JP2011132071A - Method for producing dielectric ceramic material - Google Patents

Method for producing dielectric ceramic material Download PDF

Info

Publication number
JP2011132071A
JP2011132071A JP2009293394A JP2009293394A JP2011132071A JP 2011132071 A JP2011132071 A JP 2011132071A JP 2009293394 A JP2009293394 A JP 2009293394A JP 2009293394 A JP2009293394 A JP 2009293394A JP 2011132071 A JP2011132071 A JP 2011132071A
Authority
JP
Japan
Prior art keywords
powder
ceramic material
dielectric ceramic
barium titanate
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009293394A
Other languages
Japanese (ja)
Inventor
Takeshi Yamaguchi
健 山口
Kotaro Hatake
宏太郎 畠
Nobutake Hirai
伸岳 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electro Mechanics Co Ltd
Original Assignee
Samsung Electro Mechanics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electro Mechanics Co Ltd filed Critical Samsung Electro Mechanics Co Ltd
Priority to JP2009293394A priority Critical patent/JP2011132071A/en
Priority to KR1020100134984A priority patent/KR20110074486A/en
Publication of JP2011132071A publication Critical patent/JP2011132071A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a dielectric ceramic material which has a small particle diameter and little variation in the particle diameter and is therefore suitable for the thinning of a dielectric layer. <P>SOLUTION: In the method for producing a dielectric ceramic material, barium carbonate and titanium dioxide are reacted by solid phase reaction to produce a dielectric ceramic material. The method includes: a pulverizing mixing step of pulverizing and mixing a powdery mixture containing barium carbonate powder and titanium dioxide powder in an organic solvent; and a calcining step of firing the pulverized and mixed powdery mixture to obtain the power of a barium titanate-based compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、粒径が小さく、かつ、粒径のバラツキが少ない、誘電体層の薄層化に適した誘電体セラミックス材料の製造方法に関するものである。   The present invention relates to a method for producing a dielectric ceramic material having a small particle size and small variation in particle size and suitable for thinning a dielectric layer.

従来の積層セラミックコンデンサは、主成分としてチタン酸バリウム系化合物を、副成分として特性調整のための金属化合物を含有する誘電体セラミック材料を、シート状に成形してグリーンシートを作製し、このグリーンシート上に電極を印刷したものを積層する工程を繰り返すことにより作製されている。   In conventional multilayer ceramic capacitors, a green sheet is produced by forming a dielectric ceramic material containing a barium titanate compound as a main component and a metal compound for adjusting characteristics as a subcomponent into a sheet shape. It is produced by repeating the process of laminating a sheet in which electrodes are printed on a sheet.

近時、電子機器製品の小型化に伴い、電子回路の高密度化が進み、この結果、積層セラミックコンデンサの小型大容量化が強く求められている。そして、この要望を実現するために、内部電極層及び誘電体層の薄層化と積層数の増加とが試みられている。   In recent years, with the miniaturization of electronic equipment products, the density of electronic circuits has been increasing, and as a result, there has been a strong demand for smaller and larger capacity multilayer ceramic capacitors. In order to realize this demand, attempts have been made to make the internal electrode layers and dielectric layers thinner and increase the number of layers.

しかし、誘電体層が薄層化された場合、主成分であるチタン酸バリウム系化合物の粒径が大きいと、グリーンチップ焼成後の特性や誘電体層の表面粗さにバラツキが生じ、ショート率が増加し絶縁抵抗不良が多くなる。このため、主成分であるチタン酸バリウム系化合物の微粒子化が求められている。   However, when the dielectric layer is thinned, if the particle size of the main component barium titanate compound is large, the characteristics after firing the green chip and the surface roughness of the dielectric layer will vary, resulting in a short circuit rate. Increases and the insulation resistance defect increases. For this reason, there is a demand for micronization of the main component barium titanate compound.

従来、例えば、特許文献1に記載されているように、固相反応を用いてチタン酸バリウム系化合物を製造する場合、炭酸バリウム粉末と二酸化チタン粉末とを粉砕混合するには、水中にこれらを分散して粉砕混合が行われている。   Conventionally, as described in, for example, Patent Document 1, when a barium titanate compound is produced using a solid-phase reaction, in order to pulverize and mix barium carbonate powder and titanium dioxide powder, these are put in water. Dispersed and pulverized and mixed.

特開2007−169122JP2007-169122

本発明は、上記現状に鑑み、粒径が小さく、かつ、粒径のバラツキが少ない、誘電体層の薄層化に適した誘電体セラミックス材料を製造する方法を提供することを課題とする。   In view of the above situation, an object of the present invention is to provide a method for producing a dielectric ceramic material having a small particle size and a small variation in particle size and suitable for thinning a dielectric layer.

本発明者らが鋭意検討を行ったところ、炭酸バリウム粉末と二酸化チタン粉末とを有機溶媒中で粉砕混合すると、表面活性を低下させずに、これら原料物質を均一に混合することができ、低い仮焼温度でチタン酸バリウム相が生成するとともに、多くのチタン酸バリウムの粒子内に双晶が形成されることが確認された。なお、「双晶」とは、図1及び図2に示すような結晶構造を意味する。そして、このようなチタン酸バリウムは仮焼温度を上昇させても粒成長しにくいことが確認された。本発明は、このような新規な知見に基づいて完成されたものである。   As a result of intensive studies by the present inventors, when the barium carbonate powder and the titanium dioxide powder are pulverized and mixed in an organic solvent, these raw materials can be uniformly mixed without lowering the surface activity. It was confirmed that a barium titanate phase was generated at the calcination temperature, and twins were formed in many barium titanate particles. The “twin crystal” means a crystal structure as shown in FIGS. And it was confirmed that such barium titanate hardly grows even if the calcining temperature is raised. The present invention has been completed based on such novel findings.

なお、従来、固相反応において分散媒として有機溶媒を使用するのは、原料物質が水溶性のものである場合のみであり、水に難溶な炭酸バリウムと二酸化チタンとを原料物質とする場合、その分散媒として有機溶媒を使用した例は知られていない。   Conventionally, the organic solvent is used as the dispersion medium in the solid phase reaction only when the raw material is water-soluble, and when the raw material is barium carbonate and titanium dioxide, which are hardly soluble in water. No example of using an organic solvent as the dispersion medium is known.

すなわち本発明に係る誘電体セラミックス材料の製造方法は、炭酸バリウムと二酸化チタンとを固相反応により反応させて誘電体セラミックス材料を製造する方法であって、炭酸バリウム粉末及び二酸化チタン粉末を含有する混合粉末を有機溶媒中で粉砕混合する粉砕混合工程と、粉砕混合した前記混合粉末を焼成してチタン酸バリウム系化合物の粉末を得る仮焼工程とを備えていることを特徴とする。   That is, the method for producing a dielectric ceramic material according to the present invention is a method for producing a dielectric ceramic material by reacting barium carbonate and titanium dioxide by a solid phase reaction, which contains barium carbonate powder and titanium dioxide powder. A pulverizing and mixing step of pulverizing and mixing the mixed powder in an organic solvent and a calcination step of firing the pulverized and mixed mixed powder to obtain a barium titanate-based compound powder are provided.

このようなものであれば、炭酸バリウム粉末及び二酸化チタン粉末を含有する混合粉末を有機溶媒中で粉砕混合し、得られた混合粉末を焼成することにより、チタン酸バリウム系化合物の粒成長が抑制されるので、その粒径制御が容易となる。その結果、粒径が小さく、かつ、粒径のバラツキが少ないチタン酸バリウム系化合物の粉末を容易に得ることができる。   If this is the case, the mixed powder containing barium carbonate powder and titanium dioxide powder is pulverized and mixed in an organic solvent, and the resulting mixed powder is fired to suppress grain growth of the barium titanate compound. Therefore, control of the particle size becomes easy. As a result, it is possible to easily obtain a powder of a barium titanate compound having a small particle size and a small variation in particle size.

このように、粒径が小さく、かつ、粒径のバラツキが少ないチタン酸バリウム系化合物を誘電体層の主成分として用いることにより、ショート率が低く絶縁抵抗不良も抑制されるうえに充分な静電容量を備えた積層セラミックコンデンサを得ることができる。   As described above, by using a barium titanate compound having a small particle size and a small variation in the particle size as a main component of the dielectric layer, the short-circuit rate is low and the insulation resistance failure is suppressed, and sufficient static resistance is achieved. A multilayer ceramic capacitor having a capacitance can be obtained.

このような本発明において、前記仮焼工程により得られたチタン酸バリウム系化合物の粉末は、平均粒径が100nm以下で、10%以上の粒子の内部に双晶が存在するものであることが好ましい。   In the present invention, the barium titanate-based compound powder obtained by the calcining step has an average particle size of 100 nm or less, and twins are present inside 10% or more of the particles. preferable.

また、前記仮焼工程により得られたチタン酸バリウム系化合物の粉末は、700〜1100℃の仮焼温度における粒径変化率が、0.3以下であることが好ましい。ここで言う「粒径変化率」とは、仮焼温度をx軸に、粒径をy軸にプロットしたときの直線を線形近似したときの傾きの値である。   Moreover, it is preferable that the particle size change rate in the calcining temperature of 700-1100 degreeC is 0.3 or less as for the powder of the barium titanate type compound obtained by the said calcination process. The “particle size change rate” referred to here is a value of a slope when linearly approximating a straight line when plotting the calcining temperature on the x-axis and the particle size on the y-axis.

本発明に係る製造方法により得られた誘電体材料の焼結体からなる誘電体層を備えている積層セラミックコンデンサもまた、本発明の1つである。   A multilayer ceramic capacitor having a dielectric layer made of a sintered body of a dielectric material obtained by the manufacturing method according to the present invention is also one aspect of the present invention.

本発明によれば、粒径が小さく、かつ、粒径のバラツキが少ないチタン酸バリウム系化合物を得ることができるので、当該チタン酸バリウム系化合物を主成分とする誘電体層の表面粗さのバラツキを抑えることができ、それにより積層セラミックコンデンサのショート率や絶縁抵抗の不良を抑制することができる。   According to the present invention, since it is possible to obtain a barium titanate compound having a small particle size and a small variation in particle size, the surface roughness of the dielectric layer mainly composed of the barium titanate compound is reduced. Variations can be suppressed, whereby the short-circuit rate and insulation resistance failure of the multilayer ceramic capacitor can be suppressed.

また、本発明により得られた誘電体セラミックス材料を用いて作製されたグリーンシートは、組織が緻密であるので、焼成後の粒径が安定し、その結果、電気特性が安定するとともに、有効な焼成温度の範囲も広くなることが予想される。   Further, since the green sheet produced using the dielectric ceramic material obtained by the present invention has a dense structure, the particle size after firing is stabilized, and as a result, the electrical characteristics are stabilized and effective. The range of the firing temperature is expected to be widened.

更に、チタン酸バリウム系化合物の微粒子化にともない、誘電体層の薄層化が促進され、内部電極層及び誘電体層の積層数を増加させることができるので、積層セラミックコンデンサの単位体積当たりの静電容量を増加させることが可能となる。   Furthermore, as the barium titanate compound is made finer, thinning of the dielectric layer is promoted, and the number of laminated internal electrode layers and dielectric layers can be increased. Capacitance can be increased.

また、本発明の方法により、任意の粒径の微粒なチタン酸バリウム系化合物の粉末を容易に合成することが可能となり、仮焼工程における温度管理が容易になる。   Further, the method of the present invention makes it possible to easily synthesize fine barium titanate-based compound powder having an arbitrary particle size, and facilitate temperature control in the calcination step.

双晶の結晶構造((a)面心立方格子、(b)体心立方格子)を示す図。The figure which shows the twin crystal structure ((a) face centered cubic lattice, (b) body centered cubic lattice). チタン酸バリウム粉末を、透過型電子顕微鏡を用いて撮像した写真。A photograph of barium titanate powder taken using a transmission electron microscope. 本発明の一実施形態に係る積層セラミックコンデンサの模式断面図。1 is a schematic cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention. 実施例4について得られたXRD測定データを示すグラフ。6 is a graph showing XRD measurement data obtained for Example 4. 各実施例及び比較例における仮焼温度とチタン酸バリウム粉末の平均粒径との関係を示すグラフ。The graph which shows the relationship between the calcination temperature in each Example and a comparative example, and the average particle diameter of barium titanate powder.

以下に本発明の一実施形態に係る積層セラミックコンデンサ1について図面を参照して説明する。   A multilayer ceramic capacitor 1 according to an embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係る積層セラミックコンデンサ1は、図3に示すように、誘電体層3と内部電極4とが交互に積層されてなるコンデンサチップ体2と、このコンデンサチップ体2の表面に設けられ内部電極4と導通する外部電極5と、を備えている。内部電極4は、その端部がコンデンサチップ体2の対向する2つの表面に交互に露出するように積層されて、コンデンサチップ体2の当該表面上に形成されて所定のコンデンサ回路を構成する外部電極5と、電気的に接続している。   As shown in FIG. 3, the multilayer ceramic capacitor 1 according to this embodiment is provided on a capacitor chip body 2 in which dielectric layers 3 and internal electrodes 4 are alternately stacked, and on the surface of the capacitor chip body 2. An external electrode 5 electrically connected to the internal electrode 4. The internal electrodes 4 are laminated so that the ends thereof are alternately exposed on the two opposing surfaces of the capacitor chip body 2, and are formed on the surfaces of the capacitor chip body 2 to form a predetermined capacitor circuit. The electrode 5 is electrically connected.

誘電体層3は、チタン酸バリウム系化合物を主成分とする誘電体セラミックス材料の焼結体からなるものであり、当該チタン酸バリウム系化合物は、炭酸バリウム(BaCO)と二酸化チタン(TiO)とを固相反応により反応させることにより得ることができる。 The dielectric layer 3 is made of a sintered body of a dielectric ceramic material mainly composed of a barium titanate compound. The barium titanate compound is composed of barium carbonate (BaCO 3 ) and titanium dioxide (TiO 2). ) By a solid phase reaction.

前記固相反応は、炭酸バリウム粉末及び二酸化チタン粉末を含有する混合粉末を有機溶媒中で粉砕混合する粉砕混合工程と、粉砕混合した前記混合粉末を焼成してチタン酸バリウム系化合物の粉末を得る仮焼工程とを備えている。   In the solid phase reaction, a mixed powder containing barium carbonate powder and titanium dioxide powder is pulverized and mixed in an organic solvent, and the mixed powder pulverized and mixed is fired to obtain a barium titanate compound powder. And a calcination step.

前記混合粉末は、炭酸バリウム粉末及び二酸化チタン粉末に加えて、更に必要に応じて、炭酸カルシウム(CaCO)や炭酸ストロンチウム(SrCO)等の炭酸アルカリ土類金属塩等を含有していてもよい。 The mixed powder may contain an alkaline earth metal carbonate such as calcium carbonate (CaCO 3 ) or strontium carbonate (SrCO 3 ), if necessary, in addition to the barium carbonate powder and titanium dioxide powder. Good.

前記有機溶媒としては特に限定されず、例えば、エタノール、プロパノール、ブタノール等のアルコール;アセトン、メチルエチルエチルケトン等のケトン類;酢酸エチル等のエステル類;トルエン、キシレン、ベンゼン等の芳香族類等が挙げられる。これらの有機溶媒は、単独で用いられてもよく、2種以上が併用されてもよい。   Examples of the organic solvent include, but are not limited to, alcohols such as ethanol, propanol, and butanol; ketones such as acetone and methyl ethyl ethyl ketone; esters such as ethyl acetate; aromatics such as toluene, xylene, and benzene Is mentioned. These organic solvents may be used independently and 2 or more types may be used together.

前記粉砕混合工程においては、例えば、ビーズミル、ボールミル等の粉砕機を用いたり、高圧分散処理を行う等して、炭酸バリウム粉末と二酸化チタン粉末とを有機溶媒とともに湿式で分散する。   In the pulverization and mixing step, for example, a barium carbonate powder and a titanium dioxide powder are dispersed together with an organic solvent in a wet manner by using a pulverizer such as a bead mill or a ball mill or by performing a high-pressure dispersion treatment.

前記仮焼工程においては、粉砕混合された前記混合粉末を、真空中又は大気中で、例えば、700〜1100℃で、約3時間、加熱する。   In the calcination step, the pulverized and mixed powder is heated in a vacuum or in the atmosphere at, for example, 700 to 1100 ° C. for about 3 hours.

前記混合粉末をこのような仮焼工程において焼成することにより、平均粒径が100nm以下であるような、粒径が小さいチタン酸バリウム系化合物の粉末を得ることができる。チタン酸バリウム系化合物の粉末の平均粒径が100nmを超えると、誘電体層3の薄層化が困難である。なお、当該平均粒径は、例えば、走査型電子顕微鏡(SEM)を用いた観察により測定され算出されるものである。   By calcining the mixed powder in such a calcination step, a powder of a barium titanate compound having a small particle size such that the average particle size is 100 nm or less can be obtained. If the average particle size of the barium titanate compound powder exceeds 100 nm, it is difficult to make the dielectric layer 3 thinner. In addition, the said average particle diameter is measured and calculated by observation using a scanning electron microscope (SEM), for example.

また、前記チタン酸バリウム系化合物の粉末は、10%以上の粒子の内部に双晶が存在するものであることが好ましい。このようなものであれば、仮焼温度を上昇させても粒成長しにくいので、粒径制御が容易となる。なお、双晶の存在率は、例えば、透過型電子顕微鏡(TEM)を用いた観察により測定され算出されるものである。   The barium titanate-based compound powder preferably has twins inside 10% or more of the particles. In such a case, grain growth is difficult even when the calcining temperature is raised, and therefore particle size control becomes easy. In addition, the abundance of twins is measured and calculated by observation using a transmission electron microscope (TEM), for example.

更に、前記混合粉末をこのような仮焼工程において焼成することにより、700〜1100℃の仮焼温度における粒径変化率が、0.3以下であるような、仮焼温度を変化させても粒径が変化しにくいチタン酸バリウム系化合物の粉末を得ることが可能となる。このため、本発明によれば、焼成温度の制御が極めて容易となる。なお、ここで言う「粒径変化率」とは、上述のとおり、仮焼温度をx軸に、粒径をy軸にプロットしたときの直線を線形近似したときの傾きの値である。   Furthermore, even if the calcining temperature is changed such that the particle size change rate at a calcining temperature of 700 to 1100 ° C. is 0.3 or less by firing the mixed powder in such a calcining step. It becomes possible to obtain a powder of a barium titanate compound in which the particle size hardly changes. For this reason, according to this invention, control of a calcination temperature becomes very easy. The “particle size change rate” referred to here is a slope value when linearly approximating a straight line when plotting the calcining temperature on the x-axis and the particle size on the y-axis as described above.

なお、本実施形態における固相反応においては、前記粉砕混合工程や、前記仮焼工程以外に、通常、以下のような各工程が行われる。   In the solid phase reaction in the present embodiment, the following steps are usually performed in addition to the pulverization and mixing step and the calcining step.

まず、炭酸バリウム粉末と二酸化チタン粉末とを所定量秤量し、次に、秤量した炭酸バリウム粉末と二酸化チタン粉末とに有機溶媒を添加し、ミキサーで混合する。続いて、得られた混合粉末を上述のとおり粉砕混合する。更に、粉砕混合された混合粉末を乾燥させてから乾式粉砕する。そして、乾式粉砕後の混合粉末を上述のとおり焼成して前記チタン酸バリウム系化合物の粉末を得る。   First, a predetermined amount of barium carbonate powder and titanium dioxide powder are weighed, and then an organic solvent is added to the weighed barium carbonate powder and titanium dioxide powder and mixed with a mixer. Subsequently, the obtained mixed powder is pulverized and mixed as described above. Further, the pulverized and mixed powder is dried and then dry pulverized. Then, the mixed powder after dry pulverization is fired as described above to obtain the barium titanate compound powder.

前記誘電体セラミック材料は、前記チタン酸バリウム系化合物の粉末に加えて、必要に応じて特性調整のための金属化合物を含有していてもよい。前記金属化合物としては、例えば、Mg、Ba、Ca、Si、Mn、Al、V、Dy、Y、Ho、Ybの1種又は複数種の元素を含有する酸化物、炭酸塩等の化合物が挙げられる。   In addition to the barium titanate compound powder, the dielectric ceramic material may contain a metal compound for adjusting characteristics as required. Examples of the metal compound include compounds such as oxides and carbonates containing one or more elements of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho, and Yb. It is done.

前記チタン酸バリウム系化合物の粉末に前記金属化合物の粉末を添加する際には、合わせて分散剤を添加することが好ましい。   When adding the metal compound powder to the barium titanate compound powder, it is preferable to add a dispersant.

前記分散剤としては特に限定されず、例えば、ポリビニルブチラール系分散剤、ポリビニルアセタール系分散剤、ポリカルボン酸系分散剤、マレイン酸系分散剤、ポリエチレングリコール系分散剤、アリルエーテルコポリマー系分散剤等が挙げられる。   The dispersant is not particularly limited. For example, polyvinyl butyral dispersant, polyvinyl acetal dispersant, polycarboxylic acid dispersant, maleic acid dispersant, polyethylene glycol dispersant, allyl ether copolymer dispersant, and the like. Is mentioned.

前記チタン酸バリウム系化合物の粉末に前記金属化合物の粉末や分散剤を添加して、例えば、ホモジナイザーで混合してから、ビーズミルで解砕・分散することにより、誘電体セラミックス材料が得られる。このようにして得られた誘電体セラミックス材料に、溶剤及びバインダを添加し、ボールミル等を用いて混合することによりグリーンシート形成用のスラリーを得ることができる。   A dielectric ceramic material is obtained by adding the metal compound powder or dispersant to the barium titanate-based compound powder, mixing with a homogenizer, and then pulverizing and dispersing with a bead mill. A slurry for forming a green sheet can be obtained by adding a solvent and a binder to the dielectric ceramic material thus obtained and mixing them using a ball mill or the like.

前記溶剤としては特に限定されず、例えば、エチルカルビトール、ブタンジオール、2−ブトキシエタノール等のグリコール類;メタノール、エタノール、プロパノール、ブタノール等のアルコール;アセトン、メチルエチルケトン、ジアセトンアルコール等のケトン類;酢酸メチル、酢酸エチル等のエステル類;トルエン、キシレン、酢酸ベンジル等の芳香族類等が挙げられる。   Examples of the solvent include, but are not limited to, glycols such as ethyl carbitol, butanediol, and 2-butoxyethanol; alcohols such as methanol, ethanol, propanol, and butanol; ketones such as acetone, methyl ethyl ketone, and diacetone alcohol; Examples thereof include esters such as methyl acetate and ethyl acetate; aromatics such as toluene, xylene and benzyl acetate.

前記バインダとしては特に限定されず、例えば、アクリル樹脂、ポリビニルブチラール樹脂、ポリビニルアセタール樹脂、エチルセルロース樹脂等が挙げられる。   The binder is not particularly limited, and examples thereof include acrylic resin, polyvinyl butyral resin, polyvinyl acetal resin, and ethyl cellulose resin.

前記バインダは、予め、前記溶剤に溶解し濾過して溶液にしておき、その溶液に、前記誘電体セラミックス材料を添加することが好ましい。高重合度のバインダ樹脂は溶剤に溶け難く、通常の方法では、スラリーの分散性が悪化する傾向にある。高重合度のバインダ樹脂を溶剤に溶解してから、その溶液にその他の成分を添加することにより、グリーンシート形成用スラリーにおける各成分の分散性を改善することができ、また、未溶解バインダ樹脂の発生を抑制することもできる。なお、前記溶剤以外の溶剤では、固形分濃度を上げられないと共に、ラッカー粘度の経時変化が増大する傾向にある。   It is preferable that the binder is previously dissolved in the solvent and filtered to obtain a solution, and the dielectric ceramic material is added to the solution. A binder resin having a high degree of polymerization is difficult to dissolve in a solvent, and the dispersibility of the slurry tends to be deteriorated by an ordinary method. Dispersibility of each component in the slurry for green sheet formation can be improved by dissolving the binder resin having a high degree of polymerization in a solvent and then adding other components to the solution. Can also be suppressed. In addition, in solvents other than the said solvent, while a solid content concentration cannot be raised, it exists in the tendency for the time-dependent change of lacquer viscosity to increase.

このようにして製造されたグリーンシート形成用のスラリーを、ポリエチレンテレフタレート等からなる基材上にシート状に塗布することによりグリーンシートが形成される。誘電体層3は、得られたグリーンシートを焼成することにより得られる焼結体からなる。誘電体層3一層あたりの厚みは、2μm以下であることが好ましい。   The green sheet is formed by applying the slurry for forming the green sheet thus produced on a base material made of polyethylene terephthalate or the like. The dielectric layer 3 is made of a sintered body obtained by firing the obtained green sheet. The thickness per three dielectric layers is preferably 2 μm or less.

内部電極4としては特に限定されず、例えば、Cu、Ni、W、Mo、Ag等の金属又はこれらの合金等からなるものが挙げられる。   The internal electrode 4 is not particularly limited, and examples thereof include those made of metals such as Cu, Ni, W, Mo, Ag, or alloys thereof.

外部電極5としては特に限定されず、例えば、Cu、Ni、W、Mo、Ag等の金属又はこれらの合金;In−Ga、Ag−10Pd等の合金;カーボン、グラファイト、カーボンとグラファイトとの混合物等からなるものが挙げられる。   The external electrode 5 is not particularly limited, and examples thereof include metals such as Cu, Ni, W, Mo, and Ag or alloys thereof; alloys such as In—Ga and Ag-10Pd; carbon, graphite, and a mixture of carbon and graphite. The thing which consists of etc. is mentioned.

本実施形態に係る積層セラミックコンデンサの製造方法としては特に限定されないが、例えば、以下のようにして製造される。まず、前記グリーンシート上に、上記の各種金属等を含有する内部電極4用導電性ペーストを所定形状にスクリーン印刷して、内部電極4用導電性ペースト膜を形成する。   Although it does not specifically limit as a manufacturing method of the multilayer ceramic capacitor which concerns on this embodiment, For example, it manufactures as follows. First, the conductive paste for internal electrodes 4 containing the above various metals and the like is screen-printed in a predetermined shape on the green sheet to form a conductive paste film for internal electrodes 4.

次いで、上述のように内部電極4用導電性ペースト膜が形成された複数のグリーンシートを積層するとともに、これらグリーンシートを挟むように、導電性ペースト膜が形成されていないグリーンシートを積層して、圧着した後、必要に応じてカットすることによって、積層体(グリーンチップ)を得る。   Next, a plurality of green sheets on which the conductive paste film for the internal electrode 4 is formed as described above are stacked, and a green sheet on which no conductive paste film is formed is stacked so as to sandwich the green sheets. After pressure bonding, the laminate (green chip) is obtained by cutting as necessary.

そして、得られたグリーンチップに脱バインダ処理を施した後、当該グリーンチップを例えば還元性雰囲気中において焼成して、コンデンサチップ体2を得る。コンデンサチップ体2においては、グリーンシートを焼成してなる焼結体からなる誘電体層3と内部電極4とが交互に積層されている。   And after performing a binder removal process to the obtained green chip, the said green chip is baked, for example in reducing environment, and the capacitor chip body 2 is obtained. In the capacitor chip body 2, dielectric layers 3 and internal electrodes 4 made of a sintered body obtained by firing a green sheet are alternately laminated.

得られたコンデンサチップ体2には、誘電体層3を再酸化するためアニール処理を施すことが好ましい。   The obtained capacitor chip body 2 is preferably subjected to an annealing treatment to reoxidize the dielectric layer 3.

次に、コンデンサチップ体2の端面から露出した内部電極4の各端縁それぞれに外部電極5が電気的に接続するように、コンデンサチップ体2の端面上に、上記の各種金属等からなる電極を塗布することによって外部電極5を形成する。そして、必要に応じ、外部電極5表面に、めっき等により被覆層を形成する。   Next, an electrode made of the above-mentioned various metals or the like on the end surface of the capacitor chip body 2 so that the external electrode 5 is electrically connected to each end edge of the internal electrode 4 exposed from the end surface of the capacitor chip body 2. The external electrode 5 is formed by coating. Then, if necessary, a coating layer is formed on the surface of the external electrode 5 by plating or the like.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples.

BaCO粉末(比表面積;30m/g又は50m/g)とTiO粉末(比表面積;50m/g又は100m/g)とを用意し、用意した粉末をA/B比(Ba/Ti比)1.002となるよう秤量した。次に、秤量した粉末に、実施例においてはエタノール(Etha)、又は、トルエンとエタノールとを重量比30:70で混合したトルエン/エタノール混合溶液(Etha/Tolu)を添加し、比較例においては水を添加し、ミキサーで前混合を行い、得られた混合スラリーをビーズミルで粉砕混合した。次に、粉砕混合した混合スラリーを乾燥させ、乾燥後の混合粉末を乾式粉砕した。次に、乾式粉砕後の混合粉末を下記表1〜5に記載の温度で真空仮焼した。 BaCO 3 powder (specific surface area; 30 m 2 / g or 50 m 2 / g) and TiO 2 powder (specific surface area; 50 m 2 / g or 100 m 2 / g) were prepared, and the prepared powder was converted into an A / B ratio (Ba / Ti ratio) 1.002. Next, ethanol (Etha) in the examples or a toluene / ethanol mixed solution (Etha / Tolu) in which toluene and ethanol are mixed at a weight ratio of 30:70 is added to the weighed powder. Water was added, premixing was performed with a mixer, and the resulting mixed slurry was pulverized and mixed with a bead mill. Next, the mixed slurry thus pulverized and mixed was dried, and the mixed powder after drying was dry pulverized. Next, the mixed powder after dry pulverization was calcined in vacuum at the temperatures shown in Tables 1 to 5 below.

得られたチタン酸バリウム(BaTiO)粉末について、XRD測定を行ったところ、得られたXRD測定データより、チタン酸バリウム単相であることが確認された(図4参照)。なお、図4に示すデータは実施例4について得られたものであるが、他の実施例についても同様なデータが得られた。また、得られたBaTiO粉末をSEM観察し、粒径測定を行った。この際、100個以上の粒子の粒径を測定して、平均粒径とともに標準偏差σを算出した。更に、得られたBaTiO粉末について、BET法により比表面積(SSA)を測定した。また、得られたBaTiO粉末をTEM観察し、双晶の存在率を算出した。これらの結果は下記表1〜5及び図5に示した。 When the obtained barium titanate (BaTiO 3 ) powder was subjected to XRD measurement, it was confirmed from the obtained XRD measurement data that it was a single phase of barium titanate (see FIG. 4). The data shown in FIG. 4 was obtained for Example 4, but similar data was obtained for other examples. Further, the obtained BaTiO 3 powder was observed with an SEM, and the particle size was measured. At this time, the particle size of 100 or more particles was measured, and the standard deviation σ was calculated together with the average particle size. Further, the specific surface area (SSA) of the obtained BaTiO 3 powder was measured by the BET method. Further, the obtained BaTiO 3 powder was observed with a TEM, and the abundance of twins was calculated. These results are shown in Tables 1 to 5 below and FIG.

各実施例及び比較例について得られた結果より、BaCO粉末とTiO粉末とを有機溶媒中で粉砕混合することにより、粒成長が抑制され、広範囲にわたる仮焼温度で、平均粒径が100nm以下で、かつ、粒度分布のバラツキを表す標準偏差σが20以下であるような、粒径が小さく、かつ、粒径のバラツキが少ないBaTiO粉末を得られることが明らかとなった。そして、当該BaTiO粉末には高い確率で双晶が形成されていることも確認された。 From the results obtained for each Example and Comparative Example, BaCO 3 powder and TiO 2 powder were pulverized and mixed in an organic solvent to suppress grain growth, and the average particle size was 100 nm at a wide range of calcining temperatures. In the following, it has become clear that a BaTiO 3 powder with a small particle size and a small variation in particle size such that the standard deviation σ representing the variation in particle size distribution is 20 or less can be obtained. It was also confirmed that twins were formed with high probability in the BaTiO 3 powder.

1・・・積層セラミックコンデンサ
2・・・コンデンサチップ体
3・・・積層体層
4・・・内部電極
5・・・外部電極
DESCRIPTION OF SYMBOLS 1 ... Multilayer ceramic capacitor 2 ... Capacitor chip body 3 ... Laminate body layer 4 ... Internal electrode 5 ... External electrode

Claims (4)

炭酸バリウムと二酸化チタンとを固相反応により反応させて誘電体セラミックス材料を製造する方法であって、
炭酸バリウム粉末及び二酸化チタン粉末を含有する混合粉末を有機溶媒中で粉砕混合する粉砕混合工程と、粉砕混合した前記混合粉末を焼成してチタン酸バリウム系化合物の粉末を得る仮焼工程とを備えていることを特徴とする誘電体セラミックス材料の製造方法。
A method for producing a dielectric ceramic material by reacting barium carbonate and titanium dioxide by a solid phase reaction,
A pulverizing and mixing step of pulverizing and mixing a mixed powder containing barium carbonate powder and titanium dioxide powder in an organic solvent, and a calcination step of firing the pulverized mixed powder to obtain a barium titanate compound powder. A method for producing a dielectric ceramic material, comprising:
前記チタン酸バリウム系化合物の粉末が、平均粒径が100nm以下で、10%以上の粒子の内部に双晶が存在するものである請求項1記載の誘電体セラミックス材料の製造方法。   2. The method for producing a dielectric ceramic material according to claim 1, wherein the barium titanate-based compound powder has an average particle diameter of 100 nm or less and has twins inside 10% or more of the particles. 前記チタン酸バリウム系化合物の粉末が、700〜1100℃の仮焼温度における粒径変化率が、0.3以下である請求項1又は2記載の誘電体セラミックス材料の製造方法。   The method for producing a dielectric ceramic material according to claim 1 or 2, wherein the barium titanate compound powder has a particle size change rate of 0.3 or less at a calcining temperature of 700 to 1100C. 請求項1、2又は3記載の製造方法により得られた誘電体セラミックス材料の焼結体からなる誘電体層を備えていることを特徴とする積層セラミックコンデンサ。
A multilayer ceramic capacitor comprising a dielectric layer made of a sintered body of a dielectric ceramic material obtained by the manufacturing method according to claim 1, 2 or 3.
JP2009293394A 2009-12-24 2009-12-24 Method for producing dielectric ceramic material Pending JP2011132071A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009293394A JP2011132071A (en) 2009-12-24 2009-12-24 Method for producing dielectric ceramic material
KR1020100134984A KR20110074486A (en) 2009-12-24 2010-12-24 Method for manufacturing dielectric ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009293394A JP2011132071A (en) 2009-12-24 2009-12-24 Method for producing dielectric ceramic material

Publications (1)

Publication Number Publication Date
JP2011132071A true JP2011132071A (en) 2011-07-07

Family

ID=44345244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009293394A Pending JP2011132071A (en) 2009-12-24 2009-12-24 Method for producing dielectric ceramic material

Country Status (2)

Country Link
JP (1) JP2011132071A (en)
KR (1) KR20110074486A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209251A (en) * 2012-03-30 2013-10-10 Taiyo Yuden Co Ltd Ceramic powder and multi-layer ceramic capacitor
CN103360059A (en) * 2012-03-30 2013-10-23 太阳诱电株式会社 Ceramic powder and multi-layer ceramic capacitor
JP2015182890A (en) * 2014-03-20 2015-10-22 日本化学工業株式会社 Method for producing barium titanate powder
US20220189698A1 (en) * 2020-12-16 2022-06-16 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board for mounting the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649812A (en) * 1987-07-03 1989-01-13 Kawasaki Steel Co Production of raw material powder for ceramic-based superconductive material
JP2002362971A (en) * 2001-06-12 2002-12-18 Taiyo Yuden Co Ltd Dielectric ceramic composition and ceramic capacitor
JP2003146658A (en) * 2001-11-13 2003-05-21 Japan Whisker Co Ltd Method of producing compound oxide
JP2007169122A (en) * 2005-12-22 2007-07-05 Kyocera Corp Barium titanate powder, its production method, and barium titanate sintered compact

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649812A (en) * 1987-07-03 1989-01-13 Kawasaki Steel Co Production of raw material powder for ceramic-based superconductive material
JP2002362971A (en) * 2001-06-12 2002-12-18 Taiyo Yuden Co Ltd Dielectric ceramic composition and ceramic capacitor
JP2003146658A (en) * 2001-11-13 2003-05-21 Japan Whisker Co Ltd Method of producing compound oxide
JP2007169122A (en) * 2005-12-22 2007-07-05 Kyocera Corp Barium titanate powder, its production method, and barium titanate sintered compact

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209251A (en) * 2012-03-30 2013-10-10 Taiyo Yuden Co Ltd Ceramic powder and multi-layer ceramic capacitor
CN103360059A (en) * 2012-03-30 2013-10-23 太阳诱电株式会社 Ceramic powder and multi-layer ceramic capacitor
KR101431472B1 (en) * 2012-03-30 2014-08-20 다이요 유덴 가부시키가이샤 Ceramic powder and multi layer ceramic capacitor
US9023311B2 (en) 2012-03-30 2015-05-05 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
US9093221B2 (en) 2012-03-30 2015-07-28 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
US9514883B2 (en) 2012-03-30 2016-12-06 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
US9536667B2 (en) 2012-03-30 2017-01-03 Taiyo Yuden Co., Ltd. Ceramic powder and multi-layer ceramic capacitor
JP2015182890A (en) * 2014-03-20 2015-10-22 日本化学工業株式会社 Method for producing barium titanate powder
US20220189698A1 (en) * 2020-12-16 2022-06-16 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board for mounting the same
US11769634B2 (en) * 2020-12-16 2023-09-26 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor comprising capacitor body including active portion and margin portion

Also Published As

Publication number Publication date
KR20110074486A (en) 2011-06-30

Similar Documents

Publication Publication Date Title
JP7124528B2 (en) multilayer ceramic electronic components
JP5039039B2 (en) Dielectric porcelain and capacitor
JP6651351B2 (en) Dielectric ceramic composition and ceramic electronic component containing the same
JP5685931B2 (en) Multilayer ceramic capacitor
JP2007063056A (en) Method of manufacturing dielectric ceramic composition
JP2004189588A (en) Dielectric ceramic, method of manufacturing the same, and monolithic ceramic capacitor
JP4303715B2 (en) Conductive paste and method for manufacturing multilayer electronic component
JP6329236B2 (en) Dielectric material for multilayer ceramic capacitor and multilayer ceramic capacitor
JP2011132071A (en) Method for producing dielectric ceramic material
JP2009155118A (en) Dielectric ceramic and multilayer ceramic capacitor
JP5142649B2 (en) Dielectric porcelain and capacitor
JP5184333B2 (en) Method for manufacturing dielectric ceramic material
CN112955980B (en) Ni paste and multilayer ceramic capacitor
JP5231387B2 (en) Method for manufacturing dielectric ceramic material
JP2022122145A (en) Dielectric composition, electronic part, and multilayer electronic part
JP4837721B2 (en) Method for manufacturing dielectric ceramic material
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
JP5459952B2 (en) Method for manufacturing dielectric ceramic material
JP5459951B2 (en) Method for producing ceramic slurry
JP2004292271A (en) Dielectric porcelain and its manufacturing method, and laminated ceramic capacitor
JP2013112536A (en) Method for manufacturing high dielectric constant ceramics
JP2016145119A (en) Dielectric porcelain and method for producing the same
JP2006027939A (en) Method of manufacturing dielectric ceramic composition, electronic component and laminated ceramic capacitor
JP2004134808A (en) Manufacturing method and binder removal method of ceramic electronic component
JP2012126590A (en) Method for improving dielectric constant of dielectric ceramics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717