JP3607478B2 - 動圧型多孔質含油軸受 - Google Patents

動圧型多孔質含油軸受 Download PDF

Info

Publication number
JP3607478B2
JP3607478B2 JP34962897A JP34962897A JP3607478B2 JP 3607478 B2 JP3607478 B2 JP 3607478B2 JP 34962897 A JP34962897 A JP 34962897A JP 34962897 A JP34962897 A JP 34962897A JP 3607478 B2 JP3607478 B2 JP 3607478B2
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
oil
region
pressure type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34962897A
Other languages
English (en)
Other versions
JPH11182551A (ja
Inventor
嗣人 中関
夏比古 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP34962897A priority Critical patent/JP3607478B2/ja
Publication of JPH11182551A publication Critical patent/JPH11182551A/ja
Application granted granted Critical
Publication of JP3607478B2 publication Critical patent/JP3607478B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、焼結金属からなる多孔質体に潤滑油あるいは潤滑グリースを含浸させて自己潤滑機能を持たせると共に、軸受隙間に介在する油の動圧油膜によって軸の摺動面を浮上支持する動圧型多孔質含油軸受に関し、特にレーザビームプリンタ(LBP)のポリゴンミラー用や磁気ディスクドライブ(HDD等)用のスピンドルモータなど、高速下で高回転精度が要求される機器や、DVD−ROM用のスピンドルモータのように、ディスクが載ることによって大きなアンバランス荷重が作用し高速で駆動する機器などに好適である。
【0002】
【従来の技術】
上記のような情報機器関連の小型スピンドルモータでは、回転性能のより一層の向上と低コスト化が求められており、そのための手段として、スピンドルの軸受部を転がり軸受から多孔質含油軸受に置き換えることが検討されている。しかし、多孔質含油軸受は、真円軸受の一種であるため、軸の偏心が小さいところでは、不安定振動が発生しやすく、回転速度の1/2の速度で振れ回るいわゆるホワールが発生しやすい欠点がある。そこで、軸受面にヘリングボーン形やスパイラル形などの動圧溝を設け、軸の回転に伴う動圧溝の作用によって軸受隙間に動圧油膜を発生させて軸を浮上支持することが従来より試みられている(動圧型多孔質含油軸受)。
【0003】
一方、この種の動圧型多孔質含油軸受は、軸振れの抑制に高い効果を有する反面、軸受隙間内の油が軸受面の表面開孔を介して軸受内部に逃げてしまうことによる、動圧作用の低減現象(動圧抜け)があり、期待する動圧効果が得られにくいという問題がある。従来、この動圧抜けの問題を解消する手段として、軸受面における動圧溝に表面目つぶし加工を施して、動圧溝の形成領域を封孔した構成が知られている(実開昭63−19627号)。
【0004】
【発明が解決しようとする課題】
動圧溝の形成領域を封孔した構成では、以下の問題点が生じる。
【0005】
(a)動圧溝の形成領域が完全に封孔されているので、その領域では多孔質含油軸受の最大の特徴である油の循環が阻害される。従って、一旦軸受隙間に滲み出した油は動圧溝の作用によって溝の屈曲部に押し込まれ、そこにとどまることになる。軸受隙間内では大きな剪断作用が働いているので、その剪断力と摩擦熱によって溝部にとどまった油は変性しやすく、また、温度上昇によって酸化劣化が早まる傾向にある。従って、軸受寿命が短くなる。
【0006】
(b)動圧溝の形成領域を完全に封孔処理することは極めて困難である。上記公報では塑性加工により封孔できるとしているが、通常、動圧溝の溝深さはμmオーダーのものであり、この程度の塑性加工で表面開孔が完全に封孔されることはない。
【0007】
(c)表面目つぶし加工を施す他の手段としてコーティング等を挙げているが、コーティング被膜の厚さは溝深さよりも薄くする必要があり、数μmのコーティング被膜を動圧溝の形成領域にのみ施すのは極めて困難である。
【0008】
尚、動圧溝の形成領域を完全に封孔しなくても、表面開孔の面積比(表面開孔率)を調整することにより、軸受隙間から軸受内部への油の戻り量が減少するので、それなりの効果は期待できる。しかし、表面開孔率の調整では、油の流れに対する抵抗が小さいため、油の戻り量の調整に限界があり、近時のスピンドルモータの一層の高速回転化、高性能化の傾向を考えると、充分な動圧効果を得ることができない場合が多い。
【0009】
そこで、本発明は、この種の動圧型多孔質含油軸受において、軸受本体の内部と軸受隙間との間の油の循環を確保しつつ、軸受隙間内における動圧抜けの問題を解消し、動圧溝による動圧効果を高めることにより、軸受機能、特に軸受剛性(軸受負荷容量)および軸受寿命のより一層の向上を図ることを主目的とするものである。
【0010】
【課題を解決するための手段】
図2は、傾斜状の動圧溝が形成された軸受面1bを有する動圧型多孔質含油軸受1で軸2を支持する際における、軸方向断面での油の流れを示している。軸2の回転に伴い、軸受本体1aの内部の細孔内に保有された油が軸受面1bの軸方向両側(及びチャンファー部)から軸受隙間4に滲み出し、さらに動圧溝によって軸受隙間4の軸方向中央に向けて引き込まれる。その油の引き込み作用(動圧作用)によって軸受隙間4に介在する油膜の圧力が高められ、動圧油膜が形成される。この軸受隙間4に形成される動圧油膜によって、軸2はホワール等の不安定振動を生じることなく、軸受面1bに対して浮上支持(非接触支持)される。軸受隙間4に滲み出した油は、軸2の回転に伴う発生圧力により、軸受面1bの表面開孔(「表面開孔」とは、多孔質体組織の細孔が外表面に開口した部分をいう。)から軸受本体1aの内部に戻り、軸受本体1aの内部を循環して、再び軸受面1b(及びチャンファー部)から軸受隙間4に滲み出す。
【0011】
上記のように、動圧型多孔質含油軸受は、軸受本体の内部の細孔内に保有した油を軸受本体と軸受隙間との間で循環させながら、動圧溝の動圧作用によって軸受隙間内に動圧油膜を形成し、その動圧油膜によって軸を継続して浮上支持する点に特徴を有するものであり、そのような安定した軸受機能を発揮させるためには、油の適切な循環と、軸支持に必要な動圧油膜の形成を確保する必要がある。特に、油の循環は、油の劣化を抑制して軸受寿命を高める働きをもつ他、動圧油膜の形成に対して相互補完的に働き、また相反的にも働くので、油の循環を如何に適切ならしめるかは、この種の動圧型多孔質含油軸受における極めて重要な課題である。すなわち、軸受隙間内に充分な動圧力と油膜厚さをもった動圧油膜を常時形成するためには、新鮮な適量の油が軸受本体から軸受隙間へ常時滲み出して、動圧油膜を形成し、さらに軸受隙間から軸受本体へ戻るという油の循環サイクルが適切に働くことが不可欠である。油の循環量が過小であると、軸受隙間への油の滲み出しが不足して、動圧油膜の形成が不充分になると同時に、軸受隙間内に油が滞留し、温度上昇により酸化劣化をきたす。一方、油の循環量が過大であると、軸受隙間から軸受本体への油の戻りが過度となり、前述したような動圧抜けの問題が起こる。
【0012】
油の循環量を制御するための手段として、表面開孔率の調整、油の動粘度の調整が挙げられる。しかし、表面開孔率の調整では油の流れに対する抵抗が小さいため、循環量調整に限界がある。また、油の動粘度の調整を過度に行うと、トルク上昇の要因となる。従って、これらの手段では不充分となる場合がある。
【0013】
そこで、本発明は、焼結金属からなる多孔質の軸受本体に、傾斜状の動圧溝を有する軸受面を設けた動圧型多孔質含油軸受において、少なくとも軸受面に、密度比α(%)が内部側部分よりも高い圧縮層を設けると共に、該圧縮層の密度比α(%)を85≦α≦95とし、かつ、該圧縮層の深さの平均値(t)と軸受面の内径寸法(D1)との比(t/D1)を1/60≦t/D1≦1/15とすることによって、上記課題を解決した。ここで、密度比α(%)は下記式で表されるものである。
【0014】
密度比α(%)=(ρ1/ρ0)×100
ρ1:多孔質体の密度
ρ0:その多孔質体に細孔が無いと仮定した場合の密度
【0015】
図4は、多孔質体における密度比α(%)と細孔率(単位体積内に占める細孔の体積割合)(%)との関係を示している。細孔率は密度比αに線形比例し、密度比αが大きくなるに従って細孔率は低下する。例えば、密度比α=75%で細孔率は約25、%、密度比α=80%で細孔率は約20%、密度比α=85%で細孔率は約15%、密度比α=90%で細孔率は約10%、密度比α=95%で細孔率は約5%になる。細孔率は、外表面においては、表面開孔率(外表面の単位面積内に占める表面開孔の面積割合)とほぼ同じになる。
【0016】
本発明では、少なくとも軸受面に密度比α(%)が85≦α≦95である圧縮層(表層部分)を設けているため、油が上記圧縮層(表層部分)の細孔を通過する際の抵抗が適度に大きくなり、軸受本体から軸受隙間への油の滲み出し、軸受隙間から軸受本体への油の戻りが適切量に調整される。そのため、動圧溝による動圧油膜の形成作用が高められ、軸受剛性(軸受負荷容量)が向上すると同時に、油の適切な循環が確保され、軸受寿命が向上する。
【0017】
上記構成において、圧縮層の密度比α(%)を85≦α≦95の範囲内としたのは次の理由による。圧縮層の密度比αが85%未満であると、油の流れに対する抵抗が小さくなりすぎて、動圧抜けが起こり、充分な動圧効果が期待できない。逆に、圧縮層の密度比αが95%を超えると、油の流れに対する抵抗が大きくなりすぎて、油の適切な循環が阻害される。本発明の構成は、軸受面の表面から所定深さまでの圧縮層の細孔によって油の流れに抵抗を与えるので、表面開孔率を調整する構成に比べて、油の滲み出し・戻り量の調整効果が高い。
【0018】
軸受本体の圧縮層よりも内部側部分の密度比α(%)は75≦α<85の範囲内とするのが好ましい。これは次の理由による。すなわち、内部側部分の密度比αが75%未満であると、細孔率が大きくなりすぎ、軸受面を成形する際、動圧溝の形状を精度良く仕上げることができない。逆に、内部側部分の密度比αが85%以上であると、細孔率が小さくなりすぎ、油の保有量が減少する。従って、軸受面の成形精度を確保すると同時に、軸受本体の油保有量を確保する観点から、内部側部分の密度比α(%)を75≦α<85の範囲内とするのが良い。
【0019】
上記圧縮層の深さの平均値(t)(以下「平均深さt」とする。)と軸受面の内径寸法(D1)との比(t/D1)は1/60≦t/D1≦1/15の範囲内とする。t/D1が1/60未満であると、油の流れに対する抵抗が小さくなりすぎ、逆に、t/D1が1/15を超えると、油の流れに対する抵抗が大きくなりすぎ、上記と同様の現象が起こる。
【0020】
上記のような傾斜状の動圧溝を備えた軸受面は、軸受面に対応した形状の成形型によって、動圧溝の形成領域とそれ以外の領域とを同時成形することによって形成することができる。そのための手段として、例えば、軸受面の形状に対応した凹凸状の成形型をコアロッドの外周面に形成し、このコアロッドの成形型に多孔質体素材を供給して圧迫力を加え、多孔質体素材の内周面をコアロッドの成形型に加圧して塑性変形させる手段を採用することができる。軸受面の成形後、圧迫力を解除することによる多孔質体素材のスプリングバックを利用して、コアロッドの成形型を多孔質体素材から離型することができる。
【0021】
油の循環量を制御するパラメータの一つに、油の動粘度がある。油の動粘度が高くなれば油は動きにくくなり、逆に、油の動粘度が低くなれば油は動きやすくなる。以上説明した構成に油の動粘度調整を付加すると、より良い効果が得られる。ただ、軸受面における圧縮層の密度比α(%)と油の動粘度との間には、油の適切な循環と動圧油膜の形成を確保し得る最適範囲が存在すると考えられるので、その最適範囲において油の動粘度を選定すべきである。例えば、油の動粘度は、40°Cにおいて、5cSt〜60cSt、望ましくは、8cSt〜40cStにするのが良い。この範囲で油の動粘度を選定することにより、軸を浮上支持するために充分な動圧油膜が形成されると同時に、油の適切な循環が確保されるので、高回転精度、長寿命を達成することができる。
【0022】
尚、軸受面における圧縮層の密度比αを85%〜95%の範囲内にした場合、軸受面における表面開孔率(面積率)は略5%〜15%になるが、表面処理加工を追加して、表面開孔率をさらに小さく、例えば2%〜5%程度にしても良い。
【0023】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0024】
図1は、本発明の動圧型多孔質含油軸受の一実施形態を例示している。この多孔質含油軸受1は、例えばレーザビームプリンタのスキャナモータ等において、ロータとステータとの間の例磁力によって高速回転するスピンドル軸をハウジングに対して回転自在に浮上支持(非接触支持)するものである。
【0025】
多孔質含油軸受1は、多孔質体例えば銅又は鉄、あるいはその両者を主成分とする焼結合金からなる軸受本体1aと、潤滑油又は潤滑グリースの含浸によって軸受本体1aの細孔内に保有された油(潤滑油又は潤滑グリースの基油)とで構成される。
【0026】
軸受本体1aの内周には、支持すべき軸の外周面と軸受隙間を介して対向する軸受面1bが形成され、その軸受面1bに傾斜状の動圧溝1cが形成されている。この実施形態における軸受面1bは、軸方向に対して一方に傾斜した複数の動圧溝1cを円周方向に配列形成した第1領域m1と、第1領域m1から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝1cを円周方向に配列形成した第2領域m2と、第1領域m1と第2領域m2との間に位置する環状の平滑領域nとで構成される。第1領域m1の背(動圧溝1c間の領域)1dと第2領域m2の背(動圧溝1c間の領域)1dは、それぞれ平滑領域nに連続している。軸受面1bには、動圧溝1cの形成領域を含む全領域にわたって表面開孔がほぼ均一に分布している。軸受本体1aと軸との間に相対回転が生じると、第1領域m1と第2領域m2にそれぞれ逆向きに傾斜形成された動圧溝1cによって、軸受隙間内の油が平滑領域nに向けて引き込まれ、油が平滑領域nに集められるため、平滑領域nにおける油膜圧力が高められる。そのため、動圧油膜の形成効果が高い。
【0027】
尚、軸受面1bの形状は同図に示すものに限定されず、例えば、軸方向に対して一方に傾斜した動圧溝と他方に傾斜した動圧溝とを対にしてV字状に連続させても良い(この場合、環状の平滑領域nは存在しない。)。また、1つの軸受本体の内周面に複数例えば2つの軸受面を軸方向に離間させて形成しても良い。これにより、軸受面相互間の同軸度を精度良く確保することができる。
【0028】
図3は、軸受本体1aの縦断面における密度分布を模式的に示している。軸受本体1aは、その外表面から平均深さtまでの表層部分(圧縮層)1a1の密度が高く、圧縮層1a1より内部側の内部側部分1a2の密度が低くなっている。圧縮層1a1の密度は密度比α(%)に換算して85≦α≦95の範囲内であり、内部側部分1a2の密度は密度比α(%)に換算して75≦α<85の範囲内である。軸受本体1aの軸受面1bの内径寸法D1(動圧溝1cの形成領域以外の領域を基準とする。)はφ3mm、外径寸法D2はφ6mm、動圧溝1cの深さhは2〜4μmである。軸受面1bにおける圧縮層1a1の平均深さtは、軸受面1bの内径寸法D1に対して1/60≦t/D1≦1/15の範囲内であり、この実施形態では内径寸法D1の1/60で50μmである。軸受本体1aの外周面、両端面における圧縮層1a1の平均深さtも概ね軸受面1bのそれと同程度であり、この実施形態では50μm程度である。図面では、動圧溝1cの深さh、圧縮層1a1の平均深さtがかなり誇張して図示されている。また、深さhと平均深さtの寸法比も実際とは異なる比率で図示されている。尚、軸受本体1aの外周面や両端面の圧縮層1a1は軸受本体1aの内部に保有された油が外周面や端面から外部に流失することを防止するために形成されるものであり、その密度(密度比α)や平均深さtは軸受面1bの圧縮層1a1に比べて多少ラフに管理しても良い。例えば、密度比αは100%近く(細孔が殆ど無い状態)にしても良いし、平均深さtは軸受面1bの圧縮層1a1よりも大きくても良いし小さくても良い。また、外周面や両端面の圧縮層1a1はなくても良い。
【0029】
上記のような軸受本体1aは、銅又は鉄、あるいはその両者を主成分とする金属粉を圧粉成形し、さらに焼成して得られた図6に示すような円筒形状の焼結合金素材1’に対して、例えばサイジング→回転サイジング→軸受面成形加工を施して製造することができる。焼結合金素材1’の密度比α(%)は75≦α<85の範囲内に設定される。
【0030】
サイジング工程は、焼結合金素材1’の外周面と内周面のサイジングを行う工程で、焼結合金素材1’の外周面を円筒状のダイに圧入すると共に、内周面にサイジングピンを圧入する。サイジング代は、例えば、外周面について20μm以下(半径量10μm以下)、内周面について10μm以下(半径量5μm以下)で行われる。
【0031】
回転サイジング工程は、多角形のサイジングピンを焼結合金素材1’の内周面に圧入し、これを回転させながら内周面のサイジングを行う工程である。サイジング代は5μm程度(半径量2.5μm程度)で行われる。
【0032】
軸受面成形工程は、上記のようなサイジング加工を施した焼結合金素材1’の内周面に、完成品1aの軸受面1bに対応した形状の成形型を加圧することによって、軸受面1bの動圧溝1cの形成領域とそれ以外の領域(背1d、平滑領域n)とを同時成形する工程である。この工程は、例えば以下のようなものである。
【0033】
図8は、軸受面成形工程で使用する成形装置の概略構造を例示している。この装置は、焼結合金素材1’の外周面を圧入する円筒状のダイ20、焼結合金素材1’の内周面を成形するコアロッド21、焼結合金素材1’の両端面を上下方向から押さえる上下のパンチ22、23を主要な要素として構成される。同図(b)に示すように、コアロッド21の外周面には、完成品の軸受面1bの形状に対応した凹凸状の成形型21aが設けられている。成形型21aの凸部分21a1は軸受面1bにおける動圧溝1cの領域を成形し、凹部分21a2は動圧溝1c以外の領域(背1d、環状の平滑領域n)を成形するものである。成形型21aにおける凸部分21a1と凹部分21a2との段差(深さH)は、軸受面1bにおける動圧溝1cの深さhと同じ2〜4μmであるが、図面ではかなり誇張して図示されている。
【0034】
ダイ20への圧入前の状態において、焼結合金素材1’の内周面とコアロッド21の成形型21a(凸部分21a1を基準)との間には内径すきまTがある。内径すきまTの大きさは25μm(半径すきま)である。焼結合金素材1’の外周面のダイ20に対する圧入代(外径しめしろS)は75μm(半径代)である。
【0035】
焼結合金素材1’をダイ20の上面に位置合わせして配置した後、図9に示すように、上パンチ22およびコアロッド21を降下させ、焼結合金素材1’をダイ20に圧入し、さらに下パンチ23に押し付けて上下方向から加圧する。
【0036】
焼結合金素材1’はダイ20と上下パンチ22・23から圧迫力を受けて変形を起こし、内周面がコアロッド21の成形型21aに加圧される。内周面の加圧量は、外径しめしろS(半径量75μm)と内径すきまT(半径量25μm)との差50μm(半径量)に略等しく、内周面から深さ50μmまでの表層部分がコアロッド21の成形型21aに加圧され、塑性流動を起こして成形型21aに食い付く。これにより、成形型21aの形状が焼結合金素材1’の内周面に転写され、軸受面1bが図1に示す形状に成形される。成形時、焼結合金素材1’の外周面はダイ20によって、両端面は上下パンチ22・23によってそれぞれ加圧される。外周面の加圧量は50μm、両端面の加圧量は片側50μm程度である。
【0037】
軸受面1bの成形が完了した後、図11に示すように、焼結合金素材1’にコアロッド21を挿入したままの状態で下パンチ23とコアロッド21を連動して上昇させ{(2)の状態}、焼結合金素材1’をダイ20から抜く{(3)の状態}。焼結合金素材1’をダイ20から抜くと、焼結合金素材1’にスプリングバックが生じ、その内径寸法が拡大するので(図10参照)、動圧溝1cを崩すことなく、焼結合金素材1’の内周面からコアロッド21を抜き取ることができる{(4)の状態}。これにより、軸受本体1aが完成する。
【0038】
上述した軸受面1bの成形工程において、密度比α(%)が75≦α<85の範囲内に設定された焼結合金素材1’の内周面が50μmの加圧量でコアロッド21の成形型21aに加圧されることにより、その表層部分の密度が高められ、軸受本体1aとして完成された状態で、図3に示すように、軸受面1bの表面から平均深さ50μmまでの領域に密度比α(%)が85≦α≦95の圧縮層1a1ができる。同時に、焼結合金素材1’の外周面および両端面がそれぞれ50μmの加圧量でダイ20、上下パンチ22・23に加圧されることにより、それらの表面から平均深さ50μmまでの領域に密度比α(%)が85≦α≦95の圧縮層1a1ができる。軸受本体1aの内部側部分1a2は成形時の影響を殆ど受けないので、その密度比α(%)は焼結合金素材1’の密度比α(%)である75≦α<85の範囲内に維持される。
【0039】
焼結合金素材1’の密度比α(%)は、上記のような軸受面成形工程において、コアロッド21を抜き取る際の素材1’のスプリングバック量と密接な関係を有する。
【0040】
図7は、焼結合金素材1’の密度比α(%)とスプリングバック量(μm:直径量)との関係を実験的に求めた結果を示している。素材1’の密度比αが高くなるに従って,スプリングバック量は減少している。軸受面1bにおける動圧溝1cの深さhが2〜4μmの場合、焼結合金素材1’の密度比αが85%を超えると、スプリングバック量が3μm未満(直径量)となり、コアロッド21を抜き取る際に軸受面1bの動圧溝1cを崩してしまう可能性が有る。一方、焼結合金素材1’の密度比αが75%未満であると、スプリングバック量は5μm(直径量)より大きくなるが、動圧溝1cの成形精度が低下する。したがって、動圧溝1cを崩すことなくコアロッド21の抜き取りを可能にし、かつ、動圧溝1cの成形精度を確保し得る観点から、焼結合金素材1’の密度比α(%)は75≦α<85の範囲内に設定する必要がある。尚、素材1’のスプリングバック量の半径量が動圧溝1cの深さよりも大きい場合は、成形型21aを素材1’の内周面に干渉させることなく離型することができるが、素材1’のスプリングバック量の半径量が動圧溝1cの深さよりも小さく、成形型21aが素材1’の内周面に多少干渉する場合であっても、素材1’の材料弾性による拡径量(半径量)を付加して、動圧溝1cを崩すことなく成形型21aを素材1’の内周面から離型できれば良い。
【0041】
以上のような工程を経て軸受本体1aを製造し、これに潤滑油又は潤滑グリースを含浸させて油を保有させると、図1、図3に示すこの実施形態の動圧型多孔質含油軸受1が完成する。
【0042】
【発明の効果】
本発明は以下の効果を有する。
【0043】
(1)軸受面における密度比α(%)が85≦α≦95の圧縮層の細孔を介して、保有した油を軸受本体の内部と軸受隙間との間で循環させる構成なので、軸受本体から軸受隙間への油の滲み出し、軸受隙間から軸受本体への油の戻りが適切量に調整される。そのため、動圧溝による動圧油膜の形成作用が高められ、軸受剛性(軸受負荷容量)が向上すると同時に、油の適切な循環が確保され、軸受寿命が向上する。
【0044】
(2)軸受本体の圧縮層よりも内部側部分の密度比α(%)を75≦α<85の範囲内に設定することにより、軸受面(特に動圧溝)の成形精度を確保することができると同時に、軸受本体の適切な油保有量を確保することができる。また、軸受面における動圧溝の形成領域とそれ以外の領域とを、軸受面に対応した形状の成形型によって同時成形する際、軸受本体の素材のスプリングバックを利用して、動圧溝を崩すことなく、成形型を素材から離型することができる。
【0045】
(3)軸受本体の内部に保有される油の40°Cにおける動粘度を5〜60cStの範囲内とすることにより、より良い効果が得られる。
【0046】
(4)軸受面を、動圧溝が形成された第1領域と第2領域との間に環状の平滑領域を有する形状とすることにより、第1領域および第2領域の動圧溝によって油が平滑領域に集められて、平滑領域に油膜圧力の高い動圧油膜が形成されるので、軸受剛性が向上し、軸振れ等をより小さくすることができる。
【0047】
(5)軸受本体の内周面に複数の軸受面を軸方向に離隔形成することにより、軸受面相互間の同軸度を精度良く確保することができる。また、複数の軸受を配置する場合に比べ、部品点数、組立工数を減少することができる。
【図面の簡単な説明】
【図1】本発明にかかる動圧型多孔質含油軸受の一実施形態を示す縦断面図である。
【図2】動圧型多孔質含油軸受で軸を浮上支持する際の、軸方向断面での油の流れを模式的に示す図である。
【図3】動圧型多孔質含油軸受における軸受本体の密度分布を模式的に示す縦断面図である。
【図4】多孔質体の密度比αと細孔率との関係を示す図である。
【図5】LBPスピンドルモータの構成を概念的に示す断面図である。
【図6】軸受本体の素材となる焼結合金素材を示す断面図である。
【図7】焼結合金素材の密度比αとスプリングバック量との関係を示す図である。
【図8】軸受面の成形加工に使用する成形装置の概略を示す図(図a)、軸受面を成形するコアロッドを示す図(図b)である。
【図9】軸受面の成形工程を示す図である。
【図10】軸受面の成形工程を示す図である。
【図11】軸受面の成形工程を示す図である。
【符号の説明】
1 動圧型多孔質含油軸受
1a 軸受本来
1a1 圧縮層
1a2 内部側部分
1b 軸受面
1c 動圧溝

Claims (8)

  1. 焼結金属からなる多孔質の軸受本体に、傾斜状の動圧溝を有する軸受面を設けた動圧型多孔質含油軸受において、
    少なくとも前記軸受面に、下記式で表される密度比α(%)が、内部側部分よりも高い圧縮層を有すると共に、該圧縮層の密度比α(%)が85≦α≦95であり、かつ、該圧縮層の深さの平均値(t)と軸受面の内径寸法(D1)との比(t/D1)が1/60≦t/D1≦1/15であることを特徴とする動圧型多孔質含油軸受。
    密度比α(%)=(ρ1/ρ0)×100
    ρ1:多孔質体の密度
    ρ0:その多孔質体に細孔が無いと仮定した場合の密度
  2. 前記内部側部分の密度比α(%)が75≦α<85であることを特徴とする請求項1記載の動圧型多孔質含油軸受。
  3. 前記軸受面の表面開孔率が5〜15%であることを特徴とする請求項1又は2記載の動圧型多孔質含油軸受。
  4. 前記軸受本体の内部に保有される油の40°Cにおける動粘度が5〜60cStであることを特徴とする請求項1から3の何れかに記載の動圧型多孔質含油軸受。
  5. 上記焼結金属が銅または鉄、あるいは、その両者を主成分とすることを特徴とする請求項1からの何れかに記載の動圧型多孔質含油軸受。
  6. 上記軸受面における動圧溝の形成領域とそれ以外の領域とが、軸受面に対応した形状の成形型によって同時成形されたことを特徴とする請求項1からの何れかに記載の動圧型多孔質含油軸受。
  7. 上記軸受面が、軸方向に対して一方に傾斜した複数の動圧溝を円周方向に配列形成した第1領域と、第1領域から軸方向に離隔し、軸方向に対して他方に傾斜した複数の動圧溝を円周方向に配列形成した第2領域と、第1領域と第2領域との間に位置する環状の平滑領域とを有することを特徴とする請求項1からの何れかに記載の動圧型多孔質含油軸受。
  8. 上記軸受本体の内周面に複数の軸受面が軸方向に離隔形成されたことを特徴とする請求項1からの何れかに記載の動圧型多孔質含油軸受。
JP34962897A 1997-12-18 1997-12-18 動圧型多孔質含油軸受 Expired - Lifetime JP3607478B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34962897A JP3607478B2 (ja) 1997-12-18 1997-12-18 動圧型多孔質含油軸受

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34962897A JP3607478B2 (ja) 1997-12-18 1997-12-18 動圧型多孔質含油軸受

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2004213354A Division JP4188288B2 (ja) 2004-07-21 2004-07-21 動圧型多孔質含油軸受の製造方法
JP2004213342A Division JP4327038B2 (ja) 2004-07-21 2004-07-21 スピンドルモータ

Publications (2)

Publication Number Publication Date
JPH11182551A JPH11182551A (ja) 1999-07-06
JP3607478B2 true JP3607478B2 (ja) 2005-01-05

Family

ID=18405030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34962897A Expired - Lifetime JP3607478B2 (ja) 1997-12-18 1997-12-18 動圧型多孔質含油軸受

Country Status (1)

Country Link
JP (1) JP3607478B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5085035B2 (ja) * 2005-01-06 2012-11-28 Ntn株式会社 焼結金属材、焼結含油軸受、流体軸受装置、及びモータ
WO2010106909A1 (ja) 2009-03-19 2010-09-23 Ntn株式会社 焼結金属軸受、およびこの軸受を備えた流体動圧軸受装置
KR101238552B1 (ko) * 2009-09-15 2013-02-28 엘지이노텍 주식회사 스핀들 모터용 베어링 및 그 제조방법
JP2013217493A (ja) * 2012-03-13 2013-10-24 Ntn Corp 焼結軸受
IN2014DN07929A (ja) 2012-03-13 2015-05-01 Ntn Toyo Bearing Co Ltd
JP7076266B2 (ja) * 2018-04-03 2022-05-27 Ntn株式会社 焼結含油軸受の製造方法
JP2024034792A (ja) * 2022-09-01 2024-03-13 Ntn株式会社 焼結含油軸受

Also Published As

Publication number Publication date
JPH11182551A (ja) 1999-07-06

Similar Documents

Publication Publication Date Title
US6250807B1 (en) Hydrodynamic type bearing and hydrodynamic type bearing unit
JP3607492B2 (ja) 動圧型多孔質含油軸受およびその製造方法
JP3607478B2 (ja) 動圧型多孔質含油軸受
JP4573349B2 (ja) 動圧軸受の製造方法
JP3607661B2 (ja) 動圧型多孔質含油軸受およびその製造方法
JP4327038B2 (ja) スピンドルモータ
JP4188288B2 (ja) 動圧型多孔質含油軸受の製造方法
JP2000087953A (ja) 動圧型焼結含油軸受ユニット
JP3784690B2 (ja) 動圧型多孔質含油軸受およびその製造方法
JP7076266B2 (ja) 焼結含油軸受の製造方法
JP4052730B2 (ja) 軸受装置の製造方法と軸受装置及びこれを用いたモータ
JP3602318B2 (ja) 動圧型多孔質含油軸受の製造方法
JP7094118B2 (ja) 焼結金属製動圧軸受
JP3602325B2 (ja) 動圧型多孔質含油軸受
JP3602320B2 (ja) 動圧型焼結含油軸受の製造方法
JP2005180707A (ja) 動圧型焼結含油軸受ユニット
WO2023189389A1 (ja) 焼結含油軸受とこの軸受を備えた流体動圧軸受装置
JP4509922B2 (ja) 情報機器スピンドルモータ用の動圧型焼結含油軸受
JP2004316924A (ja) 動圧型焼結含油軸受ユニット
JPH11191944A (ja) レーザビームプリンタのスピンドルモータ及び回転軸支持装置
JP3602330B2 (ja) 動圧型滑り軸受およびその製造方法
JP4451409B2 (ja) 動圧型焼結含油軸受ユニットの製造方法
JP2004316925A (ja) 動圧型焼結含油軸受ユニット
JP2004301338A (ja) 動圧型焼結含油軸受ユニット
JP2004360921A (ja) 動圧型焼結含油軸受ユニット

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term