CN100399217C - 电子设备及其控制方法 - Google Patents

电子设备及其控制方法 Download PDF

Info

Publication number
CN100399217C
CN100399217C CNB001065173A CN00106517A CN100399217C CN 100399217 C CN100399217 C CN 100399217C CN B001065173 A CNB001065173 A CN B001065173A CN 00106517 A CN00106517 A CN 00106517A CN 100399217 C CN100399217 C CN 100399217C
Authority
CN
China
Prior art keywords
mentioned
signal
discontinuous signal
generator
discontinuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB001065173A
Other languages
English (en)
Other versions
CN1267845A (zh
Inventor
清水荣作
小池邦夫
中村英典
高桥理
藤森茂幸
新川修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP34326299A external-priority patent/JP3674426B2/ja
Priority claimed from JP36495699A external-priority patent/JP3601389B2/ja
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN1267845A publication Critical patent/CN1267845A/zh
Application granted granted Critical
Publication of CN100399217C publication Critical patent/CN100399217C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C10/00Arrangements of electric power supplies in time pieces

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromechanical Clocks (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

提供一种可以在抑制发电功率降低的同时增加发电机制动转矩的电子设备。电子控制式机械计时器,备有发电机(20)及转动控制装置。转动控制装置,备有开关(21、22)、产生两种以上的强制动控制用断续信号的断续信号发生部、及断续信号选择装置(80),并在强制动控制时将所选定的断续信号施加于开关,从而对发电机进行断续控制。可以用发电优先及制动优先的两种方式控制强制动控制,因而可以在有效地抑制发电电压降低的同时增加发电机的制动转矩。

Description

电子设备及其控制方法
技术领域
本发明涉及电子设备、电子控制式机械计时器及其控制方法,详细地说,涉及具有机械能源、由该机械能源驱动并通过产生感应电力而输出电能的发电机及由上述电能驱动并控制上述发电机转动周期的转动控制装置的电子设备、电子控制式机械计时器及其控制方法。
背景技术
作为由发电机将发条松开过程中的机械能变换为电能并由该电能驱动转动控制装置以控制流过发电机线圈的电流从而精确地驱动固定于轮系的指针并精确地指示时刻的电子控制式机械计时器,已知有特公平7-119812号公报中公开的一种发明。
可是,在这种电子控制式机械计时器中,为延长持续工作时间,关键是当发条的转矩大时能够增加制动转矩而不降低此时的发电功率。即,在电子控制式机械计时器中,在施加于发电机的制动转矩与发电机的电动势(发电功率)的关系上,当发条转矩大时必须进行使上述制动转矩优先的控制,而当发条转矩小时,由于不需要强的制动,所以最好进行使上述发电功率(电动势)优先的控制。另外,所谓转矩(发条转矩)大的状态,除发条卷绕得很紧的状态以外,也包括因振动或冲击等干扰而使施加于转子的驱动转矩增大的状态。同样,所谓转矩(发条转矩)小的状态。除发条松开的状态以外,也包括因上述干扰而使施加于转子的驱动转矩减小的情况。
因此,特公平7-119812号公报所公开的发明,在转子每转一周的时间即基准信号的每个周期中,设置将制动断开以提高转子的转速并增加发电量的角度范围、及施加制动而以低速转动的角度范围,从而进行调速,以便在上述转速高的期间提高发电功率,以补偿制动时的发电功率的降低。
即,在该特公平7-119812号公报所公开的发明中,在来自晶体振子等的基准信号的周期中以周期方式交替地持续产生的多个第1时间点的各点上进行制动断开控制,同时,在上述基准信号的周期中,在与第1时间点隔开的第2时间点上进行制动接通控制,从而在基准信号的一个周期中进行必要的制动接通控制和制动断开控制。
但是,在特公平7-119812号公报所公开的发明中,由于在施加制动的期间发电功率降低,所以当增加制动转矩时在抑制发电功率的降低上存在着限制。
另外,不只是电子控制式机械计时器存在上述问题,在具有由发条或橡胶等机械能源进行转动控制的部分的八音盒、节拍器、及电刮脸刀等各种电子设备中,也存在着同样的要求解决的问题。
发明内容
本发明的第1目的是,提供一种可以在抑制发电功率降低同时加大发电机的制动转矩的电子设备、电子控制式机械计时器及其控制方法。
进一步,当如特公平7-119812号公报所示在基准信号的一个周期中进行必要的制动接通控制和制动断开控制时,将在某个基准周期的第2时间点开始的制动接通控制在下一个基准周期的第1时间点时强制性地切换为制动断开控制,而不考虑发电机的转动状态,因此,不能根据状态施加足够的制动量,因而存在着在完成调速之前需耗费时间的问题。
本申请人,为此曾特意地开发了一种与特公平7-119812号公报所公开的发明不同的控制方法,即,通过施加断续信号而对发电机进行断续控制,从而能够在增加制动转矩的同时抑制发电功率的降低。但是,如进行这种采用断续信号的制动控制,则当如特公平7-119812号公报公开的发明所示根据各基准信号进行制动控制的切换时,切换动作的完成与断续信号的周期无关,因而不可能进行高精度的制动控制。
另外,不仅在电子控制式机械计时器中而且在具有由发条或橡胶等机械能源进行转动控制的部分的八音盒、节拍器、玩具、及电刮脸刀等各种电子设备中,也都经常要求进行高精度的制动控制,以便使各操作部、例如八音盒的发条盒及节拍器的振子的动作达到较高的精度。
本发明的第2目的是,提供一种当进行采用了断续信号的制动控制时能施加可靠且足够的制动量并使调速控制的响应性提高从而可以进行稳定控制的电子设备、电子控制式机械计时器及其控制方法。
本发明的一个新的发现在于,当设有可以将发电机的两端连接成闭合回路的开关并当对该开关施加断续信号从而对发电机进行断续控制时,如图32~35所示,如断续频率越低、占空比越大,则驱动转矩(制动转矩、制动力矩)增大,而充电电压(发电电压)、亦即电动势,则随着断续频率的升高而增加,但当占空比增加时,减小得并不那么多,相反,当频率在50Hz以上时,如占空比在大约0.8以下,则充电电压随着占空比的增加而升高。
即,本发明的电子设备,备有机械能源、由上述机械能源驱动并通过产生感应电力而供给电能的发电机、及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,该电子设备的特征在于:上述转动控制装置,在结构上备有:开关,可以将上述发电机的两端连接成闭合回路;断续信号发生部,产生占空比和频率的至少一个不同且设定为用于强制动控制的两种以上的断续信号;及断续信号选择装置,从上述两种以上的断续信号中选择一个断续信号并施加于上述开关,从而对上述发电机进行断续控制。
本发明的电子设备,由发条等机械能源驱动发电机,并通过由转动控制装置对发电机施加制动而对转子的转速进行调速。
这时,发电机的转动控制,通过对可以将发电机的线圈两端连接成闭合回路的开关施加断续信号从而使其接通、断开即断续操作进行。在进行断续动作的情况下,当使开关接通时,使发电机的线圈两端形成闭合回路状态,从而对发电机进行短路制动,并将能量积存在线圈内。而当使开关断开时,将闭合回路状态解除,从而使发电机动作,由于包含着上述积存在线圈内的能量部分,所以使生成电压(发电电压)升高。因此,当对发电机施加强制动时,如进行断续控制,则可以由开关断开时的生成电压的升高部分对制动时的发电功率的降低进行补偿,所以,能够在抑制发电功率降低的同时增加制动转矩(制动力矩),因而可以构成持续工作时间长的电子设备。
当施加该强制动时(进行强制动控制时),由断续信号选择装置将从占空比和频率的至少一个不同的且设定为用于强制动控制的两种以上的断续信号中选定的断续信号施加于上述开关,就是说,当由于驱动转矩大因而需要大的制动力时(制动优先),施加可以加大制动力的断续信号,当驱动转矩变低因而不需要那么大的制动力时(发电优先),施加制动力不那么大但可以提高充电电压的断续信号,从而可以提供与施加于发电机转子的驱动转矩对应的制动力(制动力矩),因而可以进行调速控制,同时也扩大了可以调整的动作范围,而且也可以提高充电电压。因此,能够在更进一步地抑制发电功率降低的同时增加制动转矩(制动力矩),因而可以构成持续工作时间更长的电子设备。
另外,通过使上述开关接通而进入的闭合回路状态,只要是与不是闭合回路状态时相比施加于发电机的制动力增大的状态即可,在构成闭合回路的电路上,例如在开关与发电机之间等处,也可以设置电阻元件等。但是,由于很容易使发电机的各端子间形成等电位从而能有效地施加短路制动,所以闭合回路状态最好还是通过将发电机的各端子直接短路形成。此外,在将断续信号选择装置的输出信号输入到上述开关时,除直接输入以外,也可以通过其他电路或元件输入。
如上所述,通过进行两种以上的制动,可以稳定地获得系统所需要的发电电压,因而能提高系统的稳定性。此外,由于可以最大限度地发挥制动效果,因此可以提高系统的自持续能力。
这里,上述两种以上的断续信号,也可以设定为频率相同而占空比不同。作为该各断续信号,例如,可以使用占空比为0.75~0.85(例如13/16)的第1断续信号、及占空比为0.87~0.97(例如15/16)的第2断续信号。
如图32~35所示,通过采用频率相同而占空比不同的断续信号,可以使充电电压或驱动转矩(制动力矩)不同。因此,如果当使制动优先时采用使制动转矩大的占空比大的第2断续信号、而当使发电优先时采用使充电电压高的占空比较大(但小于第2断续信号的占空比)的第1断续信号,则可以进行与发电机的状态相适应的适当的调速控制。作为两种以上的用于强制动的断续信号的例,例如,当使用3种用于强制动的断续信号时,如果可以选择占空比例如分别为15/16、14/16、13/16的断续信号,则与两种断续信号的控制相比,在制动量与发电量的关系上,可以进行更为精细的控制,因而具有能使系统的稳定性及自持续能力提高的效果。
另外,在图32~35中,驱动转矩这一术语,也可以修改为用制动转矩表示。即,所谓驱动转矩,可以理解为与一定的驱动转矩相对应的进行制动控制并可以将转动减速到所需转速的制动转矩。此外,充电电压,是以发电机发出的电压对电容器进行充电后的结果,所以也可以更换为发电电压。
另外,也可以将上述两种以上的断续信号设定为使其占空比相同而频率不同。作为该各断续信号,例如,可以使用频率为110~1100Hz(例如512Hz)的第1断续信号、及频率为25~100Hz(例如64Hz)的第2断续信号。
在这种情况下,如图32~35所示,也可以通过采用占空比相同而频率不同的断续信号,使充电电压或制动转矩不同。因此,如果当使制动优先时采用使制动转矩大的频率低的第2断续信号、而当使发电优先时采用使充电电压高的频率高的第1断续信号,则可以进行与发电机的状态相适应的适当的调速控制。此外,如图32~35所示,当改变了频率时,与仅改变占空比时相比,可以使充电电压或制动转矩的变化量增大,所以能使可进行调速控制的范围进一步扩大。图32、33,是按25、50、100、500、1000Hz的5级切换断续信号频率的情况,图34、35,是按32、64、128、256、512、1024Hz的6级切换频率的情况,分别如后文所述测定了在各占空比下的电容器充电电压(发电电压)及驱动转矩。
进一步,也可以将上述两种以上的断续信号设定为使其占空比和频率各不相同。作为该各断续信号,例如,可以使用占空比为0.75~0.85且频率为110~1100Hz的第1断续信号、及占空比为0.87~0.97且频率为25~100Hz的第2断续信号。而断续信号的具体频率,只需根据可以在该电子设备中生成的信号种类等设定即可。即,在备有晶体振子的计时器中,如果采用将来自该晶体振子的信号适当分频后的信号,则不需要另外生成用于控制的断续信号,所以是很有效的。在其他的电子设备中,由于存在着易于由该电子设备生成的频率,所以采用该所生成的频率即可。
这样,如果采用频率及占空比都不相同的断续信号进行断续控制,则能够进行有效的制动控制。
即,当进行强制动时,在使制动优先的情况下,通过施加频率低(例如频率为64Hz等)、占空比大(例如占空比为15/16等)的第2断续信号,可以进一步加大制动力,因而能可靠地进行调速控制。就是说,如图32~35所示,为使制动转矩增大,只需将断续信号的频率设定得尽可能低、并使占空比尽可能大即可,因而可以采用上述第2断续信号。
另外,当使发电优先时,通过施加频率高(例如频率为512Hz等)、占空比较大(例如占空比为13/16等)的第1断续信号,可以提供与驱动转矩相对应的制动力,而且能提高充电电压。即,如图32~35所示,为提高充电电压,只需使断续信号的占空比在0.75~0.85的范围内、且将频率设定得尽可能高即可,所以可以采用上述第1断续信号。
这里,如果采用频率及占空比两者都不相同的断续信号,则与仅改变频率或仅改变占空比的情况相比,可以进一步增大充电电压或驱动转矩的变化量,所以,能使可进行调速控制的范围进一步扩大,因而可以进行有效的调速控制。
这样,在上述设定为用于强制动控制的两种以上的断续信号中,当使制动转矩优先时,施加占空比大的断续信号,当使充电电压优先时,施加占空比小的断续信号,在能够进行有效的调速控制这一点上是令人满意的。
另外,在上述设定为用于强制动控制的两种以上的断续信号中,当使制动转矩优先时,施加频率低的断续信号,当使充电电压优先时,施加频率高的断续信号,在能够进行有效的调速控制这一点上是令人满意的。
上述转动控制装置,备有对施加于发电机的制动转矩与发电机的电动势之间的优先关系进行判断的优先级判断装置,上述断续信号选择装置,其构成方式最好是,当由上述优先级判断装置判定为使制动转矩优先时,选择上述两种以上的断续信号中占空比大的断续信号施加于上述开关,而当判定为使上述电动势优先时,选择占空比小的断续信号并施加于上述开关。
另外,上述转动控制装置,备有对施加于发电机的制动转矩与发电机的电动势之间的优先关系进行判断的优先级判断装置,上述断续信号选择装置,其构成方式也可以是,当由上述优先级判断装置判定为使制动转矩优先时,选择上述两种以上的断续信号中频率低的断续信号施加于上述开关,而当判定为使上述电动势优先时,选择频率高的断续信号施加于上述开关。
进一步,上述转动控制装置,备有对施加于发电机的制动转矩与发电机的电动势之间的优先关系进行判断的优先级判断装置,上述断续信号选择装置,其构成方式也可以是,当由上述优先级判断装置判定为使制动转矩优先时,选择上述两种以上的断续信号中占空比大且频率低的断续信号施加于上述开关,而当判定为使上述电动势优先时,选择占空比小且频率高的断续信号施加于上述开关。
这里,上述优先级判断装置,具有检测发电机的生成电压(发电电压)并对制动转矩与发电机的电动势之间的优先关系进行判断的电压检测装置。
另外,上述优先级判断装置,具有检测发电机的转动周期并对制动转矩与发电机的电动势之间的优先关系进行判断的转动周期检测装置。
进一步,上述优先级判断装置,具有检测施加于发电机的制动量并对制动转矩与发电机的电动势之间的优先关系进行判断的制动量检测装置。
如设置这些优先级判断装置并根据各数据切换用于强制动控制的断续信号,则可以根据所需的制动力选择适当的断续信号,所以能够进行有效的调速控制。
上述转动控制装置,也可以具有当施加上述强制动时根据发电机的生成电压(发电电压)从上述设定为用于强制动控制的两种以上的断续信号中选择施加于开关的断续信号的断续信号选择装置。
另外,上述转动控制装置,也可以备有将基于上述发电机转动周期的转动检测信号及基准信号分别从递增计数输入端和递减计数输入端输入的可逆计数器,并具有当进行上述强制动控制时根据可逆计数器的值从上述设定为用于强制动控制的两种以上的断续信号中选择施加于开关的断续信号的断续信号选择装置。
进一步,上述转动控制装置,也可以具有当进行上述强制动控制时根据制动时间对基准信号的一个周期的比值即制动量从上述设定为用于强制动控制的两种以上的断续信号中选择施加于开关的断续信号的断续信号选择装置。
如果根据上述各数据切换用于强制动控制的断续信号,则可以根据所需的制动力选择适当的断续信号,所以能够有效地进行调速控制。
在不施加强制动的期间,可以将占空比小的例如为0.01~0.30左右的断续信号施加于上述开关,从而对发电机进行施加弱制动的控制,也可以进行控制,以使上述开关保持断开状态,从而不对发电机施加制动。
即,上述转动控制装置,在结构上最好是,除上述强制动外,还可以对发电机施加弱制动,且当对上述发电机施加弱制动时,可以施加与上述强制动时采用的两种以上设定为用于强制动控制的断续信号相比占空比小的断续信号。
这时,弱制动的频率,可以与强制动的频率相同,也可以与其不同。即,当进行对发电机施加弱制动的弱制动控制时,例如,可以施加占空比非常小的断续信号(例如占空比为1/16等),从而使制动力非常小。
这里,上述转动控制装置,在结构上最好是,当对上述发电机施加弱制动时,在上述开关上施加占空比设定在0.01~0.30范围内的断续信号,从而对上述发电机进行断续控制。
即使在弱制动控制时,如果对开关施加占空比设定在0.01~0.30范围内的断续信号,则也可以在保持一定程度的充电电压的同时减小驱动转矩,因而在弱制动控制时也可以将充电电压提高到一定的程度。
这时,在结构上最好是,当进行上述弱制动控制时,对上述开关施加占空比设定在0.01~0.15范围内的断续信号,从而对上述发电机进行断续控制,更为理想的是,对上述开关施加占空比设定在0.05~0.10范围内的断续信号,从而对上述发电机进行断续控制,
在弱制动控制时,如果对上述开关施加占空比设定在0.01~0.15范围内的断续信号,则也可以在减小驱动转矩的同时确保一定程度的充电电压,并可以进行有效的弱制动控制。特别是,如果使占空比在0.05~0.10的范围内,则可以在将充电电压保持得更高的同时抑制制动转矩,因而可以进行更为有效的制动控制。
另外,施加占空比小到0.01~0.30的断续信号时的频率,可以设定为与强制动时同样的范围。特别是,从图32~35可以清楚看出,当占空比小时,即使频率改变,制动力或发电功率也没有多大的变化,所以,可以采用与强制动相同的频率。
这时,由上述转动控制装置使上述开关断续操作的断续频率,最好是发电机的转子以设定速度转动时产生的电动势波形的频率的3倍以上,如果是生成电压波形频率的3~150倍左右则更好,进一步,如果是生成电压波形频率的5~130倍左右则更为理想。
如断续频率低于生成电压波形频率的3倍,则因提高生成电压的效果减小,所以最好是生成电压波形频率的3倍以上。
另外,当断续频率为生成电压波形频率的150倍以上时,将使用于断续操作的IC的消耗功率增大,并使发电时消耗的功率增加,所以,断续频率最好是生成电压波形频率的150倍以下。进一步,如果断续频率为生成电压波形频率的3~150倍左右,则与占空因数的变化率对应的转矩变化率接近恒定值,因而也易于控制。但是,也可以根据用途或控制方式将断续频率设定为3倍以下、或150倍以上。
另外,作为断续频率,例如,可以使用25Hz~1100Hz的范围,特别是,作为断续信号,例如,最好是使用64Hz~512Hz的范围。由断续信号进行断续操作的开关,通常由场效应型晶体管构成,但在这种情况下,由于在晶体管上存在着栅极电容,所以随着断续次数的增加,消耗电流也增大。因此,从减小消耗电流考虑,断续频率最好是在512Hz以下。但是,由于该可容许的消耗电流在各种电子设备中不同,所以考虑到制动性能或发电性能,也可以在大约1100Hz以下。
另一方面,当断续频率降低时,充电电压减小,所以,可以设定为25Hz以上,最好在64Hz以上。
本发明的电子设备,具有机械能源、由上述机械能源驱动并通过产生感应电力而供给电能的发电机、及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,在该电子设备中,上述转动控制装置,在结构上也可以备有:开关,可以将上述发电机的两端连接成闭合回路状态;断续信号发生部,产生占空比和频率的至少一个不同的设定为用于强制动控制和用于弱制动控制的两种以上的断续信号;及断续信号选择装置,从上述两种以上的断续信号中选择一个断续信号,且使将上述用于强制动控制的断续信号施加于上述开关的强制动开始时刻及将上述用于弱制动控制的断续信号施加于上述开关的弱制动开始时刻的至少一个时刻与上述发电机的转子转动检测信号同步,从而对上述发电机进行断续控制。
在本发明中,如果使强制动开始时刻与转子的转动检测信号同步,则可以在根据转动检测信号的输入而进入强制动状态的同时立即且可靠地施加强制动,因而可以稳定地进行调速控制,并且还能加快响应性。而如果使弱制动开始时刻与转子的转动检测信号同步,则可以将从强制动状态向弱制动状态的转换时刻设定在用于强制动控制的断续信号的一个周期结束之后,因而可以提高制动量的控制精度。
另外,在本发明中,可以仅使强制动开始时刻与转子的转动检测信号同步,也可以仅使弱制动开始时刻与转子的转动检测信号同步,进一步,也可以使强制动开始时刻及弱制动开始时刻两者都与转子的转动检测信号同步。
这时,上述断续信号选择装置,最好是使将施加于上述开关的断续信号从用于强制动控制切换为用于弱制动控制的弱制动开始时刻或将施加于上述开关的断续信号从用于弱制动控制切换为用于强制动控制的强制动开始时刻与上述用于强制动控制的断续信号或用于弱制动控制的断续信号同步。而在本发明中,所谓断续控制,是用频率比发电机转子高的频率控制信号(断续信号)使发电机的两端形成闭路或开路状态的控制。
按照这种方式,由于从强制动状态向弱制动状态的转换时刻或从弱制动状态向强制动状态的转换时刻发生在用于强制动控制或用于弱制动控制的断续信号的一个周期结束之后,所以能够保证仅在与该周期对应的时间里施加强制动控制时或弱制动控制时的断续信号,因而可以按各周期的整数倍控制制动量,并能进一步提高控制精度。
另外,上述断续信号选择装置,在结构上最好是,可以使上述用于强制动控制的断续信号的输出持续到基准信号的一个周期以上。
如按照这种结构,则尤其是当发电机的转速高时,由于可以持续地进行强制动控制,所以,与特公平7-119812号公报所公开的必须在每一个周期内进行制动断开控制的发明相比,可以迅速且有效的进行调速控制。
本发明的电子设备,最好是,备有用于使发电机的电能对电源电路充电的第1和第2电源线路,同时,上述开关,由分别配置在发电机的第1和第2端子与第1和第2电源线路中的一条线路之间的第1和第2开关构成,上述转动控制装置,其控制方式为,使与上述发电机的第1和第2端子中的一个端子连接的开关保持接通状态,同时对与发电机的另一个端子连接的开关施加上述断续信号以使开关进行断续操作。
如按照这种结构,则不仅通过断续操作进行的制动控制而且发电功率的充电处理及发电机的转动处理都可以同时实现,并能使部件数进一步减少,因而可以降低成本,而且通过控制各开关的断续定时可以提高发电效率。这时,上述第1和第2开关,最好分别用晶体管构成。
进一步,上述第1开关,最好由栅极与发电机的第2端子连接的第1场效应型晶体管及与该第1场效应型晶体管并联连接并由上述转动控制装置使其进行断续动作的第2场效应型晶体管构成,上述第2开关,最好由栅极与发电机的第1端子连接的第3场效应型晶体管及与该第3场效应型晶体管并联连接并由上述转动控制装置使其进行断续动作的第4场效应型晶体管构成。
在这种电子设备中,当发电机的第1端子为正极、第2端子为负极(电位低于第1端子)时,栅极与第2端子连接的第1场效应型晶体管为接通状态(在这种情况下,为P沟道晶体管,如为N沟道时,则为断开状态),栅极与第1端子连接的第3场效应型晶体管为断开状态(在这种情况下,为P沟道晶体管,如为N沟道时,则为接通状态)。因此,由发电机发出的交流电流,在包括第1端子、第1场效应型晶体管、第1和第2电源线路中的一条线路、电源电路、第1和第2电源线路中的另一条线路、第2端子的路径上流过。
另外,当发电机的第2端子为正极、第1端子为负极(电位低于第2端子)时,栅极与第1端子连接的第3场效应型晶体管为接通状态,栅极与第2端子连接的第1场效应型晶体管为断开状态。因此,由发电机发出的交流电流,在包括第2端子、第3场效应型晶体管、第1和第2电源线路中的一条线路、电源电路、第1和第2电源线路中的另一条线路、第1端子的路径上流过。
这时,第2、4的各场效应型晶体管,通过在其栅极输入断续信号而反复变成接通、断开状态。此外,由于各第2、4场效应型晶体管与第1、3场效应型晶体管并联连接,所以,只要第1、3场效应型晶体管为接通状态,则都会有电流流过,而与第2、4场效应型晶体管的接通、断开状态无关,但当第1、3场效应型晶体管为断开状态时,如第2、4场效应型晶体管由断续信号切换为接通状态,则流过电流。因此,当与断开状态的第1、3场效应型晶体管中的一个并联连接的第2、4场效应型晶体管由断续信号切换为接通状态时,使第1、2开关两者都变为接通状态,从而使发电机的各端子变为闭合回路状态。
因此,可以用断续方式对发电机进行制动控制,并能以开关断开时的生成电压的升高部分补偿制动时的发电功率的降低,所以,能够在保持一定的发电功率的同时增加制动转矩,因而可以构成持续工作时间长的电子设备。进一步,发电机的整流控制,由栅极与各端子连接的第1、3场效应型晶体管进行,所以无需使用比较器等,因而使结构简化,而且能够防止因比较器的消耗功率引起的充电效率的降低。另外,由于利用发电机的端子电压控制场效应型晶体管的接通、断开,所以能以与发电机的端子极性同步的方式控制各场效应型晶体管,因而可以提高整流效率。
另外,本发明的电子设备,最好是备有利用上述机械能源以与发电机联动的方式转动并由转动控制装置进行调速控制的时刻指示装置的电子控制式机械计时器。
具体地说,本发明的电子设备,是备有机械能源、通过轮系等能量传递装置联结的由上述机械能源驱动并通过产生感应电力而供给电能的发电机、与上述轮系等能量传递装置联结的指针等时刻指示装置、及由上述电能驱动并控制上述发电机的转动周期的转动控制装置的电子控制式机械计时器,上述转动控制装置,在结构上最好是,备有可以将上述发电机的两端连接成闭合回路的开关、产生占空比和频率的至少一个不同且设定为用于强制动控制的两种以上的断续信号的断续信号发生部、及从上述两种以上的断续信号中选择一个断续信号的断续信号选择装置,并当对上述发电机施加强制动时,将由上述断续信号选择装置从上述两种以上的断续信号中选定的断续信号施加于上述开关,从而可以对上述发电机进行断续控制。
如按照上述的电子控制式机械计时器,则能够在抑制发电功率降低的同时增加发电机的制动转矩,因而可以提供持续工作时间长的高精度计时器。
另外,电子控制式机械计时器,备有机械能源、由上述机械能源驱动并通过产生感应电力而供给电能的发电机、及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,上述转动控制装置,在结构上可以备有:开关,可以将上述发电机的两端连接成闭合回路状态;断续信号发生部,产生占空比和频率的至少一个不同的设定为用于强制动控制或用于弱制动控制的两种以上的断续信号;及断续信号选择装置,从上述两种以上的断续信号中选择一个断续信号,且使将上述用于强制动控制的断续信号施加于上述开关的强制动开始时刻及将上述用于弱制动控制的断续信号施加于上述开关的弱制动开始时刻的至少一个时刻与上述发电机的转子转动检测信号同步,从而对上述发电机进行断续控制。
如按照上述发明,则特别是在调速精度与指针的指示精度有关的电子控制式机械计时器中,也能使调速精度显著提高,因而能提供高精度的计时器。
另外,本发明的电子设备,不限于电子控制式机械计时器,可以应用于各种电子设备。特别是,由于可以延长持续工作时间,所以,可以应用于携带式电子设备,例如,模拟石英式或数字指示式等各种计时器、携带式血压计、携带电话机、PHS、寻呼机、计步器、台式电子计算机、携带用个人计算机、电子记事簿、PDA(小型信息终端,「个人数字助理」)、携带收音机、玩具、八音盒、电刮脸刀等。
本发明的电子设备控制方法,所说的电子设备备有机械能源、由上述机械能源驱动并通过产生感应电力而供给电能的发电机、及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,该电子设备控制方法的特征在于:当对上述发电机施加强制动时,将从占空比和频率的至少一个不同的两种以上的设定为用于强制动控制的断续信号中选定的断续信号施加于可以将发电机的两端连接成闭合回路状态的开关,从而对上述发电机进行断续控制。
如按照上述控制方法,则通过施加从占空比和频率的至少一个不同的两种以上设定为用于强制动控制的断续信号中选定的断续信号,可以提供与机械能源的驱动转矩对应的制动力(制动力矩),因而可以进行可靠的调速控制,同时也能扩大可以调整的动作范围,而且也可以提高充电电压。因此,能够在更进一步地抑制发电功率的降低的同时增加制动转矩(制动力矩),因而也可以构成持续工作时间长的电子设备。
另外,本发明的电子设备控制方法,所说的电子设备备有机械能源、由上述机械能源驱动并通过产生感应电力而供给电能的发电机、及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,该电子设备控制方法的特征在于:上述转动控制装置,备有根据来自时间标准源的信号产生基准信号的基准信号发生装置、可以将上述发电机的两端连接成闭合回路状态的开关、及产生施加于该开关的占空比和频率的至少一个不同的设定为用于强制动控制和用于弱制动控制的两种以上的断续信号的断续信号发生部,并当输入了上述发电机的转子转动检测信号时,将上述用于强制动控制的断续信号施加于上述开关。
在本发明中,由于使强制动开始时刻与转子的转动检测信号同步,所以,也可以在响应转动检测信号的输入而进入强制动状态的同时立即且可靠地施加强制动,因而可以稳定地进行调速控制,并且还能加快响应性。
另外,用于强制动及用于弱制动的各断续信号的频率,可以根据作为对象的发电机的特性等适当设定,但可以采用例如500~1000Hz左右的频率高的用于弱制动控制的断续信号及10~100Hz左右的频率低的用于强制动控制的断续信号。
进一步,也可以采用不仅频率而且占空比也不同的断续信号进行断续控制。特别是,如在强制动控制时采用频率低而占空比大的断续信号、在弱制动控制时采用频率高而占空比小的断续信号,则可以有效地进行断续控制。
本发明还包括:
一种电子设备,备有:机械能源;由上述机械能源驱动并通过产生感应电力供给电能的发电机;及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,其特征在于,
上述转动控制装置备有:
开关,可以将上述发电机的两端连接成闭合回路状态;
断续信号发生部,产生占空比和频率的至少一个不同且设定为强制动接通控制用的两种以上的断续信号;
优先级判断装置,判断施加在上述发电机上的制动转矩和发电机的电动势的优先级关系;
断续信号选择装置,利用上述优选级判断装置的输出,从上述两种以上的断续信号中选择一个断续信号并施加于上述开关,从而对上述发电机进行断续控制。
附图说明
图1是表示本发明第1实施形态的电子控制式机械计时器的主要部分的俯视图。
图2是表示主要部分的断面图。
图3是表示主要部分的断面图。
图4是表示第1实施形态的主要部分的结构的框图。
图5是表示第1实施形态的电子控制式机械计时器的结构的电路图。
图6是第1实施形态的可逆计数器的时间图。
图7是第1实施形态的断续信号选择装置的时间图。
图8是表示第1实施形态的控制方法的流程图。
图9是表示第2实施形态的电子控制式机械计时器的结构的电路图。
图10是第2实施形态中用于说明制动量的图。
图11是第2实施形态的断续信号选择装置的时间图。
图12是表示第2实施形态的控制方法的流程图。
图13是表示第3实施形态的电子控制式机械计时器的结构的电路图。
图14是第3实施形态的断续信号选择装置的时间图。
图15是表示第3实施形态的控制方法的流程图。
图16是表示第4实施形态的电子控制式机械计时器的结构的电路图。
图17是第4实施形态的断续信号选择装置的时间图。
图18是表示第5实施形态的电子控制式机械计时器的结构的电路图。
图19是表示第5实施形态的转动控制装置的电路结构的图。
图20是第5实施形态的断续信号发生部的时间图。
图21是第5实施形态的断续信号发生部的时间图。
图22是第5实施形态的断续信号发生部的时间图。
图23是表示第5实施形态的控制方法的流程图。
图24是表示第6实施形态的转动控制装置的电路结构的图。
图25是第6实施形态的断续信号发生部的时间图。
图26是第6实施形态的断续信号发生部的时间图。
图27是表示本发明的整流电路的变形例的电路图。
图28是表示本发明的整流电路的另一变形例的电路图。
图29是表示作为本发明另一变形例的八音盒的主要部分的结构的斜视图。
图30是表示图29的八音盒中的转动控制装置的主要部分的电路结构图。
图31是表示本发明的实验例的断续充电电路的电路图。
图32是表示断续频率与驱动转矩的关系的曲线图。
图33是表示断续频率与充电电压的关系的曲线图。
图34是表示断续频率与驱动转矩的关系的曲线图。
图35是表示断续频率与充电电压的关系的曲线图。
具体实施方式
以下,根据附图说明本发明的实施形态。
图1是表示作为本发明第1实施形态的电子设备的电子控制式机械计时器的主要部分的俯视图,图2和图3是其断面图。
电子控制式机械计时器,备有由发条1a、条盒齿轮1b、条盒心轴1c及条盒盖1d构成的条盒轮1。作为机械能源的发条1a,外端固定于条盒齿轮1b,内端固定于条盒心轴1c。条盒心轴1c,由底板2和轮系座3支承,并由方孔螺钉5固定,使其与方孔轮4一起转动。
方孔轮4,与扣爪6啮合,使其只能顺时针方向转动,但不能逆时针方向转动。使方孔轮4顺时针方向转动并上紧发条1a的方法,与机械计时器的发条自动上紧或手动上紧机构相同,因而将其说明省略。
条盒齿轮1b的转动,当传递到二轮7时增速到7倍,并依次传递到三轮8时增速6.4倍、到四轮9时增速9.375倍、到五轮10时增速3倍、到六轮11时增速10倍、到转子12时增速10倍,总计增速到126000倍。用由上述各齿轮7~11组成的增速轮系,构成将作为机械能源的发条1a的机械能传递到发电机20的机械能传递装置。
圆筒形小齿轮7a固定于二轮7,分针13固定于圆筒形小齿轮7a,秒针14固定于四轮9,时针17固定于筒形轮7b。因此,为使二轮7以1rph转动、四轮9以1rpm转动,只需进行控制,使转子12以8rps转动即可。此时的条盒齿轮1b将以1/7rph转动。由上述各针13、14、17构成指示时刻的时刻指示装置。
该电子控制式机械计时器,备有由转子12、定子15、线圈组件16构成的发电机20。转子12,由转子磁铁12a、转子小齿轮12b、转子惯性圆板12c构成。转子惯性圆板12c,用于减小转子12的转速相对于来自条盒轮1的驱动转矩变化而发生的变化。定子15,通过将4万匝的定子线圈15b缠绕在定子体15a上构成。
线圈组件16,通过将11万匝的线圈16b缠绕在磁心16a上构成。这里,定子体15a及磁心16a,由PC坡莫合金等构成。而定子线圈15b和线圈16b串联连接,以便得到将各线圈产生的电压相加后的输出电压。
在图4中,示出表示第1实施形态的电子控制式机械计时器的结构的框图。
电子控制式机械计时器,备有作为机械能源的发条1a、用作将发条1a的转矩传递到发电机20的能量传递装置的增速轮系(各轮7~11)、及与增速轮系7~11联结并用作进行时刻指示的时刻指示装置的指针(分针13、秒针14、时针17)。
发电机20,由发条1a通过增速轮系驱动,并通过产生感应电力而供给电能。该发电机20的交流输出,通过由升压整流、全波整流、半波整流、晶体管整流等构成的整流电路41进行升压、整流,并供给由电容器等构成的电源电路40,对其进行充电。
另外,在本实施形态中,如图5所示,在发电机20内设有包括整流电路41的制动电路120。该制动电路120,具有与输入由发电机20产生的交流信号(交流电流)的第1交流输入端子MG1连接的第1开关21及与输入上述交流信号的第2交流输入端子MG2连接的第2开关22,当使这两个开关21、22同时接通时,可以通过将第1、第2交流输入端子MG1、MG2短路等形成闭合回路状态,从而施加短路制动。
第1开关21,通过将栅极与第2交流输入端子MG2连接的Pch的第1场效应型晶体管(FET)26与在栅极上输入来自后文所述的断续信号选择装置80的断续信号(断续脉冲)CH5的第2场效应型晶体管27并联连接而构成。
另外,第2开关22,通过将栅极与第1交流输入端子MG1连接的Pch的第3场效应型晶体管(FET)28与在栅极上输入来自断续信号选择装置80的断续信号CH5的第4场效应型晶体管29并联连接而构成。
这里,第1场效应型晶体管26,当交流输入端子MG2的极性为「-」时接通,第3场效应型晶体管28,当交流输入端子MG1的极性为「-」时接通。就是说,其构成方式是,使晶体管26、28中与发电机的各端子MG1、MG2中的「+」端子连接的一个晶体管接通,而使另一个断开。因此,由各场效应型晶体管26、28构成用作整流电路的一部分的整流用开关。
另外,分别与各晶体管26、28并联连接的第2场效应型晶体管27及第4场效应型晶体管29,由同一个断续信号CH5进行接通、断开控制。因此,当各晶体管27、29由断续信号CH5同时接通时,可以通过使第1、第2交流输入端子MG1、MG2之间短路等构成闭合回路状态并对发电机20施加短路制动,而与用作整流用开关的各晶体管26、28的状态无关。因此,将发电机20的两个端子MG1、MG2之间连接成闭合回路状态的上述开关21、22,更具体地说,是通过各晶体管27、29的动作将发电机20的端子MG1、MG2之间连接成闭合回路状态。
整流电路(倍压整流电路)41,在结构上备有与发电机20连接的升压用电容器23、二极管24、25、及开关21、22。作为二极管24、25,只要是在一个方向上流过电流的单向性元件即可,其种类不限。特别是,在电子控制式机械计时器中,由于发电机20的发电电压小,所以,作为二极管25,最好采用电压降Vf小的肖特基势垒二极管。而作为二极管24,最好采用反向漏电流小的硅二极管。由该整流电路41整流后的直流信号,用于对电源电路(电容器)40进行充电。
上述制动电路120,由利用从电源电路40供给的电力驱动的转动控制装置50进行控制。该转动控制装置50,如图4所示,在结构上备有振荡电路51、分频电路52、转子的转动检测电路53、制动控制电路55。
振荡电路51,利用作为时间标准源的晶体振子51A输出振荡信号(32768Hz),该振荡信号由包括12级触发器的分频电路52分频到一定的周期。分频电路52的第12级输出Q12,作为8Hz的基准信号fs输出。
转动检测电路53,由连接于发电机20的波形整形电路61及单稳态多谐振荡器62构成。波形整形电路61,由放大器、比较器构成,用于将正弦波变换为矩形波。单稳态多谐振荡器62,用作仅使周期小于一定值的脉冲通过的带通滤波器,从而输出将噪声除去后的转动检测信号FG1。
制动控制电路55,备有用作制动控制装置的可逆计数器60、同步电路70、用作断续信号发生部的断续生成电路(断续信号生成电路)151、及断续信号选择装置80。
转动检测电路53的转动检测信号FG1及来自分频电路52的基准信号fs,通过同步电路70分别输入到可逆计数器60的递增计数输入端及递减计数输入端。
同步电路70,由4个触发器71、AND门71、NANA门73构成,利用分频电路52的第5级输出信号Q5(1024Hz)或第6级输出信号Q6(512Hz),使转动检测信号FG1与基准信号fs(8Hz)同步,同时进行调整,以使上述各信号脉冲不会重叠输出。
可逆计数器60,由4位计数器构成。将基于转动检测信号FG1的信号从同步电路70输入到可逆计数器60的递增输入端,将基于上述基准信号fs的信号从同步电路70输入到递减输入端。因此,可以同时进行对基准信号fs和转动检测信号FG1的计数及其差值的计算。
在该可逆计数器60上,还设有4个数据输入端子(预置端子)A~D,并当对端子A~C输入H电平信号时,将可逆计数器60的初始值(预置值)设定为计数值7。
另外,在可逆计数器60的LOAD输入端子上,连接着与电源电路40连接并根据电源电路40的电压输出系统复位信号SR的初始化电路90。在本实施形态中,初始化电路90的构成方式为,在电源电路40的充电电压达到规定电压之前输出H电平的信号,而当超过规定电压时输出L电平的信号。
可逆计数器60,在LOAD输入变为L电平之前、即在输出系统复位信号SR之前,不接受递增计数输入,所以,可逆计数器60的计数值保持在「7」。
可逆计数器60,具有4位输出QA~QD。因此,第4位的输出QD,当计数值在7以下时输出L电平信号,当在8以上时,输出H电平信号。该输出QD,连接着断续信号选择电路80。
输入了输出QA~QD的NAND门74及OR门75的各自的输出,分别输入到输入来自同步电路70的输出的NAND门73。因此,例如当连续输入多个递增计数信号并使计数值递增到「15」时,从NAND门74输出L电平信号,因而即使进一步对NAND门73输入递增计数信号,该输入也将被作废,从而设定为不会对可逆计数器60输入超过该值的递增计数信号。同样,当计数值递减到「0」时,从OR门75输出L电平信号,所以将递减信号输入作废。由此,可以设定为使计数值不超过「15」至「0」、或不超过「0」至15」。
用作断续信号发生部的断续信号生成电路151,由逻辑电路构成,其构成方式是,利用分频电路52的输出Q5~Q8输出占空比不同的3种断续信号CH1~CH3。
断续信号选择装置80,备有输入来自断续信号生成电路151的断续信号CH2、CH3的各AND门152、153、输入各AND门152、153的输出的OR门154、该OR门154的输出CH4及上述断续信号CH1的NOR门155。
断续信号CH1,是占空比小到1/16的断续信号,而断续信号CH3是占空比大到15/16的第2断续信号。另外,断续信号CH2是占空比为13/16的占空比较大但小于断续信号CH3的占空比的第1断续信号。上述各断续信号CH1~CH3的频率相同,例如固定为128Hz。
该断续信号选择装置80的NOR门155的输出信号CH5,输入到P沟道晶体管27、29的栅极。因此,当断续输出CH5为L电平的期间,晶体管27、29保持接通状态,使发电机20短路并施加制动。
另一方面,当输出CH5为H电平的期间,晶体管27、29保持断开状态,因而不对发电机20施加制动。因此,可以由来自输出CH5的断续信号对发电机20进行断续控制。
这里,上述各断续信号CH1~CH3的占空比,是在一个周期的时间内对发电机20施加制动的时间比率,在本实施形态中,是在一个周期的时间内各断续信号CH1~CH3为H电平的时间比率。
可逆计数器60的输出QD输入到各AND门152、153,同时,来自检测电源电路40的电压即发电机20的生成电压(发电电压)的电源电压检测电路103的信号CTL1,反相后输入到其中的一个AND门152而直接输入到另一个AND门153。
以下,参照图6、7的时间图及图8的流程图说明本实施形态的动作。
当发电机20起动并从初始化电路90将L电平的系统复位信号SR输入到可逆计数器60的LOAD输入端时(步骤11,在下文中将“步骤”简写为「S」),如图6所示,由可逆计数器60对基于转动检测信号FG1的递增计数信号、及基于基准信号fs的递减计数信号进行计数(S12)。上述各信号,由同步电路70设定为使其不同时输入计数器60。
因此,当输入递增计数信号时,计数值从将初始计数值设定为「7」的状态递增到「8」,并从输出端QD将H电平信号输出到断续信号选择装置80的AND门152、153。
另一方面,如果输入递减计数信号并使计数值返回「7」,则从输出端QD输出L电平信号。
在用作断续信号发生部的断续信号生成电路151中,如图7所示,利用分频电路52的输出端Q5~Q8,输出各断续信号CH1~CH3。
然后,当从可逆计数器60的输出端QD输出L电平信号时(计数值为「7」以下),各AND门152、153的输出也为L电平信号,而输出CH4也是L电平信号。因此,NOR门155的输出CH5,是输出CH1反相后的断续信号、即H电平的期间(制动断开时间)长而L电平期间(制动接通时间)短的占空比(使晶体管27、29接通的比率)小的断续信号。因此,在基准周期中施加制动的总的时间变短,因而对发电机20几乎没有施加制动,就是说,可以进行使发电功率(电动势)优先的很弱的制动控制(弱制动控制)(S13、S14)。
另一方面,当从可逆计数器60的输出端QD输出H电平信号时(计数值为「8」以上),输出CH4由信号CTL1切换。即,当由电源电压检测电路103检出的电源电路40的电压小于基准电压(例如1.2V)时(S15),信号CTL1为L电平,所以从AND门153输出的信号变为L电平信号,断续信号CH2直接从AND门152输出,因此,输出CH4与断续信号CH2为同一信号。
然后,NOR门155的输出、即断续信号选择装置80的输出CH5,如图7所示,是使输出CH4即断续信号CH2反相后的断续信号,亦即具有一定的H电平期间(制动断开时间)而L电平期间(制动接通时间)较长的即占空比较大(13/16)的断续信号(第1断续信号)。因此,在基准周期中施加制动的总的时间变长,因而对发电机20进行强的制动控制(强制动控制),但为在一定的周期使制动断开进行断续控制,所以,可以在抑制发电功率降低的同时提高制动转矩。特别是,由于确保了一定程度(3/16)的不施加制动的时间,所以,既能进行强的制动控制,又可以保持一定程度的发电功率,因而可以进行使发电功率(电动势)优先的强制动控制(S16)。
另一方面,当电源电路40的电压超过基准电压时(S15),信号CTL1变为H电平,所以输出CH4与断续信号CH3为同一信号,断续信号选择装置80的输出CH5,是使输出CH4即断续信号CH3反相后的断续信号,亦即H电平期间(制动断开时间)短而L电平期间(制动接通时间)长的占空比大(15/16)的断续信号(第2断续信号)。在这种情况下,也是对发电机20进行断续控制,所以,在以一定的限度抑制发电功率降低的同时提高制动转矩,特别是,由于不施加制动的时间很短(1/16),因此可以进行使制动力(制动力矩)比发电功率(电动势)优先的强制动控制(S17)。
在整流电路41中,按如下的方式以发电机20产生的电荷对电源电路40进行充电。即,当第1端子MG1的极性为「+」、第2端子MG2的极性为「-」时,使第1场效应型晶体管(FET)26接通,并使第3场效应型晶体管(FET)28断开。因此,发电机20产生的感应电压的电荷,通过「第1端子MG1→电容器23→二极管25→第2端子MG2」的电路对例如0.1μF的电容器23进行充电,同时通过「第1端子MG1→第1开关21→电源电路40→二极管24→二极管25→第2端子MG2」的电路对例如10μF的电源电路(电容器)40进行充电。
另一方面,如将第1端子MG1的极性切换为「-」、将第2端子MG2的极性切换为「+」,则使第1场效应型晶体管(FET)26断开,并使第3场效应型晶体管(FET)28接通。因此,以将发电机20产生的感应电压与电容器23的充电电压相加后的电压,通过「电容器23→第1端子MG1→发电机20→第2端子MG2→第2开关22→电源电路40→二极管24→电容器23」的电路对电源电路(电容器)40进行充电。
在各状态下,当由断续信号CH5使发电机20的两端形成闭合回路后使其断开时,在线圈的两端感应产生高电压,通过由该高的充电电压对电源电路(电容器)40进行充电,提高充电效率。
当发条1a的转矩大因而使发电机20的转速大时,在由递增计数信号使计数值达到「8」后,有时还可能进一步输入递增计数值。在这种情况下,计数值递增到「9」,并将上述输出QD保持在H电平,所以根据断续信号CH3的反相信号进行一边以一定的周期使制动断开一边施加制动的强制动控制。由于施加了制动,因而使发电机20的转速降低,如在输入转动检测信号FG1之前输入2次基准信号fs(递减计数信号),则计数值降至「8」、「7」,并当递减到「7」时,切换为弱制动控制。特别是,当发条1a的转矩大时,虽然使计数值递增到「9」、「10」,但在这种转矩大的情况下,电源电路40的充电电压也增大,因而使信号CTL1切换为H电平信号,输出CH5也变为引起更大制动力的断续信号,所以在发电机20上施加很大的制动力,从而使其转速迅速降低。
在进行上述的控制后,发电机20接近所设定的转速,如图6所示,进入使递增计数信号和递减计数信号交替输入并进入使计数值反复为「8」和「7」的锁定状态。这时,根据计数值及电源电压值反复施加两种(发电优先及制动优先)强制动、及弱制动。就是说,在转子转动一周的基准周期的一个周期内,将占空比大(15/16或13/16)的断续信号及占空比小的断续信号施加于晶体管27、29,从而进行断续控制。
另外,当发条1a的转矩随着发条1a的松开而变小时,使施加制动的时间逐渐缩短,并使发电机20的转速在不施加制动的状态下变为接近基准速度的状态。
然后,即使完全不施加制动,也仍进一步输入递减计数值,并当计数值降至「6」以下的小的值时,判断为发条1a的转矩已经很小,并使指针停止运行,或以非常低的速度运行,进一步,通过使蜂鸣器鸣叫、或使指示灯点亮,促使使用者再次上紧发条1a。
因此,当从可逆计数器60的输出端QD输出H电平信号时,由占空比大的断续信号进行强制动控制,另外,即使是该强制动控制,也要根据电源电路40的充电电压(发电机20的发电电压)、即根据发条1a的驱动转矩进行制动转矩不同的两种强制动控制。
就是说,根据可逆计数器60的输出QD,由各门电路152~155切换强制动控制和弱制动控制,并根据电源电压检测电路103的信号CTL1即电源电路40的电压,由各门电路152~155对制动优先和发电优先的两种强制动控制进行切换。因此,在本实施形态中,由电源电压检测电路103构成优先级判断装置,在强制动控制时判断施加于发电机的制动转矩与发电机的电动势之间的优先关系,并由可逆计数器60及各门电路152~155等构成断续信号选择装置80,根据用作上述优先级判断装置的电源电压检测电路103的输出,选择强制动控制时使用的断续信号。另外,在本实施形态中,断续信号选择装置80,不仅进行强制动控制时的断续信号的选择,而且还进行强制动控制时和弱制动控制时使用的断续信号的选择。
在本实施形态中,当输出QD为L电平信号时,断续信号CH5,是H电平期间∶L电平期间为15∶1、即占空比为1/16=0.0625的断续信号。而当输出QD为H电平且电源电路40不到1.2V时,断续信号CH5,是H电平期间∶L电平期间为3∶13、即占空比为13/16=0.8125的断续信号。进一步,当输出QD为H电平信号时且电源电路40为1.2V以上时,断续信号CH5,是H电平期间∶L电平期间为1∶15、即占空比为15/16=0.9375的断续信号。
另外,从发电机20的MG1、MG2输出与磁通变化对应的交流波形。这时,根据输出端QD的信号将频率恒定而占空比不同的断续信号CH5适当地施加于晶体管27、29(开关21、22),当输出端QD输出H电平信号时,即当进行强制动控制时,各断续周期内的短路制动时间延长,使制动量增加从而使发电机20减速。尽管在施加制动的期间使发电量降低,但当由断续信号使开关21、22断开时可以输出在该短路制动期间蓄存的能量,因而能够进行断续升压,所以,可以补偿短路制动时的发电量降低,从而可以在抑制发电功率降低的同时增加制动转矩。
相反,当输出端QD输出L电平信号时,即当进行弱制动控制时,各断续周期内的短路制动时间缩短,使制动量减小从而使发电机20增速。这时,当由断续信号使晶体管27、29(开关21、22)从接通状态断开时也可以进行断续升压,所以与完全不施加制动进行控制的情况相比,也能使发电功率增加。
然后,发电机20的交流输出,由倍压整流电路41升压和整流并对电源电路(电容器)40进行充电,从而由该电源电路40驱动转动控制装置50。
由于可逆计数器60的输出QD与断续信号CH5都利用着分频电路52的输出Q5~Q8、Q12,就是说,断续信号CH5的频率是输出QD频率的整数倍,所以,输出QD的输出电平的变化、即强制动控制与弱制动控制的切换时刻与断续信号CH5同步。
按照本实施形态,可以取得如下效果。
(1)在将基于转动检测信号FG1的递增计数信号及基于基准信号fs的递减计数信号输入可逆计数器60且转动检测信号FG1(递增计数信号)的计数值大于基准信号fs(递减计数信号)的计数值的状态(如计数器60的初始值是「7」,则为计数值在「8」以上的状态)下,由制动电路120继续对发电机20施加强制动,反之,在转动检测信号FG1的计数值小于基准信号fs的计数值的状态(即计数值在「7」以下的状态)下,对发电机20施加弱制动,所以,即使在发电机20加速等时的转速与基准速度有很大偏差的情况下,也能迅速地使发电机20的转速趋近于基准速度,因而能加快转动控制的响应性。
(2)另外,由于利用占空比不同的断续信号CH5进行强制动控制与弱制动控制的切换,所以,可以加大制动(制动力矩)而不会使充电电压(发电电压)降低。特别是,由于在强制动控制时使用占空比大的断续信号进行控制,所以,可以在抑制充电电压降低的同时加大制动转矩,从而能在保持系统稳定性的同时进行有效的制动控制。因此,也可以使电子控制式机械计时器的持续工作时间延长。
(3)进一步,由于在强制动控制时可以根据电源电路40的充电电压即发电机20的转速进行制动转矩不同的2级强制动控制,所以,能够进行更为有效的强制动控制,并可以在抑制发电功率降低的同时进行充分的制动控制。
特别是,从图32~35也可以清楚看出,如采用频率为128Hz且占空比为15/16的断续信号,则可以在确保一定程度的充电电压的同时加大发电机20的制动转矩,因而能进行使制动优先的控制。而当采用频率为128Hz且占空比为13/16的断续信号时,可以在确保一定程度的制动力的同时将充电电压提得较高,因而能进行使发电优先的控制。
(4)另外,由于在弱制动控制时也由占空比小的断续信号进行断续控制,所以,可以进一步增加施加弱制动时的充电电压。
特别是,从图32~35也可以清楚看出,如采用频率为128Hz且占空比为1/16的断续信号,则可以在保持低的制动转矩的同时确保一定程度的充电电压。
(5)强制动控制与弱制动控制的切换,仅设定为计数值在「7」以下或在「8」以上,而不需要另外设定制动时间等,所以能简化转动控制装置50的结构,并可以降低部件成本和制造成本,因此能以低的价位提供电子控制式机械计时器。
(6)由于可以根据发电机20的转速改变输入递增计数信号的定时,所以,能够自动调整计数值为「8」的时间、即施加制动的时间。因此,特别是在交替地输入递增计数数信号和递减计数信号的锁定状态下,能够进行响应快速的稳定控制。
(7)作为制动控制装置采用了可逆计数器60,所以,可以在对递增计数信号和递减计数信号进行计数的同时自动地计算将各计数值相比较的值(差值),因此,可以使结构简化并能以简单的方式求得各计数值之差。
(8)由于采用4位的可逆计数器60,所以,可以进行16个计数值的计数。因此,当连续输入递增计数信号时,可以对该输入值进行累积计数,并可以在所设定的范围内、即在连续输入递增计数信号或递减计数信号而使计数值递增到「15」或递减到「0」的范围内对其累积误差进行校正。因此,即使当发电机20的转速与基准速度发生了很大的偏差时,尽管在进入锁定状态之前要花较多的时间,但仍能可靠地校正其累积误差并使发电机20的转速回到基准速度,从而能使指针长时间地保持精确的运行状态。
(9)由于设有初始化电路90从而当发电机20起动时在发电电路40被充电到规定电压之前不进行制动控制因而不对发电机20施加制动,所以,能够使对电源电路40的充电优先进行,因此可以迅速且稳定地驱动由电源电路40驱动的转动控制控制装置50,并且还能提高在这之后的转动控制的稳定性。
(10)由于输出QD的输出电平变化即强制动控制与弱制动控制的切换时刻与断续信号CH5从接通到断开的转换时刻同步。所以,可以按一定的间隔输出发电机20的与断续信号CH5对应的生成电压高的输出部分(尖峰部分),也可以将该输出用作计时器的快慢差率测定脉冲。即,当输出QD与断续信号CH5不同步时,除一定周期的断续信号CH5变化时以外当输出QD变化时也要从发电机20输出生成电压高的部分。因此,发电机20输出波形的「尖峰部分」不一定按一定间隔输出,所以不能用作快慢差率测定脉冲,但如按照本实施形态的同步方式,则可以用作快慢差率测定脉冲。
(11)发电机20的整流控制,由栅极与各端子MG1、MG2连接的第1、3场效应型晶体管26、28进行,所以无需使用比较器等,因而使结构简化,而且能够防止因比较器的消耗功率引起的充电效率的降低。另外,由于利用发电机20的端子电压控制场效应型晶体管26、28的接通、断开,所以,能以与发电机20的端子极性同步的方式控制各场效应型晶体管26、28,因而可以提高整流效率。此外,通过将在断续控制下的第2、4场效应型晶体管27、29与各晶体管26、28并联连接,可以独立地进行断续控制,并能使结构简化。因此,能以简单的结构提供与发电机20的极性同步、且一边进行升压一边进行断续整流的整流电路41。
以下,参照图9说明本发明的第2实施形态。此外,在本实施形态中,对与上述第1实施形态相同或类似的构成部分标以相同符号,并将其说明省略或简述。
本实施形态,使来自用作断续信号发生部的断续信号生成电路151A的断续信号CH12、CH13的占空比保持相同,而仅频率不同。具体地说,断续信号CH12,占空比为13/16且频率为512Hz。而断续信号CH13,占空比与断续信号CH12相同,为13/16,但频率低到64Hz。此外,信号CH11的占空比为0/16、即在结构上使其仅输出L电平信号。
另外,当切换来自OR门154的输出时,与在第1实施形态中使用电源电压检测电路103的信号CTL1不同,在本实施形态中,在结构上,设有制动量检测电路100,并使用来自该制动量检测电路100的信号CTL2进行切换。
制动量检测电路100,以基准信号fs及转动检测信号FG1为输入,并根据基准信号的周期b及制动施加时间a计算制动量的比率a/b。制动施加时间a的计算,通过由定时器检测转动检测信号FG1与基准信号fs的相位差进行。并且,如图10所示,制动量检测电路100的构成方式为,如果制动量的比率a/b小于基准值(例如50%),则使信号CTL2为L电平信号,如在基准值以上则使其为H电平信号。
因此,在本实施形态中,如图11及作为流程图的图12所示,从初始化电路90输出系统复位信号SR(S21),并由可逆计数器60对递增计数数信号和递减计数信号进行计数(S22),当其计数值小于「7」因而使输出QD为L电平信号时(S23),断续信号选择装置80的输出CH15,保持为将信号CH11反相后的H电平信号,所以,将开关21、22保持在断开状态,因而不对发电机20施加制动(制动断开控制状态),发电机20仍以原来的状态输出交流输出(S24)。
另一方面,如输出QD为H电平信号而进入强制动控制状态(S23),则当制动量小于基准值而使信号CTL2为L电平信号时(S25),输出CH15变为将断续信号CH12反相后的信号即频率为512Hz且占空比为13/16的断续信号(第1断续信号),从而进行使发电优先的强制动控制(S26)。进一步,如在强制动控制时制动量在基准值以上而使信号CTL2为H电平信号时(S25),输出CH15变为将断续信号CH13反相后的信号即频率为64Hz且占空比为13/16的断续信号(第2断续信号),从而进行使制动优先的强制动控制(S27)。
因此,在本实施形态中,由制动量检测电路100构成优先级判断装置,在强制动控制时判断施加于发电机的制动转矩与发电机的电动势之间的优先关系,并由可逆计数器60及各门电路152~155等构成断续信号选择装置80,根据用作上述优先级判断装置的制动量检测电路100的输出,选择强制动控制时使用的断续信号。另外,在本实施形态中,断续信号选择装置80,不仅进行强制动控制时的断续信号的选择,而且还进行强制动控制时和弱制动控制时使用的断续信号的选择。
在上述的本实施形态中,也可以取得与上述第1实施形态的(1)~(11)相同的作用效果。即,即使在采用仅频率不同的各断续信号CH12、CH13的情况下,也与上述第1实施形态一样,可以使制动转矩或充电电压不同,从而在强制动控制时可以进行与发电机20的转速等对应的2级控制。
(12)进一步,各断续信号CH12、CH13,由于仅使频率不同,所以,如图32~35所示,与仅使占空比不同的上述第1实施形态相比,可以增大充电电压或制动转矩的变化量,所以,能使可进行调速控制的范围进一步扩大,因而可以进行更有效的调速控制。
以下,参照图13~15说明本发明的第3实施形态。此外,在本实施形态中,对与上述各实施形态相同或类似的构成部分也标以相同符号,并将其说明省略或简述。
本实施形态,在结构上,当切换来自断续信号选择装置80的OR门154的输出时,利用可逆计数器60的计数值进行切换。
即,设有在输出QA~QD中将输出QA~QC反相后输入而将输出QD直接输入的AND门111及将该AND门111的输出反相后输入而将输出QD直接输入的AND门112。
因此,AND门111的输出CH22,仅当计数值为「8」、即QD为H电平而其他输出QA~QC为L电平时为H电平信号,在其他计数值时为L电平信号。
另外,AND门112的输出CH23,当计数值为「9」~「15」时为H电平信号,在其他情况下为L电平信号。
因此,从初始化电路90输出系统复位信号SR(S31),并由可逆计数器60对递增计数信号和递减计数信号进行计数(S32),当该可逆计数器60的计数值小于「8」(「0」~「7」)时(S33),各输出CH22、CH23都是L电平信号,所以OR门154的输出CH24也是L电平信号,因而使NOR门155的输出CH25为将输出CH1反相后的占空比小的断续信号,从而进行弱制动控制(S34)。
另外,当计数值变为「8」时,即当计数值大于「7」但不大于「8」时(S35),仅输出CH22为H电平信号,所以输出CH24为与断续信号CH2相同的断续信号,而输出CH25则为将该信号CH24反相后的占空比为13/16的断续信号(第1断续信号),从而进行使发电优先的强制动控制(S36)。
进一步,当计数值递增到「9」以上时(S35),仅输出CH23为H电平信号,输出CH22为L电平信号,所以输出CH24为与断续信号CH3相同的信号,而输出CH25则为将该信号CH24反相后的占空比为15/16的断续信号(第2断续信号),从而进行使制动优先的强制动控制(S37)。
这里,如果发电机20的转动周期比基准信号fs的周期超前,则从可逆计数器60输出的计数值增加,如果滞后则减小。
因此,在本实施形态中,由可逆计数器60构成优先级判断装置,用于检测发电机20的转动周期,并当进行强制动控制时判断施加于发电机的制动转矩与发电机的电动势之间的优先关系。此外,由于可逆计数器60还用于强制动与弱制动的切换等,所以由可逆计数器60、各门电路111、112、152~155等构成断续信号选择装置80,用于进行强制动控制时使用的断续信号的选择、或强制动控制时和弱制动控制时使用的断续信号的选择。
在上述的本实施形态中,也可以取得与上述第1实施形态的(1)~(11)相同的作用效果。
(13)进一步,由于仅通过设置AND门111、112即可切换强制动控制时的断续信号,所以与设有电源电压检测电路103或制动量检测电路100的上述各实施形态相比,能使结构简化,同时也可以降低成本。
以下,参照图16、17说明本发明的第4实施形态。此外,在本实施形态中,对与上述各实施形态相同或类似的构成部分也标以相同符号,并将其说明省略或简述。
本实施形态,使从用作断续信号发生部的断续信号生成电路151B输出的断续信号CH32、CH33在频率及占空比上都不相同。
即,断续信号CH32,是频率为512Hz且占空比为13/16的断续信号(第1断续信号),而断续信号CH33,是频率为64Hz且占空比为15/16的断续信号(第2断续信号)。
并且,由用作优先级判断装置的制动量检测电路100的信号CTL2切换并输出上述各断续信号CH32、CH33。
即,在本实施形态中,以与第2实施形态相同的流程进行处理,并由可逆计数器60对递增计数信号和递减计数信号进行计数。当其计数值小于「7」因而使输出QD为L电平信号时,断续信号选择装置80的输出CH35,保持为将信号CH11反相后的H电平信号,所以,将开关21、22保持在断开状态,因而不对发电机20施加制动,并进入制动断开控制状态。
另一方面,如输出QD为H电平信号而进入强制动控制状态,则当制动量小于基准值而使信号CTL2为L电平信号时,输出CH15变为将断续信号CH32反相后的信号即频率为512Hz且占空比为13/16的断续信号(第1断续信号),从而进行使发电优先的强制动控制。进一步,在强制动控制时,如制动量在基准值以上而使信号CTL2为H电平信号时,输出CH35变为将断续信号CH33反相后的信号即频率为64Hz且占空比为15/16的断续信号(第2断续信号),从而进行使制动优先的强制动控制。
因此,在本实施形态中,与第2实施形态一样,由可逆计数器60及各门电路152~155等构成断续信号选择装置80。
在上述的本实施形态中,也可以取得与上述第1实施形态的(1)~(11)相同的作用效果。
(14)进一步,由于可以分别改变各断续信号CH32、CH33的频率及占空比,就是说,通过采用使断续信号CH32反相后的信号,可以进行增加充电电压而使发电优先的强制动控制,通过采用使断续信号CH33反相后的信号,可以进行加大制动转矩而使制动优先的强制动控制,所以,能够更加有效地进行发电机20的转动控制。
以下,参照图18~23说明本发明的第5实施形态。此外,在本实施形态中,对与上述各实施形态相同或类似的构成部分也标以相同符号,并将其说明省略或简述。
在本实施形态中,电子控制式机械计时器的结构,与图1所示的上述第1实施形态一样,也备有作为机械能源的发条1a,用作将发条1a的转矩传递到发电机20的机械能传递装置的增速轮系(各序号的轮)7~11、及与增速轮系7~11联结并用作进行时刻指示的时刻指示装置的指针13、14、17。
发电机20,由发条1a通过增速轮系7~11驱动,并通过产生感应电力而供给电能。该发电机20的交流输出,通过由升压整流、全波整流、半波整流、晶体管整流等构成的整流电路41进行升压、整流,并供给电容器(电源电路)40,对其进行充电。
转动控制装置50,由从该电源电路40供给的电力驱动,并由该转动控制装置50对发电机20进行调速控制。转动控制装置50,在结构上备有振荡电路51、分频电路52、转子的转动检测电路53、制动器的制动控制电路55,并如图18所示,通过控制在发电机20内设有的制动电路120,对发电机20进行调速。
本实施形态的制动电路120,由通过将用于输出由发电机20产生的交流信号(交流电流)的第1输出端子MG1、第2输出端子MG2短路等形成闭合回路从而施加短路制动的第1、第2开关21、22构成,并组装在兼作调速机使用的发电机20内。
第1开关21,与上述实施形态一样,通过将栅极与第2输出端子MG2连接的Pch第1场效应型晶体管(FET)26与在栅极上输入来自制动控制电路55的断续信号(断续脉冲)CH55的第2场效应型晶体管27并联连接构成,并配置在第1输出端子MG1与电容器40的第1输入端子40a之间。
另外,第2开关22,通过将栅极与第1输出端子MG1连接的Pch第3场效应型晶体管(FET)28与在栅极上输入来自制动控制电路55的断续信号(断续脉冲)CH55的第4场效应型晶体管29并联连接构成,并与第1开关21一样,配置在第1输出端子MG1与电容器40的第1输入端子40a之间。
在发电机的各输出端子MG1、MG2与电容器40的第2输入端子40b之间,分别配置着与上述实施形态同样的升压用电容器23、二极管24、25。
倍压整流电路41,在结构上备有与这些发电机20连接的升压用电容器23、二极管24、25、第1开关21、第2开关22。而由该整流电路41整流后的直流信号通过各输入端子40a、40b从整流电路41对电容器40进行充电。
转动控制装置55的振荡电路51,如图19所示,利用作为时间标准源的晶体振子51A输出振荡信号(32768Hz),该振荡信号由包括12级触发器的分频电路52分频到一定的周期。分频电路52的第12级输出Q12,作为8Hz的基准信号fs输出。因此,由振荡电路51和分频电路52构成基准信号发生装置。此外,分频电路52,在各输出端Q4、Q5、Q6、Q7依次分别输出2048Hz、1024Hz、512Hz、256Hz的信号。
转动检测电路53,与上述实施形态一样,由连接于发电机20的波形整形电路61及单稳态多谐振荡器62构成。
制动控制电路55,与上述实施形态一样,备有可逆计数器60、同步电路70、用作断续信号发生部的第1断续信号发生装置81及第2断续信号发生装置85、断续信号选择装置80。
转动检测电路53的转动检测信号FG1及来自分频电路52的基准信号fs,通过同步电路70分别输入到可逆计数器60的递增计数输入端及递减计数输入端。
同步电路70,如图19所示,由4个触发器71及AND门72构成,利用分频电路52的第4级输出(2048Hz)或第5级输出(1024Hz)的信号,使转动检测信号FG1与基准信号fs(8Hz)同步,同时进行调整,以使上述各信号脉冲不会重叠输出。
可逆计数器60,由4位计数器构成。将基于上述转动检测信号FG1的信号(UCL:递增计数信号)从同步电路70输入到可逆计数器60的递增输入端,并将基于上述基准信号fs的信号(DCL:递减计数信号)从同步电路70输入到递减输入端。因此,可以同时进行对基准信号fs和转动检测信号FG1的计数及其差值的计算。
在该可逆计数器60上,还设有4个数据输入端子(预置端子)A~D,并当对端子A、B、D输入H电平信号时,将可逆计数器60的初始值(预置值)设定为计数值「11」。
另外,在可逆计数器60的LOAD输入端子上,连接着与电容器40连接并在对电容器40最初供给电力时输出系统复位信号SR的初始化电路90。在本实施形态中,初始化电路90的构成方式为,在电源电路40的充电电压达到规定电压之前输出H电平的信号,而当超过规定电压时输出L电平的信号。
可逆计数器60,在LOAD输入即系统复位信号SR变为L电平之前,不接受递增计数输入,所以可逆计数器60的计数值保持在「11」。
可逆计数器60,具有4位输出QA~QD。因此,如计数值在「12」以上,则第3、4位输出QC、QD都输出H电平信号,如计数值在「11」以下,则第3、4位输出QC、QD的至少一个必定输出L电平信号。
因此,输入了输出QC、QD的AND门110的输出LBS,如可逆计数器60的计数值在「12」以上,则为H电平信号,如计数值在「11」以下,则为L电平信号。该输出LBS,连接于断续信号选择装置80。
另外,输入了输出QA~QD的NAND门116及OR门117的各输出,分别输入到输入来自同步电路70的输出的NAND门118。因此,例如当连续输入多个递增计数信号并使计数值递增到「15」时,从NAND门116输出L电平信号,因而即使进一步对NAND门118输入递增计数信号,该输入也将被作废,从而设定为不会对可逆计数器60输入超过该值的递增计数信号。同样,当计数值递减到「0」时,从OR门117输出L电平信号,所以将递减计数信号的输入作废。由此,可以设定为使计数值不超过「15」至「0」、或不超过「0」至「15」。
断续信号发生部,在结构上备有输出第1断续信号CH51的第1断续信号发生装置81及输出第2断续信号CH52的第2断续信号发生装置85。
第1断续信号发生装置81,由3个AND门82~84构成,其构成方式为,利用分频电路52的输出Q4~Q7输出第1断续信号CH51。
第2断续信号发生装置85,在结构上由将分频电路52的输出Q6作为时钟输入并以信号UCL进行复位的1/5分频电路构成,用于输出第2断续信号CH52。
另外,断续信号选择装置80,其构成方式为,根据来自AND门110的输出LBS对各断续信号CH51、CH52进行切换并输出。具体地说,断续信号选择装置80,备有:将来自上述可逆计数器60的输出LBS作为数据输入且将断续信号CH52作为时钟输入并输出制动状态与非制动状态的切换信号LBS1的触发器86、及根据切换信号LBS1的状态将用于弱制动控制的断续信号(将上述第1断续信号CH51反相后的信号)或用于强制动控制的断续信号(将第2断续信号CH52反相后的信号)作为断续信号CH55输出的各AND门87、88和NOR门89。
因此,来自断续信号选择装置80的NOR门89的输出CH55,如图20、21所示,作为根据输出LBS1对频率高(256Hz)、占空比(一个周期内的制动时间、即L电平时间的长度)小的用于弱制动控制的断续信号(使第1断续信号CH51反相后的信号)及频率低(512/5=102.4Hz)、占空比大的用于强制动控制的断续信号(使第2断续信号CH52反相后的信号)进行切换并作为断续信号CH55输出。
该断续信号CH55,输入到制动电路120的各晶体管27、29。因此,当断续信号CH55为L电平信号时,各晶体管27、29即开关21、22保持接通状态,将发电机20短路而形成闭合回路状态,从而施加制动。
另一方面,当断续信号CH55为H电平信号时,开关21、22保持断开状态,因而不对发电机20施加制动。因此,可以利用断续信号CH55对发电机20进行断续控制。
以下,参照图20、21、22的时间图及图23的流程图说明本实施形态的动作。
当发电机20起动并从初始化电路90将L电平的系统复位信号SR输入到可逆计数器60的LOAD输入端时(S51),由可逆计数器60对基于转动检测信号FG1的递增计数信号(UCL)及基于基准信号fs的递减计数信号(DCL)进行计数(S52)。上述各信号,由同步电路70设定为使其不同时输入到计数器60。
因此,当输入递增计数信号(UCL)时,计数值从将初始计数值设定为「11」的状态递增为「12」,因此使输出LBS变为H电平信号,并输出到断续信号选择装置80的触发器86。同时,由UCL将第2断续信号发生装置(1/5分频电路)85复位,并将脉冲信号输入到触发器86的时钟电路。因此,当输入UCL而使计数值递增为「12」时,触发器86的输出LBS1也立即被切换为H电平信号。
另一方面,当输入递减计数信号(DCL)而使计数值返「11」时,输出LBS变为L电平。但是,触发器86的输出LBS1,由于与断续信号CH52同步变化,所以,如图21所示,即使输入DCL也不是立即切换为L电平,而是在断续信号CH52的一个周期结束时才切换为L电平信号。
然后,在断续信号选择装置80中,当从触发器86的输出端LBS1输出L电平信号时(计数值为「11」以下),AND门88的输出也保持为L电平信号,所以,从NOR门89输出的断续信号CH55,是输出CH51反相后的断续信号、即H电平信号(制动断开时间)长而L电平信号(制动接通时间)短的占空比(使开关21、22接通的比率)小的用于弱制动控制的断续信号。因此,使基准周期中的制动接通时间变短,因而对发电机20几乎没有施加制动,就是说,可以进行使发电功率优先的弱制动控制(S53、S55)。
另一方面,当从触发器86的输出端LBS1输出H电平信号时(计数值为「12」以上),AND门87的输出保持为L电平信号,所以,从NOR门89输出的断续信号CH55,是输出CH52反相后的断续信号、即占空比大且频率比上述用于弱制动控制的断续信号小的用于强制动控制的断续信号。因此,使基准周期中的制动接通时间变长,因而对发电机20施加强制动控制,但所进行的是以一定的周期使制动断开的断续控制,所以,可以在抑制发电功率降低的同时提高制动转矩(S53、S54)。
因此,如图22所示,强制动控制的开始时刻,与基于转子的转动检测信号FG1的递增计数信号(UCL)同步,但强制动控制的结束时刻、即弱制动控制的开始时刻,并不与基于基准信号fs的递减计数信号(DCL)同步,而是等到断续信号CH55的一个周期结束时才开始。这时,由于强制动时的断续信号CH55与转子的转动检测信号FG1同步,所以,在强制动时的断续信号CH55的一个周期结束时切换的弱制动控制开始时刻,也与转子的转动检测信号FG1同步。
但是,弱制动时的断续信号CH55(输出CH51的反相信号)的输出,不与转子的转动检测信号FG1同步,所以,即使开始时刻同步,实际的断续定时也不与转子的转动检测信号FG1同步。
在倍压整流电路41中,按如下的方式以发电机20产生的电荷对电容器40进行充电。即,当第1输出端子MG1的极性为「-」、第2端子MG2的极性为「+」时,使第1场效应型晶体管(FET)26断开,并使第3场效应型晶体管(FET)28接通。因此,发电机20产生的感应电压的电荷,通过第2输出端子MG2、电容器23、二极管25、第1输出端子MG1的电路对例如0.1μF的电容器23进行充电,同时通过第2输出端子MG2、第2开关22、第1输入端子40a、电容器40、第2输入端子40b、二极管24、25、第1输出端子MG1的电路对例如10μF的电容器40进行充电。
另一方面,如将第1输出端子MG1的极性切换为「+」、将第2输出端子MG2的极性为「-」,则使第1场效应型晶体管(FET)26接通,并使第3场效应型晶体管(FET)28断开。因此,以将发电机20产生的感应电压与电容器23的充电电压相加后的电压,通过图18所示的「电容器23→第2输出端子MG2→发电机20→第1输出端子MG1→开关21→第1输入端子40a→电容器40→第2输入端子40b→二极管24→电容器23」的电路对电容器40进行充电。
在各状态下,当由断续脉冲使发电机20的两端短路后断开时,在线圈的两端感应产生高电压,通过由该高电压对电源电路(电容器)40进行充电,提高充电效率。
当发条1a的转矩大因而使发电机20的转速大时,在由递增计数信号使计数值递增到「12」后,有时还可能进一步输入递增计数信号。在这种情况下,计数值递增到「13」,并将上述输出LBS保持在H电平,所以根据断续信号CH55进行一边以一定的周期使制动断开一边施加制动的强制动控制。该强制动控制,继续进行到可逆计数器60的计数值降至「11」以下,而与基准信号fs的一个周期无关。
由于施加了制动,因而使发电机20的转速降低,如在输入转动检测信号FG1之前输入2次基准信号fs(递减计数信号),则计数值降至「12」、「11」,并当降到「11」时,切换为将制动解除的弱制动控制。
在进行上述的控制后,使发电机20接近所设定的转速,并进入使递增计数信号和递减计数信号交替输入并使计数值反复为「12」和「11」的锁定状态。这时,根据计数值反复进行强制动控制及弱制动控制。就是说,在转子转动一周的基准周期的一个周期内,将占空比大的断续信号及占空比小的断续信号施加于开关21、22,从而进行断续控制。
另外,当发条1a的转矩随着发条1a的松开而变小时,连续地输入递减计数信号(DLC),例如,有时使计数值降至「11」、「10」。这时,由于输出LBS1保持L电平,所以断续信号CH55仍继续输出用于弱制动控制的信号。因此,可以在不施加强制动的情况下将发电机20的转速控制在基准速度。
当发条1a进一步松开时,即使仅进行弱制动控制也仍进一步输入递减计数值,并当计数值降到「10」以下的小的值时,判断为发条1a的转矩已经很小,并使指针停止运行,或以非常低的速度运行,进一步,通过使蜂鸣器鸣叫、或使指示灯点亮,促使使用者再次上紧发条1a。
因此,当从可逆计数器60的输出端LBS输出H电平信号而且从触发器86的输出端LBS1也输出H电平信号时,由占空比大的断续信号进行强制动控制,当从输出端LBS输出L电平信号而且从触发器86的输出端LBS1也输出L电平信号时,由占空比小的断续信号进行弱制动控制。因此,可以由可逆计数器60、更直接地说是由用作断续信号选择装置80的触发器86切换强制动控制和弱制动控制。
另外,从发电机20的MG1、MG2输出与磁通变化对应的交流波形。这时,根据输出端LBS1的信号将频率及占空比不同的断续信号CH55适当地施加于开关21、22,当输出端LBS1输出H电平信号时,即当进行强制动控制时,各断续周期内的短路制动时间变长,使制动量增加从而使发电机20减速。尽管在施加制动的期间使发电量降低,但当由断续信号CH55使开关21、22断开时可以输出在该短路制动期间蓄存的能量,因而能够进行断续升压,所以,可以补偿短路制动时的发电量的降低,从而可以在抑制发电功率降低的同时增加制动转矩。
相反,当输出端LBS1输出L电平信号时,即当进行弱制动控制时,各断续周期内的短路制动时间变短,并使制动量减小从而使发电机20增速。这时,当由断续信号CH55使开关21、22从接通状态断开时也可以进行断续升压,所以与完全不施加制动进行控制的情况相比,也能使发电功率增加。
然后,发电机20的交流输出,由倍压整流电路21升压和整流并对电源电路(电容器)40进行充电,从而由该电源电路40驱动转动控制装置50。
按照上述本实施形态,可取得如下效果。
(21)由于制动时的断续信号CH55的开始时刻与基于转子的转动检测信号FG1的递增计数信号(UCL)同步,所以,可以在响应UCL的输入而进入强制动控制状态的同时立即可靠地施加强制动,因而可以稳定地进行调速控制,同时还能加快响应性。
(22)另外,从强制动控制状态到弱制动控制状态的切换,即使输入基于基准信号的递减计数信号(DCL)也不立即进行,而是以与用于强制动控制的断续信号CH55的周期同步的方式进行切换,所以,可以保证将强制动控制时的断续信号CH55在与其周期对应的时间施加于开关21、22,因此,使制动量的换算易于进行,并可以进一步地提高调速控制的精度。
(23)由于只要可逆计数器60的计数值在「12」以上就继续进行强制动控制,所以,例如当发条1a的转矩大因而使发电机20的转子转速高时,可以迅速地减速到基准速度,而且,与必须在基准信号的一个周期内进行制动接通和制动断开控制的情况相比,可以提高调速控制的响应性。
同样,由于只要可逆计数器60的计数值在「11」以下就继续进行弱制动控制,所以,例如当发条1a的转矩减小因而使发电机20的转子转速降低时,可以在不施加强制动的情况下调回到基准速度,而且,在这种情况下,与必须在基准信号的1个周期内进行制动接通和制动断开控制的情况相比,也可以提高调速控制的响应性。
(24)由于强制动和弱制动的切换控制利用占空比及频率不同的两种断续信号CH55进行,所以,可以加大制动(制动力矩)而不会使充电电压(发电电压)降低。特别是,由于在强制动控制时使用占空比大而断续频率低的断续信号进行控制,所以,可以在抑制充电电压降低的同时加大制动转矩,从而能在保持系统稳定性的同时进行有效的制动控制。因此,也可以使电子控制式机械计时器的持续工作时间延长。
即,当设置可将发电机20的两端短路的开关并通过对该开关施加断续信号而对发电机20进行断续控制时,如图32~35所示,如断续频率越低、占空比越大,则驱动转矩(制动转矩、制动力矩)增大,而充电电压(发电电压),则随着断续频率的升高而增加,且当占空比增加时,减小得并不那么多,相反,当频率在50Hz以上时,如占空比在大约0.8以下,则充电电压随着占空比的增加而升高。因此,如按照本实施形态调整断续信号CH31的频率及占空比,则可以加大制动而不会使充电电压(发电电压)降低,因而能进行有效的调速控制。
(25)通过将基于转动检测信号FG1的递增计数信号(UCL)及基于基准信号fs的递减计数信号(DCL)输入到可逆计数器60,检测两个信号的相位超前或滞后,并根据该检测结果进行紧接其后的一个基准周期时间的制动控制,所以,即使电机速度有短时间的波动,也能够避免在计时器中发生长时间的可识别的时间超前、滞后,因此可以进行高精度的调速控制从而可以提高时刻指示精度。
(26)在倍压整流电路41中,由于利用栅极与各端子MG1、MG2连接的第1、3场效应型晶体管26、28进行整流控制,所以无需使用比较器,因而可以使结构简化并使部件数减少,而且能够防止因比较器的消耗功率引起的充电效率的降低。另外,由于利用发电机20的端子电压(输出端子MG1、MG2的电压)控制场效应型晶体管26、28的接通、断开,因而能以与发电机20的极性同步的方式控制场效应型晶体管26、28,所以,可以提高整流效率。
(27)另外,通过将在断续控制下的第2、4场效应型晶体管27、29与各晶体管26、28并联连接,可以独立地进行断续控制,并能使结构简化。因此,能以简单的结构提供与发电机20的极性同步、且一边进行升压一边进行断续整流的倍压整流电路41。
(28)在整流电路41中,除采用电容器23的升压外,还可以进行断续的升压,所以,可以提高整流电路41的直流输出电压、即对电容器40的充电电压,因而能提高充电效率。
(29)由于采用4位的可逆计数器60,所以,可以进行16个计数值的计数。因此,当连续输入递增计数信号时,可以对该输入值进行累积计数,并可以在所设定的范围内、即在连续输入递增计数信号或递减计数信号而使计数值递增到「15」或递减到「0」的范围内对其累积误差进行校正。因此,即使当发电机20的转速与基准速度发生了很大的偏差时,尽管在进入锁定状态之前要花较多的时间,但仍能可靠地校正其累积误差并使发电机20的转速回到基准速度,从而能使指针长时间地保持精确的运行状态。
(30)强制动控制与弱制动控制的切换,仅设定为计数值在「11」以下或在「12」以上,而不需要另外设定制动时间等,所以能简化转动控制装置50的结构,并可以降低部件成本和制造成本,因此能以低的价位提供电子控制式机械计时器。
以下,参照图24~26说明本发明的第6实施形态。此外,在本实施形态中,对与上述第5实施形态相同或类似的构成部分也标以相同符号,并将其说明省略或简述。
在本实施形态中,为使强制动控制时与弱制动控制时的断续信号CH65的频率相同,采用了与上述第5实施形态的断续信号发生部结构不同的断续信号发生部180。
具体地说,断续信号发生部180,备有由递增计数信号(UCL)复位的分频电路181。
分频电路181,将分频电路52的输出Q3(4096Hz)作为时钟输入,并输出Q4a(2048Hz)~Q7a(256Hz)的信号。
另外,断续信号发生部180,还备有由3个AND门82~84构成并利用分频电路181的输出Q4a~Q7a输出第1断续信号CH61的第1断续信号发生装置81及由2个OR门186、187构成并利用分频电路181的输出Q4a~Q7a输出第2断续信号CH62的第2断续信号发生装置185。
另外,包含触发器86等的与上述第5实施形态相同的断续信号选择装置80,其构成方式为,与第2断续信号CH62同步地输出切换信号LBS2。
因此,断续信号选择装置80的NOR门89的输出CH55,如图25、26所示,根据输出LBS2对占空比小的用于弱制动控制的断续信号(第1断续信号CH61反相后的信号)及与该信号频率相同但占空比大的用于强制动控制的断续信号(第2断续信号CH62反相后的信号)进行切换并作为断续信号CH65输出。
该断续信号CH65,输入到各晶体管27、29。因此,当断续信号CH65为L电平信号时,各晶体管27、29即开关21、22保持接通状态,将发电机20短路而形成闭合回路状态,从而施加制动。
另一方面,当断续信号CH65为H电平信号时,开关21、22保持断开状态,因而不对发电机20施加制动。因此,可以利用断续信号CH655对发电机20进行断续控制。
以下,参照图25、26的时间图说明本实施形态的动作。
当发电机20起动并从初始化电路90将L电平的系统复位信号SR输入到可逆计数器60的LOAD输入端时,由可逆计数器60对基于转动检测信号FG1的递增计数信号(UCL)及基于基准信号fs的递减计数信号(DCL)进行计数。
当输入递增计数信号(UCL)时,计数值从将初始计数值设定为「11」的状态递增为「12」,因此使输出LBS变为H电平信号,并输入到断续信号选择装置80的触发器86。同时,由UCL将分频电路181复位,并按照与该UCL同步的新的时序输出各输出Q4a~Q7a。
在将分频电路181复位的情况下,将第一个脉冲信号从输出端CH62输入到触发器86的时钟电路。因此,当输入递增计数信号(UCL)而使计数值递增为「12」时,触发器86的输出LBS2也立即被切换为H电平信号。
另一方面,当输入递减计数信号(DCL)而使计数值返回「11」时,输出LBS变为L电平信号。但是,触发器86的输出LBS2,与上述第5实施形态一样,由于与输出CH62同步变化,所以,如图26所示,即使输入DCL也不是立即切换为L电平,而是在断续信号CH62的一个周期结束时才切换为L电平信号。
然后,在断续信号选择装置80中,当从触发器86的输出端LBS2输出L电平信号时(计数值为「11」以下),AND门88的输出也保持为L电平信号,所以,NOR门89的输出CH65,是输出CH6反相后的断续信号、即占空比小的断续信号。因此,使基准周期中的制动接通时间变短,因而对发电机20几乎没有施加制动,就是说,可以进行使发电功率优先的弱制动控制。
另一方面,当从触发器86的输出端LBS2输出H电平信号时(计数值为「12」以上),AND门87的输出保持为L电平信号,所以,NOR门89的输出CH65,是输出CH62反相后的断续信号、即占空比大的断续信号。因此,使基准周期中的制动接通时间变长,因而对发电机20施加强制动控制,但为了在一定的周期使制动断开进行断续控制,所以,可以在抑制发电功率降低的同时提高制动转矩。
因此,在本实施形态中,强制动控制的开始时刻,也与基于转子的转动检测信号FG1的递增计数信号(UCL)同步,但强制动控制的结束时刻、即弱制动控制的开始时刻,并不与基于基准信号fs的递减计数信号(DCL)同步,而是等到断续输出CH65的一个周期结束时才开始,因此,与上述第1实施形态一样,可以由各断续信号进行调速控制。
即,用于控制强制动和弱制动的切换的触发器86的输出,与输出CH62同步输出。而该输出CH62,利用由基于转子的转动检测信号FG1的递增计数信号(UCL)复位的分频电路181的输出信号生成,并与转动检测信号FG1同步输出。因此,从弱制动转换为强制动的强制动开始时刻,及从强制动转换为弱制动的弱制动开始时刻,都与转子的转动检测信号FG1同步。
另外,用于弱制动控制的断续信号(使第1断续信号CH61反相后的信号)及用于强制动控制的断续信号(使第2断续信号CH62反相后的信号),都利用由转子的转动检测信号FG1复位的分频电路181的输出信号生成,所以各信号的断续定时,都与转子的转动检测信号FG1同步。
在上述的本实施形态中,也可以取得与上述第5实施形态的(11)~(13)、(15)~(10)相同的作用效果。
另外,由于弱制动控制开始时刻及弱制动控制时使用的断续信号CH65(使第1断续信号CH61反相后的信号)都与转子的转动检测信号FG1同步,所以,当切换为弱制动控制时,用于弱制动控制的断续信号也在一个周期的开始时起动,所以,也可以保证将弱制动控制时的断续信号CH65在与其周期对应的时间施加于开关21、22,因此,在弱制动时也使制动量的换算易于进行,并可以进一步地提高调速控制的精度。
另外,本发明不限定于各实施形态,在不脱离本发明的目的范围内的变形、改进等,也包括在本发明内。、
例如,在上述第1实施形态中,根据电源电压检测电路103的信号CTL1即电源电压(充电电压)值对用于强制动控制的两种断续信号CH2、CH3进行切换,但也可以根据第2实施形态的制动量检测电路100的信号CTL2即制动量进行切换,并可以用第3实施形态的AND门111、112的输出CH22、CH23即可逆计数器60的计数值切换。同样,在其他实施形态中,断续信号的切换,可以根据电源电路40的电压、制动量、计数值中的任何一个进行,作为优先级判断装置,可以采用上述第1~3实施形态中的任何一种。
进一步,作为优先级判断装置,也可以采用将电源电压检测电路103、制动量检测电路100、可逆计数器60等多个部件组合后的结构。
另外,作为优先级判断装置,可以具有检测发电机20的转动周期的转动周期检测装置,并根据上述转动周期判断优先级,从而切换强制动时的断续信号。这时,转动周期检测装置,例如,在构成方式上可以与图9或图16所示的制动量检测电路100一样,将转动检测信号FG1作为输入,并用定时器检测该输入FG1,由此,即可检测发电机20的转动周期。
这里,如果定时器的值(检测值)在基准值、例如周期125ms(8Hz)的基准值以下,则由于转动周期短即转速高,所以,在强制动控制时,可以进行使制动量(制动转矩)优先的控制、即选用占空比大的断续信号或频率低的断续信号。
另一方面,如果定时器的值(检测值)大于基准值,则由于转动周期长即转速低,所以,在强制动控制时,不需要进行使制动量优先的控制,而可以进行使生成电压优先的控制、即选用占空比小的断续信号或频率高的断续信号。
另外,作为优先级判断装置,不限于直接检测发电机20的状态的电源电压检测电路103、制动量检测电路100、可逆计数器60、转动周期检测装置等,也可以间接地检测。例如,由于发电机20的转速(生成电压)受发条1a的转矩大小的影响大,所以,可以设置检测从发条1a的完全上紧状态开始的经过时间的定时器等,并通过对发电机20的状态进行估计而判断优先级。
另外,断续信号发生部的断续信号的占空比,不限于上述实施形态中给出的13/16或15/16,例如也可以是14/16等其他的值。此外,也可以使断续信号的占空比为28/32、31/32等,就是说,不是按16级而是按32级改变占空比。即,作为在强制动控制时使发电优先而采用的第1断续信号,最好使占空比在0.75~0.85的范围内,特别是,如果占空比在0.75~0.82的范围内,则在进一步提高充电电压这一点上是最为理想的。另一方面,作为使制动力优先时采用的第2断续信号,最好使占空比在0.87~0.97的范围内,特别是,如果将占空比提高到0.90~0.97的范围,则在进一步提高制动力这一点上是最为理想的。
在如上述第5、6实施形态所示的强制动控制时的断续信号仅为1种的情况下,可以将上述第1、2断续信号的占空比都包括在内,即,将占空比的范围设定为0.75~0.97左右。
另外,在各实施形态中,在弱制动控制时使用的断续信号,占空比可以是1/16,进一步也可以是1/32,可连同此时的频率一起在实施时适当设定。此外,也可以不进行弱制动控制,而如第2、4实施形态所示进行制动断开控制。
当改变由断续信号发生部生成的断续信号的频率时,该频率不限于上述第2实施形态的512Hz、64Hz,也可以是例如1024Hz或128Hz等其他频率。即,作为在强制动控制时使发电优先而采用的第1断续信号,最好使频率在110~1100Hz的范围内,特别是,如果频率在500~1100Hz的范围内,则在进一步提高充电电压这一点上是最为理想的。另一方面,作为使制动力优先时采用的第2断续信号,最好使频率在25~100Hz的范围内,特别是,如果是低到25~50Hz范围内的频率,则在进一步提高制动力这一点上是最为理想的。
在如上述第5、6实施形态所示的强制动控制时的断续信号仅为1种的情况下,可以将上述第1、2断续信号的频率范围都包括在内,即,将频率的范围设定为25~1100Hz左右。
另外,对于第4实施形态中的频率和占空比不同的断续信号,其频率或占空比的具体值,也不限于上述第4实施形态的例,可以适当设定。
当根据电源电路40的电压切换断续信号时,用作优先级判断装置的电源电压检测电路103的检测基准值,不限于上述实施形态中给出的1.2V,也可以在实施时适当设定。
另外,基准电压,也不只限于一个值,可以设定当充电电压逐渐增加时用于切换断续信号的第1基准电压(例如1.5V)、及当充电电压逐渐减小时用于切换断续信号的第2基准电压(例如1.0V)的2个基准值,并设定为使断续信号的切换为滞后切换。
进一步,制动量检测电路100的基准值,也不限于上述第2实施形态的50%,可以是其他值。
另外,在上述各实施形态的制动电路120中,可以将第1、2开关21、22与电容器23、二极管24调换,并配置在电源电路40的负(VSS)侧。即,可以将各开关21、22的晶体管26~29变更为Nch型,并插入到发电机20的2个端子MG1、MG2与低电压侧电源即电源电路40的负(VSS)侧之间。在这种情况下,可以构成使连接于发电机20的负侧端子的开关21、22保持接通状态并使连接于发电机20的正侧端子的开关21、22进行断续动作的电路。
此外,当以可逆计数器60的计数值切换断续信号时,不限于如上述第3实施形态所示的将计数值按小于「8」、「8」、「9」以上的3级进行切换,例如,可以将计数值按小于「8」、「8~9」、「10~15」进行切换,这些值也可以在实施时适当设定。
作为构成断续信号选择装置并主要用于切换强制动控制和弱制动控制或制动断开控制的制动控制装置,采用了4位的可逆计数器60,但可以采用3位以下的可逆计数器,也可以采用5位以上的可逆计数器。如采用位数多的可逆计数器,则可计数的值增加,所以,可以加大可存储累积误差的范围,这对发电机20刚起动后的非锁定状态中的控制特别有利。另一方面,如采用位数少的计数器,则虽然可存储累积误差的范围减小,但特别是当进入锁定状态时,由于只是反复递增和递减,所以只用1位的计数器即可处理,同时还具有可以降低成本的优点。
另外,作为制动控制装置,不限于可逆计数器,也可以由分别为用于基准信号fs及用于转动检测信号FG1而设置的第1和第2计数装置及将各计数装置的计数值进行比较的比较电路构成。但是,最好还是采用可逆计数器60,因为具有能使电路结构简化的优点。另外,作为制动控制装置,只要是能够检测发电机20的转动周期并根据该转动周期切换强制动控制和弱制动控制的装置即可,其具体结构可以在实施时适当设定。
另外,在上述第1~4实施形态中,在强制动控制时,利用占空比或频率不同的2种断续信号进行制动控制,但也可以采用占空比或频率不同的3种以上的断续信号。同样,在强制动控制时采用1种断续信号的第5、6实施形态中,也可以采用2种以上的用于强制动控制的断续信号。
进一步,也可以不以逐级的方式改变频率或占空比,而像频率调制那样使其连续地改变。
另外,在上述第1~4实施形态中,也可以如上述第5、6实施形态所示使各制动开始时刻与转子的转动检测信号同步。这样,当使各制动开始时刻与转子的转动检测信号同步时,可以仅使强制动开始时刻与转子的转动检测信号同步,也可以仅使弱制动开始时刻与转子的转动检测信号同步,进一步,也可以使强制动开始时刻及弱制动开始时刻两者都与转子的转动检测信号同步,这些方式只需在实施时适当设定即可。
另外,整流电路41、制动电路120、制动控制电路55、断续信号发生部(断续信号生成电路151、151A、151B或断续信号发生装置81、85、185、断续信号发生部180)、断续信号选择装置80等的具体结构,不限于上述各实施形态,也可以在实施时适当设定。例如,作为制动电路120中的整流电路41,如图27所示,可以设置二极管25a,用以代替电容器23。
另外,作为断续信号选择装置80,不限于如上述各实施形态所示使用逻辑门的情况,也可以用对断续信号生成电路151的输出端子进行切换的开关元件及根据上述发电机的生成电压或制动量等控制该开关元件的IC等构成。
进一步,作为使发电机20的两端形成闭合回路的开关,不限于上述实施形态中的开关21、22。例如,如图28所示,也可以将电阻元件30与晶体管27连接,当由断续信号将各晶体管27、29接通并使发电机20的两端形成闭合回路时,将该电阻元件30配置在该路径内。总之,该开关只要能使发电机20的两端形成闭合回路即可。
另外,作为整流电路41,不限于利用了断续升压的上述实施形态的结构,例如,在结构上,可以设置多个电容器,并组装成通过切换各电容器的连接而进行升压的升压电路等,也可以根据内部装有发电机及整流电路的电子控制式机械计时器的种类等适当设定。
进一步,作为包含整流电路41的制动电路,不限于上述各实施形态的制动电路120,只要是能对发电机20进行断续控制的电路即可。此外,在上述制动电路120中,采用了对全波进行断续动作的结构,但也可以只对半波进行断续动作。
另外,上述各实施形态中的断续信号的频率,可以在实施时适当设定,但如果例如在大约50Hz(发电机20的转子转动频率的大约5倍)以上,则可以在将充电电压保持在一定值以上的同时提高制动性能。而断续信号的占空比,可以在实施时按0.05~0.97的范围适当设定。
作为转子的转动频率(基准信号),不限于上述实施形态的8Hz,可以用10Hz等,也可以在实施时适当设定。
另外,本发明,不限于在上述实施形态所示的电子控制式机械计时器中使用,也可以应用于各种手表、座钟、挂钟等各种计时器、携带型计时器、携带型血压计、携带式电话机、PHS、寻呼机、计步器、台式电子计算机、携带用个人计算机、电子记事簿、PDA(小型信息终端,「个人数字助理」)、携带收音机、玩具、八音盒、节拍器、电刮脸刀等。特别是,在本发明中,可以有效地将发电机的转速控制在恒定的速度,并将发电电压也保持在一定值以上,所以,能使各种电子设备长时间稳定工作。作为这种电子设备,可以设置在房屋或大楼内,但由于本发明的特点是利用发条等机械能源而不需要外部电源,所以适用于在室外等使用的携带式设备。
另外,本发明也可以应用于如图29所示的八音盒901等音响装置。
八音盒901,备有用于安放作为机械能源的发条911的条盒轮910、与条盒轮910的条盒齿轮912啮合并用于上紧发条911的上紧轮920、与该条盒齿轮912啮合并用于传递发条911的机械能的增速齿轮930、与增速齿轮930的小齿轮931啮合的减速齿轮940(在图中以双点锁线示出)、通过该减速齿轮940驱动并发出音响的音响发生装置950、将由增速齿轮930传递的机械能变换为电能的发电机960、将发电机960的转速调整到恒定值的转动控制装置970(图30)。这种八音盒901,用作本发明的电子设备,在结构上可以单独使用或组装在计时器(时钟)内使用,用于奏出规定时间的乐曲。
在上紧轮920上,设置着具有一对啮合件991的用作锁定机构的电磁离合器990。该电磁离合器990,在结构上,当发条911的圈数减少因而使转子961的转动明显变慢时,使各啮合件991沿箭头A方向移动,并使制动构件992与上紧轮920啮合从而使其停止转动(使沿箭头B方向的转动停止),因此可以防止发条911进一步松开。
制动构件992,由弹簧等向上紧轮920侧顶压,因此,即使在啮合件991与上紧轮920啮合的状态下,也可以用手柄921仅沿箭头C方向转动上紧轮920,所以,能够将发条911上紧。
音响发生装置950,在结构上与现有的八音盒大致相同,备有设在与减速齿轮940啮合的小齿轮951上的旋转圆板952,通过由栽设在旋转圆板952上的多个销子953弹拨梳齿状的振动板而奏出乐曲。
另外,发电机960,备有转子961及线圈组件962。
转子961,由与增速齿轮930的齿轮932啮合的转子小齿轮963及与转子小齿轮963整体转动的转子磁铁964构成。
线圈组件963,由缠绕在コ字形的定子965上的第1线圈966及第2线圈967构成,在定子965上设有与转子961邻接的一对磁心定子部968。该定子965和磁心定子部968,具有将多片板状构件重叠的结构,其目的是减小涡流损失。第1线圈966用于发电和制动,第2线圈967则专门用于对转子961的转动进行检测。
转动控制装置970,是由IC构成的电子电路,如图30所示,备有用于驱动晶体振子971的振荡电路972、根据振荡电路972中产生的时钟信号生成一定频率的基准信号的分频电路973、与上述第2线圈967连接并用作检测转子961的转速(基于交流输出波形的频率)同时产生与该转速对应的检测信号的转动检测装置的比较器974、使上述检测信号与上述基准信号同步并输出的同步电路975、将来自同步电路975的检测信号与基准信号进行比较并输出与该比较结果对应的制动用控制信号(断续信号)的控制电路976、及根据来自控制电路976的控制信号对发电机960的上述转子961进行调速的制动电路977。
其中,制动电路977,备有可以将线圈966的两端即发电机960的两端连接成闭合回路从而对发电机960进行调速的由晶体管等构成的开关。并且,与上述实施形态一样,从控制电路976,按照转子961的转速选择输出占空比及频率的至少一个不同的两种断续信号,上述制动电路977则根据该断续信号对发电机960进行断续控制。
因此,可以在将发电电压保持在一定值以上的同时提高制动转矩,因而可以构成持续工作时间长的八音盒。此外,由于可以使发电机960即旋转圆板952以恒定的速度转动,而且能长时间持续地动作,所以能够进行长时间的精确的演奏。
另外,在将本发明应用于节拍器时,可以将节拍音发送轮安装在轮系的齿轮上,通过使该轮转动弹拨节拍音片,发出周期的节拍音。在节拍器中,要求产生与各种拍子对应的节拍音,在这种情况下,只需通过改变晶体振子的分频级而使来自振荡电路的基准信号的周期可变即可。
进一步,作为机械能源,不限于发条1a,也可以是橡胶、弹簧、重锤、或压缩空气等流体,可以根据应用本发明的对象适当设定。此外,作为将机械能蓄存在上述机械能源的手段,可以是手动上紧、旋转锤、势能、气压变化、风力、波动力、水力、温度差等。
另外,作为将来自发条等机械能源的机械能传递到发电机的能量传递装置,不限于如上述各实施形态所示的轮系(齿轮),也可以利用摩擦轮、传动带(同步传动带等)及带轮、链条及链轮、齿条及小齿轮、凸轮等,可以根据应用本发明的电子设备的种类等适当设定。
另外,作为时刻指示装置,不限于指针13、14、17,也可以用圆板、圆环状或圆弧形状的指示装置。进一步,也可以使用采用液晶板的数字显示式时刻显示装置,在本发明的电子设备中,也包括这种数字显示式的计时器。
[实施例]
以下,说明用于检验本发明的断续动作效果的实施例。
在实验中,采用了图31所示的断续充电电路700。该断续充电电路700,将0.1μF的电容器201与发电机20的线圈串联连接,同时将1μF的电容器40及进行断续动作的开关203与该发电机20并联连接。此外,作为负载设置一个10MΩ的电阻205以代替IC,并设有用于整流的二极管301、302。
当按25、50、100、500、1000Hz的5级及按32、64、128、256、512、1024Hz的6级切换开关203的断续频率时,在表示开关203的接通比率的占空因数(占空比)的各个值下,测定了电容器40的充电电压(发电电压)及驱动转矩。并将该实验结果分别示于图32~35。此外,将发电机20的转子转动频率设定为10Hz。
电子控制式机械计时器的IC202,一般设定为由0.8V、80nA驱动,在上述电路700中,如将电容器40充电到0.8V,则在10MΩ的电阻205上流过80nA的电流,因而充电到可以驱动IC202的电压。
因此,从图33、35的充电电压的实验结果可以清楚看出,除断续频率为25Hz及32Hz时外,都可以将电容器40充电到超过0.8V的电压并能将电压保持在一定值(0.8V)以上。
另外,图32、34是在图33、35的断续条件下对驱动发电机20的转矩的测定结果。这里,驱动转矩,是为使发电机20以10Hz转动所需的转矩,与发电机20对发条1a施加的制动转矩相等。从图32、34所示可以看出,随频率的不同,占空比增大时的驱动转矩的增加曲线不同,当占空比为0.9时,驱动转矩大致相等。已经确认在10Hz以外的例如8Hz下可以得到与图32、图33、图34、图35同样的特性。
因此,特别是,如果断续频率在50Hz或64Hz、即转子转动频率的5倍以上,则可以在将充电电压保持在一定值以上的同时提高制动性能,因而可以确认本发明的有效性。
另外,即使断续频率为25Hz或32Hz,但如果占空比在0.80以下,则由于可以充电到0.8V以上,所以在根据断续频率适当设定占空比范围的情况下也可以使用。
总之,占空比,可以根据断续频率(断续信号的频率)设定其范围。具体地说,如本实施例所示,如果频率范围为25~1000Hz左右,则在强制动控制时可以将占空比适当地设定在0.40~0.97的范围内,而在弱制动控制时可以将占空比适当地设定在0.01~0.30的范围内。
另外,在本实验中,只测定到1024Hz,但很容易推断出在更高的频率下也可以获得同样的效果。但是,如频率过高,则IC用于进行断续动作而消耗的电力增大,因此,为能产生更多的电力,作为上限最好设定为1000Hz~1100Hz左右、即转子转动频率的100倍左右。
在图32~35中示出的特性,不限于如上所述的发电机20的转子12的转动频率(基准信号)为10Hz的情况,在其他频率的情况下,可以获得同样的变化特性。因此,转动频率可以在实施时适当设定,在任何情况下都可以取得同样的效果。
如上所述,按照本发明的电子设备及其控制方法,可以在将发电电压保持在一定值以上的同时进一步增大发电机的制动转矩。
另外,按照本发明的电子设备及其控制方法,当采用断续信号进行制动控制时,可以提供可靠且足够的制动量,并具有使调速控制的响应性提高从而可以进行稳定控制的效果。
特别是,如将本发明应用于电子控制式机械计时器,则由于可以进行稳定的调速控制,所以也能提高时刻指示精度,因此可以构成高精度的计时器。

Claims (26)

1.一种电子设备,备有:机械能源;由上述机械能源驱动并通过产生感应电力供给电能的发电机;及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,其特征在于,
上述转动控制装置备有:
开关,可以将上述发电机的两端连接成闭合回路状态;
断续信号发生部,产生占空比和频率的至少一个不同且设定为强制动接通控制用的两种以上的断续信号;
优先级判断装置,判断施加在上述发电机上的制动转矩和发电机的电动势的优先关系;
断续信号选择装置,利用上述优选级判断装置的输出,从上述两种以上的断续信号中选择一个断续信号并施加于上述开关,从而对上述发电机进行断续控制。
2.根据权利要求1所述的电子设备,其特征在于,将上述两种以上的断续信号设定为使其频率相同而占空比不同。
3.根据权利要求2所述的电子设备,其特征在于,上述两种以上的断续信号,包括占空比为0.75~0.85的第1断续信号、及占空比为0.87~0.97的第2断续信号。
4.根据权利要求1所述的电子设备,其特征在于,将上述两种以上的断续信号设定为使其占空比相同而频率不同。
5.根据权利要求4所述的电子设备,其特征在于,上述两种以上的断续信号,包括频率为110~1100Hz的第1断续信号、及频率为25~100Hz的第2断续信号。
6.根据权利要求1所述的电子设备,其特征在于,将上述两种以上的断续信号设定为使其占空比和频率各不相同。
7.根据权利要求6所述的电子设备,其特征在于,上述两种以上的断续信号,包括占空比为0.75~0.85且频率为110~1100Hz的第1断续信号、及占空比为0.87~0.97且频率为25~100Hz的第2断续信号。
8.根据权利要求2或3所述的电子设备,其特征在于,上述断续信号选择装置,其构成方式为,当由上述优先级判断装置判定为使制动转矩优先时,选择上述两种以上的断续信号中占空比大的断续信号施加于上述开关,而当判定为使上述电动势优先时,选择占空比小的断续信号施加于上述开关。
9.根据权利要求4或5所述的电子设备,其特征在于,上述断续信号选择装置,其构成方式为,当由上述优先级判断装置判定为使制动转矩优先时,选择上述两种以上的断续信号中频率低的断续信号施加于上述开关,而当判定为使上述电动势优先时,选择频率高的断续信号施加于上述开关。
10.根据权利要求6或7所述的电子设备,其特征在于,上述断续信号选择装置,其构成方式为,当由上述优先级判断装置判定为使制动转矩优先时,选择上述两种以上的断续信号中占空比大且频率低的断续信号施加于上述开关,而当判定为使上述电动势优先时,选择占空比小且频率高的断续信号施加于上述开关。
11.根据权利要求8所述的电子设备,其特征在于,上述优先级判断装置具有检测发电机的生成电压并对制动转矩与发电机的电动势之间的优先关系进行判断的电压检测装置。
12.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,上述优先级判断装置具有检测发电机的转动周期并对制动转矩与发电机的电动势之间的优先关系进行判断的转动周期检测装置。
13.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,上述优先级判断装置具有检测施加于发电机的制动量并对制动转矩与发电机的电动势之间的优先关系进行判断的制动量检测装置。
14.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,上述转动控制装置具有当施加上述强制动时根据发电机的生成电压从上述两种以上的断续信号中选择施加于开关的断续信号的断续信号选择装置。
15.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,上述转动控制装置备有将基于上述发电机转动周期的转动检测信号及基准信号分别从递增计数输入端和递减计数输入端输入的可逆计数器,并具有当施加上述强制动时根据可逆计数器的值从上述两种以上的断续信号中选择施加于开关的断续信号的断续信号选择装置。
16.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,上述转动控制装置具有当施加上述强制动时根据制动时间对基准信号的一个周期的比值即制动量从上述两种以上的断续信号中选择施加于开关的断续信号的断续信号选择装置。
17.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,上述转动控制装置在结构上除上述强制动外,还可以对发电机施加弱制动,且当对上述发电机施加弱制动时,可以施加与上述强制动时采用的两种以上设定为用于强制动控制的断续信号相比占空比小的断续信号。
18.根据权利要求17所述的电子设备,其特征在于,在施加上述弱制动时采用的断续信号是将占空比设定在0.01~0.30范围内的断续信号。
19.一种电子设备,备有:机械能源;由上述机械能源驱动并通过产生感应电力而供给电能的发电机;及由上述电能驱动并控制上述发电机的转动周期的转动控制装置,其特征在于,
上述转动控制装置备有:
开关,可以将上述发电机的两端连接成闭合回路状态;
断续信号发生部,产生占空比和频率的至少一个不同的设定为用于强制动控制和用于弱制动控制的两种以上的断续信号;
及断续信号选择装置,从上述两种以上的断续信号中选择一个断续信号,且使将上述用于强制动控制的断续信号施加于上述开关的强制动开始时刻及将上述用于弱制动控制的断续信号施加于上述开关的弱制动开始时刻的至少一个时刻与上述发电机的转子转动检测信号同步,从而对上述发电机进行断续控制。
20.根据权利要求19所述的电子设备,其特征在于,上述断续信号选择装置使将施加于上述开关的断续信号从用于强制动控制切换为用于弱制动控制的弱制动开始时刻或将施加于上述开关的断续信号从用于弱制动控制切换为用于强制动控制的强制动开始时刻与上述用于强制动控制的断续信号或用于弱制动控制的断续信号同步。
21.根据权利要求19或20所述的电子设备,其特征在于,上述断续信号选择装置在结构上可以使上述用于强制动控制的断续信号的输出持续到基准信号的一个周期以上。
22.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,备有用于使发电机的电能对电源电路充电的第1和第2电源线路,同时上述开关,由分别配置在发电机的第1和第2端子与第1和第2电源线路中的一条线路之间的第1和第2开关构成,上述转动控制装置,其控制方式为,使与上述发电机的第1和第2端子中的一个端子连接的开关保持接通状态,同时对与发电机的另一个端子连接的开关施加上述断续信号以使其进行断续动作。
23.根据权利要求22所述的电子设备,其特征在于,上述第1开关由栅极与发电机的第2端子连接的第1场效应型晶体管及与该第1场效应型晶体管并联连接并由上述转动控制装置使其进行断续动作的第2场效应型晶体管构成,上述第2开关由栅极与发电机的第1端子连接的第3场效应型晶体管及与该第3场效应型晶体管并联连接并由上述转动控制装置使其进行断续动作的第4场效应型晶体管构成。
24.根据权利要求1~7中的任何一项所述的电子设备,其特征在于,该电子设备是备有利用机械能源以与发电机联动的方式转动并由转动控制装置进行调速控制的时刻指示装置的电子控制式机械计时器。
25.一种电子设备控制方法,所说的电子设备备有:机械能源;由上述机械能源驱动并通过产生感应电力而供给电能的发电机;及由上述电能驱动并控制上述发电机的转动周期的转动控制装置;该电子设备控制方法的特征在于,
当对上述发电机施加强制动时,将从占空比和频率的至少一个不同的两种以上的设定为用于强制动控制的断续信号中选定的断续信号施加于可以将上述发电机的两端连接成闭合回路状态的开关,从而对上述发电机进行断续控制。
26.一种电子设备控制方法,所说的电子设备备有:机械能源;由上述机械能源驱动并通过产生感应电力而供给电能的发电机;及由上述电能驱动并控制上述发电机的转动周期的转动控制装置;该电子设备控制方法的特征在于:
上述转动控制装置备有可以将上述发电机的两端连接成闭合回路状态的开关及产生施加于该开关的占空比和频率的至少一个不同的设定为用于强制动控制和用于弱制动控制的两种以上的断续信号的断续信号发生部,并当输入了上述发电机的转子转动检测信号时,将上述用于强制动控制的断续信号施加于上述开关。
CNB001065173A 1999-03-03 2000-03-02 电子设备及其控制方法 Expired - Fee Related CN100399217C (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
JP5554599 1999-03-03
JP55545/1999 1999-03-03
JP55545/99 1999-03-03
JP86949/1999 1999-03-29
JP8694999 1999-03-29
JP86949/99 1999-03-29
JP343262/1999 1999-12-02
JP343262/99 1999-12-02
JP34326299A JP3674426B2 (ja) 1999-03-03 1999-12-02 電子機器、電子制御式機械時計およびそれらの制御方法
JP36495699A JP3601389B2 (ja) 1999-03-29 1999-12-22 電子機器、電子制御式機械時計およびそれらの制御方法
JP364956/99 1999-12-22
JP364956/1999 1999-12-22

Publications (2)

Publication Number Publication Date
CN1267845A CN1267845A (zh) 2000-09-27
CN100399217C true CN100399217C (zh) 2008-07-02

Family

ID=27463216

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001065173A Expired - Fee Related CN100399217C (zh) 1999-03-03 2000-03-02 电子设备及其控制方法

Country Status (5)

Country Link
US (1) US6483276B1 (zh)
EP (1) EP1041464B1 (zh)
CN (1) CN100399217C (zh)
DE (1) DE60029859T2 (zh)
HK (1) HK1031436A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054113A1 (fr) * 1999-03-08 2000-09-14 Seiko Epson Corporation Dispositif d'enclenchement pour convertisseur electromagnetique, et dispositif horloge
JP3627660B2 (ja) * 2001-02-28 2005-03-09 セイコーエプソン株式会社 電子機器、電子制御式機械時計、電子機器の制御プログラム、記録媒体、電子機器の制御方法および電子機器の設計方法
JP2002296365A (ja) * 2001-03-29 2002-10-09 Seiko Epson Corp 電子機器、電子制御式機械時計、電子機器の制御方法
CH694621A5 (fr) * 2001-07-02 2005-04-29 Richemont Int Sa Procédé de régulation et module électronique de régulation pour mouvement d'horlogerie à remontage mécanique.
US7075196B1 (en) * 2002-08-13 2006-07-11 Quicksilver Controls, Inc. Integrated resolver for high pole count motors
US20040090070A1 (en) * 2002-11-13 2004-05-13 United Global Sourcing Incorporated Manually-operated device for supplying electrical power to mobile telephones, flashlights, toys, or other battery-operated electrical devices
DE10341019B4 (de) * 2003-09-03 2013-01-31 Saf-Holland Verkehrstechnik Gmbh Sattelkupplung mit Diebstahlsicherung
US7508154B1 (en) 2006-05-15 2009-03-24 Quicksilver Controls, Inc. Integrated motor and resolver including absolute position capability
US8000993B2 (en) * 2008-04-14 2011-08-16 Tra, Inc. Using consumer purchase behavior for television targeting
CN103163871B (zh) * 2013-04-08 2016-03-09 江苏大学 一种电子式pwm间歇喷雾式变量喷施控制器
EP3265881B1 (en) * 2015-03-06 2019-11-06 Preciflex SA Timepiece incorporating a miniature user-powered lighting device and a system using the same
US9525323B1 (en) * 2015-09-15 2016-12-20 Timothy Lee Energy harvester system
CN106527100B (zh) * 2016-10-26 2019-01-15 中颖电子股份有限公司 一种抗漏电干扰的可调计时电路
EP3432088A1 (en) 2017-07-17 2019-01-23 The Swatch Group Research and Development Ltd Electromechanical timepiece
CN114442464B (zh) * 2018-06-04 2023-06-09 精工爱普生株式会社 电子控制式机械钟表以及电子控制式机械钟表的控制方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941652A (en) * 1987-02-09 1990-07-17 Nintendo Co., Ltd. Bicycle type training machine
JPH08128855A (ja) * 1994-10-28 1996-05-21 Toyo Electric Mfg Co Ltd 速度検出装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH1691872A4 (zh) 1972-11-21 1977-05-31
US4284936A (en) * 1979-05-02 1981-08-18 General Electric Company Chopper type propulsion system with low speed electrical braking capability for traction vehicles
US4581565A (en) * 1983-03-01 1986-04-08 Storage Technology Corporation H-bridge power amplifier and method for controlling the same
CH665082GA3 (zh) * 1986-03-26 1988-04-29
US4799003A (en) 1987-05-28 1989-01-17 Tu Xuan M Mechanical-to-electrical energy converter
JP2780356B2 (ja) 1989-07-12 1998-07-30 セイコーエプソン株式会社 回転動力調速装置
JPH07119812A (ja) 1993-10-26 1995-05-12 Kubota Corp 歩行型作業機
JP3174245B2 (ja) * 1994-08-03 2001-06-11 セイコーインスツルメンツ株式会社 電子制御時計
ATE179529T1 (de) 1995-09-07 1999-05-15 Konrad Schafroth Uhrwerk
FR2748583B1 (fr) * 1996-05-07 1998-06-26 Asulab Sa Stabilisation d'un circuit electronique de regulation du mouvement mecanique d'une piece d'horlogerie
JP3624665B2 (ja) * 1997-02-07 2005-03-02 セイコーエプソン株式会社 発電装置、充電方法および計時装置
EP0905587B1 (en) * 1997-09-26 2002-11-13 Seiko Epson Corporation Electronically controlled mechanical timepiece
JP3472877B2 (ja) * 1997-09-30 2003-12-02 セイコーエプソン株式会社 電子制御式機械時計およびその制御方法
CN1140854C (zh) * 1997-09-30 2004-03-03 精工爱普生株式会社 电子控制式机械钟表及其控制方法
JP3006593B2 (ja) * 1997-09-30 2000-02-07 セイコーエプソン株式会社 電子制御式機械時計およびその制御方法
JP3575262B2 (ja) * 1998-01-05 2004-10-13 セイコーエプソン株式会社 チョッパ回路の給電停止方法、チョッパ回路、チョッパ式充電回路、電子機器および腕時計
JP3601331B2 (ja) * 1998-12-28 2004-12-15 セイコーエプソン株式会社 電源装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4941652A (en) * 1987-02-09 1990-07-17 Nintendo Co., Ltd. Bicycle type training machine
JPH08128855A (ja) * 1994-10-28 1996-05-21 Toyo Electric Mfg Co Ltd 速度検出装置

Also Published As

Publication number Publication date
EP1041464A2 (en) 2000-10-04
DE60029859T2 (de) 2007-09-06
HK1031436A1 (en) 2001-06-15
EP1041464A3 (en) 2002-05-22
EP1041464B1 (en) 2006-08-09
US6483276B1 (en) 2002-11-19
DE60029859D1 (de) 2006-09-21
CN1267845A (zh) 2000-09-27

Similar Documents

Publication Publication Date Title
CN100399217C (zh) 电子设备及其控制方法
EP0695978A1 (en) Electronic control timepiece
CN100430843C (zh) 携带式电子设备及携带式电子设备控制方法
CN101281390B (zh) 带发电功能的电子钟表
US5933392A (en) Electronic watch
US6462967B1 (en) Power supply device, control method for the power supply device, portable electronic device, timepiece, and control method for the timepiece
JP3456475B2 (ja) 電子制御式時計、電子制御式時計の電力供給制御方法および電子制御式時計の時刻修正方法
WO2000041041A1 (fr) Appareil electronique et procede de commande de l'appareil electronique
CN1319242C (zh) 电子机器与电子机器的供电方法
EP0905588A2 (en) Electronically controlled mechanical timepiece and method of controlling the same
EP1246032B1 (en) Electronic device and controlling method thereof
JPH058397B2 (zh)
EP1063573B1 (en) Electrically controlled mechanical timepiece and braking method
JP3654018B2 (ja) 計時装置および計時装置の制御方法
US7307922B2 (en) Stopwatch and watch
JP2000356690A (ja) 電子時計及び電子時計の制御方法
JP3674426B2 (ja) 電子機器、電子制御式機械時計およびそれらの制御方法
JP3551191B2 (ja) 電子制御式時計、電子制御式時計の電力供給制御方法
JP3539219B2 (ja) 電子制御式機械時計およびその制御方法
JPS59116078A (ja) 時計
JP2002148363A (ja) 時 計
JPH03148092A (ja) 電子時計
JP2021118572A (ja) 整流回路、および電子時計
JPH11166980A (ja) 電子制御式機械時計およびその制御方法
JP2004135497A (ja) 電子機器、電子制御式時計および電源制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080702

Termination date: 20190302