러리 바인더를 첨가하여 2차 습식 혼합 분산하는 단계; 및(b) adding the first slurry slurry ground in step (a) to disperse the second wet mixing; And (c) 상기 단계 (b)에서 2차 습식 혼합 분산 후, 동일 제조 방법으로 제조된 주성분과 습식 혼합하는 단계(c) after the second wet mixed dispersion in step (b), wet mixing with the main component prepared in the same manufacturing method 를 포함하는 유전체 세라믹 슬러리 제조 방법.Dielectric ceramic slurry manufacturing method comprising a. 제1항에 있어서, 상기 단계 (a)의 그룹별 분류 기준은 상기 비표면적 크기 대신에 입도, 기계적 파괴 강도, 모폴로지 등을 포함하는 물리화학적 분류 기준에 따라 분류하는 것을 특징으로 하는 유전체 세라믹 슬러리 제조 방법.The method of claim 1, wherein the classification criteria for each group of step (a) are classified according to physicochemical classification criteria including particle size, mechanical fracture strength, morphology, etc. instead of the specific surface area. Way. 제1항에 있어서, 상기 단계 (c)를 생략하는 것을 특징으로 하는 유전체 세라믹 제조 방법.The method of claim 1, wherein step (c) is omitted. 제1항에 있어서, 상기 단계 (c)는 분산에 도움이 되는 조제를 첨가하는 단계를 더 포함하는 유전체 세라믹 제조 방법.The method of claim 1, wherein step (c) further comprises adding a dispersing aid. 제1항에 있어서, (a) 단계에서 그룹 별로 분류할 때 주성분의 일부 또는 전체를 포함시킬 수 있는 것을 특징으로 하는 유전체 세라믹 제조 방법.The method of manufacturing a dielectric ceramic according to claim 1, wherein when classifying by group in step (a), some or all of the main components may be included.
KR1020010032429A 2001-06-11 2001-06-11 Method of fabricating ceramic slurry for multi-layer ceramic capacitor KR20020094329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010032429A KR20020094329A (en) 2001-06-11 2001-06-11 Method of fabricating ceramic slurry for multi-layer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010032429A KR20020094329A (en) 2001-06-11 2001-06-11 Method of fabricating ceramic slurry for multi-layer ceramic capacitor

Publications (1)

Publication Number Publication Date
KR20020094329A true KR20020094329A (en) 2002-12-18

Family

ID=27708502

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010032429A KR20020094329A (en) 2001-06-11 2001-06-11 Method of fabricating ceramic slurry for multi-layer ceramic capacitor

Country Status (1)

Country Link
KR (1) KR20020094329A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691437B1 (en) * 2005-11-02 2007-03-09 삼성전기주식회사 Polymer-ceramic composition for dielectrics, embedded capacitor and printed circuit board using the same
KR100758091B1 (en) * 2004-06-18 2007-09-11 티디케이가부시기가이샤 Ceramic electronic component and method of manufacturing the same
KR101113441B1 (en) * 2009-12-31 2012-02-29 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN110922141A (en) * 2019-12-20 2020-03-27 上海申昆混凝土集团有限公司 Super-dispersion-resistant and segregation-resistant concrete and preparation method and construction process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000380A1 (en) * 1991-06-20 1993-01-07 E.I. Du Pont De Nemours And Company Low volatile organic content coating composition for basecoat/clear coat finish
JPH08138907A (en) * 1994-11-07 1996-05-31 Matsushita Electric Ind Co Ltd Manufacture of varistor
JPH10270284A (en) * 1997-03-24 1998-10-09 Tdk Corp Manufacture of dielectric ceramic material
JPH11170241A (en) * 1997-12-12 1999-06-29 Taiyo Yuden Co Ltd Production of ceramic green sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000380A1 (en) * 1991-06-20 1993-01-07 E.I. Du Pont De Nemours And Company Low volatile organic content coating composition for basecoat/clear coat finish
JPH08138907A (en) * 1994-11-07 1996-05-31 Matsushita Electric Ind Co Ltd Manufacture of varistor
JPH10270284A (en) * 1997-03-24 1998-10-09 Tdk Corp Manufacture of dielectric ceramic material
JPH11170241A (en) * 1997-12-12 1999-06-29 Taiyo Yuden Co Ltd Production of ceramic green sheet

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100758091B1 (en) * 2004-06-18 2007-09-11 티디케이가부시기가이샤 Ceramic electronic component and method of manufacturing the same
KR100691437B1 (en) * 2005-11-02 2007-03-09 삼성전기주식회사 Polymer-ceramic composition for dielectrics, embedded capacitor and printed circuit board using the same
KR101113441B1 (en) * 2009-12-31 2012-02-29 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
CN110922141A (en) * 2019-12-20 2020-03-27 上海申昆混凝土集团有限公司 Super-dispersion-resistant and segregation-resistant concrete and preparation method and construction process thereof

Similar Documents

Publication Publication Date Title
JP3835254B2 (en) Method for producing barium titanate powder
JP3630205B2 (en) Method for manufacturing dielectric ceramic material
Caballero et al. ZnO-doped BaTiO3: microstructure and electrical properties
KR20150084681A (en) Laminated ceramic electronic component
US6643118B2 (en) Method for making barium titanate powder, barium titanate powder prepared by the method, dielectric ceramic compact, and monolithic ceramic capacitor
JP6329236B2 (en) Dielectric material for multilayer ceramic capacitor and multilayer ceramic capacitor
CN114349496A (en) Dielectric material and preparation method and application thereof
JPH10255549A (en) Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
US20100157508A1 (en) Method of manufacturing complex oxide nano particles and complex oxide nano particles manufactured by the same
JP3783678B2 (en) Method for producing raw material powder for dielectric ceramic, dielectric ceramic and multilayer ceramic capacitor
KR20020094329A (en) Method of fabricating ceramic slurry for multi-layer ceramic capacitor
JP4502741B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP2005008471A (en) Method of manufacturing complex oxide powder, complex oxide powder, dielectric ceramic composition and lamination type electronic component
JPWO2004038743A1 (en) Manufacturing method of multilayer ceramic capacitor
JP2006041370A (en) Multilayer ceramic capacitor and manufacturing method thereof
KR20110074486A (en) Method for manufacturing dielectric ceramic material
KR20050063466A (en) A method for dispersed coating additive on ceramic powder
KR20200009749A (en) Method for manufacturing dielectirc ceramic composition using rare earth glass frit
KR100703080B1 (en) Method for Manufacturing Dielectric Powder for Low Temperature Sintering and Method for Manufacturing Multilayer Ceramic Condenser Using the Same
JP4930149B2 (en) Manufacturing method of multilayer electronic component
JP4506138B2 (en) Method for producing slurry, method for producing green sheet, and method for producing multilayer electronic component
CN108231409B (en) Dielectric composition and multilayer ceramic capacitor having the same
KR102193957B1 (en) Capacitor device
JPH07335474A (en) Manufacture of ceramic capacitor
JP2004292271A (en) Dielectric porcelain and its manufacturing method, and laminated ceramic capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application