KR100951319B1 - Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby - Google Patents

Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby Download PDF

Info

Publication number
KR100951319B1
KR100951319B1 KR1020080059285A KR20080059285A KR100951319B1 KR 100951319 B1 KR100951319 B1 KR 100951319B1 KR 1020080059285 A KR1020080059285 A KR 1020080059285A KR 20080059285 A KR20080059285 A KR 20080059285A KR 100951319 B1 KR100951319 B1 KR 100951319B1
Authority
KR
South Korea
Prior art keywords
powder
subcomponent
dielectric
main component
plasma
Prior art date
Application number
KR1020080059285A
Other languages
Korean (ko)
Other versions
KR20090069210A (en
Inventor
노부타케 히라이
다카시 마키
코타로 하타
Original Assignee
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전기주식회사 filed Critical 삼성전기주식회사
Publication of KR20090069210A publication Critical patent/KR20090069210A/en
Application granted granted Critical
Publication of KR100951319B1 publication Critical patent/KR100951319B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

주성분 분말 및 부성분 분말이 균일하게 분산된 유전체 세라믹재료의 제조방법을 제공한다. 복수 종류의 부성분 분말의 혼합물을 가소성하는 가소성 공정과 가소성된 부성분 분말을 분쇄하는 분쇄공정과 분쇄된 부성분 분말을 플라즈마에 의해 미립화하는 플라즈마 처리공정과 플라즈마에 의해 미립화된 부성분 분말을 주성분 분말에 첨가하는 공정을 구비하고, 분쇄공정에서 분쇄된 후의 부성분 분말의 입도 분포는 D90/D50<3.0이 되도록 했다.Provided are a method for producing a dielectric ceramic material in which a main component powder and a subcomponent powder are uniformly dispersed. A plasticity process for plasticizing a mixture of plural kinds of subcomponent powders, a pulverization process for pulverizing the plasticized subcomponent powders, a plasma treatment process for atomizing the pulverized subcomponent powders with plasma, and a subcomponent powder atomized with plasma The particle size distribution of the subcomponent powder after grinding | pulverization in the grinding | pulverization process was provided so that it might be set to D90 / D50 <3.0.

유전체, 가소성, 플라즈마, 입도분포 Dielectric, Plasticity, Plasma, Particle Size Distribution

Description

유전체 세라믹재료의 제조방법, 이를 이용하여 제조된 그린시트, 소결체 및 세라믹 콘덴서{Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby}Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured}

본 발명은 표면 거칠기가 작고 소성온도의 안정성이 높은 그린시트를 제작할 수 있고 또한 쇼트율이 낮은 적층 세라믹 콘덴서를 얻을 수 있는, 주성분 분말 및 부성분 분말이 균일하게 분산된 유전체 세라믹재료의 제조방법, 이를 이용하여 제조된 그린시트, 소결체 및 세라믹 콘덴서에 관한 것이다.The present invention provides a method for producing a dielectric ceramic material in which the main component powder and the subcomponent powder are uniformly dispersed, which can produce a green ceramic sheet having a low surface roughness and a high stability of the firing temperature and a low short ratio. It relates to a green sheet, a sintered body and a ceramic capacitor manufactured using.

종래의 적층 세라믹 콘덴서는 주성분으로 티탄산바륨(BaTiO3)계 세라믹 유전체재료를, 부성분으로 특성 조성을 위한 금속화합물을 사용해 이를 시트형태로 성형 그린시트를 제작하고 이 그린시트 상에 전극을 인쇄한 것을 적층하는 공정을 반복함으로써 제작되고 있다.Conventional multilayer ceramic capacitors use a barium titanate (BaTiO 3 ) -based ceramic dielectric material as a main component and a metal compound for characteristic composition as a secondary component to form a molded green sheet in the form of a sheet, and laminate an electrode printed on the green sheet. It is produced by repeating the process of making.

최근에 전자기기제품의 소형화와 함께 전자회로의 고밀도화가 진행되고 이 결과 적층 세라믹 콘덴서의 소형 대용량화가 강하게 요구되고 있다. 그래서 이 요 망을 실현하기 위해 내부 전극층과 유전체층의 박층화 및 적층수 증가가 시도되고 있다.In recent years, along with the miniaturization of electronic device products, high-density electronic circuits have progressed, and as a result, there is a strong demand for miniaturization of multilayer ceramic capacitors. Therefore, in order to realize this demand, attempts have been made to increase the thickness of the internal electrode layer and the dielectric layer and increase the number of stacked layers.

유전체층의 박막화와 함께 주성분 및 부성분으로 보다 입경이 작은 것이 사용되어 지게 되었으나 입경이 작은 부성분 분말은 응집하기 쉽고 주성분과의 분산성이 악화되는 경향이 있다. 이 때문에 그린시트의 표면 거칠기(요철)가 커지고 소성 후의 유전체층 두께에 편차가 발생해 적층 세라믹 콘덴서의 전계강도가 불균일하게 되고 전기 특성이 악화해 쇼트율이 높아진다. With the thinning of the dielectric layer, smaller particle diameters are used as the main component and the subcomponent, but the subcomponent powder having the small particle diameter tends to aggregate and deteriorate dispersibility with the main component. As a result, the surface roughness (unevenness) of the green sheet becomes large, and variations in the thickness of the dielectric layer after firing occur, resulting in uneven electric field strength of the multilayer ceramic capacitor, deterioration of electrical characteristics, and high short rate.

따라서, 주성분 및 부성분의 분말이 균일하게 분산된 유전체 세라믹재료를 제조하는 방법이 요구되고 있다.Therefore, there is a need for a method for producing a dielectric ceramic material in which powders of the main component and the subcomponent are uniformly dispersed.

특허 문헌1 및 특허 문헌2에는 플리즈마처리를 해 부성분을 초미립자화하는 것이 기재되어 있으나 단순히 초미립자화한 것 만으로는 상기와 같이 응집해 버린다.Although Patent Document 1 and Patent Document 2 disclose that the subcomponent is subjected to a plasma treatment to ultrafine particles, it is aggregated as described above simply by ultrafine particles.

[특허문헌1] 일본 특개평10-255549[Patent Document 1] Japanese Patent Laid-Open No. 10-255549

[특허문헌2] 일본 특개평10-270284[Patent Document 2] Japanese Patent Laid-Open No. 10-270284

본 발명은 상기 현상을 감안해 주성분 분말 및 부성분 분말이 균일하게 분산된 유전체 세라믹재료의 제조방법, 이를 이용하여 제조된 그린시트, 소결체 및 세라믹 콘덴서를 제공하는 것을 과제로 한다.SUMMARY OF THE INVENTION In view of the above-described phenomenon, an object of the present invention is to provide a method for producing a dielectric ceramic material in which the main component powder and the subcomponent powder are uniformly dispersed, and a green sheet, a sintered body, and a ceramic capacitor manufactured using the same.

본 발명에 관한 유전체 세라믹재료의 제조방법은 복수 종류의 부성분 분말의 혼합물을 가소성하는 가소성공정과 가소성된 상기 부성분 분말을 분쇄하는 분쇄공정과 분쇄된 상기 부성분 분말을 플라즈마에 의해 미립화하는 플라즈마 처리공정과 플라즈마에 의해 미립자화된 상기 부성분 분말을 주성분 분말에 첨가하는 공정을 구비하고 상기 분쇄공정에서 분쇄된 후의 상기 부성분 분말의 입도분포는 D90/D50<3.0인 것을 특징으로 한다.The method for producing a dielectric ceramic material according to the present invention includes a plasticizing step of plasticizing a mixture of plural kinds of subcomponent powders, a pulverizing step of pulverizing the plasticized subcomponent powders, and a plasma processing step of atomizing the pulverized subcomponent powders by plasma; The subcomponent powder finely divided by plasma is added to the main component powder, and the particle size distribution of the subcomponent powder after pulverizing in the pulverizing step is D90 / D50 <3.0.

이와 같은 것이라면 가소성 후의 부성분 분말을 입도분포가 D90/D50<3.0이 되도록 분쇄해 응집한 부성분 분말을 해쇄한 후 플라즈마 처리를 해 미립자화함으로써 부성분 분말의 소성을 균일하게 함과 동시에 부성분 분말의 분산성을 높일 수 있기 때문에 주성분 분말과 부성분 분말이 균일하게 분산된 유전체 세라믹재료를 얻을 수 있다.In such a case, the subsidiary powder after plasticity is pulverized to have a particle size distribution of D90 / D50 <3.0, and then the aggregated subsidiary powder is pulverized, followed by plasma treatment to finely granulate the subsidiary powder and at the same time dispersibility of the subsidiary powder. Therefore, the dielectric ceramic material in which the main component powder and the subcomponent powder are uniformly dispersed can be obtained.

상기 플라즈마 처리공정에서 미립자화된 후의 상기 부성분 분말의 최대 입경은 상기 주성분 분말의 평균 입경의 3/4이하인 것이 바람직하다.It is preferable that the maximum particle diameter of the said subcomponent powder after micronization in the said plasma processing process is 3/4 or less of the average particle diameter of the said main component powder.

상기 부성분 분말은 Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho 및 Yb로 이루어 진 군에서 선택된 적어도 한 종류의 원소를 함유하는 화합물로 이루어진 분말인 것이 바람직하다.The subcomponent powder is preferably a powder made of a compound containing at least one element selected from the group consisting of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho and Yb.

상기 주성분 분말은 티탄산바륨계 유전체 분말인 것이 바람직하다.The main component powder is preferably a barium titanate-based dielectric powder.

상기 티탄산바륨계 유전체 분말의 평균 입경은 0.3㎛이하인 것이 바람직하다.The average particle diameter of the barium titanate-based dielectric powder is preferably 0.3 μm or less.

본 발명에 관한 제조방법으로 얻어진 유전체 세라믹재료를 이용해 제조되는 그린시트도 본 발명의 하나이다.The green sheet manufactured using the dielectric ceramic material obtained by the manufacturing method which concerns on this invention is also one of this invention.

본 발명에 관한 그린시트를 소성함으로써 제조되는 소결체도 본 발명의 하나이다.The sintered compact manufactured by baking the green sheet which concerns on this invention is also one of this invention.

복수의 전극과 상기 전극 사이에 설치된 본 발명에 관한 소결체로 이루어진 유전체층을 구비하고 있는 세라믹 콘덴서도 본 발명의 하나이다.The ceramic capacitor provided with the dielectric layer which consists of a some electrode and the sintered compact which concerns on this invention provided between the said electrodes is also one of this invention.

상기 전극은 Ni 또는 Ni합금을 함유하고 있는 것이 바람직하다.It is preferable that the said electrode contains Ni or Ni alloy.

본 발명에 의하면 부성분 분말이 응집하지 않고 주성분 분말 및 주성분 분말이 균일하게 분산되어 있는 유전체 세라믹재료를 얻을 수 있다. 이와 같은 유전체 세라믹재료를 이용해 제작된 그린시트는 주성분 분말 및 부성분 분말의 분산성이 높기 때문에 표면 거칠기가 작아 소결 후의 유전체층이 2㎛이하의 박층이어도 두께가 균일하게 되어 적층 세라믹 콘덴서의 쇼트율이 낮아진다. 또한 이와 같은 유전체 세라믹재료를 이용해 제작된 그린시트는 조직이 치밀하고 입경이 균일하기 때문에 소성 후의 입경도 안정하고 전기특성이 안정함과 동시에 유효한 소성온도의 온 도범위도 넓어진다.According to the present invention, it is possible to obtain a dielectric ceramic material in which the subcomponent powder does not aggregate and the main component powder and the main component powder are uniformly dispersed. Since the green sheet manufactured using the dielectric ceramic material has high dispersibility of the main powder and the subcomponent powder, the surface roughness is small, so that even if the dielectric layer after sintering is a thin layer having a thickness of 2 µm or less, the thickness of the multilayer ceramic capacitor is reduced. . In addition, the green sheet fabricated using such a dielectric ceramic material is dense in structure and uniform in particle size, so that the particle size after firing is stable, the electrical characteristics are stable, and the effective temperature range of the firing temperature is also widened.

이하에서 본 발명의 일 실시형태에 관한 적층 세라믹 콘덴서(1)에 대해 도면을 참조해 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, the multilayer ceramic capacitor 1 which concerns on one Embodiment of this invention is demonstrated with reference to drawings.

본 실시형태에 관한 적층 세라믹 콘덴서(1)는 도1에 나타낸 바와 같이 유전체층(3)과 내부전극(4)이 교대로 적층되어 이루어지는 콘덴서 칩체(2)와 이 콘덴서 칩체(2) 표면에 설치되어 내부전극(4)과 도통하는 외부전극(5)을 구비하고 있다. 내부전극(4)은 그 단부가 콘덴서 칩체(2)의 대향하는 두 표면에 교대로 노출하도록 적층되고 콘덴서 칩체(2)의 해당 표면상에 형성되어 소정의 콘덴서 회로를 구성하는 외부전극(5)과 전기적으로 접속되어 있다.As shown in Fig. 1, the multilayer ceramic capacitor 1 according to the present embodiment is provided on the capacitor chip body 2 and the surface of the capacitor chip body 2 in which the dielectric layers 3 and the internal electrodes 4 are alternately stacked. An external electrode 5 conducting with the internal electrode 4 is provided. The internal electrodes 4 are laminated so that their ends are alternately exposed on two opposing surfaces of the capacitor chip body 2 and are formed on the corresponding surface of the capacitor chip body 2 to constitute the predetermined capacitor circuit. It is electrically connected with.

유전체층(3)은 유전체 세라믹재료의 소결체로 이루어진 것이고 해당 유전체 세라믹재료는 가소성공정, 분쇄공정 및 플라즈마 처리공정을 거쳐 미립자화된 부성분 분말에 주성분 분말을 첨가함으로써 얻을 수 있다.The dielectric layer 3 is composed of a sintered body of a dielectric ceramic material, and the dielectric ceramic material can be obtained by adding the main component powder to the subcomponent powder that has been granulated through a plasticity process, a crushing process, and a plasma treatment process.

상기 가소성공정에서는 복수 종류의 부성분 분말의 혼합물을 가소성한다.In the plasticizing step, a mixture of plural kinds of subcomponent powders is calcined.

상기 부성분 분말로는 Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho 및 Yb 중 한 종류 또는 복수 종류의 원소를 함유하는 산화물, 탄산염 등의 화합물 분말을 들 수 있다. 이들 부성분 분말 복수 종류를 혼합해서 예를 들면 800~1000℃ 정도에서 가소성한다.Examples of the subcomponent powders include compound powders such as oxides and carbonates containing one or a plurality of elements of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho and Yb. Two or more types of these subcomponent powders are mixed and plasticized at about 800-1000 degreeC, for example.

상기 분쇄공정에서는 가소성된 부성분 분말을 예를 들면, 볼밀, 비즈밀, 건식제트밀, 습식제트밀 등을 이용해 분쇄한다.In the grinding step, the calcined subcomponent powder is ground using, for example, a ball mill, a bead mill, a dry jet mill, a wet jet mill, or the like.

상기 분쇄공정에서는 부성분 분말을 입도 분포가 D90/D50<3.0, 바람직하게는 D90/D50<2.0이 되도록 해쇄·분산한다. D90/D50이 3.0이상이면 플라즈마 처리 후의 부성분 분말의 최대 입경이 주성분 분말의 평균 입경의 3/4보다 크게 되어 바람직하지 않다.In the grinding step, the subcomponent powder is crushed and dispersed so that the particle size distribution is D90 / D50 <3.0, preferably D90 / D50 <2.0. If D90 / D50 is 3.0 or more, the maximum particle diameter of the subcomponent powder after plasma processing will become larger than 3/4 of the average particle diameter of a main component powder, and it is unpreferable.

이와 같은 입도 분포가 되도록 부성분 분말을 분쇄하기 위한 분쇄방법이나 Media 재질로는 특별히 한정되지 않으나 예를 들면, 배치식비즈밀을 사용하는 경우 주속 4m/s이상, ZrO2 미디아(Media) 충전율 20vol%이상, 처리시간 1시간 이상에서 분쇄처리를 행한다.It is not particularly limited as a grinding method or media material for grinding the subsidiary powder so as to have such a particle size distribution. For example, when using a batch bead mill, a circumferential speed of 4 m / s or more and a ZrO 2 media filling rate of 20 vol% In the above, grinding processing is performed in processing time 1 hour or more.

상기 플라즈마 처리공정에서는 분쇄된 부성분 분말을 플라즈마에 의해 미립화한다. 플라즈마 처리는 예를 들면 고주파 유도열 플라즈마장치를 이용해 2000~20000℃의 플라즈마 염(炎)에서 가열 용융한다.In the plasma processing step, the pulverized subcomponent powder is atomized by plasma. Plasma treatment is, for example, heated and melted in a plasma salt at 2000 to 20000 ° C. using a high frequency induction heat plasma apparatus.

상기 플라즈마 처리공정에서는 부성분 분말의 최대 입경이 플라즈마 처리공정 후에 첨가하는 주성분 분말의 평균 입경의 3/4이하가 되도록 부성분 분말을 미립자화하는 것이 바람직하다. 부성분 분말의 평균 입경이 이 범위를 초과하면 소성 시에 주성분 분말과 부성분 분말의 소결반응이 균일하게 일어나기 어렵다.In the plasma processing step, it is preferable to make the subcomponent powder into fine particles so that the maximum particle size of the subcomponent powder is 3/4 or less of the average particle diameter of the main component powder added after the plasma processing step. If the average particle diameter of the subcomponent powder exceeds this range, the sintering reaction of the main component powder and the subcomponent powder hardly occurs uniformly during firing.

상기 주성분 분말로는 특별히 한정되지는 않으나 예를 들면, BaXCa1 -XTiO3(0<X≤1)등으로 이루어진 티탄산바륨계 유전체 분말이 호적하게 이용된다.The powder as a main component is, for example, but are not particularly limited, and a barium titanate-based dielectric powder consisting of Ba X Ca 1 -X TiO 3 ( 0 <X≤1) or the like is used suitably.

상기 티탄산바륨계 유전체 분말의 평균 입경은 0.3㎛이하인 것이 바람직하다. 0.3㎛를 초과하면 표면의 평활성이 낮고 두께에 불균일한 그린시트가 얻어진 다.The average particle diameter of the barium titanate-based dielectric powder is preferably 0.3 μm or less. If the thickness exceeds 0.3 占 퐉, a green sheet having low surface smoothness and nonuniformity in thickness is obtained.

상기 주성분 분말을 부성분 분말에 첨가할 때 분산제를 함께 첨가하는 것이 바람직하다.It is preferable to add a dispersant together when the main component powder is added to the subcomponent powder.

상기 분산제로는 특별히 한정되지는 않지만 예를 들면, 폴리비닐부티랄계 분산제, 폴리비닐아세탈계 분산제, 폴리카본산계 분산제, 말레산계 분산제, 폴리에틸렌글리콜계 분산제, 알릴에테르코폴리머계 분산제 등을 들 수 있다.Although it does not specifically limit as said dispersing agent, For example, a polyvinyl butyral type dispersing agent, a polyvinyl acetal type dispersing agent, a polycarboxylic acid type dispersing agent, a maleic acid type dispersing agent, a polyethyleneglycol type dispersing agent, an allyl ether copolymer type dispersing agent, etc. are mentioned. .

상기 부성분 분말에 주성분 분말과 분산제를 첨가해 예를 들면, 호모지나이저로 혼합한 후 비즈밀로 분쇄·분산함으로써 유전체 세라믹재료를 얻을 수 있다. 이와 같이 해서 얻은 유전체 세라믹재료에 용재 및 바인더를 첨가하고 볼밀 등을 이용해 혼합함으로써 그린시트형성용 슬러리를 얻을 수 있다.A dielectric ceramic material can be obtained by adding a main component powder and a dispersing agent to the said subcomponent powder, for example, mixing it with a homogenizer, and then grinding and dispersing with a bead mill. The slurry for green sheet formation can be obtained by adding a solvent and a binder to the dielectric ceramic material obtained in this way, and mixing using a ball mill etc.

상기 용재로는 특별히 한정되지는 않지만 예를 들면, 에틸카비톨, 부탄디올, 2-부톡시에탄올 등의 글리콜류 : 메탄올, 에탄올, 프로판올, 부탄올 등의 알코올: 아세톤, 메틸에틸케톤, 디아세톤알코올 등의 케톤류 : 초산메틸, 초산에틸 등의 에스테르류 : 톨루엔, 크실렌, 초산벤질 등의 방향족류 등을 들 수 있다. 이들 용제는 단독으로 사용되어도 되고 2종류 이상이 병용되어도 된다.The solvent is not particularly limited, but for example, glycols such as ethyl carbitol, butanediol and 2-butoxyethanol: alcohols such as methanol, ethanol, propanol and butanol: acetone, methyl ethyl ketone, diacetone alcohol and the like Ketones; esters such as methyl acetate and ethyl acetate; aromatics such as toluene, xylene and benzyl acetate; and the like. These solvents may be used independently or two or more types may be used together.

상기 바인더로는 특별히 한정되지는 않지만 예를 들면, 아크릴수지, 폴리비닐부티랄수지, 폴리비닐아세탈수지, 에틸셀룰로오스수지 등을 들 수 있다.Although it does not specifically limit as said binder, For example, acrylic resin, polyvinyl butyral resin, polyvinyl acetal resin, ethyl cellulose resin, etc. are mentioned.

상기 바인더는 미리 상기 용제에 용해해 여과해서 용액으로 만들어 놓고 이 용액에 상기 유전체 세라믹재료를 첨가하는 것이 바람직하다. 고중합도의 바인더수지는 용제에 잘 녹지 않고 통상적인 방법으로는 슬러리의 분산성이 악화하는 경향 이 있다. 고중합도의 바인더수지를 용제에 용해한 후 이 용액에 그 외의 성분을 첨가함으로써 그린시트형성용 슬러리에서의 각 성분의 분산성을 개선할 수 있고 또한 미용해 바인더수지의 발생을 억제할 수도 있다. 또한 상기 용재 이외의 용제에서는 고형분 농도를 높을 수 없을 뿐만 아니라 래커점도의 경시변화가 증가하는 경향이 있다.The binder is preferably dissolved in the solvent beforehand, filtered to make a solution, and the dielectric ceramic material is added to the solution. Binder resins of high degree of polymerization do not dissolve well in solvents and tend to deteriorate the dispersibility of the slurry by conventional methods. By dissolving the binder resin of high polymerization degree in a solvent and adding other components to this solution, the dispersibility of each component in the slurry for green sheet formation can be improved, and generation | occurrence | production of undissolved binder resin can also be suppressed. In addition, solvents other than the above-mentioned solvents may not increase the solid content concentration, and may tend to increase with time the lacquer viscosity.

이와 같이 해서 제조한 그린시트형성용 슬러리를 폴리에틸렌테레프탈레이트 등으로 이루어진 기재상에 시트 형태로 도포함으로써 그린시트가 형성된다. 유전체층(3)은 얻은 그린시트를 소성함으로써 얻어지는 소결체로 이루어진다. 유전제층(3)의 한 층당 두께는 2㎛이하인 것이 바람직하다.The green sheet is formed by applying the thus prepared green sheet forming slurry on a substrate made of polyethylene terephthalate or the like in a sheet form. The dielectric layer 3 consists of a sintered compact obtained by baking the obtained green sheet. It is preferable that the thickness per layer of the dielectric agent layer 3 is 2 micrometers or less.

내부전극(4)으로는 특별히 한정되지는 않으나 예를 들면, Cu, Ni, W, Mo, Ag 등의 금속 또는 이들 합금 등을 들 수 있다.Although it does not specifically limit as the internal electrode 4, For example, metals, such as Cu, Ni, W, Mo, Ag, these alloys, etc. are mentioned.

외부전극(5)으로는 특별히 한정되지는 않으나 예를 들면, Cu, Ni, W, Mo, Ag 등의 금속 또는 이들의 합금;In-Ga, Ag-10Pd 등의 합금; 카본, 그라파이트, 카본과 그라파이트의 혼합물 등으로 이루어진 것을 들 수 있다.Although it does not specifically limit as the external electrode 5, For example, Metal, such as Cu, Ni, W, Mo, Ag, or alloys thereof; Alloy, such as In-Ga, Ag-10Pd; Carbon, graphite, the mixture which consists of carbon and graphite, etc. are mentioned.

본 실시형태에 관한 적층 세라믹 콘덴서의 제조방법으로는 특별히 한정되지는 않으나 예를 들면, 이하와 같이 해서 제조된다. 우선, 상기 그린시트 상에 상기 각종 금속 등을 함유하는 내부전극(4)용 도전 페이스트를 소정형상으로 스트린인쇄해 내부전극(4)용 도전성 페이트스막을 형성한다.Although it does not specifically limit as a manufacturing method of the multilayer ceramic capacitor which concerns on this embodiment, For example, it manufactures as follows. First, a conductive paste film for the internal electrode 4 is formed by printing a conductive paste for the internal electrode 4 containing the various metals and the like into a predetermined shape on the green sheet.

다음으로, 상술한 바와 같이 내부전극(4)용 도전성 페이스트막이 형성된 복수의 그린시트를 적층함과 함께 이들 그린시트를 사이에 두고 도전성 페이스트막이 형성되지 않은 그린시트를 적층하고 압착한 후 필요에 따라 커트함으로써 적층체(그린칩)을 얻는다.Next, as described above, a plurality of green sheets on which the conductive paste film for the internal electrode 4 is formed are laminated, and the green sheets on which the conductive paste film is not formed are laminated and crimped with these green sheets interposed therebetween. By cutting, a laminated body (green chip) is obtained.

그리고 얻은 그린칩에 탈바인더처리를 한 후 해당 그린칩을 예를 들면, 환원성분위기 중에서 소성해 콘덴서 칩체(2)를 얻는다. 콘덴서 칩체(2)에서는 그린시트를 소성해서 이루어지는 소결체로 이루어지는 유전체층(3)과 내부전극(4)이 교대로 적층되어 있다.After the de-binder treatment is performed on the obtained green chip, the green chip is fired in, for example, a reducing component crisis to obtain a capacitor chip body (2). In the capacitor chip body 2, the dielectric layer 3 and the internal electrode 4 which consist of the sintered compact which bakes a green sheet are alternately laminated | stacked.

얻은 콘덴서 칩체(2)에는 유전체층(3)을 재산화하기 위해 어닐처리를 하는 것이 바람직하다. It is preferable to anneal the obtained capacitor chip body 2 in order to reoxidize the dielectric layer 3.

다음으로, 콘덴서 칩체(2)의 단면에서 노출된 내부전극(4)의 각 단의 테두리 각각에 외부전극(5)이 전기적으로 접속하도록 콘덴서 칩체(2)의 단면상에 상기 각종 금속 등으로 이루어진 전극을 도포함으로써 외부전극(5)을 형성한다. 그리고 필요에 따라 외부전극(5) 표면에 도금 등에 의해 피복층을 형성한다.Next, an electrode made of the above-described various metals or the like on the cross section of the capacitor chip body 2 such that the external electrode 5 is electrically connected to each edge of each end of the internal electrode 4 exposed at the cross section of the capacitor chip body 2. The external electrode 5 is formed by applying. If necessary, a coating layer is formed on the surface of the external electrode 5 by plating or the like.

이하에서 실시예를 들어 본 발명을 더욱 상세하게 설명하지만 본 발명은 이들 실시예에만 한정되는 것이 아니다.Although an Example is given to the following and this invention is demonstrated to it in more detail, this invention is not limited only to these Examples.

부성분으로 BaCO3, MgO, SiO2 , Mn3O4 및 Y2O3을 준비했다. 이 후에 부성분에 첨가하게 되는 주성분 티탄산바륨(BaTiO3)에 대해 Ba원소의 첨가량은 0.95mol%이고, Si원소의 첨가량은 1.55mol%이고, Y원소의 첨가량은 0.65mol%이며, Mg원소의 첨가량은 1.2mol%이며, Mn원소의 첨가량은 0.13mol%이다.BaCO 3 , MgO, SiO 2 , Mn 3 O 4, and Y 2 O 3 were prepared as secondary components . The amount of Ba element added was 0.95 mol%, the amount of Si element added 1.55 mol%, the amount of Y element added 0.65 mol%, and the amount of Mg element added to the main component barium titanate (BaTiO 3 ) to be added to the subcomponent thereafter. Is 1.2 mol%, and the amount of Mn element added is 0.13 mol%.

다음으로 상술한 각종 부성분을 볼밀에 넣고 물을 첨가해 혼합했다. 이어서 얻은 부성분의 혼합물을 건조시키고 건조한 부성분을 900℃에서 가소성했다. 또한 가소성한 부성분을 배치식비즈밀에 넣고 물을 첨가해 입경 0.1㎜의 ZrO2미디아 충전율이 45vol%가 되도록 충전하고 주속 7m/s, 6시간의 조건에서 분쇄한 후 분쇄된 부성분을 건조했다.Next, the above-mentioned various subcomponents were put into the ball mill, water was added, and it mixed. The resulting mixture of subcomponents was then dried and the dried subcomponent was calcined at 900 ° C. In addition, the plastic subcomponent was placed in a batch bead mill and water was added to fill the ZrO 2 media with a particle diameter of 0.1 mm to 45 vol%, and ground at 7 m / s for 6 hours at a circumferential speed, and then the crushed subcomponent was dried.

다음으로 분쇄된 부성분을 플라스마처리로 미립화했다. 플라즈마 처리는 고주파 유도열 플라즈마장치를 이용해 출력 140㎾, Ar가스 공급량 100L/min, O2가스 공급량 50L/min, 시료 공급량 5.0g/min의 조건으로 처리했다.Next, the pulverized subcomponent was atomized by plasma treatment. The plasma treatment was performed under conditions of an output of 140 kW, an Ar gas supply amount of 100 L / min, an O 2 gas supply amount of 50 L / min, and a sample supply amount of 5.0 g / min using a high frequency induction heat plasma apparatus.

다음으로, 평균 입경이 0.3㎛의 티탄산바륨 분말 100중량부에 대해 플라즈마 처리에 의해 미립자화된 부성분을 각 원소가 상술한 첨가량이 되도록 첨가했다. 분쇄한 후 부성분 분말의 D90/D50, 플라즈마 처리의 유무, 주성분 분말에 대한 플라즈마 처리 후의 부성분 분말의 최대 입경은 각각 표1에 기재된 바와 같다. 또한 표1에 기재한 값 중, 분쇄처리 후의 부성분 분말의 D90/D50은 호리바제작소제의 LA-920을 이용해 측정한 입도 분포에 의해 산출하고 주성분 분말에 대한 플라즈마 처리 후의 부성분 분말의 최대 입경은 주사형 전자 현미경으로 각 분말을 관찰하고 각각 300개의 입자 입경의 길이를 재서 주성분 분말의 평균 입경과 부성분 분말의 최대 입경을 비교해 구했다.Next, the subcomponent refined by plasma treatment with respect to 100 weight part of barium titanate powders whose average particle diameter is 0.3 micrometer was added so that each element might add the above-mentioned addition amount. After grinding, the D90 / D50 of the subcomponent powder, the presence or absence of plasma treatment, and the maximum particle diameter of the subcomponent powder after the plasma treatment with respect to the main component powder are as shown in Table 1, respectively. Among the values shown in Table 1, D90 / D50 of the subcomponent powder after the pulverization treatment was calculated by the particle size distribution measured using LA-920 manufactured by Horiba, and the maximum particle diameter of the subcomponent powder after the plasma treatment with respect to the main component powder was Each powder was observed with a sand-type electron microscope, and the particle size of 300 particles was measured, and the average particle diameter of the main component powder was compared with the maximum particle diameter of the subcomponent powder.

분쇄처리 후의 D90/D50D90 / D50 after grinding 플라즈마 처리 유무Plasma Treatment 주성분분말에 대한 플라즈마 처리 후의 부성분분말의 최대 입경Maximum Particle Size of Subsidiary Powders after Plasma Treatment 비교예1Comparative Example 1 3.03.0 radish -- 비교예2Comparative Example 2 3.03.0 U 3/4초과Over 3/4 실시예1Example 1 2.52.5 U 3/4이하3/4 or less 실시예2Example 2 2.02.0 U 3/4이하3/4 or less 실시예3Example 3 1.61.6 U 3/4이하3/4 or less 실시예4Example 4 1.41.4 U 3/4이하3/4 or less

*비교예1은 부성분 분말을 플라즈마 처리하지 않고 주성분 분말과 혼합* Comparative Example 1 Mixes the subcomponent powder with the main component powder without plasma treatment

또한, 분말제로 폴리비닐부티랄계 분산제(세끼스이화학공업 주식회사제 BL-1)을 티탄산바륨 분말 100중량부에 대해 1.0wt% 첨가하고 호모지나이저로 혼합했다. 다음으로 이들 혼합물을 원심력으로 비즈와 슬러리의 분리를 행하는 기능이 있는 종형비즈밀을 사용해 입경 0.05mm의 ZrO2 미디아 충전율이 64vol%가 되도록 충전하고 주속 12m/s, 시료 공급량 100ml/min의 조건에서 분산·해쇄해 유전체 세라믹재료의 슬러리를 얻었다.As a powder, 1.0 wt% of a polyvinyl butyral dispersant (BL-1 manufactured by Sekisui Chemical Co., Ltd.) was added to 100 parts by weight of the barium titanate powder, and mixed with a homogenizer. Next, these mixtures were charged with a vertical bead mill having a function of separating beads and slurries by centrifugal force such that the ZrO 2 media filling rate of 0.05 mm in diameter was 64 vol%, and the flow rate was 12 m / s at a sample feed rate of 100 ml / min. Dispersion and crushing gave a slurry of dielectric ceramic material.

다음으로, 얻은 슬러리를 볼밀에 넣고 톨루엔에탄올 혼합용제, 폴리비닐부티랄계 바인더 및 가소제와 함께 적당한 점도가 될 때까지 혼합하고 그린시트형성용 슬러리를 조제했다. 그리고, 폴리에틸렌테레프탈레이트필름상에 닥터블레이드법으로 해당 슬러리를 도포하고 그린시트를 제작했다.Next, the obtained slurry was placed in a ball mill and mixed together with a toluene ethanol mixed solvent, a polyvinyl butyral binder and a plasticizer until a suitable viscosity was obtained, and a slurry for forming a green sheet was prepared. And the slurry was apply | coated on the polyethylene terephthalate film by the doctor blade method, and the green sheet was produced.

다음으로, 각 그린시트상에 Ni분말로 이루어진 내부전극용 도전 페이스트를 소정형상으로 스크린인쇄한 후 도전 페이스트막이 형성된 그린시트를 복수매 적층하고 열압착해서 일체화해 적층체를 제작했다.Next, after screen-printing the conductive paste for internal electrodes made of Ni powder on each green sheet in a predetermined shape, a plurality of green sheets on which the conductive paste film was formed were laminated, thermocompression-bonded and integrated to prepare a laminate.

그리고 그 적층체를 300℃에서 10시간, 공기 중에서 가열함으로써 유기바인더를 제거한 후 1100℃의 환원성분위기에서 2시간 소성하고 또한 1000℃의 N2가스분위기 중에서 2시간 재산화처리해 소결하고 콘덴서 칩체를 얻었다. 다음으로 얻은 콘덴서 칩체의 단면을 샌드블라스트에서 연마한 후 In-Ga 전극을 상기 단면에 도포함으로써 외부전극을 형성하고 도1에 예시되는 구조를 갖는 적층 세라믹 콘덴서를 제작했다.The laminate was heated at 300 ° C. for 10 hours in air to remove the organic binder, and then calcined for 2 hours in a reducing atmosphere at 1100 ° C., and then reoxidized and sintered for 2 hours in an N 2 gas atmosphere at 1000 ° C. to obtain a condenser chip body. . Next, the cross section of the obtained capacitor chip body was polished by sandblasting, and then an In-Ga electrode was applied to the cross section to form an external electrode, and a multilayer ceramic capacitor having the structure illustrated in FIG. 1 was produced.

그린시트 및 적층 세라믹 콘덴서에 대해 이하와 같이 해서 각종 특성을 평가하고 결과를 표2에 기재했다.Various characteristics were evaluated for the green sheet and the multilayer ceramic capacitor as follows and the results are shown in Table 2.

<그린시트의 평가><Evaluation of Green Sheet>

그린시트의 표면거칠기(Rz)를 주사형 프로브 현미경(시마쯔제작소제 SPM-9500J3)으로 측정했다 Rz가 0.4㎛를 초과한 시료를 NG로 평가했다.The surface roughness (Rz) of the green sheet was measured by a scanning probe microscope (SPM-9500J3 manufactured by Shimadzu Corporation). The sample whose Rz exceeded 0.4 µm was evaluated by NG.

<적층 세라믹 콘덴서의 평가><Evaluation of Multilayer Ceramic Capacitor>

각 적층 세라믹 콘덴서당 100개의 샘플의 저항치를 절연저항계로 측정하고 저항치가 100㏀이하가 되는 샘플을 불량품으로 판정해 쇼트율을 구했다. 쇼트율이 10%를 초과한 시료를 NG로 평가했다.The resistance value of 100 samples per laminated ceramic capacitor was measured with an insulation ohmmeter, and the sample whose resistance value is 100 kΩ or less was judged to be a defective product, and the short ratio was calculated | required. Samples with a short rate exceeding 10% were evaluated by NG.

시트의 표면거칠기Rz(㎛)Surface Roughness Rz (㎛) of Sheet 쇼트율(%)Short rate (%) 비교예1Comparative Example 1 0.490.49 2020 비교예2Comparative Example 2 0.420.42 1212 실시예1Example 1 0.390.39 99 실시예2Example 2 0.380.38 88 실시예3Example 3 0.370.37 66 실시예4Example 4 0.360.36 55

<단판시료의 제작방법과 측정조건><Manufacturing Method and Measurement Conditions of Single-Plate Samples>

단판의 평가시료는 이하와 같이 해서 제작했다. 그린시트를 1㎝각으로 자르고 두께가 1mm가 되도록 쌓았다. 다음으로 이것을 1000㎏/㎤의 압력으로 성형했다. 다음으로 수지성분을 소각하기 위해 300℃에서 10시간, 대기중에서 소성한 후 표3에 나타낸 소성온도 및 환원분위기 중에서 2시간 소성했다. 그 후 질소가스 중에서 1000℃로 안정시켜 2시간 재산화처리를 했다.The evaluation sample of the single plate was produced as follows. The green sheets were cut at an angle of 1 cm and stacked to have a thickness of 1 mm. Next, this was molded at a pressure of 1000 kg / cm 3. Next, in order to incinerate the resin component, it was calcined at 300 ° C. for 10 hours in the air, and then calcined for 2 hours in the firing temperature and the reducing atmosphere shown in Table 3. Thereafter, the mixture was stabilized at 1000 ° C. in nitrogen gas and subjected to reoxidation for 2 hours.

얻은 단판시료에 대해 밀도, 입경 및 유효 소성온도 범위를 이하와 같이 해서 평가하고 결과를 표3에 기재했다.The obtained single plate sample was evaluated as follows in density, particle size, and effective firing temperature range, and the results are shown in Table 3.

밀도(g/㎤)는 아르키메데스법을 이용해 측정했다.Density (g / cm <3>) was measured using the Archimedes method.

입경 0.5㎛이상의 입자의 유무는 주사형 전자 현미경으로 소결체의 입경을 측정해 판정했다.The presence or absence of the particle | grains of particle size 0.5 micrometer or more was measured by measuring the particle diameter of a sintered compact with the scanning electron microscope, and was determined.

유효 소성온도 범위는 밀도 5.8g/㎤이상, 입경 0.5㎛이상의 입자가 없는 것을 조건으로 하는 소성온도의 유효범위를 나타낸다.The effective firing temperature range represents the effective range of the firing temperature on the condition that there are no particles having a density of 5.8 g / cm 3 or more and a particle diameter of 0.5 µm or more.

밀도가 5.8g/㎤이상, 소결 후의 입경이 0.5㎛미만, 유효 소성온도 범위가 30℃이상의 각 조건내에서 적어도 하나를 만족하지 않는 경우 원하는 특성이 얻어지지 않았기 때문에 평가결과를 [NG]로 했다.When the density was 5.8 g / cm 3 or more, the particle size after sintering was less than 0.5 μm, and the effective firing temperature range did not satisfy at least one within each condition of 30 ° C. or more, the desired characteristic was not obtained. .

평가evaluation 소성온도 (℃)Firing temperature (℃) 밀도 (g/㎤)Density (g / cm 3) 0.5㎛이상의 입자 유무0.5μm or more particles 유효 소성온도 범위 (℃)Effective firing temperature range (℃) NG NG 비교예1 Comparative Example 1 11551155 5.765.76 소성불충분Insufficient plasticity 11601160 5.825.82 radish 5℃ (1125~1140℃)5 ℃ (1125 ~ 1140 ℃) 11651165 5.895.89 radish 11701170 5.895.89 U NG NG 비교예2 Comparative Example 2 11201120 5.765.76 소성불충분Insufficient plasticity 11251125 5.825.82 radish 20℃ (1125~1140℃)20 ℃ (1125 ~ 1140 ℃) 11301130 5.835.83 radish 11451145 5.845.84 radish 11451145 5.855.85 U NGNG 실시예1 Example 1 11251125 5.765.76 소성불충분Insufficient plasticity 11301130 5.835.83 radish 30℃ (1130~1160℃)  30 ℃ (1130 ~ 1160 ℃) 11431143 5.875.87 radish 11551155 5.935.93 radish 11601160 5.905.90 radish NGNG 11651165 5.915.91 U NGNG 실시예2 Example 2 11251125 5.775.77 소성불충분Insufficient plasticity 11301130 5.825.82 radish 40℃ (1130~1160℃)  40 ℃ (1130 ~ 1160 ℃) 11451145 5.865.86 radish 11501150 5.915.91 radish 11701170 5.905.90 radish NGNG 11851185 5.915.91 U NGNG 실시예3 Example 3 11201120 5.765.76 소성불충분Insufficient plasticity 11251125 5.825.82 radish 60℃ (1130~1160℃)  60 ℃ (1130 ~ 1160 ℃) 11401140 5.865.86 radish 11501150 5.885.88 radish 11851185 5.895.89 radish NGNG 11951195 5.895.89 U NGNG 실시예4 Example 4 11201120 5.765.76 소성불충분Insufficient plasticity 11251125 5.825.82 radish 70℃ (1130~1160℃)  70 ℃ (1130 ~ 1160 ℃) 11401140 5.865.86 radish 11501150 5.885.88 radish 11951195 5.895.89 radish NGNG 12001200 5.895.89 U

도1은 본 발명의 일 실시형태에 관한 적층 세라믹 콘덴서의 모식 단면도이다.1 is a schematic sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

1 적층 세라믹 콘덴서1 multilayer ceramic capacitor

2 콘덴서 칩체2 condenser chip

3 적층체층3 laminate layer

4 내부전극4 internal electrode

5 외부전극5 External Electrode

Claims (9)

복수 종류의 부성분 분말의 혼합물을 가소성하는 가소성공정; Plasticizing step of plasticizing a mixture of plural kinds of subcomponent powders; 가소성된 상기 부성분 분말을 분쇄하는 분쇄공정;A grinding step of grinding the plasticized subcomponent powder; 분쇄된 상기 부성분 분말을 플라즈마에 의해 미립화하는 플라즈마 처리공정; 및 A plasma processing step of atomizing the pulverized subcomponent powder by plasma; And 플라즈마에 의해 미립화된 상기 부성분 분말을 주성분 분말에 첨가하는 공정을 포함하고, Adding the subcomponent powder atomized by plasma to the main component powder, 상기 분쇄공정에서 분쇄된 후의 상기 부성분 분말의 입도 분포는 D90/D50<3.0인 유전체 세라믹재료의 제조방법.The particle size distribution of the subsidiary powder after milling in the milling step is D90 / D50 <3.0. 제1항에 있어서,The method of claim 1, 상기 플라즈마 처리공정에서 미립자화된 후의 상기 부성분 분말의 최대 입경은 상기 주성분 분말의 평균 입경의 3/4이하인 유전체 세라믹재료의 제조방법.The maximum particle diameter of the said subcomponent powder after micronization in the said plasma processing process is the manufacturing method of the dielectric ceramic material which is 3/4 or less of the average particle diameter of the said main component powder. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 부성분 분말은 Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho 및 Yb로 이루어진 군에서 선택된 적어도 한 종류의 원소를 함유하는 화합물로 이루어진 분말인 유전체 세라믹재료의 제조방법.Said subcomponent powder is a powder comprising a compound containing at least one element selected from the group consisting of Mg, Ba, Ca, Si, Mn, Al, V, Dy, Y, Ho and Yb. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2, 상기 주성분 분말은 티탄산바륨계 유전체 분말인 유전체 세라믹재료의 제조방법.The main component powder is a method for producing a dielectric ceramic material is a barium titanate-based dielectric powder. 제4항에 있어서,The method of claim 4, wherein 상기 티탄산바륨계 유전체 분말의 평균 입경은 0.3㎛이하인 유전체 세라믹재료의 제조방법.A method for producing a dielectric ceramic material, wherein the average particle diameter of the barium titanate-based dielectric powder is 0.3 μm or less. 삭제delete 삭제delete 삭제delete 삭제delete
KR1020080059285A 2007-12-25 2008-06-23 Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby KR100951319B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2007-00333295 2007-12-25
JP2007333295A JP5459952B2 (en) 2007-12-25 2007-12-25 Method for manufacturing dielectric ceramic material

Publications (2)

Publication Number Publication Date
KR20090069210A KR20090069210A (en) 2009-06-30
KR100951319B1 true KR100951319B1 (en) 2010-04-05

Family

ID=40959556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080059285A KR100951319B1 (en) 2007-12-25 2008-06-23 Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby

Country Status (2)

Country Link
JP (1) JP5459952B2 (en)
KR (1) KR100951319B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101533981B1 (en) * 2015-05-20 2015-07-07 한국세라믹기술원 Device using ultrasonics wave and plasma for crushing and dispersing the ceramic and method for crushing and dispersing the same
CN116283252B (en) * 2023-02-28 2024-06-14 东莞科伏精密制造有限公司 High-strength fused quartz ceramic and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255549A (en) * 1997-03-05 1998-09-25 Tdk Corp Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JP3630205B2 (en) * 1997-03-24 2005-03-16 Tdk株式会社 Method for manufacturing dielectric ceramic material
JP3767362B2 (en) * 1999-12-13 2006-04-19 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
JP2006315893A (en) 2005-05-11 2006-11-24 Sumitomo Precision Prod Co Ltd Method for producing carbon nanotube-dispersed composite material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506138B2 (en) * 2003-09-30 2010-07-21 Tdk株式会社 Method for producing slurry, method for producing green sheet, and method for producing multilayer electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10255549A (en) * 1997-03-05 1998-09-25 Tdk Corp Dielectric ceramic material, its manufacture, and laminated ceramic capacitor
JP3630205B2 (en) * 1997-03-24 2005-03-16 Tdk株式会社 Method for manufacturing dielectric ceramic material
JP3767362B2 (en) * 1999-12-13 2006-04-19 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
JP2006315893A (en) 2005-05-11 2006-11-24 Sumitomo Precision Prod Co Ltd Method for producing carbon nanotube-dispersed composite material

Also Published As

Publication number Publication date
JP5459952B2 (en) 2014-04-02
JP2009155143A (en) 2009-07-16
KR20090069210A (en) 2009-06-30

Similar Documents

Publication Publication Date Title
JP3675264B2 (en) Method for manufacturing ceramic slurry, ceramic green sheet and multilayer ceramic electronic component
JP2001114569A (en) Ceramic slurry composition, ceramic green sheet and production of multilayer ceramic electronic part
KR100376084B1 (en) Method of producing ceramic slurry, ceramic slurry composition, ceramic green sheet and multilayer ceramic electronic part
JP4687412B2 (en) Method for producing ceramic slurry
JP2006005222A (en) Ceramic electronic component and its manufacturing method
JP4152841B2 (en) Method for producing ceramic slurry, green sheet and multilayer ceramic component
US20120048452A1 (en) Method of manufacturing ceramic paste for multilayer ceramic electronic component and method of manufacturing multilayer ceramic electronic component having the same
KR100951319B1 (en) Manufacturing method of dielectric ceramic material, green sheet, sintered body and multi layered ceramic condenser using dielectric material manufactured thereby
KR20110074486A (en) Method for manufacturing dielectric ceramic material
JP2005033070A (en) Multilayer ceramic condenser and its manufacturing method
JP3908458B2 (en) Method for producing dielectric ceramic composition
JP2001039773A (en) Production of ceramic slurry, ceramic green sheet and laminated ceramic electronic parts
KR101101598B1 (en) Method of manufacturing dielectric ceramic material
KR100951318B1 (en) Manufacturing method of ceramic slurry, ceramic slurry manufactured thereby, greensheet, sintered body and multi layered ceramic condenser comprising ceramic slurry
JP2007180217A (en) Manufacturing method of laminated ceramic electronic components
JP2006206379A (en) Method for producing green sheet
JP2006111468A (en) Method for production of dielectric ceramic composition, electronic component, and laminated ceramic capacitor
JP2005104782A (en) Slurry, green sheet, stacked electronic component and their manufacturing methods
JP4837721B2 (en) Method for manufacturing dielectric ceramic material
JP2011084433A (en) Methods for producing ceramic slurry, green sheet and electronic component
JP5231387B2 (en) Method for manufacturing dielectric ceramic material
JP4677961B2 (en) Electronic component, dielectric ceramic composition and manufacturing method thereof
KR20220140441A (en) Electrode composition for electrospraying
JP5273112B2 (en) Electronic parts and dielectric porcelain
KR100881260B1 (en) Coating material for thick green sheet, process for producing the same, and process for producing electronic component with the coating material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130111

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20131224

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20150202

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20160111

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20170102

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20190103

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20200102

Year of fee payment: 11