JP3601389B2 - 電子機器、電子制御式機械時計およびそれらの制御方法 - Google Patents

電子機器、電子制御式機械時計およびそれらの制御方法 Download PDF

Info

Publication number
JP3601389B2
JP3601389B2 JP36495699A JP36495699A JP3601389B2 JP 3601389 B2 JP3601389 B2 JP 3601389B2 JP 36495699 A JP36495699 A JP 36495699A JP 36495699 A JP36495699 A JP 36495699A JP 3601389 B2 JP3601389 B2 JP 3601389B2
Authority
JP
Japan
Prior art keywords
generator
chopping
signal
frequency
chopping signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36495699A
Other languages
English (en)
Other versions
JP2000346964A (ja
Inventor
邦夫 小池
栄作 清水
英典 中村
茂幸 藤森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP36495699A priority Critical patent/JP3601389B2/ja
Priority to CNB001065173A priority patent/CN100399217C/zh
Priority to DE60029859T priority patent/DE60029859T2/de
Priority to EP00301773A priority patent/EP1041464B1/en
Priority to US09/518,812 priority patent/US6483276B1/en
Publication of JP2000346964A publication Critical patent/JP2000346964A/ja
Priority to US09/771,486 priority patent/US6795378B2/en
Priority to HK01102093A priority patent/HK1031436A1/xx
Application granted granted Critical
Publication of JP3601389B2 publication Critical patent/JP3601389B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electromechanical Clocks (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器、電子制御式機械時計およびそれらの制御方法に関し、詳しくは、機械的エネルギ源と、この機械的エネルギ源により駆動されるとともに誘起電力を発生して電気的エネルギを出力する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を制御する回転制御装置とを有する電子機器、電子制御式機械時計およびそれらの制御方法に関する。
【0002】
【背景技術】
ゼンマイが開放する時の機械的エネルギを発電機で電気的エネルギに変換し、その電気的エネルギにより回転制御装置を作動させて発電機のコイルに流れる電流値を制御することにより、輪列に固定される指針を正確に駆動して正確に時刻を表示する電子制御式機械時計として、特公平7−119812号公報に記載されたものが知られている。
【0003】
ところで、このような電子制御式機械時計において持続時間を長くするには、ゼンマイのトルクが高いときにはブレーキトルクを増加でき、かつその際の発電電力が低下しないようにすることが重要である。すなわち、電子制御式機械時計においては、発電機に印加するブレーキトルクと発電機の起電力(発電電力)との関係において、ゼンマイトルクが高いときには前記ブレーキトルクを優先させる制御が必要であり、ゼンマイトルクが低いときには、大きいブレーキを必要としないため、前記発電電力(起電力)を優先する制御が好ましい。なお、トルク(ゼンマイトルク)が大きい場合とは、ゼンマイが多く巻かれた時の他、振動や衝撃等の外乱によりロータに加わる駆動トルクが大きくなる場合も含む。同様に、トルク(ゼンマイトルク)が小さい場合とは、ゼンマイがほどけてきた時の他、上記外乱によりロータに加わる駆動トルクが小さくなる場合も含む。
【0004】
このため、特公平7−119812号公報に記載されたものは、ロータが1回転する間つまり基準信号の周期毎に、ブレーキをオフしてロータの回転速度を高めて発電量を増やす角度範囲と、ブレーキを掛けて低速で回す角度範囲とを設け、前記回転速度が高い間で発電電力を向上させつつ、ブレーキ時の発電電力の低下を補うようにして調速していた。
【0005】
【発明が解決しようとする課題】
しかしながら、特公平7−119812号公報に記載されたものは、ブレーキを掛けた部分では発電電力が低下するため、ブレーキトルクを増加させながら発電電力の低下を抑えることに限界があった。
【0006】
また、電子制御式機械時計に限らず、ゼンマイやゴムなどの機械的エネルギ源によって回転制御される部分を有するオルゴールやメトロノーム、電気かみそりなどの各種電子機器においても、同様な問題があり、その解消が求められていた。
【0007】
本発明の目的は、発電電力の低下を抑えながら発電機のブレーキトルクを大きくできる電子機器、電子制御式機械時計およびそれらの制御方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、発電機の両端を閉ループ可能なスイッチを設け、このスイッチにチョッピング信号を印加して発電機をチョッピング制御した場合、図28〜31に示すように、駆動トルク(ブレーキトルク、制動トルク)はチョッピング周波数が低いほど、またデューティ比が高いほど高くなり、充電電圧(発電電圧)は起電力でもあってチョッピング周波数が高いほど高くなるがデューティ比が高くなってもそれほど低下せず、逆に50Hz以上の周波数ではデューティ比が0.8程度になるまでは充電電圧が高くなる点を新たに見いだしてなされたものである。
【0009】
すなわち、本発明の電子機器は、機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器において、前記回転制御装置は、前記発電機の両端を閉ループ状態に接続可能なスイッチと、周波数は同一でデューティ比が異なり、前記発電機の回転周波数の5倍以上の周波数を有し、かつ強ブレーキ制御用に設定された2種類以上のチョッピング信号を発生するチョッピング信号発生部と、前記2種類以上のチョッピング信号から1つのチョッピング信号を選択して前記スイッチに印加し、前記発電機をチョッピング制御するチョッピング信号選択手段と、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加するように構成されていることを特徴とするものである。
また、本発明の電子機器は、機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器において、前記回転制御装置は、前記発電機の両端を閉ループ状態に接続可能なスイッチと、デューティ比は同一で周波数が異なり、前記発電機の回転周波数の5倍以上の周波数を有し、かつ強ブレーキ制御用に設定された2種類以上のチョッピング信号を発生するチョッピング信号発生部と、前記2種類以上のチョッピング信号から1つのチョッピング信号を選択して前記スイッチに印加し、前記発電機をチョッピング制御するチョッピング信号選択手段と、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加するように構成されていることを特徴とするものである。
さらに、本発明の電子機器は、機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器において、前記回転制御装置は、前記発電機の両端を閉ループ状態に接続可能なスイッチと、デューティ比および周波数がそれぞれ異なり、前記発電機の回転周波数の5倍以上の周波数を有し、かつ強ブレーキ制御用に設定された2種類以上のチョッピング信号を発生するチョッピング信号発生部と、前記2種類以上のチョッピング信号から1つのチョッピング信号を選択して前記スイッチに印加し、前記発電機をチョッピング制御するチョッピング信号選択手段と、
発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加するように構成されていることを特徴とするものである。
【0010】
本発明の電子機器は、発電機をゼンマイ等の機械的エネルギ源で駆動し、発電機に回転制御装置によりブレーキをかけることでロータの回転数を調速する。
【0011】
この際、発電機の回転制御は、発電機のコイル両端を閉ループ可能なスイッチにチョッピング信号を印加してオン・オフ、つまりチョッピングすることで行っている。チョッピングすることで、スイッチをオンした時には、発電機のコイル両端が閉ループ状態になってショートブレーキが掛かり、かつ発電機のコイルにエネルギーがたまる。一方で、スイッチをオフすると、閉ループ状態が解除されて発電機が動作し、前記コイルにたまっていたエネルギー分が含まれるため、起電圧(発電電圧)が高まる。このため、発電機に強いブレーキを印加する時にチョッピングで制御すると、ブレーキ時の発電電力の低下を、スイッチオフ時の起電圧の高まり分で補填でき、発電電力の低下を抑えながらブレーキトルク(制動トルク)を増加でき、持続時間の長い電子機器を構成できる。
【0012】
この強いブレーキを印加する時(強ブレーキ制御時)に、チョッピング信号選択手段によって、デューティ比および周波数の少なくとも一方が異なる2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択したチョッピング信号を印加することで、つまり駆動トルクが大きいために大きなブレーキ力が必要な場合(ブレーキ優先)には、ブレーキ力を大きくできるチョッピング信号を印加し、駆動トルクが低くなってブレーキ力はそれほど大きくする必要がない場合(発電優先)には、ブレーキ力はそれほど大きくないが充電電圧を高めることができるチョッピング信号を印加することで、発電機のロータに加わる駆動トルクに応じたブレーキ力(制動トルク)を与えることができて確実に調速制御が行えて調整可能な動作領域も広げることができる上、充電電圧も高めることができる。これにより、発電電力の低下をより一層抑えながらブレーキトルク(制動トルク)をより増加でき、持続時間も長い電子機器を構成できる。
【0013】
なお、前記スイッチをオンすることで移行する閉ループ状態とは、閉ループ状態ではない場合と比べて発電機に加わるブレーキ力が大きくなる状態であればよく、閉ループとされた回路上に、例えばスイッチと発電機との間等に、抵抗素子等が設けられていてもよい。但し、閉ループ状態は、各発電機の端子間を容易に同電位にできてショートブレーキを効率的に掛けられる点で、発電機の各端子間を直接短絡して構成することが好ましい。また、チョッピング信号選択手段の出力信号が前記スイッチに入力される場合、直接入力される場合のほか、他の回路や素子を介して入力されるようにしてもよい。
【0014】
以上のように、ブレーキを2種類以上にすることで、定常的にシステムに必要な発電電圧を得ることができ、システムの安定性を向上させることができる。また、ブレーキ効果を最大限に引き出すことが可能になり、システムの自立性を高めることができる。
【0015】
ここで、前記2種類以上のチョッピング信号は、周波数は同一とされ、デューティ比が異なるように設定されていてもよい。この各チョッピング信号としては、例えば、デューティ比が0.75〜0.85(例えば13/16)とされた第1のチョッピング信号と、デューティ比が0.87〜0.97(例えば15/16)とされた第2のチョッピング信号等が利用できる。
【0016】
図28〜31に示すように、周波数が同一でもデューティ比の異なるチョッピング信号を用いることで、充電電圧や駆動トルク(制動トルク)を異ならせることができる。従って、ブレーキを優先する場合には、制動トルクが大きいデューティ比の大きな第2のチョッピング信号を用い、発電を優先させる場合には、充電電圧が高いデューティ比が比較的大きな(但し、第2のチョッピング信号のデューティ比よりは小さい)第1のチョッピング信号を用いれば、発電機の状態に応じた適切な調速制御が行える。さらに2種類以上の強ブレーキ制御用のチョッピング信号の例として、例えば3種類の強ブレーキ制御用のチョッピング信号を使用する場合、例えば15/16duty、14/16duty、13/16dutyのチョッピング信号を選択可能にすれば、2種類の制御に比較して、ブレーキ量と発電量の関係において、よりきめ細かい制御ができ、システムの安定性と自立性を高めることができるという効果を有する。
【0017】
なお、図28〜図31において、駆動トルクという表現は、ブレーキトルクという表現に修正しても構わない。すなわち、駆動トルクとは、ある駆動トルクに対してブレーキ制御して回転を所望の速度まで落とすことが可能なブレーキトルクという意味である。また、充電電圧は、発電機が発電した電圧をコンデンサに充電した結果であり、発電電圧と言い換えることもできる。
【0018】
また、前記2種類以上のチョッピング信号は、デューティ比は同一とされ、周波数が異なるように設定されていてもよい。この各チョッピング信号としては、例えば、周波数が110〜1100Hz(例えば512Hz)とされた第1のチョッピング信号と、周波数が25〜100Hz(例えば64Hz)とされた第2のチョッピング信号等が利用できる。
【0019】
この場合も、図28〜31に示すように、デューティ比が同一でも周波数の異なるチョッピング信号を用いることで、充電電圧や制動トルクを異ならせることができる。従って、ブレーキを優先する場合には、制動トルクが大きい周波数の小さな第2のチョッピング信号を用い、発電を優先させる場合には、充電電圧が高い周波数の大きな第1のチョッピング信号を用いれば、発電機の状態に応じた適切な調速制御が行える。また、図28〜31に示すように、周波数を変えた場合には、デューティのみを変える場合に比べて、充電電圧や制動トルクの変化量を大きくすることができるため、調速制御可能な範囲をより広げることができる。なお、図28,29は、チョッピング信号の周波数を、25,50,100,500,1000Hzの5段階に切り替えた場合であり、図30,31は、周波数を32,64,128,256,512,1024Hzの6段階に切り替えた場合であり、それぞれ後述するように各デューティ比でのコンデンサの充電電圧(発電電圧)および駆動トルクを測定したものである。
【0020】
さらに、前記2種類以上のチョッピング信号は、デューティ比および周波数がそれぞれ異なるように設定されていてもよい。この各チョッピング信号としては、例えば、デューティ比が0.75〜0.85でありかつ周波数が110〜1100Hzである第1のチョッピング信号と、デューティ比が0.87〜0.97でありかつ周波数が25〜100Hzである第2のチョッピング信号等が利用できる。なお、チョッピング信号の具体的な周波数は、その電子機器において生成できる信号種類などに応じて設定すればよい。すなわち、水晶振動子を備える時計においては、この水晶振動子からの信号を適宜分周したものを利用すれば、別途チョッピング制御用の信号を生成する必要が無く、効率的である。他の電子機器においても、その電子機器によって生成しやすい周波数が存在するため、そのような周波数を用いればよい。
【0021】
このように、周波数およびデューティ比も異なるチョッピング信号を用いてチョッピング制御すれば、効果的なブレーキ制御を行うことができる。
【0022】
すなわち、強いブレーキ制御時に、ブレーキを優先させる場合には、周波数が小さく(例えば周波数64Hz等)、デューティ比の大きな(例えばデューティ比15/16等)第2のチョッピング信号を印加することで、ブレーキ力をより一層大きくできて確実に調速制御を行うことができる。つまり、図28〜31に示すように、ブレーキトルクを大きくするには、チョッピング信号の周波数はできるだけ低く設定した上で、デューティ比はできるだけ大きくすればよいため、上記第2のチョッピング信号を用いればよい。
【0023】
また、発電を優先させる場合には、周波数が大きく(例えば周波数512Hz等)、デューティ比が比較的大きな(例えばデューティ比13/16等)第1のチョッピング信号を印加することで、駆動トルクに応じたブレーキ力を与えることができる上、充電電圧を高めることができる。すなわち、図28〜31に示すように、充電電圧を大きくするには、チョッピング信号のデューティ比を0.75〜0.85の範囲にし、かつ周波数はできるだけ高く設定すればよいため、上記第1のチョッピング信号を用いればよい。
【0024】
ここで、周波数およびデューティ比の両方を異ならせたチョッピング信号を用いれば、周波数のみあるいはデューティ比のみを変えた場合に比べて、充電電圧や制動トルクの変化量をより大きくすることができるため、調速制御可能な範囲をより広げることができ、効率的な調速制御を行うことができる。
【0025】
このように、前記2種類以上の強ブレーキ制御用に設定されたチョッピング信号のうち、デューティ比の大きなチョッピング信号は、ブレーキトルクを優先するときに印加し、デューティ比の小さなチョッピング信号は、充電電圧を優先するときに印加することが、効率的な調速制御を行うことができる点で好ましい。
【0026】
また、前記2種類以上の強ブレーキ制御用に設定されたチョッピング信号のうち、周波数の低いチョッピング信号は、ブレーキトルクを優先するときに印加し、周波数の高いチョッピング信号は、充電電圧を優先するときに印加することが、効率的な調速制御を行うことができる点で好ましい。
【0027】
前記回転制御装置は、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加するように構成されていることが好ましい。
【0028】
また、前記回転制御装置は、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加するように構成されていてもよい。
【0029】
さらに、前記回転制御装置は、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際に、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加するように構成されていてもよい。
【0030】
ここで、前記優先度判定手段は、発電機の起電圧(発電電圧)を検出して、ブレーキトルクと発電機の起電力との優先関係を判定する電圧検出装置を有するものでもよい。
【0031】
また、前記優先度判定手段は、発電機の回転周期を検出して、ブレーキトルクと発電機の起電力との優先関係を判定する回転周期検出装置を有するものでもよい。
【0032】
さらに、前記優先度判定手段は、発電機に加えるブレーキ量を検出して、ブレーキトルクと発電機の起電力との優先関係を判定するブレーキ量検出装置を有するものでもよい。
【0033】
これらの優先度判定手段を設けて、各データを元に強ブレーキ制御用のチョッピング信号を切り替えれば、必要なブレーキ力に応じて適切なチョッピング信号を選択できるため、効果的に調速制御を行うことができる。
【0034】
前記回転制御装置は、前記強いブレーキ制御時にスイッチに印加されるチョッピング信号を、発電機の起電圧(発電電圧)に応じて前記2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択するように構成されたチョッピング信号選択手段を有してもよい。
【0035】
また、前記回転制御装置は、前記発電機の回転周期に基づく回転検出信号と、基準信号とがそれぞれアップカウント入力およびダウンカウント入力として入力されるアップダウンカウンタを備えるとともに、前記強いブレーキ制御時にスイッチに印加されるチョッピング信号を、アップダウンカウンタの値に応じて前記2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択するように構成されたチョッピング信号選択手段を有してもよい。
【0036】
さらに、前記回転制御装置は、前記強いブレーキ制御時にスイッチに印加されるチョッピング信号を、基準信号の1周期に対するブレーキ時間の割合であるブレーキ量に応じて、前記2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択するように構成されたチョッピング信号選択手段を有してもよい。
【0037】
これらの各データを元に強ブレーキ制御用のチョッピング信号を切り替えれば、必要なブレーキ力に応じて適切なチョッピング信号を選択できるため、効果的に調速制御を行うことができる。
【0038】
なお、強いブレーキを印加していない間は、例えばデューティ比が0.01〜0.30程度と小さいチョッピング信号を前記スイッチに印加して弱いブレーキを発電機に加えて制御してもよいし、前記スイッチを開いたままに維持してブレーキを発電機にまったく加えずに制御してもよい。
【0039】
すなわち、前記回転制御装置は、前記強いブレーキの他に、弱いブレーキを発電機に印加可能に構成され、かつ前記発電機に弱いブレーキを印加する時に、前記強いブレーキ時に用いられる2種類以上の強ブレーキ制御用に設定されたチョッピング信号よりもデューティ比が小さなチョッピング信号を印加可能に構成されていることが好ましい。
【0040】
このとき、弱いブレーキの周波数は、強いブレーキの周波数と同じでも良いが、異なっていても構わない。すなわち、弱いブレーキを発電機に印加する弱いブレーキ制御時には、例えば、デューティ比が非常に小さなチョッピング信号(例えばデューティ比1/16等)を印加することで、ブレーキ力を非常に小さくすればよい。
【0041】
ここで、前記回転制御装置は、前記発電機に弱いブレーキを印加する時には、デューティ比が0.01〜0.30の範囲内で設定されたチョッピング信号を前記スイッチに印加して、前記発電機をチョッピング制御するように構成されていることが好ましい。
【0042】
弱いブレーキ制御時にも、デューティ比が0.01〜0.30の範囲内で設定されたチョッピング信号をスイッチに印可すれば、充電電圧をある程度維持しつつ、駆動トルクを小さくすることができ、弱いブレーキ制御時においてもある程度充電電圧を高めることができる。
【0043】
この際、前記弱いブレーキ制御時には、デューティ比が0.01〜0.15の範囲内で設定されたチョッピング信号を前記スイッチに印加して、前記発電機をチョッピング制御するように構成されていることが好ましく、デューティ比が0.05〜0.10の範囲内で設定されたチョッピング信号をスイッチに印加して前記発電機をチョッピング制御することがより好ましい。
【0044】
弱いブレーキ制御時に、デューティ比が0.01〜0.15の範囲内で設定されたチョッピング信号を前記スイッチに印加すれば、駆動トルクを小さくしつつ、充電電圧もある程度確保できて効果的な弱いブレーキ制御を行うことができる。特に、デューティ比を0.05〜0.10の範囲内にすれば、充電電圧を比較的高くしつつ、制動トルクを抑えることができ、より一層効果的なブレーキ制御を行うことができる。
【0045】
なお、デューティ比が0.01〜0.30と低いチョッピング信号を加える場合の周波数は、強いブレーキの場合と同様の範囲にすればよい。特に、図28〜31から明らかなように、デューティ比が小さいと、ブレーキ力や発電電力は、周波数が変化しても大きく変動しないため、強いブレーキと同じ周波数を用いてもよい。
【0046】
この際、前記回転制御装置によって前記スイッチを断続するチョッピング周波数は、発電機のロータが設定速度で発生する起電圧波形の周波数の3倍以上であることが好ましく、起電圧波形の周波数の3倍〜150倍程度であることがより好ましく、さらには起電圧波形の周波数の5倍〜130倍程度であることがより一層好ましい。
【0047】
チョッピング周波数が起電圧波形の周波数の3倍よりも小さいと、起電圧を高める効果が小さくなるため、起電圧波形の周波数の3倍以上であることが好ましい。
【0048】
また、チョッピング周波数が起電圧波形の周波数の150倍程度以上になると、チョッピングするためにICの消費電力が増大し、発電するために使われる電力が多くなるため、チョッピング周波数は起電圧波形の周波数の150倍以下であることが好ましい。さらに、チョッピング周波数は起電圧波形の周波数の3倍〜150倍程度であれば、デューティーサイクルの変化率に対するトルク変化率が一定に近くなり、制御も容易になる。但し、用途や制御方式によっては、チョッピング周波数を3倍以下に設定したり、150倍以上に設定してもよい。
【0049】
また、チョッピング周波数としては、例えば、25Hz〜1100Hzの範囲のものが利用でき、特に、チョッピング信号としては、64Hz〜512Hzの範囲のものを利用することが好ましい。チョッピング信号で断続されるスイッチは、通常、電界効果型トランジスタで構成されるが、この場合、トランジスタにはゲート容量が存在するため、断続回数が多くなるにつれて消費電流も大きくなる。従って、消費電流を押さえる点から、チョッピング周波数は512Hz以下であることが好ましい。但し、この許容できる消費電流は、各電子機器において異なるため、ブレーキ性能や発電性能の点からは、1100Hz程度以下であればよい。
【0050】
一方、チョッピング周波数が小さくなると、充電電圧が低下するため、25Hz以上、好ましくは64Hz以上にすればよい。
【0051】
本発明の電子機器は、発電機の電気的エネルギを電源回路に充電するための第1および第2の電源ラインを備えるとともに、前記スイッチは、発電機の第1および第2の端子と第1および第2の電源ラインの一方のラインとの間にそれぞれ配置された第1および第2のスイッチで構成され、前記回転制御装置は、前記発電機の第1および第2の端子の一方の端子に接続されたスイッチをオンし続けるとともに、発電機の他方の端子に接続されたスイッチに前記チョッピング信号を印加して断続するように制御することが好ましい。
【0052】
このような構成にすれば、チョッピングによるブレーキ制御だけではなく、発電電力の充電処理と発電機の回転処理とを同時に実現でき、部品点数をより少なくできてコストを低減できる上、各スイッチの断続タイミングを制御することで、発電効率を向上できる。この際、前記第1および第2のスイッチは、それぞれトランジスタで構成されていることが好ましい。
【0053】
さらに、前記第1のスイッチは、発電機の第2の端子にゲートが接続された第1の電界効果型トランジスタと、この第1の電界効果型トランジスタに並列に接続されて前記回転制御装置で断続される第2の電界効果型トランジスタとで構成され、前記第2のスイッチは、発電機の第1の端子にゲートが接続された第3の電界効果型トランジスタと、この第3の電界効果型トランジスタに並列に接続されて前記回転制御装置で断続される第4の電界効果型トランジスタとで構成されていることが好ましい。
【0054】
このような電子機器では、発電機の第1の端子がプラス、第2の端子がマイナス(第1の端子よりも低電位)になると、第2の端子にゲートが接続された第1の電界効果型トランジスタがオン状態(Pチャネルの場合であり、Nチャネルのトランジスタではオフ状態)となり、第1の端子にゲートが接続された第3の電界効果型トランジスタはオフ状態(Pチャネルの場合であり、Nチャネルのトランジスタではオン状態)となる。このため、発電機で発電された交流電流は、第1の端子、第1の電界効果型トランジスタ、第1および第2の電源ラインの一方のライン、電源回路、第1および第2の電源ラインの他方のライン、第2の端子の経路で流れる。
【0055】
また、発電機の第2の端子がプラス、第1の端子がマイナス(第2の端子よりも低電位)になると、第1の端子にゲートが接続された第3の電界効果型トランジスタがオン状態となり、第2の端子にゲートが接続された第1の電界効果型トランジスタはオフ状態となる。このため、発電機で発電された交流電流は、第2の端子、第3の電界効果型トランジスタ、第1および第2の電源ラインの一方のライン、電源回路、第1および第2の電源ラインの他方のライン、第1の端子の経路で流れる。
【0056】
この際、第2,4の各電界効果型トランジスタは、そのゲートにチョッピング信号が入力されることでオン、オフ状態を繰り返している。そして、各第2,4の電界効果型トランジスタは、第1,3の電界効果型トランジスタに並列に接続されているため、第1,3の電界効果型トランジスタがオン状態であれば、第2,4の電界効果型トランジスタのオン、オフ状態に関係なく電流が流れるが、第1,3の電界効果型トランジスタがオフ状態の場合には、第2,4の電界効果型トランジスタがチョッピング信号でオン状態とされると電流が流れる。従って、オフ状態の第1,3の電界効果型トランジスタの一方に並列接続された第2,4の電界効果型トランジスタがチョッピング信号でオン状態にされると、第1,2のスイッチの両方がオン状態となり、発電機の各端子が閉ループ状態とされる。
【0057】
これにより、発電機をチョッピングでブレーキ制御することができ、ブレーキ時の発電電力の低下を、スイッチオフ時の起電圧の高まり分で補填でき、発電電力を一定以上に保ちながら制動トルクを増加でき、持続時間の長い電子機器を構成することができる。さらに、発電機の整流制御は、各端子にゲートが接続された第1,3の電界効果型トランジスタで行っているので、コンパレータ等を用いる必要が無く、構成が簡単になり、かつコンパレータの消費電力による充電効率の低下も防止できる。さらに、発電機の端子電圧を利用して電界効果型トランジスタのオン、オフを制御しているので、発電機の端子の極性に同期して各電界効果型トランジスタを制御することができ、整流効率を向上することができる。
【0058】
また、本発明の電子制御式機械時計は、上記電子機器と、前記電子機器の機械的エネルギ源によって発電機に連動して回転されて回転制御装置により調速制御される時刻表示装置とを備えることを特徴とするものである。
【0059】
具体的には、本発明の電子制御式機械時計は、前述している電子機器と、前記電子機器の機械的エネルギ源によって発電機に連動して回転され、回転制御装置により調速制御される時刻表示装置とを備えることを特徴とするものである。
【0060】
このような電子制御式機械時計によれば、発電電力の低下を抑えながら発電機のブレーキトルクを大きくできるため、高精度でかつ持続時間の長い時計を提供できる。
【0061】
本発明の電子機器の制御方法は、機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器の制御方法であって、前記発電機に強いブレーキを印加する時に、周波数は同一でデューティ比が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加することを特徴とするものである。
また、本発明の電子機器の制御方法は、機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器の制御方法であって、前記発電機に強いブレーキを印加する時に、デューティ比は同一で周波数が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加することを特徴とするものである。
さらに、本発明の電子機器の制御方法は、機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器の制御方法であって、前記発電機に強いブレーキを印加する時に、デューティ比および周波数がそれぞれ異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加することを特徴とするものである。
【0062】
また、本発明の電子制御式機械時計の制御方法は、機械的エネルギ源と、エネルギ伝達装置を介して連結される前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記エネルギ伝達装置に結合された時刻表示装置と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子制御式機械時計の制御方法であって、前記発電機に強いブレーキを印加する時に、周波数は同一でデューティ比が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加することを特徴とするものである。
また、本発明の電子制御式機械時計の制御方法は、機械的エネルギ源と、エネルギ伝達装置を介して連結される前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記エネルギ伝達装置に結合された時刻表示装置と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子制御式機械時計の制御方法であって、前記発電機に強いブレーキを印加する時に、デューティ比は同一で周波数が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加することを特徴とするものである。
さらに、本発明の電子制御式機械時計の制御方法は、機械的エネルギ源と、エネルギ伝達装置を介して連結される前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記エネルギ伝達装置に結合された時刻表示装置と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子制御式機械時計の制御方法であって、前記発電機に強いブレーキを印加する時に、デューティ比および周波数がそれぞれ異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加することを特徴とするものである。
【0063】
これらの制御方法によれば、デューティ比および周波数の少なくとも一方が異なる2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択したチョッピング信号を印加することで、機械的エネルギ源の駆動トルクに応じたブレーキ力(制動トルク)を与えることができて確実に調速制御が行えて調整可能な動作領域も広げることができる上、充電電圧も高めることができる。これにより、発電電力の低下をより一層抑えながらブレーキトルク(制動トルク)をより増加でき、持続時間も長い電子機器や電子制御式機械時計にすることができる。
【0064】
【発明の実施の形態】
以下に、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の第1実施形態の電子機器である電子制御式機械時計の要部を示す平面図であり、図2及び図3はその断面図である。
【0065】
電子制御式機械時計は、ゼンマイ1a、香箱歯車1b、香箱真1c及び香箱蓋1dからなる香箱車1を備えている。機械的エネルギ源であるゼンマイ1aは、外端が香箱歯車1b、内端が香箱真1cに固定される。香箱真1cは、地板2と輪列受3に支持され、角穴車4と一体で回転するように角穴ネジ5により固定されている。
【0066】
角穴車4は、時計方向には回転するが反時計方向には回転しないように、こはぜ6と噛み合っている。なお、角穴車4を時計方向に回転しゼンマイ1aを巻く方法は、機械時計の自動巻または手巻機構と同様であるため、説明を省略する。
【0067】
香箱歯車1bの回転は、7倍に増速されて二番車7へ、順次6.4倍増速されて三番車8へ、9.375 倍増速されて四番車9へ、3倍増速されて五番車10へ、10倍増速されて六番車11へ、10倍増速されてロータ12へと、合計126,000倍に増速されている。そして、これらの各歯車7〜11からなる増速輪列によって、機械的エネルギ源であるゼンマイ1aの機械的エネルギを発電機20に伝達する機械エネルギ伝達装置が構成されている。
【0068】
二番車7には筒かな7aが、筒かな7aには分針13が、四番車9には秒針14が、筒車7bには時針17がそれぞれ固定されている。従って、二番車7を1rphで、四番車9を1rpmで回転させるためには、ロータ12は8rpsで回転するように制御すればよい。このときの香箱歯車1bは、1/7rphとなる。そして、これらの各針13,14,17によって、時刻を表示する時刻表示装置が構成されている。
【0069】
この電子制御式機械時計は、ロータ12、ステータ15、コイルブロック16から構成される発電機20を備えている。ロータ12は、ロータ磁石12a、ロータかな12b、ロータ慣性円板12cから構成される。ロータ慣性円板12cは、香箱車1からの駆動トルク変動に対しロータ12の回転数変動を少なくするためのものである。ステータ15は、ステータ体15aに4万ターンのステータコイル15bを巻線したものである。
【0070】
コイルブロック16は、磁心16aに11万ターンのコイル16bを巻線したものである。ここで、ステータ体15aと磁心16aはPCパーマロイ等で構成されている。また、ステータコイル15bとコイル16bは、各々の発電電圧を加えた出力電圧がでるように直列に接続されている。
【0071】
図4には、第1実施形態の電子制御式機械時計の構成を示すブロック図が示されている。
【0072】
電子制御式機械時計は、機械的エネルギ源としてのゼンマイ1aと、ゼンマイ1aのトルクを発電機20に伝達するエネルギ伝達装置としての増速輪列(各番車7〜11)と、増速輪列7〜11に連結されて時刻表示を行う時刻表示装置である指針(分針13、秒針14、時針17)とを備えている。
【0073】
発電機20は、増速輪列を介してゼンマイ1aによって駆動され、誘起電力を発生して電気的エネルギを供給する。この発電機20からの交流出力は、昇圧整流、全波整流、半波整流、トランジスタ整流等からなる整流回路41を通して昇圧、整流され、コンデンサ等で構成された電源回路40に充電供給される。
【0074】
なお、本実施形態では、図5にも示すように、整流回路41を含むブレーキ回路120を発電機20に設けている。このブレーキ回路120は、発電機20で発電された交流信号(交流電流)が入力される第1の交流入力端子MG1に接続された第1のスイッチ21と、前記交流信号が入力される第2の交流入力端子MG2に接続された第2のスイッチ22とを有し、これらのスイッチ21,22を同時にオンすることにより、第1、第2の交流入力端子MG1,MG2を短絡等によって閉ループ状態にし、ショートブレーキを掛けるようになっている。
【0075】
第1のスイッチ21は、第2の交流入力端子MG2にゲートが接続されたPchの第1の電界効果型トランジスタ(FET)26と、後述するチョッピング信号選択手段80からのチョッピング信号(チョッピングパルス)CH5がゲートに入力される第2の電界効果型トランジスタ27とが並列に接続されて構成されている。
【0076】
また、第2のスイッチ22は、第1の交流入力端子MG1にゲートが接続されたPchの第3の電界効果型トランジスタ(FET)28と、チョッピング信号選択手段80からのチョッピング信号CH5がゲートに入力される第4の電界効果型トランジスタ29とが並列に接続されて構成されている。
【0077】
ここで、第1の電界効果型トランジスタ26は、交流入力端子MG2の極性が「−」の時にオンされ、第3の電界効果型トランジスタ28は、交流入力端子MG1の極性が「−」の時にオンされる。つまり、各トランジスタ26,28は、発電機の各端子MG1,MG2のうち、極性「+」の端子に接続された一方のトランジスタがオンされ、他方はオフされるように構成されている。従って、各電界効果型トランジスタ26,28により、整流回路の一部を構成する整流用スイッチが構成されている。
【0078】
また、各トランジスタ26,28にそれぞれ並列に接続された第2の電界効果型トランジスタ27と、第4の電界効果型トランジスタ29とは、同じチョッピング信号CH5でオン、オフ制御されている。このため、各トランジスタ27,29がチョッピング信号CH5で同時にオンされると、整流用スイッチである各トランジスタ26,28の状態に関係なく、第1、第2の交流入力端子MG1,MG2間は短絡等によって閉ループ状態となり、発電機20にはショートブレーキが掛かることになる。従って、発電機20の両端子MG1,MG2間を閉ループ状態に接続する前記スイッチ21,22は、より具体的には、各トランジスタ27,29の動作により発電機20の端子MG1,MG2間を閉ループ状態に接続するように構成されている。
【0079】
そして、発電機20に接続された昇圧用のコンデンサ23、ダイオード24,25、スイッチ21,22を備えて整流回路(倍電圧整流回路)41が構成されている。なお、ダイオード24,25としては、一方向に電流を流す一方向性素子であればよく、その種類は問わない。特に、電子制御式機械時計では、発電機20の起電圧が小さいため、ダイオード25としては降下電圧Vfが小さいショットキーバリアダイオードを用いることが好ましい。また、ダイオード24としては、逆リーク電流が小さいシリコンダイオードを用いることが好ましい。そして、この整流回路41で整流された直流信号は、電源回路(コンデンサ)40に充電される。
【0080】
前記ブレーキ回路120は、電源回路40から供給される電力によって駆動される回転制御装置50により制御されている。この回転制御装置50は、図4に示すように、発振回路51、分周回路52、ロータの回転検出回路53、制動制御回路55を備えて構成されている。
【0081】
発振回路51は時間標準源である水晶振動子51Aを用いて発振信号(32768Hz)を出力し、この発振信号は12段のフリップフロップからなる分周回路52によってある一定周期まで分周される。分周回路52の12段目の出力Q12は、8Hzの基準信号fsとして出力されている。
【0082】
回転検出回路53は、発電機20に接続された波形整形回路61とモノマルチバイブレータ62とで構成されている。波形整形回路61は、アンプ、コンパレータで構成され、正弦波を矩形波に変換する。モノマルチバイブレータ62は、ある周期以下のパルスだけを通過させるバンドパス・フィルターとして機能し、ノイズを除去した回転検出信号FG1を出力する。
【0083】
制動制御回路55は、制動制御手段であるアップダウンカウンタ60と、同期回路70と、チョッピング信号発生部であるチョッピング生成回路(チョッピング信号生成回路)151と、チョッピング信号選択手段80とを備えている。
【0084】
アップダウンカウンタ60のアップカウント入力およびダウンカウント入力には、回転検出回路53の回転検出信号FG1および分周回路52からの基準信号fsが同期回路70を介してそれぞれ入力されている。
【0085】
同期回路70は、4つのフリップフロップ71やANDゲート72,NANDゲート73からなり、分周回路52の5段目の出力Q5(1024Hz)や6段目の出力Q6(512Hz)の信号を利用して、回転検出信号FG1を基準信号fs(8Hz)に同期させるとともに、これらの各信号パルスが重なって出力されないように調整している。
【0086】
アップダウンカウンタ60は、4ビットのカウンタで構成されている。アップダウンカウンタ60のアップカウント入力には、前記回転検出信号FG1に基づく信号が同期回路70から入力され、ダウンカウント入力には、前記基準信号fsに基づく信号が同期回路70から入力される。これにより、基準信号fsおよび回転検出信号FG1の計数と、その差の算出とが同時に行えるようになっている。
【0087】
なお、このアップダウンカウンタ60には、4つのデータ入力端子(プリセット端子)A〜Dが設けられており、端子A〜CにHレベル信号が入力されていることで、アップダウンカウンタ60の初期値(プリセット値)がカウンタ値7に設定されている。
【0088】
また、アップダウンカウンタ60のLOAD入力端子には、電源回路40に接続されて電源回路40の電圧に応じてシステムリセット信号SRを出力する初期化回路90が接続されている。なお、本実施形態では、初期化回路90は、電源回路40の充電電圧が所定電圧になるまではHレベルの信号を出力し、所定電圧以上になればLレベルの信号を出力するように構成されている。
【0089】
アップダウンカウンタ60は、LOAD入力がLレベルになるまで、つまりシステムリセット信号SRが出力されるまでは、アップダウン入力を受け付けないため、アップダウンカウンタ60のカウンタ値は「7」に維持される。
【0090】
アップダウンカウンタ60は、4ビットの出力QA〜QDを有している。従って、4ビット目の出力QDは、カウンタ値が7以下であればLレベル信号を出力し、8以上であればHレベル信号を出力することになる。この出力QDは、チョッピング信号選択手段80に接続されている。
【0091】
なお、出力QA〜QDが入力されたNANDゲート74およびORゲート75の各出力は、同期回路70からの出力が入力されるNANDゲート73にそれぞれ入力されている。従って、例えばアップカウント信号の入力が複数個続いてカウンタ値が「15」になると、NANDゲート74からはLレベル信号が出力され、さらにアップカウント信号がNANDゲート73に入力されても、その入力はキャンセルされてアップダウンカウンタ60にアップカウント信号がそれ以上入力されないように設定されている。同様に、カウンタ値が「0」になると、ORゲート75からはLレベル信号が出力されるため、ダウンカウント信号の入力はキャンセルされる。これにより、カウンタ値が「15」を越えて「0」になったり、「0」を越えて「15」になったりしないように設定されている。
【0092】
チョッピング信号発生部であるチョッピング生成回路151は論理回路で構成され、分周回路52の出力Q5〜Q8を利用してデューティ比の異なる3種類のチョッピング信号CH1〜CH3を出力するように構成されている。
【0093】
チョッピング信号選択手段80は、チョッピング生成回路151からのチョッピング信号CH2,CH3が入力される各ANDゲート152,153と、各ANDゲート152,153の出力が入力されるORゲート154と、このORゲート154の出力CH4と、前記チョッピング信号CH1とが入力されるNORゲート155とを備えている。
【0094】
なお、チョッピング信号CH1は、デューティ比が1/16と小さなチョッピング信号とされている。また、チョッピング信号CH3は、デューティ比が15/16と大きな第2のチョッピング信号とされている。さらに、チョッピング信号CH2は、デューティ比が13/16と比較的大きいが、チョッピング信号CH3のデューティ比よりは小さいデューティ比の第1のチョッピング信号とされている。なお、これらの各チョッピング信号CH1〜CH3の周波数は同一とされ、例えば128Hzに固定されている。
【0095】
このチョッピング信号選択手段80のNORゲート155からの出力CH5は、Pchトランジスタ27,29のゲートに入力されている。従って、チョッピング出力CH5がLレベルとなっている間は、トランジスタ27,29はオン状態に維持され、発電機20がショートされてブレーキが掛かる。
【0096】
一方、出力CH5がHレベルとなっている間は、トランジスタ27,29はオフ状態に維持され、発電機20にはブレーキが加わらない。従って、出力CH5からのチョッピング信号によって発電機20をチョッピング制御することができる。
【0097】
ここで、前記各チョッピング信号CH1〜CH3のデューティ比は、1周期の間で発電機20にブレーキを掛けている時間の比率であり、本実施形態では各チョッピング信号CH1〜CH3において1周期の間でHレベルとなっている時間の比率である。
【0098】
なお、各ANDゲート152,153には、アップダウンカウンタ60の出力QDが入力されているとともに、電源回路40の電圧つまりは発電機20の起電圧(発電電圧)を検出する電源電圧検出回路103からの信号CTL1が一方のANDゲート152に対しては反転して、他方のANDゲート153に対してはそのまま入力されている。
【0099】
次に、本実施形態における動作を図6,7のタイミングチャートおよび図8のフローチャートを参照して説明する。
【0100】
発電機20が作動し始めて、初期化回路90からLレベルのシステムリセット信号SRがアップダウンカウンタ60のLOAD入力に入力されると(ステップ11、以下ステップを「S」と略す)、図6に示すように、回転検出信号FG1に基づくアップカウント信号と、基準信号fsに基づくダウンカウント信号とがアップダウンカウンタ60でカウントされる(S12)。これらの各信号は、同期回路70によって同時にカウンタ60に入力されないように設定されている。
【0101】
このため、初期カウント値が「7」に設定されている状態から、アップカウント信号が入力されるとカウンタ値は「8」となり、出力QDからHレベル信号がチョッピング信号選択手段80のANDゲート152,153に出力される。
【0102】
一方、ダウンカウント信号が入力されてカウンタ値が「7」に戻れば、出力QDからはLレベル信号が出力される。
【0103】
チョッピング信号発生部であるチョッピング生成回路151では、図7に示すように、分周回路52の出力Q5〜Q8を利用し、各チョッピング信号CH1〜CH3を出力する。
【0104】
そして、アップダウンカウンタ60の出力QDからLレベル信号が出力されている場合(カウント値「7」以下)には、各ANDゲート152,153からの出力もLレベル信号となり、出力CH4もLレベル信号となる。このため、NORゲート155からの出力CH5は出力CH1が反転したチョッピング信号、つまりHレベル期間(ブレーキオフ時間)が長く、Lレベル期間(ブレーキオン時間)が短いデューティ比(トランジスタ27,29をオンしている比率)の小さなチョッピング信号となる。従って、基準周期においてブレーキを掛けているトータル時間が短くなり、発電機20に対しては、ほとんどブレーキが掛けられない、つまり発電電力(起電力)を優先した弱いブレーキ制御(弱ブレーキ制御)が行われる(S13,S14)。
【0105】
一方、アップダウンカウンタ60の出力QDからHレベル信号が出力されている場合(カウント値「8」以上)には、出力CH4は信号CTL1によって切り替えられる。すなわち、電源電圧検出回路103で検出された電源回路40の電圧が、基準電圧(例えば1.2V)よりも小さい場合には(S15)、信号CTL1はLレベル信号となるため、ANDゲート153からの信号はLレベル信号となり、ANDゲート152からはチョッピング信号CH2がそのまま出力され、出力CH4はチョッピング信号CH2と同一になる。
【0106】
そして、NORゲート155つまりチョッピング信号選択手段80からの出力CH5は、図7に示すように、出力CH4つまりチョッピング信号CH2を反転したチョッピング信号、つまりHレベル期間(ブレーキオフ時間)がある程度あり、Lレベル期間(ブレーキオン時間)が比較的長い、つまりデューティ比が比較的大きな(13/16)チョッピング信号(第1のチョッピング信号)となる。従って、基準周期においてブレーキを掛けているトータル時間が長くなり、発電機20に対しては強いブレーキ制御(強ブレーキ制御)が行われるが、一定周期でブレーキがオフされるためにチョッピング制御が行われ、発電電力の低下を抑えつつ制動トルクを向上することができる。特に、ブレーキが掛けられていない時間がある程度(3/16)確保されているので、強いブレーキ制御を行いながらも、発電電力もある程度維持され、発電電力(起電力)を優先した強いブレーキ制御が行われる(S16)。
【0107】
一方で、電源回路40の電圧が基準電圧以上になると(S15)、信号CTL1はHレベル信号となるため、出力CH4はチョッピング信号CH3と同一になり、チョッピング信号選択手段80からの出力CH5は出力CH4つまりチョッピング信号CH3を反転したチョッピング信号、つまりHレベル期間(ブレーキオフ時間)が短く、Lレベル期間(ブレーキオン時間)が長いデューティ比の大きい(15/16)チョッピング信号(第2のチョッピング信号)となる。この場合も、発電機20はチョッピング制御されるのである程度発電電力の低下を抑えつつ制動トルクが向上されるが、特にブレーキが掛けられていない時間が短いため(1/16)、発電電力(起電力)よりもブレーキ力(制動トルク)を優先した強いブレーキ制御が行われる(S17)。
【0108】
なお、整流回路41では、次のようにして発電機20で発電した電荷を電源回路40に充電している。すなわち、第1の端子MG1の極性が「+」で第2の端子MG2の極性が「−」の時には、第1の電界効果型トランジスタ(FET)26がオンされ、第3の電界効果型トランジスタ(FET)28がオフされる。このため、発電機20で発生した誘起電圧の電荷は、「第1の端子MG1→コンデンサ23→ダイオード25→第2の端子MG2」の回路によって例えば0.1μFのコンデンサ23に充電されるとともに、「第1の端子MG1→第1のスイッチ21→電源回路40→ダイオード24→ダイオード25→第2の端子MG2」の回路によって例えば10μFの電源回路(コンデンサ)40に充電される。
【0109】
一方、第1の端子MG1の極性が「−」で第2の端子MG2の極性が「+」に切り替わると、第1の電界効果型トランジスタ(FET)26がオフされ、第3の電界効果型トランジスタ(FET)28がオンされる。このため、「コンデンサ23→第1の端子MG1→発電機20→第2の端子MG2→第2のスイッチ22→電源回路40→ダイオード24→コンデンサ23」の回路によって、発電機20で発生した誘起電圧と、コンデンサ23の充電電圧とが加えられた電圧で電源回路(コンデンサ)40が充電される。
【0110】
なお、各々の状態で、チョッピング信号CH5により発電機20の両端が閉ループとなり、開放されると、コイルの両端に高電圧が誘起され、この高い充電電圧によって電源回路(コンデンサ)40を充電することで充電効率が向上する。
【0111】
そして、ゼンマイ1aのトルクが大きくて発電機20の回転速度が大きい場合などでは、アップカウンタ信号によりカウンタ値が「8」になった後に、さらにアップカウンタ値が入力されることがある。この場合には、カウンタ値は「9」となり、前記出力QDはHレベルを維持するため、チョッピング信号CH3の反転信号により一定周期でブレーキがオフされながらブレーキが掛けられる強いブレーキ制御が行われる。そして、ブレーキが掛けられたことにより、発電機20の回転速度が低下し、回転検出信号FG1が入力される前に基準信号fs(ダウンカウント信号)が2回入力されると、カウンタ値は「8」、「7」と低下し、「7」になった際には弱いブレーキ制御に切り替えられる。特に、ゼンマイ1aのトルクが大きい場合には、カウンタ値が「9」、「10」と上昇することもあるが、このようなトルクが大きい場合には、電源回路40の充電電圧も大きくなって信号CTL1がHレベル信号に切り替えられ、出力CH5もよりブレーキ力の大きなチョッピング信号になるため、発電機20に大きな制動力が加えられて回転速度が迅速に低下される。
【0112】
このような制御を行うと、発電機20が設定された回転スピード近くになり、図6に示すように、アップカウンタ信号と、ダウンカウンタ信号とが交互に入力されて、カウンタ値が「8」と「7」とを繰り返すロック状態に移行する。この際は、カウンタ値および電源電圧値に応じて2種類(発電優先およびブレーキ優先)の強いブレーキの印加と、弱いブレーキの印加とが繰り返される。つまり、ロータが1回転する基準周期の1周期の期間にデューティ比が大きい(15/16又は13/16)チョッピング信号と、デューティ比が小さいチョッピング信号とがトランジスタ27,29に印加されてチョッピング制御が行われる。
【0113】
さらに、ゼンマイ1aがほどけてそのトルクが小さくなると、徐々にブレーキを掛ける時間が短くなり、発電機20の回転速度はブレーキを掛けない状態でも基準速度に近い状態になる。
【0114】
そして、まったくブレーキを掛けなくてもダウンカウント値が多く入力されるようになり、カウント値が「6」以下の小さな値になると、ゼンマイ1aのトルクが低下したと判断し、運針を停止したり、非常に低速にしたり、さらにはブザー、ランプ等を鳴らしたり、点灯させることで、利用者にゼンマイ1aを再度巻き上げるように促す。
【0115】
従って、アップダウンカウンタ60の出力QDからHレベル信号が出ている間は、デューティ比の大きなチョッピング信号による強いブレーキ制御が行われ、さらにその強いブレーキ制御も、電源回路40の充電電圧(発電機20の発電電圧)つまりゼンマイ1aの駆動トルクに応じて制動トルクの異なる2種類の強いブレーキ制御が行われる。
【0116】
つまり、アップダウンカウンタ60の出力QDに応じて、各ゲート152〜155によって強いブレーキ制御と弱いブレーキ制御とが切り替えられ、電源電圧検出回路103の信号CTL1つまり電源回路40の電圧に応じて、各ゲート152〜155によって、ブレーキ優先と発電優先の2種類の強いブレーキ制御に切り替えられる。従って、本実施形態では、電源電圧検出回路103によって、強ブレーキ制御時に、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段が構成され、アップダウンカウンタ60および各ゲート152〜155等によって、前記優先度判定手段である電源電圧検出回路103の出力に基づいて、強ブレーキ制御時に使用するチョッピング信号を選択するチョッピング信号選択手段80が構成されている。なお、本実施形態では、チョッピング信号選択手段80は、強ブレーキ制御時のチョッピング信号の選択だけではなく、強ブレーキ制御時と弱ブレーキ制御時とで使用するチョッピング信号の選択も行っている。
【0117】
なお、本実施形態では、出力QDがLレベル信号の場合、チョッピング信号CH5はHレベル期間:Lレベル期間が15:1つまりデューティ比が1/16=0.0625のチョッピング信号となる。また、出力QDがHレベル信号の場合でかつ電源回路40が1.2V未満の場合、チョッピング信号CH5はHレベル期間:Lレベル期間が3:13つまりデューティ比が13/16=0.8125のチョッピング信号となる。さらに、出力QDがHレベル信号の場合でかつ電源回路40が1.2V以上の場合、チョッピング信号CH5はHレベル期間:Lレベル期間が1:15つまりデューティ比が15/16=0.9375のチョッピング信号となる。
【0118】
そして、発電機20のMG1,MG2からは、磁束の変化に応じた交流波形が出力される。この際、出力QDの信号に応じて周波数は一定でかつデューティ比の異なるチョッピング信号CH5がトランジスタ27,29(スイッチ21,22)に適宜印加され、出力QDがHレベル信号を出力した時、つまり強いブレーキ制御時には、各チョッピングサイクル内におけるショートブレーキ時間が長くなってブレーキ量が増えて発電機20は減速される。そして、ブレーキが掛かる分、発電量も低下するが、このショートブレーキ時に蓄えられたエネルギーを、チョッピング信号によりスイッチ21,22をオフした際に出力してチョッピング昇圧することができるため、ショートブレーキ時の発電量低下を補うことができ、発電電力の低下を抑えながら、制動トルクを増加することができる。
【0119】
逆に、出力QDがLレベル信号を出力した際、つまり弱いブレーキ制御時には、各チョッピングサイクル内におけるショートブレーキ時間が短くなってブレーキ量が減って発電機20は増速される。この際も、チョッピング信号によりトランジスタ27,29(スイッチ21,22)をオンからオフした際にチョッピング昇圧することができるので、まったくブレーキを掛けずに制御した場合に比べても発電電力を向上させることができる。
【0120】
そして、発電機20からの交流出力は、倍電圧整流回路41によって昇圧、整流されて電源回路(コンデンサ)40に充電され、この電源回路40により回転制御装置50が駆動される。
【0121】
なお、アップダウンカウンタ60の出力QDと、チョッピング信号CH5とは共に分周回路52の出力Q5〜Q8,Q12を利用しているため、つまりチョッピング信号CH5の周波数が出力QDの周波数の整数倍とされているため、出力QDの出力レベルの変化つまり強いブレーキ制御と弱いブレーキ制御の切替タイミングと、チョッピング信号CH5とは同期して発生している。
【0122】
このような本実施形態によれば、次のような効果がある。
【0123】
(1) 回転検出信号FG1に基づくアップカウント信号と、基準信号fsに基づくダウンカウント信号とを、アップダウンカウンタ60に入力し、回転検出信号FG1(アップカウント信号)のカウント数が基準信号fs(ダウンカウント信号)のカウント数よりも大きい状態(カウンタ60の初期値が「7」であれば、カウンタ値が「8」以上の状態)では、ブレーキ回路120により発電機20に強いブレーキをかけ続け、逆に回転検出信号FG1のカウント数が基準信号fsのカウント数以下の状態(カウンタ値が「7」以下の状態)では、発電機20に弱いブレーキを印加するため、発電機20の立ち上がり時等の回転速度が基準速度よりも大きくずれている場合でも、迅速に基準速度に近づけることができ、回転制御の応答性を速くすることができる。
【0124】
(2) その上、強いブレーキ制御と弱いブレーキ制御との切り替えを、デューティ比の異なるチョッピング信号CH5を用いて行っているので、充電電圧(発電電圧)を低下させることなくブレーキ(制動トルク)を大きくすることができる。特に、強いブレーキ制御時にはデューティ比の大きなチョッピング信号を用いて制御しているので、充電電圧の低下を抑えながら制動トルクを大きくすることができ、システムの安定性を維持しながら、効率的なブレーキ制御を行うことができる。これにより、電子制御式機械時計の持続時間も長くすることができる。
【0125】
(3) さらに、強いブレーキ制御時に、電源回路40の充電電圧つまり発電機20の回転速度に応じて制動トルク(デューティ比)が異なる2段階の強いブレーキ制御を行っているので、より効果的な強いブレーキ制御を行うことができ、発電電力の低下を抑えながら、十分なブレーキ制御を行うことができる。
【0126】
特に、図28〜31からも分かるように、周波数が128Hzでありかつデューティ比が15/16のチョッピング信号を用いれば、充電電圧をある程度確保しつつ、発電機20の制動トルクを大きくすることができ、ブレーキを優先した制御を行うことができる。また、周波数が128Hzでありかつデューティ比が13/16のチョッピング信号を用いれば、ブレーキ力をある程度確保しつつ、充電電圧を比較的高くすることができ、発電を優先した制御を行うことができる。
【0127】
(4) さらに、弱いブレーキ制御時にも、デューティ比の小さなチョッピング信号によりチョッピング制御しているので、弱いブレーキを印加している間の充電電圧をより向上することができる。
【0128】
特に、図28〜31からも分かるように、周波数が128Hzでかつデューティ比が1/16のチョッピング信号を用いれば、制動トルクを低く維持しつつ、充電電圧をある程度確保することができる。
【0129】
(5) 強いブレーキ制御と弱いブレーキ制御の切替は、カウンタ値が「7」以下であるか「8」以上であるかのみで設定され、ブレーキ時間等を別途設定する必要もないため、回転制御装置50をシンプルな構成にでき、部品コストや製造コストを低減でき、電子制御式機械時計を安価に提供できる。
【0130】
(6) 発電機20の回転速度に応じて、アップカウンタ信号が入力されるタイミングが変化するため、カウンタ値が「8」である期間つまりブレーキを掛けている時間も自動的に調整することができる。このため、特にアップカウンタ信号とダウンカウント信号とが交互に入力されるロック状態では、応答性の速い安定した制御を行うことができる。
【0131】
(7) 制動制御手段として、アップダウンカウンタ60を用いているので、各アップカウンタ信号およびダウンカウンタ信号の計数と同時に各計数値の比較(差)を自動的に算出することができるため、構成を簡易にできかつ各計数値の差を簡単に求めることができる。
【0132】
(8) 4ビットのアップダウンカウンタ60を用いているので、16個のカウント値をカウントすることができる。このため、アップカウンタ信号が続けて入力された場合などに、その入力値を累積してカウントすることができ、設定された範囲つまりアップカウンタ信号やダウンカウンタ信号が連続して入力されてカウンタ値が「15」や「0」になるまでの範囲では、その累積誤差を補正することができる。このため、仮に発電機20の回転速度が基準速度から大きく外れても、ロック状態になるまでは時間が掛かるが、その累積誤差を確実に補正して発電機20の回転速度を基準速度に戻すことができ、長期的には正確な運針を維持することができる。
【0133】
(9) 初期化回路90を設けて、発電機20の起動時の電源回路40が所定の電圧に充電されるまではブレーキ制御を行わず、発電機20にブレーキが掛からないようにしているので、電源回路40への充電を優先させることができ、電源回路40によって駆動される回転制御装置50を迅速にかつ安定して駆動するこができ、その後の回転制御の安定性も高めることができる。
【0134】
(10)出力QDの出力レベル変化つまり強いブレーキ制御と弱いブレーキ制御との切替タイミングと、チョッピング信号CH5のオンからオフへの変化タイミングとを同期させているので、発電機20のチョッピング信号CH5に対応した起電圧が高い出力部分(ひげ部分)を一定間隔で出力することができ、この出力を時計の歩度測定パルスとして利用することもできる。すなわち、出力QDとチョッピング信号CH5とが同期していない場合には、一定周期のチョッピング信号CH5とは別に出力QDの変化時にも発電機20からは起電圧が高い部分が発生する。このため、発電機20の出力波形における「ひげ部分」は必ずしも一定間隔で出力されないために歩度測定パルスとして利用することができないが、本実施形態のように同期させていれば歩度測定パルスとしても利用することができる。
【0135】
(11)発電機20の整流制御は、各端子MG1,MG2にゲートが接続された第1,3の電界効果型トランジスタ26,28で行っているので、コンパレータ等を用いる必要が無く、構成が簡単になり、かつコンパレータの消費電力による充電効率の低下も防止できる。さらに、発電機20の端子電圧を利用して電界効果型トランジスタ26,28のオン、オフを制御しているので、発電機20の端子の極性に同期して各電界効果型トランジスタ26,28を制御することができ、整流効率を向上することができる。また、チョッピング制御される第2,4の電界効果型トランジスタ27,29を各トランジスタ26,28に並列に接続することで、チョッピング制御を独立して行うことができ、かつ構成も簡易にできる。従って、構成が簡易で、発電機20の極性に同期し、かつ昇圧しながらチョッピング整流を行える整流回路41を提供することができる。
【0136】
次に、本発明の第2実施形態について、図9を参照して説明する。なお、本実施形態において、前述の第1実施形態と同一もしくは同様の構成部分には、同一符号を付し、説明を省略あるいは簡略する。
【0137】
本実施形態は、チョッピング信号発生部であるチョッピング生成回路151Aからのチョッピング信号CH12,13をデューティ比は同一のまま周波数のみを異ならせたものである。具体的には、チョッピング信号CH12は、デューティ比13/16でかつ周波数は512Hzとされている。また、チョッピング信号CH13は、デューティ比13/16でチョッピング信号CH12と同じとされ、かつ周波数は64Hzと小さくされている。なお、信号CH11はデューティ比が0/16つまりLレベル信号のみが出力されるように構成されている。
【0138】
また、ORゲート154からの出力を切り替える際に、前記第1実施形態では電源電圧検出回路103の信号CTL1を用いていたのに対し、本実施形態ではブレーキ量検出回路100を設け、このブレーキ量検出回路100からの信号CTL2を用いて切り替えるように構成されている。
【0139】
ブレーキ量検出回路100は、基準信号fsと回転検出信号FG1を入力として、基準信号の周期bとブレーキ印加時間aからブレーキ量の比率a/bを算出する。なお、ブレーキ印加時間aの算出は、回転検出信号FG1と基準信号fsとの位相差をタイマで検出することにより行われる。そして、ブレーキ量検出回路100は、図10にも示すように、ブレーキ量の比率a/bが、基準値(例えば50%)未満であれば信号CTL2をLレベル信号とし、基準値以上であればHレベル信号とするように構成されている。
【0140】
従って、本実施形態では、図11およびフローチャートである図12に示すように、初期化回路90からシステムリセット信号SRが出力され(S21)、アップカウント信号およびダウンカウント信号がアップダウンカウンタ60でカウントされ(S22)、そのカウンタ値が「7」未満で出力QDがLレベル信号とされていると(S23)、チョッピング信号選択手段80の出力CH15は信号CH11が反転されたHレベル信号に維持されるため、スイッチ21,22はオフされた状態に維持されて、発電機20にはブレーキが掛けられず(ブレーキオフ制御状態)、発電機20の交流出力もそのまま出力される(S24)。
【0141】
一方、出力QDがHレベル信号とされて強いブレーキ制御状態になると(S23)、ブレーキ量が基準値未満で信号CTL2がLレベル信号とされている場合には(S25)、出力CH15は、チョッピング信号CH12が反転されたつまり周波数512Hzでデューティ比が13/16のチョッピング信号(第1のチョッピング信号)になり、発電が優先された強いブレーキ制御が行われる(S26)。さらに、強いブレーキ制御時において、ブレーキ量が基準値以上で信号CTL2がHレベル信号とされている場合には(S25)、出力CH15は、チョッピング信号CH13が反転されたつまり周波数64Hzでデューティ比が13/16のチョッピング信号(第2のチョッピング信号)になり、ブレーキが優先された強いブレーキ制御が行われる(S27)。
【0142】
このため、本実施形態では、ブレーキ量検出回路100によって、強ブレーキ制御時に、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段が構成され、アップダウンカウンタ60および各ゲート152〜155等によって、前記優先度判定手段であるブレーキ量検出回路100の出力に基づいて、強ブレーキ制御時に使用するチョッピング信号を選択するチョッピング信号選択手段80が構成されている。なお、本実施形態においても、チョッピング信号選択手段80は、強ブレーキ制御時のチョッピング信号の選択だけではなく、強ブレーキ制御時と弱ブレーキ制御時とで使用するチョッピング信号の選択も行っている。
【0143】
このような本実施形態でも、前記第1実施形態の(1) 〜(11)と同じ作用効果を奏することができる。すなわち、周波数のみが異なる各チョッピング信号CH12,CH13を用いた場合でも、前記第1実施形態と同様に、制動トルクや充電電圧を異ならせることができ、強いブレーキ制御時に発電機20の回転速度等に応じた2段階の制御を行うことができる。
【0144】
(12)さらに、各チョッピング信号CH12〜CH13は、周波数のみを異ならせているので、図28〜31に示すように、デューティ比のみを異ならせた前記第1実施形態に比べて、充電電圧や制動トルクの変化量を大きくすることができるため、調速制御可能な範囲をより広げることができ、より効果的な調速制御を行うことができる。
【0145】
次に本発明の第3実施形態について、図13〜図15を参照して説明する。なお、本実施形態においても、前述の各実施形態と同一もしくは同様の構成部分には、同一符号を付し、説明を省略あるいは簡略する。
【0146】
本実施形態は、チョッピング信号選択手段80におけるORゲート154からの出力を切り替える際に、アップダウンカウンタ60のカウンタ値を利用して切り替えるように構成されているものである。
【0147】
すなわち、出力QA〜QDの内、出力QA〜QCが反転して入力され、出力QDがそのまま入力されたANDゲート111と、このANDゲート111の出力が反転入力され、出力QDがそのまま入力されるANDゲート112とが設けられている。
【0148】
このため、ANDゲート111の出力CH22は、カウンタ値が「8」つまりQDがHレベルで、他の出力QA〜QCがLレベルとされている場合のみHレベル信号となり、他のカウンタ値ではLレベル信号となる。
【0149】
また、ANDゲート112の出力CH23は、カウンタ値が「9」〜「15」の場合にHレベル信号となり、その他の場合にLレベル信号となる。
【0150】
従って、初期化回路90からシステムリセット信号SRが出力され(S31)、アップカウント信号およびダウンカウント信号がアップダウンカウンタ60でカウントされ(S32)、このアップダウンカウンタ60のカウンタ値が「8」未満(「0」〜「7」)であれば(S33)、各出力CH22,CH23は共にLレベル信号となるため、ORゲート154の出力CH24もLレベル信号となり、NORゲート155の出力CH25は出力CH1が反転したデューティ比の小さなチョッピング信号となり、弱いブレーキ制御が行われる(S34)。
【0151】
また、カウンタ値が「8」になると、つまりカウンタ値が「7」よりも大きく(S33)かつ「8」よりは大きくない場合(S35)には、出力CH22のみがHレベル信号となるため、出力CH24はチョッピング信号CH2と同じチョッピング信号となり、出力CH25はこれが反転したデューティ比が13/16のチョッピング信号(第1のチョッピング信号)となり、発電を優先した強いブレーキ制御が行われる(S36)。
【0152】
さらに、カウンタ値が「9」以上になると(S35)、出力CH23のみがHレベル信号となり、出力CH22はLレベル信号となるため、出力CH24はチョッピング信号CH3と同じ信号となり、出力CH25はこれが反転したデューティ比が15/16のチョッピング信号(第2のチョッピング信号)となり、ブレーキ力を優先した強いブレーキ制御が行われる(S37)。
【0153】
ここで、アップダウンカウンタ60から出力されるカウンタ値は、基準信号fsの周期に対して発電機20の回転周期が早くなれば大きくなり、遅くなれば小さくなる。
【0154】
このため、本実施形態では、アップダウンカウンタ60によって、発電機20の回転周期を検出し、強ブレーキ制御時に、発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段が構成されている。また、アップダウンカウンタ60は、強ブレーキおよび弱ブレーキの切替なども行っているため、このアップダウンカウンタ60、各ゲート111,112,152〜155等によって、強ブレーキ制御時に使用するチョッピング信号の選択や、強ブレーキ制御時と弱ブレーキ制御時とで使用するチョッピング信号の選択を行うチョッピング信号選択手段80が構成されている。
【0155】
このような本実施形態においても、前記第1実施形態の(1) 〜(11)と同じ作用効果を奏することができる。
【0156】
(13)さらに、ANDゲート111、112を設けるだけで強いブレーキ制御時のチョッピング信号を切り替えることができるため、電源電圧検出回路103やブレーキ量検出回路100を設けた前記各実施形態に比べて構成を簡易にでき、コストも低減できる。
【0157】
次に本発明の第4実施形態について、図16,17を参照して説明する。なお、本実施形態においても、前述の各実施形態と同一もしくは同様の構成部分には、同一符号を付し、説明を省略あるいは簡略する。
【0158】
本実施形態は、チョッピング信号発生部であるチョッピング生成回路151Bから出力されるチョッピング信号CH32,CH33を、周波数およびデューティ比の両方が異なるようにしたものである。
【0159】
すなわち、チョッピング信号CH32は、周波数512Hzでかつデューティ比13/16のチョッピング信号(第1のチョッピング信号)とされ、チョッピング信号CH33は、周波数64Hzでかつデューティ比15/16のチョッピング信号(第2のチョッピング信号)とされている。
【0160】
そして、これらの各チョッピング信号CH32,33を、優先度判定手段であるブレーキ量検出回路100の信号CTL2で切り替えて出力している。
【0161】
すなわち、本実施形態では、第2実施形態と同じフローで処理され、アップカウント信号およびダウンカウント信号がアップダウンカウンタ60でカウントされる。そのカウンタ値が「7」未満で出力QDがLレベル信号とされていると、チョッピング信号選択手段80の出力CH35は信号CH11が反転されたHレベル信号に維持されるため、スイッチ21,22はオフされた状態に維持されて、発電機20にはブレーキが掛けられず、ブレーキオフ制御状態となる。
【0162】
一方、出力QDがHレベル信号とされて強いブレーキ制御状態の場合に、ブレーキ量が基準値未満で信号CTL2がLレベル信号とされると、出力CH35は、チョッピング信号CH32が反転されたつまり周波数512Hzでデューティ比が13/16のチョッピング信号(第1のチョッピング信号)になり、発電が優先された強いブレーキ制御が行われる。さらに、強いブレーキ制御時において、ブレーキ量が基準値以上で信号CTL2がHレベル信号とされている場合には、出力CH35は、チョッピング信号CH33が反転されたつまり周波数64Hzでデューティ比が15/16のチョッピング信号(第2のチョッピング信号)になり、ブレーキが優先された強いブレーキ制御が行われる。
【0163】
このため、本実施形態では、第2実施形態と同様に、アップダウンカウンタ60、各ゲート152〜155等によってチョッピング信号選択手段80が構成されている。
【0164】
このような本実施形態においても、前記第1実施形態の(1) 〜(11)と同じ作用効果を奏することができる。
【0165】
(14)さらに、各チョッピング信号CH32,CH33の周波数およびデューティ比をそれぞれ変えているので、つまりチョッピング信号CH32を反転した信号を用いることで、充電電圧を大きくできて発電を優先した強いブレーキ制御を行うことができ、チョッピング信号CH33を反転した信号を用いることで、制動トルクを大きくできてブレーキを優先した強いブレーキ制御を行うことができ、発電機20の回転制御をより一層効率的に行うことができる。
【0166】
なお、本発明は各実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は、本発明に含まれるものである。
【0167】
例えば、前記第1実施形態では、電源電圧検出回路103の信号CTL1つまり電源電圧(充電電圧)の値によってチョッピング信号CH2,CH3を切り替えていたが、第2実施形態のブレーキ量検出回路100の信号CTL2つまりブレーキ量によって切り替えてもよいし、第3実施形態のANDゲート111,112の出力CH22,CH23つまりアップダウンカウンタ60のカウンタ値を用いて切り替えてもよい。同様に、他の実施形態においても、チョッピング信号の切替は、電源回路40の電圧、ブレーキ量、カウンタ値のいずれを採用してもよく、優先度判定手段としても前記第1〜3実施形態のいずれのものを用いてもよい。
【0168】
さらに、優先度判定手段としては、電源電圧検出回路103、ブレーキ量検出回路100、アップダウンカウンタ60等を複数組み合わせて構成してもよい。
【0169】
また、優先度判定手段としては、発電機20の回転周期を検出する回転周期検出装置を有し、前記回転周期に応じて優先度を判定して強ブレーキ時のチョッピング信号を切り替えるものでもよい。この際、回転周期検出装置は、例えば、図9や図16に示すブレーキ量検出回路100と同様に、回転検出信号FG1を入力とし、この入力FG1をタイマーで検出するように構成すればよく、これにより発電機20の回転周期を検出することができる。
【0170】
ここで、タイマーの値(検出値)が基準値、例えば周期125ms(8Hz)の基準値以下であれば、回転周期が短いつまり回転が速い場合となるため、強ブレーキ制御時には、ブレーキ量(ブレーキトルク)を優先する制御つまりデューティ比が大きいチョッピング信号、又は周波数が小さいチョッピング信号を選択して用いればよい。
【0171】
一方、タイマーの値(検出値)が基準値よりも大きければ、回転周期が長いつまり回転が遅い場合となるため、強ブレーキ制御時には、ブレーキ量を優先する制御は必要なく、起電圧を優先する制御つまりデューティ比が小さいチョッピング信号、又は周波数が大きいチョッピング信号を選択して用いればよい。
【0172】
また、優先度判定手段としては、発電機20の状態を直接検出する上記電源電圧検出回路103、ブレーキ量検出回路100、アップダウンカウンタ60、回転周期検出装置等に限らず、間接的に検出するものでもよい。例えば、発電機20の回転速度(起電圧)は、ゼンマイ1aからのトルクの大きさの影響が大きいため、ゼンマイ1aのフル巻状態からの経過時間を検出するタイマ等を設け、発電機20の状態を推測して優先度を判定してもよい。
【0173】
また、チョッピング信号発生部におけるチョッピング信号のデューティ比は、前記実施形態のように、13/16や15/16に限らず、例えば、14/16等の他の値でもよい。さらには、チョッピング信号のデューティ比を28/32、31/32等にし、デューティ比の変化を16段階ではなく、32段階などにしてもよい。すなわち、強いブレーキ制御時で発電を優先させる際に用いられる第1のチョッピング信号としては、デューティ比が0.75〜0.85の範囲にあることが好ましく、特に0.78〜0.82の範囲にすれば、充電電圧をより一層向上できる点で好ましい。一方で、ブレーキ力を優先させる際に用いられる第2のチョッピング信号としては、デューティ比が0.87〜0.97の範囲にあることが好ましく、特に0.90〜0.97と高い範囲にすれば、ブレーキ力をより一層高めることができる点で好ましい。
【0174】
さらに、各実施形態において、弱いブレーキ制御時に用いられるチョッピング信号は、デューティ比が1/16でもよく、さらには1/32等でもよく、その際の周波数も含めて、実施にあたって適宜設定すればよい。また、弱ブレーキ制御を行う代わりに、第2,4実施形態のように、ブレーキオフ制御を行ってもよい。
【0175】
チョッピング信号発生部において生成されるチョッピング信号の周波数を変える場合に、その周波数は前記第2実施形態の512Hz、64Hzに限らず、例えば1024Hzや128Hz等の他の周波数でもよい。すなわち、強いブレーキ制御時で発電を優先させる際に用いられる第1のチョッピング信号としては、周波数が110〜1100Hzの範囲にあることが好ましく、特に500〜1100Hzと高い範囲の周波数にすれば、充電電圧をより一層向上できる点で好ましい。一方で、ブレーキ力を優先させる際に用いられる第2のチョッピング信号としては、周波数が25〜100Hzの範囲にあることが好ましく、特に25〜50Hzと低い範囲の周波数にすれば、ブレーキ力をより一層高めることができる点で好ましい。
【0176】
さらに、第4実施形態における周波数およびデューティ比が異なるチョッピング信号においても、その周波数やデューティ比の具体的な値は前記第4実施形態の例に限らず、適宜設定すればよい。
【0177】
チョッピング信号を電源回路40の電圧に基づいて切り替える際に、優先度判定手段である電源電圧検出回路103における検出基準値は、前記実施形態のように1.2Vに限らず、実施にあたって適宜設定すればよい。
【0178】
また、基準電圧も、1つの値だけではなく、充電電圧が徐々に上昇している際にチョッピング信号を切り替えるための第1の基準電圧(例えば1.5V)と、充電電圧が徐々に減少している際にチョッピング信号を切り替えるための第2の基準電圧(例えば1.0V)との2つの基準値を設け、チョッピング信号の切替がヒステリシス切替となるように設定してもよい。
【0179】
さらに、ブレーキ量検出回路100における基準値も、前記第2実施形態の50%に限らず、他の値でもよい。
【0180】
また、前記各実施形態のブレーキ回路120で、第1、2のスイッチ21,22をコンデンサ23、ダイオード24と入れ替えて、電源回路40の−(VSS)側に配置してもよい。すなわち、各スイッチ21,22のトランジスタ26〜29をNchタイプに変更し、発電機20の2つの端子MG1,MG2と低電圧側の電源である電源回路40の−(VSS)側との間に挿入すればよい。この場合、発電機20のマイナス側の端子に接続されたスイッチ21,22をオンし続け、プラス側の端子に接続されたスイッチ21,22を断続するように回路を構成すればよい。
【0181】
また、アップダウンカウンタ60のカウンタ値でチョッピング信号を切り替える場合には、前記第3実施形態のように、カウンタ値が「8」未満、「8」、「9」以上の3段階で切り替えるものに限らず、例えば、カウンタ値が「8」未満、「8〜9」、「10〜15」で切り替えてもよく、これらの値は実施にあたって適宜設定すればよい。
【0182】
チョッピング信号選択手段を構成し、主に強ブレーキ制御と弱ブレーキ制御またはブレーキオフ制御とを切り替える制動制御手段として4ビットのアップダウンカウンタ60を用いていたが、3ビット以下のアップダウンカウンタを用いてもよいし、5ビット以上のアップダウンカウンタを用いても良い。ビット数が大きなアップダウンカウンタを用いれば、カウントできる値が増えるため、累積誤差を記憶できる範囲が大きくでき、特に発電機20の起動直後等の非ロック状態での制御が有利になる。一方で、ビット数の小さなカウンタを用いれば、累積誤差を記憶できる範囲が小さくなるが、特にロック状態になればアップおよびダウンを繰り返すことになるため、1ビットのカウンタでも対応できるとともに、コストを低減できる利点がある。
【0183】
また、制動制御手段としては、アップダウンカウンタに限らず、基準信号fs用および回転検出信号FG1用にそれぞれ設けた第1および第2の計数手段と、各計数手段の計数値を比較する比較回路とで構成されたものでもよい。ただし、アップダウンカウンタ60を用いたほうが回路構成が簡易になるという利点がある。さらに、制動制御手段としては、発電機20の回転周期等を検出してその回転周期に基づいて強いブレーキ制御および弱いブレーキ制御を切り替えることができるものであればよく、その具体的構成は実施にあたって適宜設定すればよい。
【0184】
さらに、前記実施形態では強いブレーキ制御時に、デューティ比や周波数の異なる2種類のチョッピング信号を用いてブレーキ制御していたが、デューティ比や周波数の異なる3種類以上のチョッピング信号を用いてもよい。
【0185】
さらに、周波数やデューティ比はステップ的に変えるのではなく、周波数変調のように連続的な変化になるようにしてもよい。
【0186】
また、整流回路41、ブレーキ回路120、制動制御回路55、チョッピング信号発生部、チョッピング信号選択手段80等の具体的な構成は前記各実施形態に限らず、電子制御式機械時計の発電機20をチョッピング制御できるものであればよい。例えば、ブレーキ回路120における整流回路41としては、図18に示すように、コンデンサ23の代わりにダイオード25aを設けたものを利用してもよい。
【0187】
また、チョッピング信号選択手段80としては、前記各実施形態のように、論理ゲートを用いたものに限らず、チョッピング生成回路151からの出力端子を切り替えるスイッチ素子と、このスイッチ素子を前記発電機の起電圧やブレーキ量などに応じてコントロールするIC等とを用いて構成してもよい。
【0188】
さらに、発電機20の両端を閉ループとするスイッチとしては、前記実施形態のスイッチ21,22に限らない。例えば、図19に示すように、トランジスタ27に抵抗素子30を接続し、チョッピング信号によって各トランジスタ27,29をオンして発電機20の両端を閉ループとした際に、その経路に抵抗素子30を配置してもよい。要するに、スイッチは、発電機20の両端を閉ループとすることが可能なものであればよい。
【0189】
また、整流回路41としては、チョッピング昇圧を利用した前記実施形態の構成に限らず、例えば複数のコンデンサを設け、その接続を切り替えることで昇圧する昇圧回路等を組み込んで構成してもよく、発電機や整流回路を組み込む電子制御式機械時計の種類等に応じて適宜設定すればよい。
【0190】
さらに、整流回路41を含むブレーキ回路としては、前記各実施形態のブレーキ回路120に限らず、図20〜図24に示すようなチョッピング充電回路200,300,400,500,600をそれぞれ用いてもよい。なお、これらの各チョッピング充電回路200〜600で前記実施形態と同一あるいは相当する構成要素には同一符号を付し、説明を省略する。
【0191】
図20に示すチョッピング充電回路200は、発電機20のコイルにコンデンサ201を直列に接続するとともに、この発電機20に並列に電源回路(コンデンサ)40およびIC202を接続し、さらに前記IC202によって制御されてチョッピングを行うスイッチ203を接続したものである。このスイッチ203には、寄生ダイオード204が並列に接続されている。
【0192】
このようなチョッピング充電回路200においても、スイッチ203をオンして発電機20にショートブレーキを掛けた際に、コンデンサ201にエネルギーが充電され、スイッチ203をオフした際にコンデンサ201のエネルギーを含んで起電圧が高められた電力をコンデンサ40に充電できるため、充電電圧を下げることなく、制動トルクを向上できるといった前記実施形態と同じ効果が得られる。さらに、寄生ダイオード204が昇圧整流回路のダイオードを兼ねているため、部品点数を少なくでき、回路実装コストも低減できる。
【0193】
図21に示すチョッピング充電回路300は、前記チョッピング充電回路200に対して、整流用のダイオード301,302が設けられている点が異なる。
【0194】
このようなチョッピング充電回路300は、前記チョッピング充電回路200に比べてダイオード301,302が多くなり、コスト面では不利であるが、前記チョッピング充電回路200ではスイッチ203を接続してショートさせた際に、コンデンサ201の電荷がスイッチ203側に流れてしまうため、ショート時間が長くなると起電圧の向上割合が小さくなるのに対し、チョッピング充電回路300では、スイッチ203を接続した際にもコンデンサ201の電荷がスイッチ203側に流れることを防止できるため、前記チョッピング充電回路200に比べて昇圧性能を高くできる利点がある。
【0195】
図22に示すチョッピング充電回路400は、チョッピング充電回路300におけるスイッチ203、ダイオード204,302をさらにもう一組設けて、発電機20の交流出力の正負の両波に対してチョッピングを行うようにしたものである。このため、発電機20の交流出力の全周期にわたって昇圧およびブレーキ制御を行うことができ、昇圧性能およびブレーキ性能をより一層高くできる。
【0196】
図23に示すチョッピング充電回路500は、2つのコンデンサ501,502を設けて発電機20での発電電圧の2倍の電圧をIC202に加えることができるようにした倍昇圧整流回路である。
【0197】
図24に示すチョッピング充電回路600は、整流ダイオード601を設けた全波整流回路においてチョッピングを実現したものである。
【0198】
なお、これらの各チョッピング充電回路500,600においては、両波に対してチョッピングするように構成していたが、半波のみをチョッピングするように構成してもよい。これらの各チョッピング充電回路300〜600においても、前記実施形態と同じ効果が得られる。
【0199】
さらに、前記各実施形態におけるチョッピング信号の周波数は、実施にあたって適宜設定すればよいが、例えば50Hz(発電機20のロータの回転周波数の約5倍)程度以上あれば、充電電圧を一定値以上に維持しながら、ブレーキ性能を向上できる。また、チョッピング信号のデューティ比も、0.05〜0.97の範囲で実施にあたって適宜設定すればよい。
【0200】
ロータの回転周波数(基準信号)としては、前記実施形態の8Hzに限らず、10Hz等でもよく、実施にあたって適宜設定すればよい。
【0201】
また、本発明は、前記実施形態のような電子制御式機械時計に適用するものに限らず、各種腕時計、置き時計、クロック等の各種時計、携帯型時計、携帯型の血圧計、携帯電話機、PHS、ページャ、万歩計、電卓、携帯用パーソナルコンピュータ、電子手帳、PDA(小型情報端末、「Personal Digital Assistant」)、携帯ラジオ、玩具、オルゴール、メトロノーム、電気かみそり等にも適用することができる。
【0202】
例えば、図25に示すようなオルゴール901等の音響装置に本発明を適用してもよい。
【0203】
オルゴール901は、機械的エネルギ源としてのゼンマイ911が収容された香箱車910と、香箱車910の香箱歯車912と噛み合ってゼンマイ911を巻き上げる巻上げ車920と、同じく香箱歯車912と噛み合ってゼンマイ911の機械的エネルギを伝達する増速歯車930と、増速歯車930のカナ931と噛み合う減速歯車940(二点鎖線で図示)と、この減速歯車940を介して駆動されて音響を発生する音響発生手段950と、増速歯車930で伝えられる機械的エネルギを電気的エネルギに変換する発電機960と、発電機960の回転速度を一定に調速する回転制御装置970(図26)とを備えている。このようなオルゴール901は、本発明の電子機器として用いられるものであり、単独であるいは時計(クロック)内に組み込まれて用いられ、所定時間曲を奏でるように構成されている。
【0204】
なお、巻上げ車920には、一対の係合子991を有したロック機構としての電磁クラッチ990が設けられている。この電磁クラッチ990は、ゼンマイ911の巻数が少なくなってロータ961の回転が著しく遅くなった際に、各係合子991を矢印A方向に移動させ、歯止め部材992を巻上げ車920と係合させてその回転を止め(矢印B方向に回転しているのを止める)、ゼンマイ911がそれ以上解けるのをロックするように構成されている。
【0205】
なお、歯止め部材992は、スプリング等で巻上げ車920側に付勢されているため、係合子991が巻上げ車920に係合している状態でも、ハンドル921を用いて巻上げ車920を矢印C方向にのみ回転させことが可能であり、ゼンマイ911を巻き上げることができるようになっている。
【0206】
音響発生手段950は、従来のオルゴールと略同じ構造であって、減速歯車940と噛み合うカナ951に設けられた回転円板952を備え、回転円板952の上面に植設された複数のピン953で櫛歯状の振動板954を弾くことにより曲を奏でるものである。
【0207】
また、発電機960は、ロータ961およびコイルブロック962を備えている。
【0208】
ロータ961は、増速歯車930の歯車932と噛み合うロータカナ963と、ロータカナ963と一体に回転するロータ磁石964とで構成されている。
【0209】
コイルブロック962は、コ字形のステータ965に第1コイル966および第2コイル967を巻線したものであり、ステータ965にはロータ961に隣接した一対のコアステータ部968が設けられている。このステータ965やコアステータ部968は複数枚の板状部材を重ねた構造とされ、うず損失の低減が図られている。そして、第1コイル966は発電および制動用として使用され、第2コイル967はロータ961の回転検出用として専ら使用されている。
【0210】
回転制御手段970は、ICからなる電子回路であり、図26に示すように、水晶振動子971を駆動する発振回路972と、発振回路972に生じたクロック信号を基に一定周波数の基準信号を生成する分周回路973と、前記第2コイル967に接続されてロータ961の回転速度(交流出力波形に基づく周波数)を検出するとともに、該回転速度に応じた検出信号を発生する回転検出手段としてのコンパレータ974と、前記検出信号を前記基準信号に同期させて出力する同期回路975と、同期回路975からの検出信号と前記基準信号とを比較し、比較結果に応じた制動用の制御信号(チョッピング信号)を出力する制御回路976と、制御回路976からの制御信号に応じて発電機960の前記ロータ961を調速する制動回路977とを備えている。
【0211】
これらのうち、制動回路977は、コイル966つまり発電機960の両端を閉ループとして発電機960を調速できるトランジスタなどで構成されたスイッチを備えている。そして、制御回路976からは、前記実施形態と同様に、ロータ961の回転速度に応じてデューティ比および周波数の少なくとも一方が異なる2種類のチョッピング信号が選択出力され、このチョッピング信号によって前記制動回路977は発電機960をチョッピング制御している。
【0212】
このため、発電電圧を一定値以上に維持しながら、制動トルクを向上でき、持続時間の長いオルゴール901にすることができる。さらに、発電機960つまり回転円板952を一定速度に回転させることができ、かつ長時間作動させ続けることができるため、正確な演奏を長時間行うことができる。
【0213】
また、本発明をメトロノームに適用する場合にも、輪列の歯車にメトロノーム音発信車を付け、その車の回転により、メトロノーム音片を弾いて周期的なメトロノーム音を発音させるようにすればよい。なお、メトロノームは、各種のテンポに対応した音を発生させる必要があるが、この場合には、水晶振動子の分周段を変えて発振回路からの基準信号の周期を可変することで対応すればよい。
【0214】
さらに、機械的エネルギ源も、ゼンマイ1aに限らず、ゴム、スプリング、重錘や、圧縮空気等の流体でもよく、本発明を適用する対象などに応じて適宜設定すればよい。さらに、これらの機械的エネルギ源に機械的エネルギを入力する手段としては、手巻き、回転錘、位置エネルギ、気圧変化、風力、波力、水力、温度差等でもよい。
【0215】
また、ゼンマイなどの機械的エネルギ源からの機械的エネルギを発電機に伝達するエネルギ伝達装置としては、前記各実施形態のような輪列(歯車)に限らず、摩擦車、ベルト(タイミングベルト等)及びプーリ、チェーン及びスプロケットホイール、ラック及びピニオン、カムなどを利用したものでもよく、本発明を適用する電子機器の種類などに応じて適宜設定すればよい。
【0216】
また、時刻表示装置としては、指針13,14,17に限らず、円板、円環状や円弧形状のものを用いてもよい。さらに、液晶パネル等を用いたデジタル表示式の時刻表示装置を用いてもよく、本発明の電子機器には、このようなデジタル表示式の時計も含まれる。
【0217】
【実施例】
次に、本発明のチョッパリングの効果を確認するために行った実施例について説明する。
実験には、図27に示すチョッピング充電回路700を用いた。このチョッピング充電回路700は、図21に示すチョッピング充電回路300と同様のものであり、発電機20のコイルに0.1μFのコンデンサ201を直列に接続するとともに、この発電機20に並列に1μFのコンデンサ40と、チョッピングを行うスイッチ203とを接続したものである。なお、ICの代わりに負荷として10MΩの抵抗205を設けるとともに、整流用のダイオード301,302を設けている。
【0218】
そして、スイッチ203のチョッピング周波数を、25,50,100,500,1000Hzの5段階に切り替えた際と、32,64,128,256,512,1024Hzの6段階に切り替えた際との、スイッチ203をオンしている比率を表すデューティーサイクル(duty)の各値でのコンデンサ40の充電電圧(発電電圧)および駆動トルクを測定した。この実験結果を図28〜31にそれぞれ示す。なお、発電機20のロータの回転周波数は10Hzに設定した。
【0219】
電子制御式機械時計のIC202は、通常0.8V、80nAで駆動するように設定されており、前記回路700において、コンデンサ40に0.8V充電されれば、10MΩの抵抗205には80nA流れ、IC202を駆動可能な電圧が充電されていることになる。
【0220】
そこで、図28,30の充電電圧の実験結果からも明らかなように、チョッピング周波数が25Hzおよび32Hzの場合を除いて、いずれもが0.8Vを上回る電圧を充電でき、電圧を一定値(0.8V)以上維持できる。
【0221】
また、図29,31は図28,30のチョッピング条件の時の発電機20を駆動するトルクを測定した結果である。ここで、駆動トルクは発電機20を10Hzで回すのに必要なトルクであり、発電機20がゼンマイ1aを制動するトルクと同一である。図29,31に示すように、チョッピング周波数により、dutyを大きくした時の駆動トルクの上昇カーブは異なるが、dutyが0.9になると、ほぼ等しい駆動トルクとなることが分かる。なお、図28、図29、図30、図31は、10Hz以外の例えば8Hzでも同様な特性が得られることが確認されている。
【0222】
従って、特にチョッピング周波数が、50Hzや64Hzつまりロータの回転周波数の5倍以上あれば、充電電圧を一定値以上に維持しながら、ブレーキ性能を向上でき、本発明の有効性が確認できた。
【0223】
なお、チョッピング周波数が25Hzや32Hzの場合も、dutyが0.80以下であれば0.8V以上充電することができるため、duty値の範囲をチョッピングの周波数に応じて適宜設定することで利用可能である。
【0224】
要するに、duty比は、チョッピングの周波数(チョッピング信号の周波数)に応じてその範囲を設定すればよい。具体的には、この実施例のように周波数が25〜1000Hz程度の範囲であれば、強いブレーキ制御時には0.40〜0.97の範囲内で適宜設定すればよく、弱いブレーキ制御時には0.01〜0.30の範囲内で適宜設定すればよい。
【0225】
また、本実験は、1024Hz迄しか測定していないが、更に大きい周波数でも同様の効果があることは容易に推測できる。但し、余り大きい周波数であると、チョッピングするためにICの消費電力が増大し、発電する電力が多くなるため、上限としては1000Hz〜1100Hz程度つまりロータの回転周波数の100倍程度が望ましい。
【0226】
なお、図28〜31に示す特性は、上述したような発電機20のロータ12の回転周波数(基準信号)が10Hzの場合に限らず、他の周波数の場合でも同様の傾向が成立する。従って、回転周波数は実施にあたって適宜設定すればよく、いずれの場合でも同様の効果を奏することができる。
【0227】
【発明の効果】
以上に述べたように、本発明の電子機器、電子制御式機械時計およびこれらの制御方法によれば、発電電力を一定以上に保ちながら発電機の制動トルクをより大きくできる。
【図面の簡単な説明】
【図1】本発明の第1実施形態における電子制御式機械時計の要部を示す平面図である。
【図2】図1の要部を示す断面図である。
【図3】図1の要部を示す断面図である。
【図4】第1実施形態の要部の構成を示すブロック図である。
【図5】第1実施形態の電子制御式機械時計の構成を示す回路図である。
【図6】第1実施形態のアップダウンカウンタにおけるタイミングチャートである。
【図7】第1実施形態のチョッピング信号選択手段におけるタイミングチャートである。
【図8】第1実施形態の制御方法を示すフローチャートである。
【図9】第2実施形態の電子制御式機械時計の構成を示す回路図である。
【図10】第2実施形態においてブレーキ量を説明するための図である。
【図11】第2実施形態のチョッピング信号選択手段におけるタイミングチャートである。
【図12】第2実施形態の制御方法を示すフローチャートである。
【図13】第3実施形態の電子制御式機械時計の構成を示す回路図である。
【図14】第3実施形態のチョッピング信号選択手段におけるタイミングチャートである。
【図15】第3実施形態の制御方法を示すフローチャートである。
【図16】第4実施形態の電子制御式機械時計の構成を示す回路図である。
【図17】第4実施形態のチョッピング信号選択手段におけるタイミングチャートである。
【図18】本発明の整流回路の変形例を示す回路図である。
【図19】本発明の整流回路の他の変形例を示す回路図である。
【図20】本発明のブレーキ回路でもあるチョッピング充電回路の変形例を示す回路図である。
【図21】本発明のチョッピング充電回路の変形例を示す回路図である。
【図22】本発明のチョッピング充電回路の変形例を示す回路図である。
【図23】本発明のチョッピング充電回路の変形例を示す回路図である。
【図24】本発明のチョッピング充電回路の変形例を示す回路図である。
【図25】本発明の他の変形例であるオルゴールの要部の構成を示す斜視図である。
【図26】図25のオルゴールにおける回転制御手段の要部を示す回路構成図である。
【図27】本発明の実験例におけるチョッピング充電回路を示す回路図である。
【図28】チョッピング周波数と駆動トルクとの関係を示すグラフである。
【図29】チョッピング周波数と充電電圧との関係を示すグラフである。
【図30】チョッピング周波数と駆動トルクとの関係を示すグラフである。
【図31】チョッピング周波数と充電電圧との関係を示すグラフである。
【符号の説明】
1a ゼンマイ
7 二番車
8 三番車
9 四番車
10 五番車
11 六番車
12 ロータ
13 分針
14 秒針
17 時針
20 発電機
21,22 スイッチ
23 コンデンサ
24,25 ダイオード
26〜29 スイッチ素子である電界効果型トランジスタ
40 電源回路(コンデンサ)
41 整流回路(倍電圧整流回路)
50 回転制御装置
51A 水晶振動子
51 発振回路
52 分周回路
53 回転検出回路
55 制動制御回路
60 アップダウンカウンタ
61 波形整形回路
62 モノマルチバイブレータ
70 同期回路
71 フリップフロップ
80 チョッピング信号選択手段
90 初期化回路
100 優先度判定手段であるブレーキ量検出回路
103 優先度判定手段である電源電圧検出回路
111 ANDゲート
112 ANDゲート
151,151A,151B チョッピング信号発生部であるチョッピング生成回路
152 ANDゲート
153 ANDゲート
154 ORゲート
155 NORゲート
901 電子機器であるオルゴール
911 ゼンマイ
920 巻上げ車
921 ハンドル
930 増速歯車
940 減速歯車
950 音響発生手段
952 回転円板
954 振動板
960 発電機
961 ロータ
962 コイルブロック
970 回転制御装置
971 水晶振動子
972 発振回路
973 分周回路
976 制御回路
977 制動回路

Claims (21)

  1. 機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器において、
    前記回転制御装置は、
    前記発電機の両端を閉ループ状態に接続可能なスイッチと、
    周波数は同一でデューティ比が異なり、前記発電機の回転周波数の5倍以上の周波数を有し、かつ強ブレーキ制御用に設定された2種類以上のチョッピング信号を発生するチョッピング信号発生部と、
    前記2種類以上のチョッピング信号から1つのチョッピング信号を選択して前記スイッチに印加し、前記発電機をチョッピング制御するチョッピング信号選択手段と、
    発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、
    前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加するように構成されていることを特徴とする電子機器。
  2. 請求項に記載の電子機器において、
    前記2種類以上のチョッピング信号は、デューティ比が0.75〜0.85とされた第1のチョッピング信号と、デューティ比が0.87〜0.97とされた第2のチョッピング信号であることを特徴とする電子機器。
  3. 機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器において、
    前記回転制御装置は、
    前記発電機の両端を閉ループ状態に接続可能なスイッチと、
    デューティ比は同一で周波数が異なり、前記発電機の回転周波数の5倍以上の周波数を有し、かつ強ブレーキ制御用に設定された2種類以上のチョッピング信号を発生するチョッピング信号発生部と、
    前記2種類以上のチョッピング信号から1つのチョッピング信号を選択して前記スイッチに印加し、前記発電機をチョッピング制御するチョッピング信号選択手段と、
    発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、
    前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加するように構成されていることを特徴とする電子機器。
  4. 請求項に記載の電子機器において、
    前記2種類以上のチョッピング信号は、周波数が110〜1100Hzとされた第1のチョッピング信号と、周波数が25〜100Hzとされた第2のチョッピング信号であることを特徴とする電子機器。
  5. 機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器において、
    前記回転制御装置は、
    前記発電機の両端を閉ループ状態に接続可能なスイッチと、
    デューティ比および周波数がそれぞれ異なり、前記発電機の回転周波数の5倍以上の周波数を有し、かつ強ブレーキ制御用に設定された2種類以上のチョッピング信号を発生するチョッピング信号発生部と、
    前記2種類以上のチョッピング信号から1つのチョッピング信号を選択して前記スイッチに印加し、前記発電機をチョッピング制御するチョッピング信号選択手段と、
    発電機に印加するブレーキトルクと発電機の起電力との優先関係を判定する優先度判定手段を備え、
    前記チョッピング信号選択手段は、前記優先度判定手段においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加するように構成されていることを特徴とする電子機器。
  6. 請求項に記載の電子機器において、
    前記2種類以上のチョッピング信号は、デューティ比が0.75〜0.85でありかつ周波数が110〜1100Hzである第1のチョッピング信号と、デューティ比が0.87〜0.97でありかつ周波数が25〜100Hzである第2のチョッピング信号であることを特徴とする電子機器。
  7. 請求項1、3、5のいずれかに記載の電子機器において、
    前記優先度判定手段は、発電機の起電圧を検出して、ブレーキトルクと発電機の起電力との優先関係を判定する電圧検出装置を有することを特徴とする電子機器。
  8. 請求項1、3、5のいずれかに記載の電子機器において、
    前記優先度判定手段は、発電機の回転周期を検出して、ブレーキトルクと発電機の起電力との優先関係を判定する回転周期検出装置を有することを特徴とする電子機器。
  9. 請求項1〜8のいずれかに記載の電子機器において、
    前記回転制御装置は、前記強いブレーキを印加する時にスイッチに印加するチョッピング信号を、前記2種類以上のチョッピング信号から発電機の起電圧に応じて選択するチョッピング信号選択手段を有することを特徴とする電子機器。
  10. 請求項1〜8のいずれかに記載の電子機器において、
    前記回転制御装置は、前記発電機の回転周期に基づく回転検出信号と、基準信号とがそれぞれアップカウント入力およびダウンカウント入力として入力されるアップダウンカウンタを備えるとともに、前記強いブレーキを印加する時にスイッチに印加するチョッピング信号を、前記2種類以上のチョッピング信号からアップダウンカウンタの値に応じて選択するチョッピング信号選択手段を有することを特徴とする電子機器。
  11. 請求項1〜10のいずれかに記載の電子機器において、
    前記回転制御装置は、前記強いブレーキの他に、弱いブレーキを発電機に印加可能に構成され、かつ前記発電機に弱いブレーキを印加する時に、前記強いブレーキ時に用いられる2種類以上の強ブレーキ制御用に設定されたチョッピング信号よりもデューティ比が小さなチョッピング信号を印加可能に構成されていることを特徴とする電子機器。
  12. 請求項11に記載の電子機器において、
    前記弱いブレーキの印加時に用いられるチョッピング信号は、デューティ比が0.01〜0.30の範囲内で設定されたチョッピング信号であることを特徴とする電子機器。
  13. 請求項12に記載の電子機器において、
    前記チョッピング信号は、デューティ比が0.01〜0.15の範囲内で設定されたチョッピング信号であることを特徴とする電子機器。
  14. 請求項13に記載の電子機器において、
    前記チョッピング信号は、デューティ比が0.05〜0.10の範囲内で設定されたチョッピング信号であることを特徴とする電子機器。
  15. 請求項1〜14のいずれかに記載の電子機器と、前記電子機器の機械的エネルギ源によって発電機に連動して回転され、回転制御装置により調速制御される時刻表示装置とを備えることを特徴とする電子制御式機械時計。
  16. 機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器の制御方法であって、
    前記発電機に強いブレーキを印加する時に、周波数は同一でデューティ比が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、
    発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
    前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加することを特徴とする電子機器の制御方法。
  17. 機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器の制御方法であって、
    前記発電機に強いブレーキを印加する時に、デューティ比は同一で周波数が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、
    発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
    前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加することを特徴とする電子機器の制御方法。
  18. 機械的エネルギ源と、前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子機器の制御方法であって、
    前記発電機に強いブレーキを印加する時に、デューティ比および周波数がそれぞれ異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、
    発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
    前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加する
    ことを特徴とする電子機器の制御方法。
  19. 機械的エネルギ源と、エネルギ伝達装置を介して連結される前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記エネルギ伝達装置に結合された時刻表示装置と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子制御式機械時計の制御方法であって、
    前記発電機に強いブレーキを印加する時に、周波数は同一でデューティ比が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、
    発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
    前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比の大きなチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比の小さなチョッピング信号を選択して前記スイッチに印加することを特徴とする電子制御式機械時計の制御方法。
  20. 機械的エネルギ源と、エネルギ伝達装置を介して連結される前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記エネルギ伝達装置に結合された時刻表示装置と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子制御式機械時計の制御方法であって、
    前記発電機に強いブレーキを印加する時に、デューティ比は同一で周波数が異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、
    発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
    前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちの周波数の低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、周波数の高いチョッピング信号を選択して前記スイッチに印加することを特徴とする電子制御式機械時計の制御方法。
  21. 機械的エネルギ源と、エネルギ伝達装置を介して連結される前記機械的エネルギ源によって駆動されて誘起電力を発生して電気的エネルギを供給する発電機と、前記エネルギ伝達装置に結合された時刻表示装置と、前記電気的エネルギにより駆動されて前記発電機の回転周期を基準周期に近づけるように制御する回転制御装置とを備える電子制御式機械時計の制御方法であって、
    前記発電機に強いブレーキを印加する時に、デューティ比および周波数がそれぞれ異なり、前記発電機の回転周波数の5倍以上の周波数を有する2種類以上の強ブレーキ制御用に設定されたチョッピング信号から選択されたチョッピング信号を、前記発電機の両端を閉ループ状態に接続可能なスイッチに印加して前記発電機をチョッピング制御するにあたり、
    発電機に印加するブレーキトルクと発電機の起電力との優先度関係を判定し、
    前記判定においてブレーキトルクを優先すると判定された際には、前記2種類以上のチョッピング信号のうちのデューティ比が大きくかつ周波数が低いチョッピング信号を選択して前記スイッチに印加し、前記起電力を優先すると判定された際には、デューティ比が小さく周波数の高いチョッピング信号を選択して前記スイッチに印加する
    ことを特徴とする電子制御式機械時計の制御方法。
JP36495699A 1997-09-30 1999-12-22 電子機器、電子制御式機械時計およびそれらの制御方法 Expired - Fee Related JP3601389B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP36495699A JP3601389B2 (ja) 1999-03-29 1999-12-22 電子機器、電子制御式機械時計およびそれらの制御方法
CNB001065173A CN100399217C (zh) 1999-03-03 2000-03-02 电子设备及其控制方法
EP00301773A EP1041464B1 (en) 1999-03-03 2000-03-03 Electronic device and method of controlling the same
US09/518,812 US6483276B1 (en) 1999-03-03 2000-03-03 Electronic device with variable chopping signal and duty ratio selection for strong braking
DE60029859T DE60029859T2 (de) 1999-03-03 2000-03-03 Elektronische Vorrichtung und Verfahren um diese zu kontrollieren
US09/771,486 US6795378B2 (en) 1997-09-30 2001-01-25 Electronic device, electronically controlled mechanical timepiece, and control method therefor
HK01102093A HK1031436A1 (en) 1999-03-03 2001-03-22 Electronic device and method of controlling the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-86949 1999-03-29
JP8694999 1999-03-29
JP36495699A JP3601389B2 (ja) 1999-03-29 1999-12-22 電子機器、電子制御式機械時計およびそれらの制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001097569A Division JP2001337179A (ja) 1999-03-29 2001-03-29 電子機器、電子制御式機械時計およびそれらの制御方法

Publications (2)

Publication Number Publication Date
JP2000346964A JP2000346964A (ja) 2000-12-15
JP3601389B2 true JP3601389B2 (ja) 2004-12-15

Family

ID=26428031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36495699A Expired - Fee Related JP3601389B2 (ja) 1997-09-30 1999-12-22 電子機器、電子制御式機械時計およびそれらの制御方法

Country Status (1)

Country Link
JP (1) JP3601389B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002281684A (ja) * 2001-01-11 2002-09-27 Seiko Epson Corp 弱電用発電装置
JP3627660B2 (ja) 2001-02-28 2005-03-09 セイコーエプソン株式会社 電子機器、電子制御式機械時計、電子機器の制御プログラム、記録媒体、電子機器の制御方法および電子機器の設計方法
JP4747484B2 (ja) * 2003-09-29 2011-08-17 セイコーエプソン株式会社 電子制御式機械時計、電子制御式機械時計の制御プログラム、記録媒体、電子制御式機械時計の制御方法および電子制御式機械時計の設計方法
EP3432088A1 (en) * 2017-07-17 2019-01-23 The Swatch Group Research and Development Ltd Electromechanical timepiece

Also Published As

Publication number Publication date
JP2000346964A (ja) 2000-12-15

Similar Documents

Publication Publication Date Title
EP1041464B1 (en) Electronic device and method of controlling the same
JP3472877B2 (ja) 電子制御式機械時計およびその制御方法
JP3006593B2 (ja) 電子制御式機械時計およびその制御方法
JP3601389B2 (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
EP1054496A1 (en) Electronic device, electronic timepiece and power control method
JP2002296365A (ja) 電子機器、電子制御式機械時計、電子機器の制御方法
JP3627653B2 (ja) 電子制御式機械時計およびその制御方法
JP3823741B2 (ja) 電子機器、電子制御式機械時計、それらの制御方法、電子機器の制御プログラムおよび記録媒体
JP3674426B2 (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
JP3627660B2 (ja) 電子機器、電子制御式機械時計、電子機器の制御プログラム、記録媒体、電子機器の制御方法および電子機器の設計方法
JP2001337179A (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
JP2000346963A (ja) 電子機器および電子機器の制御方法
JP2000346962A (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
JP3601268B2 (ja) 電子制御式機械時計
JP3908387B2 (ja) 電子制御式機械時計およびその制御方法
JP4747484B2 (ja) 電子制御式機械時計、電子制御式機械時計の制御プログラム、記録媒体、電子制御式機械時計の制御方法および電子制御式機械時計の設計方法
JP2001343469A (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
JP2000201483A (ja) 整流回路、電子機器および計時装置
JP2004003992A (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
JP3719400B2 (ja) 電子機器、電子機器の制御方法、電子機器を制御するプログラムが記録された記録媒体および電子機器の制御用プログラム
JP3598849B2 (ja) 電子制御式機械時計およびその制御方法
JP3726543B2 (ja) 電子制御式電子機器、電子制御式機械時計
JP2004135497A (ja) 電子機器、電子制御式時計および電源制御方法
JP2000046968A (ja) 電子制御式機械時計およびその制御方法
JP2002296364A (ja) 電子機器、電子制御式機械時計、電子機器の制御方法、電子機器の制御プログラム

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees