JP2002201064A - Dielectric ceramic composition, multilayer ceramic capacitor and its production method - Google Patents

Dielectric ceramic composition, multilayer ceramic capacitor and its production method

Info

Publication number
JP2002201064A
JP2002201064A JP2000397587A JP2000397587A JP2002201064A JP 2002201064 A JP2002201064 A JP 2002201064A JP 2000397587 A JP2000397587 A JP 2000397587A JP 2000397587 A JP2000397587 A JP 2000397587A JP 2002201064 A JP2002201064 A JP 2002201064A
Authority
JP
Japan
Prior art keywords
mol
dielectric
composition
multilayer ceramic
ceramic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000397587A
Other languages
Japanese (ja)
Inventor
Kiyoji Handa
Taisei Shoji
Tetsuhiro Takahashi
喜代二 半田
大成 東海林
哲弘 高橋
Original Assignee
Nippon Chemicon Corp
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemicon Corp, 日本ケミコン株式会社 filed Critical Nippon Chemicon Corp
Priority to JP2000397587A priority Critical patent/JP2002201064A/en
Publication of JP2002201064A publication Critical patent/JP2002201064A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a dielectric ceramic composition suitable for a multilayer ceramic capacitor using Ni as an internal electrode, which shows excellent electric properties, and which can be good sintered and is hard to produce cracks even when a lead free solder is used. SOLUTION: The dielectric ceramic composition consists of containing an additive of 2.0-6.0 wt. composed of BaO-Ln2O3-MgO-BaSiO3-MnO-RO3 to a main composition whose formula is BaTiO3 (wherein, Ln is one sort or two sorts of elements chosen from Sc, Y, Nd, Pr or Sm. R is one sort or two sorts of elements chosen from W or Mo.) and the each component which composes the additive is BaO=0-25 mol%, Ln2O3=2-25 mol%, MgO=5-35 mol%, BaSiO3=5-45 mol%, MnO=1-10 mol% and RO3=2-10 mol%, respectively, its average particle size is prepared below 0.3 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、積層セラミックコ
ンデンサ用の誘電体磁器組成物、その組成物を用いた積
層セラミックコンデンサとその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric ceramic composition for a multilayer ceramic capacitor, a multilayer ceramic capacitor using the composition, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】小型・高性能化の要求に伴い、積層セラ
ミックコンデンサ(MLC)においては、近年、ますま
す小型化、多層化が進展しており、一般的には以下に示
すような方法により作製されている。まず、誘電体粉末
に有機バインダーや可塑剤、有機溶剤を混合してスラリ
ーを作製し、ドクターブレード法等によりセラミックグ
リーンシートを作製する。得られたグリーンシート上に
内部電極となる電極材料を塗布し、複数枚積層して熱圧
着し、一体化させたものを大気中において1300℃前
後で焼成して焼成体を作製する。得られた焼成体の端面
に内部電極と電気的に導通する外部電極を焼き付けるこ
とにより作製される。
2. Description of the Related Art In response to demands for miniaturization and high performance, multilayer ceramic capacitors (MLCs) have been increasingly miniaturized and multilayered in recent years. Have been made. First, a slurry is prepared by mixing an organic binder, a plasticizer, and an organic solvent with dielectric powder, and a ceramic green sheet is prepared by a doctor blade method or the like. An electrode material to be an internal electrode is applied on the obtained green sheet, a plurality of layers are laminated, thermocompression-bonded, and integrated, and fired at about 1300 ° C. in the air to produce a fired body. It is manufactured by baking an external electrode electrically connected to the internal electrode on the end face of the obtained fired body.

【0003】これまで、この積層セラミックコンデンサ
の内部電極としては、大気中で焼成した場合でも誘電体
材料と反応せず、酸化することによる抵抗の増大も起こ
らないという理由から、白金、パラジウム、銀−パラジ
ウムといった貴金属が用いられてきた。しかし、近年の
貴金属の高騰、特にパラジウムが高価になっているた
め、製造コストが高くなるといった問題が生じていた。
そこで、製造コストの削減を図るために、上記の貴金属
と同様な特性を示す卑金属のNiを内部電極として用い
た積層コンデンサが製造されている。
Hitherto, platinum, palladium, and silver have been used as internal electrodes of this multilayer ceramic capacitor because they do not react with a dielectric material even when fired in the air and do not cause an increase in resistance due to oxidation. -Noble metals such as palladium have been used. However, there has been a problem that the production cost is high because the price of precious metals is soaring in recent years, particularly, palladium is expensive.
Therefore, in order to reduce the manufacturing cost, a multilayer capacitor using a base metal Ni having the same characteristics as the above-mentioned noble metal as an internal electrode has been manufactured.

【0004】このように内部電極としてNiを用いる場
合、大気中及び酸化雰囲気中での焼成ではNiが酸化さ
れ、内部電極としての役割を果たさなくなるといった問
題が生じるため、還元雰囲気下での焼成が必要となる。
しかし、この条件下では、誘電体セラミックの主成分で
あるTiの価数が4価から3価に還元されるため、半導
体化すると共に、平均寿命も急激に低下する。そこで、
その対策として、アクセプターであるMnO,Co23
等を添加することによってTiの還元を抑制し、また、
再酸化処理によって酸素空位の低減を図り、平均寿命の
低下を防止している。しかしながら、上記再酸化処理に
も、誘電率への影響が大きく、誘電率の温度依存性に悪
影響を及ぼす恐れがあるといった問題点があった。
As described above, when Ni is used as an internal electrode, firing in the air and in an oxidizing atmosphere causes a problem that Ni is oxidized and no longer functions as an internal electrode. Required.
However, under this condition, the valence of Ti, which is the main component of the dielectric ceramic, is reduced from tetravalent to trivalent, so that the semiconductor becomes a semiconductor and the average life is sharply reduced. Therefore,
As a countermeasure, MnO, Co 2 O 3
And the like to suppress the reduction of Ti,
Oxygen vacancies are reduced by the re-oxidation treatment to prevent a decrease in average life. However, the reoxidation treatment also has a problem in that the influence on the dielectric constant is large and the temperature dependence of the dielectric constant may be adversely affected.

【0005】また、近年の環境問題を考えると、実装す
る際に通常用いられているハンダには鉛が含まれてお
り、環境問題を引き起こす原因となり得るため、鉛レス
ハンダの使用が要望されている。そのため、現在では、
鉛レスハンダの開発及び実用化が盛んに行われ、Sn−
Bi−Ag,Sn−Ag−Cu,Sn−Ag−Bi−G
e系等に代表されるような鉛レスハンダが使用され始め
ている。
In view of recent environmental problems, the solder generally used for mounting contains lead, which may cause environmental problems. Therefore, the use of lead-less solder is demanded. . Therefore, at present,
The development and commercialization of lead-free solder has been actively carried out, and Sn-
Bi-Ag, Sn-Ag-Cu, Sn-Ag-Bi-G
Lead-less solders such as those based on e-type have begun to be used.

【0006】[0006]

【発明が解決しようとする課題】ところで、携帯電話に
代表されるように、電子機器の小型化、軽量化、低価格
化の必要性が急激に増大している現在、積層セラミック
コンデンサに対しても、低価格化、大容量化、高耐圧
化、高絶縁化、高信頼性の要求が増大している。その中
で、低価格化については、上述したように内部電極に卑
金属のNiを用いることにより、貴金属であるPd,A
g−Pdを使用するよりも低価格に抑えることが可能と
なった。
By the way, as typified by mobile phones, the necessity of miniaturization, weight reduction, and cost reduction of electronic equipment has been rapidly increasing, and nowadays, multilayer ceramic capacitors are required. However, demands for lower price, higher capacity, higher withstand voltage, higher insulation, and higher reliability are increasing. Among them, as for the cost reduction, as described above, by using the base metal Ni for the internal electrode, the noble metal Pd, A
It has become possible to keep the price lower than using g-Pd.

【0007】しかしながら、内部電極に卑金属のNiを
用いるという技術は、これまでは、内部電極の使用量が
多くなる高積層品、つまり、低い電界強度下(3V/μ
m以下)の大容量品のみに適用されることが多く、高い
電界強度下(3V/μm以上)では、静電容量、耐圧、
絶縁抵抗の温度依存性、DCバイアス特性及び信頼性の
低下という問題が頻繁に発生している。
However, the technique of using base metal Ni for the internal electrode has hitherto been a high-stacked product in which the usage of the internal electrode is large, that is, under a low electric field strength (3 V / μm).
m) or less, and under high electric field strength (3 V / μm or more), the capacitance, withstand voltage,
Problems such as temperature dependency of insulation resistance, DC bias characteristics, and deterioration of reliability frequently occur.

【0008】また、鉛レスハンダを用いて実装する際、
処理温度が通常の鉛入りハンダよりも20〜30℃程度
高くなるため、クラックが発生しやすいという欠点もあ
る。さらに、これまでに、大容量化するために通常用い
られている誘電体材料(例えば、特開平6−34273
5号、特開平10−255549号、特開昭61−10
1459号、特公昭61−14611号等)を用いる
と、高誘電率は得られるものの、高い電界強度下(3V
/μm以上)では、耐圧及び絶縁抵抗、信頼性ともに著
しく低下し、高温(150℃)での絶縁抵抗の低下(C
R積の低下)という欠点があった。
Further, when mounting using lead-less solder,
Since the processing temperature is about 20 to 30 ° C. higher than that of ordinary lead-containing solder, there is also a disadvantage that cracks are easily generated. Further, a dielectric material which has been conventionally used to increase the capacity (for example, Japanese Patent Laid-Open No. 6-34273).
5, JP-A-10-255549, JP-A-61-10
No. 1459, Japanese Patent Publication No. 61-14611, etc.), a high dielectric constant can be obtained, but a high electric field strength (3 V
/ Μm or more), the withstand voltage, insulation resistance, and reliability are significantly reduced, and the insulation resistance at high temperatures (150 ° C.) (C
R product).

【0009】本発明は、以上のような従来技術の問題点
を解決するために提案されたものであり、その目的は、
良好に焼結可能で、鉛レスハンダを使用した場合でもク
ラックが生じにくく、優れた電気的特性を示す、内部電
極としてNiを用いた積層セラミックコンデンサ用とし
て好適な誘電体磁器組成物を提供することにある。
The present invention has been proposed to solve the above-mentioned problems of the prior art.
Provided is a dielectric ceramic composition which is sinterable, hardly causes cracks even when lead-free solder is used, and has excellent electrical characteristics, and is suitable for a multilayer ceramic capacitor using Ni as an internal electrode. It is in.

【0010】本発明の別の目的は、そのような組成物を
用いて、静電容量の温度特性がJIS規格で規定するB
特性及びEIA規格で規定するX7R特性をそれぞれ満
足する信頼性の高い積層セラミックコンデンサを提供す
ることであり、さらに、そのような優れた積層セラミッ
クコンデンサを製造可能な、環境性に優れた製造方法を
提供することにある。
[0010] Another object of the present invention is to use such a composition to measure the temperature characteristics of the capacitance as defined by JIS standards.
It is an object of the present invention to provide a highly reliable multilayer ceramic capacitor which satisfies the characteristics and the X7R characteristics defined by the EIA standard, respectively, and further provides an environmentally friendly manufacturing method capable of manufacturing such an excellent multilayer ceramic capacitor. To provide.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上記の目
的を達成すべく鋭意検討を重ねた結果、請求項1に記載
の通り、誘電体材料として、組成式がBaTiO3から
なる主組成物に対して、BaO−Ln23−MgO−B
aSiO3−MnO−RO3(但し、LnはSc,Y,N
d,Pr,Sm、RはW,Moから選択された1種また
は2種以上の元素)からなる添加物を、2.0〜6.0
wt%含有させてなることを特徴とする誘電体磁器組成
物を用いることにより、上記目的を達成し得ることを見
出した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, as described in claim 1, as a dielectric material, a dielectric material having a composition formula of BaTiO 3 is used. the composition, BaO-Ln 2 O 3 -MgO -B
aSiO 3 —MnO—RO 3 (where Ln is Sc, Y, N
d, Pr, Sm, and R are one or more elements selected from W and Mo).
It has been found that the above object can be achieved by using a dielectric porcelain composition characterized in that the composition is contained in wt%.

【0012】なお、主成分であるチタン酸バリウム(B
aTiO3)に上記添加物を添加する場合、まず、添加
物を1100℃以上の高温度で仮焼きし、粉砕すること
により均一化し、これをベースとなるBaTiO3に添
加することが好ましい。この方法により、焼結した後に
粒界に選択的にこれらの添加物を均一に析出させること
が可能となり、絶縁抵抗及び信頼性の向上が見られる。
また、添加物の比重差が小さいために、より均一なグリ
ーンシートを作製することができる。
The main component of barium titanate (B
When the above additive is added to aTiO 3 ), it is preferable that the additive is first calcined at a high temperature of 1100 ° C. or more, homogenized by pulverization, and then added to the base BaTiO 3 . According to this method, these additives can be selectively deposited uniformly on the grain boundaries after sintering, and the insulation resistance and the reliability can be improved.
Further, since the difference in specific gravity of the additive is small, a more uniform green sheet can be produced.

【0013】また、請求項2に記載の通り、前記BaO
−Ln23−MgO−BaSiO3−MnO−RO3(但
し、LnはSc,Y,Nd,Pr,Sm、RはW,Mo
から選択された1種または2種以上の元素)からなる添
加物を構成する各成分は、それぞれBaO=0〜20m
ol%、Ln23=2〜25mol%、MgO=5〜3
5mol%、BaSiO3=5〜45mol%、MnO
=1〜10mol%、RO3=2〜10mol%であ
り、この添加物の平均粒径は、0.3μm以下であるこ
とが望ましい。
[0013] Further, as described in claim 2, the BaO
—Ln 2 O 3 —MgO—BaSiO 3 —MnO—RO 3 (where Ln is Sc, Y, Nd, Pr, Sm, R is W, Mo
Each component constituting the additive consisting of one or more elements selected from BaO = 0 to 20 m
ol%, Ln 2 O 3 = 2 to 25 mol%, MgO = 5 to 3
5 mol%, BaSiO 3 = 5-45 mol%, MnO
= 1 to 10 mol%, a RO 3 = 2 to 10 mol%, average particle size of the additive is desirably 0.3μm or less.

【0014】なお、さらに好ましくは、ベースとなるB
aTiO3の平均粒径が0.3〜0.5μmである原料
に、平均粒径が0.3μm以下の上記添加物を混合する
ことが望ましい。これにより、焼成時に均一な焼成が行
われるため、クラックを生じにくくなる。そのため、層
厚が5〜40μmの広範囲において、安定した電気特性
が得られる。
It is more preferable that the base B
It is desirable to mix the above additive having an average particle diameter of 0.3 μm or less with a raw material having an average particle diameter of aTiO 3 of 0.3 to 0.5 μm. Thereby, since uniform firing is performed during firing, cracks are less likely to occur. Therefore, stable electric characteristics can be obtained in a wide range of the layer thickness of 5 to 40 μm.

【0015】ここで、添加物の添加量及び各成分の範囲
は、次の理由によって決定されている。まず、BaO−
Ln23−MgO−BaSiO3−MnO−RO3(但
し、LnはSc,Y,Nd,Pr,Sm、RはW,Mo
から選択された1種または2種以上の元素)からなる添
加物を、ベースとなるチタン酸バリウムに対して2.0
〜6.0wt%添加することとしたのは、次の理由によ
る。すなわち、上記添加物の添加量が2.0wt%以下
では、1250℃以下での焼成が困難となり、緻密な焼
結体が得られず、素子の機械的強度が弱くなるためであ
る。また、鉛レスハンダをハンダ付けする際に、クラッ
クが発生しやすくなるためである。また、高い電界強度
下(3V/μm以上)において、耐圧や絶縁抵抗を向上
させたり、DCバイアス印可時の静電容量の低下を小さ
くする効果がほとんど見られないためである。一方、上
記添加物の添加量が6.0wt%以上では、誘電率が低
下するためである。
Here, the amount of additive and the range of each component are determined for the following reasons. First, BaO-
Ln 2 O 3 —MgO—BaSiO 3 —MnO—RO 3 (where Ln is Sc, Y, Nd, Pr, Sm, R is W, Mo
From one or more elements selected from the group consisting of 2.0 to 2.0 parts of the base barium titanate.
The reason for adding 〜6.0 wt% is as follows. That is, if the amount of the additive is 2.0 wt% or less, it is difficult to bake at 1250 ° C. or less, a dense sintered body cannot be obtained, and the mechanical strength of the element is weakened. In addition, when soldering leadless solder, cracks are likely to occur. Further, under a high electric field strength (3 V / μm or more), there is almost no effect of improving the withstand voltage and the insulation resistance and reducing the decrease in the capacitance when the DC bias is applied. On the other hand, when the amount of the additive is 6.0 wt% or more, the dielectric constant is lowered.

【0016】また、Ln成分として、Sc,Y,Nd,
Pr,Smから選択された1種又は2種以上の元素とし
たのは、これらはほぼ同様の特性を示し、これらから選
択された1成分を使用しても、組み合わせて使用しても
同様な効果が得られることが確認されたからである。さ
らに、R成分として、W,Moから選択された1種又は
2種の元素としたのも同様の理由によるものである。
As the Ln component, Sc, Y, Nd,
The reason for using one or more elements selected from Pr and Sm is that they show almost the same properties, and that the same or different elements can be used or used in combination. This is because it was confirmed that an effect was obtained. Further, for the same reason, one or two elements selected from W and Mo are used as the R component.

【0017】また、主組成物であるBaTiO3及び添
加物の平均粒径を制限したのは、耐圧が120V/μm
以上となる優れたMLCを得ることができるためであ
る。
The reason why the average particle size of the main composition, BaTiO 3, and the additives is limited is that the withstand voltage is 120 V / μm.
This is because excellent MLC as described above can be obtained.

【0018】さらに、BaO−Ln23−MgO−Ba
SiO3−MnO−RO3(但し、LnはSc,Y,N
d,Pr,Sm、RはW,Moから選択された1種また
は2種以上の元素)からなる添加物を構成する各成分
を、それぞれBaO=0〜20mol%、Ln23=2
〜25mol%、MgO=5〜35mol%、BaSi
3=5〜45mol%、MnO=1〜10mol%、
RO3=2〜10mol%としたのは、以下の理由によ
る。
Further, BaO-LnTwoOThree-MgO-Ba
SiOThree-MnO-ROThree(However, Ln is Sc, Y, N
d, Pr, Sm, and R are one or more selected from W and Mo.
Are the two or more elements).
With BaO = 0-20 mol%, LnTwoOThree= 2
2525 mol%, MgO = 5 to 35 mol%, BaSi
O Three= 5 to 45 mol%, MnO = 1 to 10 mol%,
ROThree= 2 to 10 mol% for the following reason.
You.

【0019】すなわち、BaOの量を上記の範囲に限定
したのは、この範囲外では、耐圧、絶縁抵抗及びDCバ
イアス特性の改善に効果がないためである。また、Ln
23(LnはSc,Y,Nd,Pr,Smから選択され
た1種または2種以上の元素)の量を上記の範囲に限定
したのは、25mol%以上では、誘電率が1000以
下となると共に、CR積及び信頼性(高温負荷、耐湿負
荷等)が低下するためであり、一方、2mol%以下で
は、絶縁抵抗の向上に効果がなく、信頼性も悪いためで
ある。
That is, the reason why the amount of BaO is limited to the above range is that if it is outside this range, there is no effect on the improvement of the breakdown voltage, the insulation resistance and the DC bias characteristics. Also, Ln
The reason that the amount of 2 O 3 (Ln is one or more elements selected from Sc, Y, Nd, Pr, and Sm) is limited to the above range is that the dielectric constant is 1000 or less when 25 mol% or more. At the same time, the CR product and the reliability (high temperature load, humidity resistance load, etc.) are reduced. On the other hand, if it is 2 mol% or less, there is no effect on the improvement of the insulation resistance and the reliability is poor.

【0020】MgOの量を上記の範囲に限定したのは、
5mol%以下では温度特性がEIA規格のX7R特性
及びJIS規格のB特性の両方を満たさなくなり、絶縁
抵抗の向上の効果がないためである。一方、35mol
%以上では誘電率及び絶縁抵抗が低下し、誘電損失が増
加するためである。
The reason why the amount of MgO is limited to the above range is as follows.
If the content is 5 mol% or less, the temperature characteristics do not satisfy both the X7R characteristics of the EIA standard and the B characteristics of the JIS standard, and there is no effect of improving the insulation resistance. On the other hand, 35mol
%, The dielectric constant and insulation resistance decrease, and the dielectric loss increases.

【0021】BaSiO3の量を上記の範囲に限定した
のは、5mol%以下では焼結助材としての効果がほと
んど見られないためであり、一方、45mol%以上で
は、誘電率の低下が生じるためである。
The reason why the amount of BaSiO 3 is limited to the above-mentioned range is that the effect as a sintering aid is hardly observed at 5 mol% or less, while the dielectric constant decreases at 45 mol% or more. That's why.

【0022】MnOの量を上記の範囲に限定したのは、
1mol%以下では半導体化するためであり、10mo
l%以上では絶縁抵抗が低下し、容量温度特性がEIA
規格のX7R特性を満たさなくなるためである。
The reason why the amount of MnO is limited to the above range is as follows.
If the content is 1 mol% or less, it is necessary to convert the semiconductor into a semiconductor.
If it exceeds 1%, the insulation resistance decreases and the capacitance-temperature characteristic becomes EIA.
This is because the standard X7R characteristic is not satisfied.

【0023】RO3(RはW,Moから選択された1種
または2種以上の元素)の量を上記の範囲に限定したの
は、2mol%より少ない場合は、誘電率及び耐圧も十
分な値が得られないだけでなく、焼成時のクラックが生
じるためである。一方、10mol%より多い場合に
は、容量温度特性がEIA規格のX7R特性を満たさな
くなるためである。
The amount of RO 3 (R is one or more elements selected from W and Mo) is limited to the above range. When the amount is less than 2 mol%, the dielectric constant and withstand voltage are also sufficient. This is because not only the value cannot be obtained, but also cracks during firing. On the other hand, when the content is more than 10 mol%, the capacity-temperature characteristic does not satisfy the X7R characteristic of the EIA standard.

【0024】また、請求項3に記載の通り、前記添加物
に、さらにCaZrO3又はSrZrO3の少なくともい
ずれか一方をそれぞれ2〜15mol%添加することに
より、絶縁抵抗特性がさらに向上することが判明した。
なお、CaZrO3又はSrZrO3の量を上記の範囲に
限定したのは、15mol%以上では焼結性が低下する
ためであり、2mol%以下では絶縁抵抗特性の向上に
効果がないためである。
Further, as described in claim 3, it has been found that the addition of at least one of CaZrO 3 and SrZrO 3 to the additive in an amount of 2 to 15 mol% each further improves the insulation resistance characteristics. did.
The reason why the amount of CaZrO 3 or SrZrO 3 is limited to the above range is that the sinterability is reduced when the amount is 15 mol% or more, and the effect is not improved when the amount is 2 mol% or less.

【0025】このように、前記添加物にCaZrO3
はSrZrO3の少なくともいずれか一方を添加した場
合に、より良好な結果が得られた理由は、主組成物であ
るBaTiO3のBサイト成分であるTiの一部にZr
が置換されることにより、Tiの価数変化(+4→+
3)を抑制しているためであると考えられる。つまり、
総合的には、耐還元性を向上させる効果があり、再酸化
処理した際の絶縁抵抗の向上が大きくなるものと考えら
れる。
As described above, when at least one of CaZrO 3 and SrZrO 3 was added to the additive, a better result was obtained because of the B-site component of BaTiO 3 as the main composition. Some of Ti have Zr
Is substituted to change the valence of Ti (+ 4 → +
It is considered that this is because 3) is suppressed. That is,
Overall, it is considered that there is an effect of improving the reduction resistance, and the improvement of the insulation resistance at the time of the reoxidation treatment is increased.

【0026】また、CaZrO3及びSrZrO3の形
は、単体添加つまりCaO+ZrO2として添加した場
合より、より安定して粒界に存在できるため、絶縁抵抗
を向上させることができると考えられる。また、単体添
加では、TiサイトにZrが置換されやすくなるため、
粒成長を起こしやすくなり、X7R特性に特有なコアー
シェル構造を得にくくなるためであると考えられる。
It is considered that the form of CaZrO 3 and SrZrO 3 can be more stably present at the grain boundary than the case where CaZrO 3 and SrZrO 3 are added alone, that is, as CaO + ZrO 2 , so that the insulation resistance can be improved. In addition, since the addition of a simple substance makes it easy for Zr to be substituted for the Ti site,
This is presumably because grain growth is likely to occur, making it difficult to obtain a core-shell structure unique to X7R characteristics.

【0027】また、主成分であるチタン酸バリウムに上
記添加物を添加する方法としては、最初に特定の成分
(例えば、MgOやMnO)等をBaTiO3と高温で
反応させ、その後に残りの成分を加えるような2段階プ
ロセスを用いても良い。
As a method of adding the above-mentioned additive to barium titanate which is a main component, first, a specific component (eg, MgO or MnO) is reacted with BaTiO 3 at a high temperature, and then the remaining component is added. May be used.

【0028】誘電体磁器組成物を上記のような組成範囲
にすることにより、1100〜1250℃の還元雰囲気
焼成温度で、EIA規格のX7R特性やJIS規格のB
特性を持つ誘電体材料を容易に得ることができる。
By setting the dielectric porcelain composition within the above composition range, X7R characteristics of EIA standard and B of JIS standard can be obtained at a firing temperature of 1100 to 1250 ° C. in a reducing atmosphere.
A dielectric material having characteristics can be easily obtained.

【0029】さらに、誘電率を1500〜2500に維
持したままで、高い電界強度(5V/μm)で使用した
時、静電容量と絶縁抵抗との積(CR積)が25℃で4
000〜6000Ω・F、150℃で500Ω・F以上
で、耐圧も120V/μm以上と極めて高く、5V/μ
mの印可時における静電容量の低下率が40%以下であ
る誘電体材料、及びこれを用いたMLCを作製すること
ができる。
Further, when the device is used at a high electric field strength (5 V / μm) while maintaining the dielectric constant at 1500 to 2500, the product of the capacitance and the insulation resistance (CR product) is 4 at 25 ° C.
000-6000 Ω · F, 500 Ω · F or more at 150 ° C., and withstand voltage is extremely high, 120 V / μm or more, 5 V / μ.
A dielectric material having a capacitance reduction rate of 40% or less when m is applied, and an MLC using the same can be manufactured.

【0030】請求項4に記載の製造方法は、内部電極と
誘電体を交互に積層して積層体を形成し、この積層体を
焼成して積層セラミックコンデンサを製造する方法にお
いて、請求項1から請求項3に記載された誘電体磁器組
成物の中から選択された組成物を誘電体として使用する
ことを特徴としている。この方法によれば、請求項1〜
3に記載された組成物を用いることにより、クラックを
発生することなく良好に焼結可能であるため、ハンダ付
けによるクラックを防止することができるので、その電
気的特性を向上させることができる。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a multilayer ceramic capacitor by alternately laminating an internal electrode and a dielectric to form a laminated body and firing the laminated body. A composition selected from the dielectric porcelain composition described in claim 3 is used as a dielectric. According to this method, claims 1 to
By using the composition described in No. 3, sintering can be performed favorably without generating cracks, so that cracks due to soldering can be prevented, so that its electrical characteristics can be improved.

【0031】請求項5に記載の製造方法は、請求項4に
記載の方法において、前記積層体を、前記誘電体磁器組
成物の焼結粒子が0.2〜0.5μmとなる条件で焼成
し、熱処理することを特徴としている。この方法によれ
ば、耐圧及び絶縁抵抗、DCバイアス特性に優れたML
Cを得ることができる。
According to a fifth aspect of the present invention, in the method according to the fourth aspect, the laminate is fired under the condition that the sintered particles of the dielectric ceramic composition have a particle size of 0.2 to 0.5 μm. And heat-treated. According to this method, the ML having excellent withstand voltage, insulation resistance and DC bias characteristics is provided.
C can be obtained.

【0032】請求項6に記載の積層セラミックコンデン
サは、請求項5に記載の方法により製造されたことを特
徴としている。すなわち、請求項5に記載の製造方法を
用いることによって、優れた電気的特性を持つ、高性能
で信頼性の高い積層セラミックコンデンサを得ることが
できる。特に、本発明は、誘電体層が5〜40μmの広
範囲の積層セラミックコンデンサに好適である。
A multilayer ceramic capacitor according to a sixth aspect is manufactured by the method according to the fifth aspect. That is, by using the manufacturing method described in claim 5, it is possible to obtain a high-performance and highly reliable multilayer ceramic capacitor having excellent electric characteristics. In particular, the present invention is suitable for a wide range of multilayer ceramic capacitors having a dielectric layer of 5 to 40 μm.

【0033】以上述べたように、本発明による積層セラ
ミックコンデンサの製造方法としてより望ましい範囲は
以下の通りである。すなわち、ベースとなるBaTiO
3の平均粒径が0.3〜0.5μmである原料を用い、
添加物としてBaO−Ln23−MgO−BaSiO3
−MnO−RO3(但し、LnはSc,Y,Nd,P
r,Sm、RはW,Moから選択された1種または2種
以上の元素)の各成分が、それぞれBaO=0〜20m
ol%、Ln23=2〜25mol%、MgO=5〜3
5mol%、BaSiO3=5〜45mol%、MnO
=1〜10mol%、RO3=2〜10mol%であ
り、その平均粒径が0.3μm以下である酸化物成分
に、さらに、CaZrO3又はSrZrO3の少なくとも
いずれか一方を、それぞれ2〜15mol%加えた酸化
物成分を、ベースとなるBaTiO3に2.0〜6.0
wt%添加した誘電体を、1150〜1250℃で焼成
し、焼成後の平均粒径を0.2〜0.5μmにすること
である。
As described above, a more preferable range for the method of manufacturing the multilayer ceramic capacitor according to the present invention is as follows. That is, the base BaTiO
3 , using a raw material having an average particle size of 0.3 to 0.5 μm,
As an additive BaO-Ln 2 O 3 -MgO- BaSiO 3
—MnO—RO 3 (where Ln is Sc, Y, Nd, P
r, Sm, and R are one or more elements selected from W and Mo).
ol%, Ln 2 O 3 = 2 to 25 mol%, MgO = 5 to 3
5 mol%, BaSiO 3 = 5-45 mol%, MnO
= 1 to 10 mol%, a RO 3 = 2 to 10 mol%, the oxide component and the average particle diameter of 0.3μm or less, further, at least one of CaZrO 3 or SrZrO 3, respectively 2~15mol % Of the oxide component added to the base BaTiO 3 in the range of 2.0 to 6.0.
The dielectric material to which wt% is added is fired at 1150 to 1250 ° C., and the average particle diameter after firing is set to 0.2 to 0.5 μm.

【0034】[0034]

【実施例】以下、本発明の具体的実施例を挙げ、本発明
をさらに詳細に説明する。 [1.製造工程] [1−1.誘電体スラリーの調製]誘電体ベース材料と
して、平均粒径が0.3μmのBaTiO3を用いた。
なお、このBaTiO3は水熱育成で得られたものを使
用した。また、添加物である酸化物成分の作製に当たっ
ては、まず、BaO、Ln23(Ln=Sc,Y,N
d,Pr,Smの1種または2種以上の元素)、Mg
O、BaSiO3、MnO、RO3(R=W,Moの1種
または2種以上の元素)及びCaZrO3、SrZrO3
を、それぞれ、表1に示した組成に従って所定の量を秤
量した。そして、これらをアルミるつぼに入れ、115
0℃で4時間の仮焼を行った。次に、得られた仮焼粉
を、ジェットミル、アトライタミルなどの微粉砕機を用
いて粉砕することにより、平均粒径が0.2〜0.5μ
mの酸化物粉末を得た。なお、この酸化物粉末は、作製
条件により一部または全部がガラス化する場合がある
が、その組成が均一であれば得られる特性には大きな差
はない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to specific examples of the present invention. [1. Manufacturing process] [1-1. Preparation of Dielectric Slurry] As a dielectric base material, BaTiO 3 having an average particle diameter of 0.3 μm was used.
The BaTiO 3 used was obtained by hydrothermal growth. In addition, when preparing an oxide component as an additive, first, BaO, Ln 2 O 3 (Ln = Sc, Y, N
d, Pr, one or more elements of Sm), Mg
O, BaSiO 3 , MnO, RO 3 (R = one or two or more elements of Mo), CaZrO 3 , SrZrO 3
Were weighed in predetermined amounts according to the compositions shown in Table 1, respectively. Then, these are put into an aluminum crucible, and 115
Calcination was performed at 0 ° C. for 4 hours. Next, the obtained calcined powder is pulverized using a fine pulverizer such as a jet mill or an attritor mill to have an average particle size of 0.2 to 0.5 μm.
m oxide powder was obtained. Note that part or all of the oxide powder may be vitrified depending on manufacturing conditions, but there is no great difference in characteristics obtained if the composition is uniform.

【0035】以上のようにして得られた誘電体ベース材
料と酸化物粉末から、表1に示したように、各材料の混
合比率の異なる複数の誘電体原料を作製した。すなわ
ち、各誘電体原料1000gに対して、水とエチルアル
コール及び分散剤を80:19:1で混合した溶剤を7
00g入れ、ホモジナイザーを用いて分散させた。この
混合物を、通常の良く知られている分散方法であるボー
ルミルやアトリッションミルを用いて20時間分散させ
た後、さらに水性エマルジョンとアクリル樹脂と可塑剤
を含む溶液を入れて、複数種類の誘電体スラリーを作製
した(実施例1〜28)。なお、これらのスラリーの粘
性は、いずれも約200cpsに調整した。
From the dielectric base material and the oxide powder obtained as described above, as shown in Table 1, a plurality of dielectric raw materials having different mixing ratios of the respective materials were produced. That is, a solvent obtained by mixing water, ethyl alcohol, and a dispersant at a ratio of 80: 19: 1 was added to 1000 g of each dielectric material.
Then, the mixture was dispersed using a homogenizer. This mixture is dispersed for 20 hours using a ball mill or an attrition mill, which is a well-known dispersion method, and then a solution containing an aqueous emulsion, an acrylic resin, and a plasticizer is added. A dielectric slurry was prepared (Examples 1 to 28). The viscosity of each of these slurries was adjusted to about 200 cps.

【表1】 [Table 1]

【0036】[1−2.グリーンチップの作製]上記の
ようにして得られた誘電体スラリーを用いて、ドクター
ブレード装置により、PETフィルム上に20μmの厚
さを持つグリーンシートを成形し、このグリーンシート
上に、内部電極用ペーストを2μmの厚みで印刷した。
なお、内部電極用ペーストとしては、平均粒径0.5μ
mのNi粒子100重量部と、有機ビヒクル(エチルセ
ルロース樹脂8重量部をブチルカルビトール92重量部
に溶解したもの)40重量部、及びブチルカルビトール
10重量部とを、3本ロールにより混練し、ペースト化
したものを使用した。
[1-2. Production of Green Chip] Using the dielectric slurry obtained as described above, a green sheet having a thickness of 20 μm is formed on a PET film by a doctor blade device, and an internal electrode is formed on the green sheet. The paste was printed with a thickness of 2 μm.
The paste for the internal electrode has an average particle size of 0.5 μm.
m, 100 parts by weight of Ni particles, 40 parts by weight of an organic vehicle (8 parts by weight of ethyl cellulose resin dissolved in 92 parts by weight of butyl carbitol), and 10 parts by weight of butyl carbitol were kneaded by a three-roll mill. The paste was used.

【0037】次いで、PETフィルムからシートを剥離
して積層し、80℃で1トン/cm 2の静水圧を用いて
加圧接着してグリーンチップを得た。積層数は100層
とした。次に、このグリーンチップを所定サイズに切断
し、金属板セッターに搭載し、脱バインダー処理、焼成
及びアニールを、下記の条件で連続的に行ない、コンデ
ンサ素子を作製した。なお、脱バインダー処理、焼成及
びアニールの条件は、以下の通りである。また、それぞ
れの雰囲気ガスの加湿にはウェッターを用いた。 (脱バインダー処理) 昇温速度:20℃/時間 保持温度:300℃ 温度保持時間:8時間 雰囲気ガス:空気中 (焼成) 昇温速度:300℃/時間 保持温度:1200℃及び1250℃ 温度保持時間:2時間 冷却速度:200℃/時間 雰囲気ガス:加湿したN2とH2との混合ガス 酸素分圧:1×10-11atm (アニール) 保持温度:750℃ 温度保持時間:4時間 昇温、降温速度:300℃/時間 雰囲気ガス:空気 酸素分圧:2×10-1atm
Next, the sheet is peeled off from the PET film.
1 ton / cm at 80 ° C TwoUsing the hydrostatic pressure of
A green chip was obtained by pressure bonding. Number of layers is 100
And Next, this green chip is cut into a predetermined size.
Mounted on a metal plate setter, debinding and firing
And annealing are performed continuously under the following conditions.
A sensor element was manufactured. It should be noted that the binder removal process, firing and
Conditions for annealing and annealing are as follows. Also, each
A wetter was used for humidifying these atmosphere gases. (Binder removal treatment) Heating rate: 20 ° C / hour Holding temperature: 300 ° C Temperature holding time: 8 hours Atmospheric gas: in air (firing) Heating rate: 300 ° C / hour Holding temperature: 1200 ° C and 1250 ° C Temperature holding Time: 2 hours Cooling rate: 200 ° C./hour Atmosphere gas: Humidified NTwoAnd HTwoMixed gas with oxygen partial pressure: 1 × 10-11atm (annealing) Holding temperature: 750 ° C Temperature holding time: 4 hours Heating / cooling rate: 300 ° C / hour Atmospheric gas: air Oxygen partial pressure: 2 × 10-1atm

【0038】[1−3.バレル処理・外部電極の形成]
得られたコンデンサ素子の端面をバレル処理により研磨
した後、平均粒径0.5μmのCu粒子100重量部
と、有機ビヒクル(エチルセルロース樹脂8重量部をブ
チルカルビトール92重量部に溶解したもの)35重量
部、及びブチルカルビトール7重量部とを混練し、ペー
スト化した外部電極用ペーストを前記端面に転写し、N
2雰囲気中で850℃にて5分間焼成して外部電極を形
成し、図1に示すような構成を有する積層セラミックコ
ンデンサを得た。なお、図において、1は誘電体層、2
は内部電極、3は外部電極である。
[1-3. Barrel treatment and external electrode formation]
After polishing the end face of the obtained capacitor element by barrel processing, 100 parts by weight of Cu particles having an average particle size of 0.5 μm and an organic vehicle (8 parts by weight of ethyl cellulose resin dissolved in 92 parts by weight of butyl carbitol) 35 Parts by weight and 7 parts by weight of butyl carbitol are kneaded, and the paste for an external electrode is transferred to the end face.
By firing at 850 ° C. for 5 minutes in two atmospheres to form external electrodes, a multilayer ceramic capacitor having a configuration as shown in FIG. 1 was obtained. In the figure, 1 is a dielectric layer, 2
Is an internal electrode, and 3 is an external electrode.

【0039】[2.試験結果]続いて、以下のようにし
て、誘電体組成の差異による特性比較を行った。また、
上記のようにして製造した各サンプルのサイズは、5.
7×5.0×2.3mmであり、有効誘電体層の厚さは
15μm×100層、内部電極層の厚さは約1.2μm
であった。
[2. Test Result] Subsequently, characteristics were compared based on the difference in dielectric composition as follows. Also,
The size of each sample manufactured as described above is 5.
7 × 5.0 × 2.3 mm, the effective dielectric layer has a thickness of 15 μm × 100 layers, and the internal electrode layer has a thickness of about 1.2 μm.
Met.

【0040】なお、各サンプルの誘電体層の組成は、上
記表1に示す通りであり、表1において、実施例1〜2
8は本発明に係る組成であり、参考例1〜8は本発明の
範囲外の組成である。すなわち、参考例1は、酸化物成
分をまったく添加していない誘電体組成からなるサンプ
ルであり、参考例2〜8は、それぞれ*を付した組成
が、本発明の範囲外となる誘電体組成からなるサンプル
である。
The composition of the dielectric layer of each sample is as shown in Table 1 above.
8 is a composition according to the present invention, and Reference Examples 1 to 8 are compositions outside the scope of the present invention. That is, Reference Example 1 is a sample composed of a dielectric composition to which no oxide component is added, and Reference Examples 2 to 8 are dielectric compositions in which the compositions marked with * are outside the scope of the present invention. This is a sample consisting of

【0041】そして、この表1に示すような誘電体組成
を持つ複数のサンプルの各々について、鉛レスハンダを
用いた時の実装後のクラック数といった外観検査を行う
と共に、誘電率、容量の温度特性、誘電損失、耐圧、絶
縁抵抗等を測定したところ、下記の表2に示すような結
果が得られた。なお、この場合の検査および測定の詳細
は、次の通りである。
Then, for each of the plurality of samples having the dielectric compositions shown in Table 1, an appearance inspection such as the number of cracks after mounting when using lead-less solder was performed, and the dielectric constant and the temperature characteristics of the capacitance were measured. , Dielectric loss, withstand voltage, insulation resistance, and the like, the results shown in Table 2 below were obtained. The details of the inspection and measurement in this case are as follows.

【0042】(外観検査)ハンダクラック数は、各組成
ごとに20個のサンプルを使用し、280℃のハンダ槽
に浸し、その後に光学顕微鏡で素子に発生しているクラ
ックを観察し、その不良率を求めた。 (容量の温度特性)容量の温度特性は、EIAのX7R
特性を満足するか否かを調べた。具体的には、LCRメ
ータにより、−55〜125℃について測定電圧1Vで
容量を測定し、容量変化率が±15%以内(基準温度2
5℃)を満足するか否かを調べた。また、−25〜85
℃について測定電圧1Vで容量を測定し、容量変化率が
±10%以内(基準温度20℃)を満足するかどうかを
調べた。両者を満足する場合を○、満足しない場合を×
とした。
(Inspection of appearance) The number of solder cracks was determined by using 20 samples for each composition, immersing in solder bath at 280 ° C, observing cracks generated in the element with an optical microscope, The rate was determined. (Temperature Characteristics of Capacitance) The temperature characteristics of capacitance are as follows.
It was examined whether the characteristics were satisfied. Specifically, the capacitance was measured at a measurement voltage of 1 V at −55 to 125 ° C. with an LCR meter, and the capacitance change rate was within ± 15% (reference temperature 2
(5 ° C.). Also, -25 to 85
The capacitance was measured at a measurement voltage of 1 V at 0 ° C., and it was checked whether or not the rate of change of the capacitance was within ± 10% (reference temperature: 20 ° C.). ○: when both are satisfied, ×: when not satisfied
And

【0043】(比誘電率εs及び誘電損失)20℃にお
ける静電容量を測定し、電極面積と誘電体の厚みから比
誘電率を測定した。なお、誘電率と誘電損失は1vrm
s、1.0kHzでの値を用いた。 (耐圧)MLC素子に電圧を印可して電流が10mA以
上流れた電圧を耐圧とした。測定数は各組成ごとに5個
であり、その平均を求めた。
(Relative Dielectric Constant εs and Dielectric Loss) The capacitance at 20 ° C. was measured, and the relative dielectric constant was measured from the electrode area and the thickness of the dielectric. The dielectric constant and dielectric loss are 1 vrm
s, the value at 1.0 kHz was used. (Withstand voltage) A voltage at which a current was applied to the MLC element by 10 mA or more was defined as a withstand voltage. The number of measurements was 5 for each composition, and the average was determined.

【0044】(高い電界強度下での容量抵抗積)素子を
25℃及び150℃の恒温槽に放置し、10分後に容量
と誘電体厚み1μm当たり5V印可した時の絶縁抵抗の
1分値を測定し、その積をCR(5V/μm)とした。 (DCバイアス特性)まず、1kHz、1VrmsのA
C電圧を印可した時の静電容量を測定した後、DC75
Vと1kHz、1VrmsのAC電圧を同時に印可した
時の静電容量を測定した。得られた測定値により、静電
容量の低下率を算出した。
(Capacitance resistance product under high electric field strength) The element was left in a constant temperature bath at 25 ° C. and 150 ° C., and after 10 minutes, the 1 minute value of the capacitance and the insulation resistance when 5 V was applied per 1 μm of the dielectric thickness was calculated. The product was measured, and the product was defined as CR (5 V / μm). (DC bias characteristics) First, 1 kHz, 1 Vrms A
After measuring the capacitance when the C voltage is applied, DC 75
The capacitance when V and 1 kHz and 1 Vrms AC voltage were applied simultaneously was measured. From the obtained measurement values, the rate of decrease in capacitance was calculated.

【表2】 [Table 2]

【0045】表2から明らかなように、本発明に係る誘
電体組成を持つサンプル(実施例1〜28)の各特性
は、いずれも本発明の範囲外の誘電体組成を持つサンプ
ル(参考例1〜8)に比べて格段に優れている。すなわ
ち、実施例1〜28の各特性から明らかなように、本発
明に係る誘電体組成を用いた場合には、280℃のハン
ダ槽に浸してもクラックが生じない。また、耐圧に優れ
たMLCを製造することができる。また、得られたML
Cは高い電界強度下(5V/μm)でも、25℃及び1
50℃とも極めて高い絶縁抵抗を示し、さらにDCバイ
アス印可時の静電容量の低下率も小さい。
As is clear from Table 2, the characteristics of the samples having the dielectric composition according to the present invention (Examples 1 to 28) are all the same as those of the sample having the dielectric composition outside the scope of the present invention (Reference Example). It is much better than 1-8). That is, as is clear from the characteristics of Examples 1 to 28, when the dielectric composition according to the present invention is used, no crack occurs even when immersed in a 280 ° C. solder bath. Further, it is possible to manufacture an MLC having excellent withstand voltage. In addition, the obtained ML
C was 25 ° C. and 1 ° C. even under high electric field strength (5 V / μm).
The insulation resistance is extremely high at 50 ° C., and the rate of decrease in capacitance when DC bias is applied is small.

【0046】[3.他の実施例]なお、本発明は、前記
実施例に限定されるものではなく、本発明の範囲内で他
にも多種多様な変形例を実施可能である。例えば、誘電
体磁器組成物の具体的な組成は、本発明の範囲内で適宜
選択可能である。同様に、電極用金属の組成やバインダ
ーの組成等も、適宜選択可能である。さらに、具体的な
製造工程や各工程の条件も適宜選択可能である。例え
ば、脱バインダー処理や焼成、アニールにおける温度条
件や昇温・降温速度条件、雰囲気ガス条件等は、適宜選
択可能である。
[3. Other Embodiments] It should be noted that the present invention is not limited to the above-described embodiments, and various other modifications can be made within the scope of the present invention. For example, the specific composition of the dielectric ceramic composition can be appropriately selected within the scope of the present invention. Similarly, the composition of the electrode metal, the composition of the binder, and the like can be appropriately selected. Furthermore, specific manufacturing steps and conditions of each step can be appropriately selected. For example, the temperature conditions, the temperature rising / falling rate conditions, the atmosphere gas conditions, and the like in the binder removal processing, firing, and annealing can be appropriately selected.

【0047】[0047]

【発明の効果】以上説明したように、本発明によれば、
良好に焼結可能で、鉛レスハンダをハンダ付けする際に
クラックが生じにくく、優れた耐圧及びDCバイアス特
性を示し、高い電界強度下(5V/μm)での容量抵抗
積が高い積層セラミックコンデンサ用として好適な誘電
体磁器組成物を提供することができる。
As described above, according to the present invention,
For multilayer ceramic capacitors that can be sintered well, hardly cause cracks when soldering leadless solder, show excellent withstand voltage and DC bias characteristics, and have a high capacitance-resistance product under high electric field strength (5 V / μm). As a result, a dielectric ceramic composition suitable for the present invention can be provided.

【0048】また、そのような組成物を用いて、EIA
規格のX7R特性及びJIS規格のB特性を満たすこと
が可能な、高性能で信頼性の高い積層セラミックコンデ
ンサを提供することができる。さらに、そのような優れ
た積層セラミックコンデンサを製造可能な、環境性に優
れた製造方法を提供することができる。
Further, using such a composition, EIA
It is possible to provide a high-performance and highly reliable multilayer ceramic capacitor capable of satisfying the standard X7R characteristic and the JIS standard B characteristic. Further, it is possible to provide a manufacturing method which is capable of manufacturing such an excellent multilayer ceramic capacitor and has excellent environmental properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る積層セラミックコンデンサの構成
を示す斜視図
FIG. 1 is a perspective view showing a configuration of a multilayer ceramic capacitor according to the present invention.

【符号の説明】[Explanation of symbols]

1…誘電体層 2…内部電極 3…外部電極 DESCRIPTION OF SYMBOLS 1 ... Dielectric layer 2 ... Internal electrode 3 ... External electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 半田 喜代二 東京都青梅市東青梅1丁目167番地の1 日本ケミコン株式会社内 Fターム(参考) 4G031 AA03 AA04 AA05 AA06 AA07 AA08 AA11 AA12 AA17 AA18 AA19 AA30 BA09 CA04 GA03 5E001 AB03 AC09 AE02 AE03 AE04 AH00 AH09 AJ01 AJ02 5G303 AA01 AB02 AB20 BA12 CA01 CB03 CB06 CB17 CB18 CB22 CB32 CB35 CB37 CB40 CB41 DA05 DA07  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Kiyoji Handa 1-17-1 Higashi-Ome, Ome-shi, Tokyo F-term in Nippon Chemi-Con Corporation 4G031 AA03 AA04 AA05 AA06 AA07 AA08 AA11 AA12 AA17 AA18 AA19 AA30 BA09 CA04 GA03 5E001 AB03 AC09 AE02 AE03 AE04 AH00 AH09 AJ01 AJ02 5G303 AA01 AB02 AB20 BA12 CA01 CB03 CB06 CB17 CB18 CB22 CB32 CB35 CB37 CB40 CB41 DA05 DA07

Claims (6)

    【特許請求の範囲】[Claims]
  1. 【請求項1】 組成式がBaTiO3からなる主組成物
    に対して、BaO−Ln23−MgO−BaSiO3
    MnO−RO3(但し、LnはSc,Y,Nd,Pr,
    Sm、RはW,Moから選択された1種または2種以上
    の元素)からなる添加物を、2.0〜6.0wt%含有
    させてなることを特徴とする誘電体磁器組成物。
    1. A to the main composition formula consists of BaTiO 3, BaO-Ln 2 O 3 -MgO-BaSiO 3 -
    MnO—RO 3 (where Ln is Sc, Y, Nd, Pr,
    Sm, R is one or two or more elements selected from W and Mo) in an amount of 2.0 to 6.0 wt%.
  2. 【請求項2】 前記BaO−Ln23−MgO−BaS
    iO3−MnO−RO3(但し、LnはSc,Y,Nd,
    Pr,Sm、RはW,Moから選択された1種または2
    種以上の元素)からなる添加物を構成する各成分が、そ
    れぞれBaO=0〜20mol%、Ln23=2〜25
    mol%、MgO=5〜35mol%、BaSiO3
    5〜45mol%、MnO=1〜10mol%、RO3
    =2〜10mol%であり、前記添加物の平均粒径が
    0.3μm以下であることを特徴とする請求項1記載の
    誘電体磁器組成物。
    2. The BaO-Ln 2 O 3 -MgO-BaS
    iO 3 —MnO—RO 3 (where Ln is Sc, Y, Nd,
    Pr, Sm, and R are one or two selected from W and Mo.
    The components constituting the additive consisting of at least one kind of element are BaO = 0 to 20 mol% and Ln 2 O 3 = 2 to 25, respectively.
    mol%, MgO = 5 to 35 mol%, BaSiO 3 =
    5 to 45 mol%, MnO = 1 to 10 mol%, RO 3
    2. The dielectric ceramic composition according to claim 1, wherein the average particle diameter of the additive is 0.3 μm or less.
  3. 【請求項3】 前記添加物に、CaZrO3又はSrZ
    rO3の少なくともいずれか一方を、それぞれ2〜15
    mol%加えたことを特徴とする請求項1又は請求項2
    記載の誘電体磁器組成物。
    3. The method according to claim 1, wherein the additive is CaZrO 3 or SrZ.
    at least one of rO 3 is 2-15
    3. The method according to claim 1, wherein mol% is added.
    A dielectric porcelain composition as described in the above.
  4. 【請求項4】 Ni内部電極と誘電体を交互に積層して
    積層体を形成し、この積層体を焼成して積層セラミック
    コンデンサを製造する方法において、 上記請求項1から請求項3に記載された誘電体磁器組成
    物の中から選択された組成物を誘電体として使用するこ
    とを特徴とする積層セラミックコンデンサの製造方法。
    4. A method of manufacturing a multilayer ceramic capacitor by forming a laminate by alternately laminating Ni internal electrodes and dielectrics, and firing the laminate to produce a multilayer ceramic capacitor. A method for producing a multilayer ceramic capacitor, comprising using a composition selected from the above dielectric ceramic compositions as a dielectric.
  5. 【請求項5】 前記積層体を、前記誘電体磁器組成物の
    焼結粒子が0.2〜0.5μmとなる条件で焼成し、熱
    処理することを特徴とする請求項4記載の積層セラミッ
    クコンデンサの製造方法。
    5. The multilayer ceramic capacitor according to claim 4, wherein the multilayer body is fired and heat-treated under the condition that the sintered particles of the dielectric ceramic composition have a particle size of 0.2 to 0.5 μm. Manufacturing method.
  6. 【請求項6】 上記請求項5に記載の方法により製造さ
    れたことを特徴とする積層セラミックコンデンサ。
    6. A multilayer ceramic capacitor manufactured by the method according to claim 5.
JP2000397587A 2000-12-27 2000-12-27 Dielectric ceramic composition, multilayer ceramic capacitor and its production method Pending JP2002201064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000397587A JP2002201064A (en) 2000-12-27 2000-12-27 Dielectric ceramic composition, multilayer ceramic capacitor and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000397587A JP2002201064A (en) 2000-12-27 2000-12-27 Dielectric ceramic composition, multilayer ceramic capacitor and its production method

Publications (1)

Publication Number Publication Date
JP2002201064A true JP2002201064A (en) 2002-07-16

Family

ID=18862699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000397587A Pending JP2002201064A (en) 2000-12-27 2000-12-27 Dielectric ceramic composition, multilayer ceramic capacitor and its production method

Country Status (1)

Country Link
JP (1) JP2002201064A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169061A (en) * 2004-12-17 2006-06-29 Namics Corp Reduction resistant dielectric ceramic composition and its use
JP2010024086A (en) * 2008-07-18 2010-02-04 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
JP2010516603A (en) * 2007-01-17 2010-05-20 フエロ コーポレーション X8R dielectric composition for nickel electrodes
CN101916657A (en) * 2010-07-30 2010-12-15 广东风华高新科技股份有限公司 High-frequency and high-Q-value chip multilayer ceramic capacitor
US8178458B2 (en) * 2009-12-01 2012-05-15 National Taiwan University Technology Dielectric ceramic composition

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114611B2 (en) * 1983-11-30 1986-04-19 Taiyo Yuden Kk
JPH06103812A (en) * 1992-09-21 1994-04-15 Taiyo Yuden Co Ltd Dielectric ceramic and ceramic capacitor
JPH06215979A (en) * 1993-01-21 1994-08-05 Tdk Corp Reduction-resistant ferroelectric porcelain composite
JPH06342735A (en) * 1993-06-01 1994-12-13 Tdk Corp Laminated type ceramic chip capacitor
JPH09255421A (en) * 1996-03-26 1997-09-30 Mitsubishi Materials Corp High permittivity porcelain composition having slight dielectric loss
JPH10255549A (en) * 1997-03-05 1998-09-25 Tdk Corp Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JPH10270284A (en) * 1997-03-24 1998-10-09 Tdk Corp Manufacture of dielectric ceramic material
JPH10297967A (en) * 1997-02-25 1998-11-10 Tdk Corp Dielectric ceramic composition with high dielectric constant and its production
JP2000154057A (en) * 1998-07-29 2000-06-06 Tdk Corp Dielectric porcelain composition and electronic parts
JP2000281435A (en) * 1999-03-31 2000-10-10 Tdk Corp Dielectric composition and ceramic capacitor
JP2000311828A (en) * 1999-02-26 2000-11-07 Tdk Corp Manufacture of dielectric ceramic composition and manufacture of dielectric layer containing electronic component
JP2001220225A (en) * 1999-12-01 2001-08-14 Tdk Corp Method for producing dielectric ceramic composition
JP2002255639A (en) * 2000-12-25 2002-09-11 Tdk Corp Dielectric ceramic composition and electronic component

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114611B2 (en) * 1983-11-30 1986-04-19 Taiyo Yuden Kk
JPH06103812A (en) * 1992-09-21 1994-04-15 Taiyo Yuden Co Ltd Dielectric ceramic and ceramic capacitor
JPH06215979A (en) * 1993-01-21 1994-08-05 Tdk Corp Reduction-resistant ferroelectric porcelain composite
JPH06342735A (en) * 1993-06-01 1994-12-13 Tdk Corp Laminated type ceramic chip capacitor
JPH09255421A (en) * 1996-03-26 1997-09-30 Mitsubishi Materials Corp High permittivity porcelain composition having slight dielectric loss
JPH10297967A (en) * 1997-02-25 1998-11-10 Tdk Corp Dielectric ceramic composition with high dielectric constant and its production
JPH10255549A (en) * 1997-03-05 1998-09-25 Tdk Corp Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JPH10270284A (en) * 1997-03-24 1998-10-09 Tdk Corp Manufacture of dielectric ceramic material
JP2000154057A (en) * 1998-07-29 2000-06-06 Tdk Corp Dielectric porcelain composition and electronic parts
JP2000311828A (en) * 1999-02-26 2000-11-07 Tdk Corp Manufacture of dielectric ceramic composition and manufacture of dielectric layer containing electronic component
JP2000281435A (en) * 1999-03-31 2000-10-10 Tdk Corp Dielectric composition and ceramic capacitor
JP2001220225A (en) * 1999-12-01 2001-08-14 Tdk Corp Method for producing dielectric ceramic composition
JP2002255639A (en) * 2000-12-25 2002-09-11 Tdk Corp Dielectric ceramic composition and electronic component

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169061A (en) * 2004-12-17 2006-06-29 Namics Corp Reduction resistant dielectric ceramic composition and its use
JP4556659B2 (en) * 2004-12-17 2010-10-06 Tdk株式会社 Reduction-resistant dielectric ceramic composition and use thereof
JP2010516603A (en) * 2007-01-17 2010-05-20 フエロ コーポレーション X8R dielectric composition for nickel electrodes
JP2010024086A (en) * 2008-07-18 2010-02-04 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
US8178458B2 (en) * 2009-12-01 2012-05-15 National Taiwan University Technology Dielectric ceramic composition
CN101916657A (en) * 2010-07-30 2010-12-15 广东风华高新科技股份有限公司 High-frequency and high-Q-value chip multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
KR100683545B1 (en) Dielectric ceramic composition and method of production and electronic device of the same
US7042707B2 (en) Multilayer ceramic capacitor
US7718560B2 (en) Electronic device, dielectric ceramic composition and the production method
JP4858248B2 (en) Dielectric porcelain composition and electronic component
KR100683541B1 (en) Dielectric porcelain composition and electronic device
EP0814486B1 (en) Dielectric ceramic composition and monolithic ceramic capacitor using same
JP3361091B2 (en) Dielectric porcelain and electronic components
TWI299328B (en) Dielectric ceramic composition and multi-layer ceramic capacitor
JP4805938B2 (en) Dielectric porcelain, manufacturing method thereof, and multilayer ceramic capacitor
JP4635928B2 (en) Multilayer electronic component and manufacturing method thereof
JP4814342B2 (en) Multilayer ceramic capacitor
JP4937522B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
US7678724B2 (en) Electronic device, dielectric ceramic composition and the production method
JP4382598B2 (en) Reduction-resistant dielectric ceramic composition and ultrathin multilayer ceramic capacitor
JP4100173B2 (en) Dielectric ceramic and multilayer ceramic capacitors
TWI409836B (en) Cog dielectric composition for use with copper electrodes
KR101274408B1 (en) Dielectric porcelain composition and ceramic electronic component
JP4572628B2 (en) Dielectric ceramic composition and electronic component
EP0817216B1 (en) Dielectric ceramic composition and monolothic ceramic capacitor using same
KR100800220B1 (en) Production method of multilayer ceramic electronic device
KR100731867B1 (en) Dielectric ceramic composition and electronic device
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
KR100979858B1 (en) Dielectric ceramic composition and electronic device
CN108257779B (en) Laminated ceramic electronic component
KR20010109177A (en) Multilayer Ceramic Capacitor and Production Method Thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301