JP3596841B2 - 受信データ伸長装置 - Google Patents

受信データ伸長装置 Download PDF

Info

Publication number
JP3596841B2
JP3596841B2 JP1120597A JP1120597A JP3596841B2 JP 3596841 B2 JP3596841 B2 JP 3596841B2 JP 1120597 A JP1120597 A JP 1120597A JP 1120597 A JP1120597 A JP 1120597A JP 3596841 B2 JP3596841 B2 JP 3596841B2
Authority
JP
Japan
Prior art keywords
error
error detection
detection information
adpcm
code
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1120597A
Other languages
English (en)
Other versions
JPH10209977A (ja
Inventor
賢二 村田
宏二 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP1120597A priority Critical patent/JP3596841B2/ja
Priority to KR1019970032660A priority patent/KR100262721B1/ko
Priority to DE69700620T priority patent/DE69700620T2/de
Priority to ES97112731T priority patent/ES2140168T3/es
Priority to DK97112731T priority patent/DK0856960T3/da
Priority to EP97112731A priority patent/EP0856960B1/en
Priority to US08/924,503 priority patent/US5925146A/en
Publication of JPH10209977A publication Critical patent/JPH10209977A/ja
Application granted granted Critical
Publication of JP3596841B2 publication Critical patent/JP3596841B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B15/00Suppression or limitation of noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B14/00Transmission systems not characterised by the medium used for transmission
    • H04B14/02Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation
    • H04B14/06Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation
    • H04B14/066Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM]
    • H04B14/068Transmission systems not characterised by the medium used for transmission characterised by the use of pulse modulation using differential modulation, e.g. delta modulation using differential modulation with several bits [NDPCM] with adaptive feedback

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は受信圧縮符号化データを伸長するための装置に関し、特にADPCM(適応型差分パルス符号変調)符号化データをPCM符号化データに変換するための装置に関する。より特定的には、ADPCM音声符号化方式で用いる音声復号器における伝送誤り発生時における雑音を抑圧するための構成に関する。
【0002】
【従来の技術】
パーソナル・ハンディホン・システム(PHS:第2世代ディジタルコードレス電話システム)およびディジタル欧州コードレス電話システム(DECT)などに用いられる通信端末機には、伝送データ量を低減するために、音声信号が高能率に圧縮符号化して送信され、受信側で、この符号化された音声データが復号される。
【0003】
図36は、従来のPHS携帯電話の構成を概略的に示す図である。図36において、携帯電話機は、ADPCM方式音声符復号器1と、このADPCM方式音声符復号器1とADPCM符号の授受を行なう送受信ユニット2を含む。
【0004】
ADPCM方式音声符復号器1は、マイクロホンMCを介して与えられるアナログ音声信号を受けてPCM(パルス符号変調)符号に変換するPCM符号器1aと、このPCM復号器1aからのPCM符号をADPCM(適応型差分パルス符号変調)符号に圧縮して送受信ユニット2へ伝達するADPCM符号器1bと、送受信ユニット2から与えられるADPCM符号に伸長処理を施してPCM符号を生成するADPCM復号器1cと、このADPCM復号器1cから与えられるPCM符号をアナログ音声信号に変換してスピーカSPに与えるPCM復号器1dを含む。
【0005】
この送受信ユニット2は、ADPCM符号化データ(以下、単にADPCM符号と称す)の送受信時、パケットの形態で送受する。また送受信ユニット2は、送信パケットおよび受信パケットを時分割的に送受するとともに、送信時においては、この送信パケットを所定の周波数の搬送波で変調して送信する。受信時においては、この送受信ユニット2は、受信したパケット2から搬送波を除去し、ADPCM符号のパケットを生成する。
【0006】
図37は、この通信時に用いられるパケットの形態を概略的に示す図である。図37において、送信/受信パケット50は、所定のビットパターンを有し、パケットの始まりを示すフレーム同期パターンを格納するフレーム同期領域16aと、通信データ(送信データまたは受信データ)を格納する通信データ領域16bと、この通信データの誤りを検出するための誤り検出符号を格納するエラー検出ビット領域16cを含む。
【0007】
このパケットへの変換は図36に示す送受信ユニット2において実行される。送信時においては、誤り検出符号は、通信データ領域16bに含まれる通信データに所定の処理(たとえば生成行列を通す処理)により生成される。このフレーム50には、5ms〜10ms程度の時間幅に含まれるデータが含まれ、このフレームを単位としての送信/受信の時分割多重化が実行される。
【0008】
またこれら無線方式の通信においては、フェージング現象などにより、受信データの誤りが発生する確率は、有線通信路を用いる通信システムのそれよりも高く、また、ADPCM符号化処理などのような高能率符号化技術を用いて伝送データが圧縮されるため、受信側でのデータの誤りの影響が大きくなるため、このようなデータの誤りに起因する雑音を抑える機能が重要となる。
【0009】
このようなデータの誤りを抑制するために、図38に示すように、受信側においては、誤り検出回路60が設けられる。この誤り検出訂正回路60は、受信パケットに含まれる通信データおよび誤り検出符号を用いて検査行列にしたがって、この通信データにエラーが存在するか否かを検出する。この検出されたエラーが訂正可能な場合には、エラーを訂正してADPCM符号を生成して図20に示すADPCM復号器13へ与える。この誤り検出符号としては、CRC(巡回冗長検査)ビットが用いられ、また、通常このような誤り検出符号を用いて、検出されたエラーを訂正することができない。したがって、この誤り検出回路60において、エラーの存在が検出された場合には、この誤り検出回路60は、エラー検出情報を、エラー検出指示状態に設定する。このエラー検出情報のエラー検出指示状態に従って、フレーム補間処理などによるエラーコンシールメント処理が実行される。
【0010】
図39は、従来の携帯端末機における伝送誤り発生時における雑音抑圧を行なう部分の構成を概略的に示す図である。図39において、雑音抑圧部は、データ入力ノード101aを介して与えられるADPCM符号101をフレーム単位で記憶するためのフレームバッファ1caと、入力ノード102aを介して与えられるエラー検出情報102に従ってこのフレームバッファ1caから読出されたADPCM符号103と入力ノード101aから与えられるADPCM符号101の一方を選択して復号すべきADPCM符号104としてADPCM復号器1cへ与える復号器入力切換スイッチ1cbを含む。このADPCM復号器1cにより伸長されて生成されたADPCM符号105は、出力ノード105aを介して図36に示すPCM復号器1dへ与えられる。
【0011】
フレームバッファ1caは、このエラー検出情報102がエラー非検出状態のときには、入力ノード101aから与えられる受信ADPCM符号をフレーム単位で格納する。このフレームバッファ1caは、またエラー検出情報102が、エラー検出状態に設定されたときには書込が禁止され、読出状態に設定され、その格納されたADPCM符号を順次出力する。復号器入力切換スイッチ1cbは、エラー検出情報102がエラー非検出状態を示すときには、入力ノード101aから与えられる受信ADPCM符号101を選択してADPCM復号器1cへ与える。一方、エラー検出情報102が、エラー検出状態に設定されているときには、この復号器入力切換スイッチ1cbは、フレームバッファ1caから読出されたADPCM符号103を選択してADPCM復号器1cへ与える。
【0012】
図40は、この図39に示す雑音抑圧部の動作シーケンスを示す図である。以下、この図40を参照して図39に示す雑音抑圧部の動作について説明する。
【0013】
エラー検出情報102がエラー非検出状態のとき、フレームバッファ1caは、書込状態に設定され、この入力ノード101aを介して与えられるADPCM符号101は、フレームn−3,n−2およびn−1をそれぞれ単位として順次格納する。
【0014】
復号器入力切換スイッチ1cbは、エラー検出情報102がエラー非検出状態のときには、受信ADPCM符号101を選択してADPCM復号器1cへ与えている。したがって、ADPCM復号器1cは、このフレームn−3,n−2,n−1に含まれるADPCM符号を順次復号してPCM符号105を生成する。
【0015】
入力ノード101aに次のフレームnのADPCM符号が与えられるとき、このフレームnに受信データエラーが存在するときには、エラー検出情報102が、エラー検出状態に設定される。この状態においては、フレームバッファ1caは、書込が禁止され、読出状態に設定され、また復号器入力切換スイッチ1cbは、フレームバッファ1caからのADPCM符号103を選択する状態に設定される。フレームバッファ1caにおいては、エラーが検出されたフレームnの前のフレームn−1のADPCM符号が記憶されており、このフレームn−1のADPCM符号が順次読出されてADPCM復号器1cへ与えられる。したがって、フレームnにエラーが検出されたときには、その直前のフレームn−1のADPCM符号に従ってPCM符号105が生成される。
【0016】
この次のフレームn+1においてはエラーが存在しない場合には、エラー検出情報102は、エラー非検出状態に設定される。この状態においては、フレームバッファ1caが再び書込状態に設定され、新たに与えられるフレームn+1のADPCM符号101を順次格納する。このときまた、復号器入力切換スイッチ1cbは、入力ノード101aから与えられるADPCM符号101を選択する。ADPCM復号器1cは、このフレームn+1に含まれるADPCM符号を順次伸長処理してPCM符号105を生成する。
【0017】
図40に示すように、エラーが発生したフレームは、その前の正常なフレームで置換えられる。フレーム長が、5ms〜10ms程度の場合、連続した2フレーム間における音声信号波形は近似した波形となる確率が高いため、伝送誤りが発生した場合、このエラーが発生したフレームをその前のフレームのADPCM符号化データ(以下、ADPCM符号と単に称す)へ置換して復号することにより、雑音発生を抑圧している。
【0018】
【発明が解決しようとする課題】
上述のように、従来の伝送誤り時における雑音を抑圧する方式では、1フレームのADPCM符号を格納する記憶容量を有するフレームバッファを必要とする。このため、装置構成要素数が多くなり、回路規模および消費電力が大きくなるという問題が生じる。特に、このような大記憶容量のフレームバッファを用いる場合、小型かつ低消費電力化が要求される移動体通信端末機用途に対する大きな障害となる。
【0019】
また、ADPCM符号は以下に説明するように、差分信号を符号化したものであり、エラー発生時に前のフレームのADPCM符号での置換を行なった場合以下に示すような問題が生じる。
【0020】
図41は、送信すべきADPCM符号を生成するADPCM符号器の構成を概略的に示す図である。図41において、ADPCM符号器1bは、PCM符号器からノード120aを介して与えられるPCM符号120と予測信号122との差分を求めて差分信号123を生成する減算器23と、この差分信号123に対し適応量子化処理を行なってADPCM符号121を生成して伝送路121aに伝達する適応量子化器20と、この適応量子化器20からのADPCM符号121に適応逆量子化処理を施して量子化差分信号124を生成する適応逆量子化器22と、予測信号122と量子化差分信号124とを加算して再生信号125を生成する加算器24と、量子化差分信号124と再生信号125とを受け、適応予測を行なって予測信号122を生成する適応予測器21とを含む。
【0021】
すなわち、ADPCM符号は、適応予測に基づいて生成された予測信号とPCM符号との差分信号を適応量子化したものであり、この適応的な処理を行なうために、その内部状態(後に説明する係数)は、適応的に変更される。
【0022】
図42は、図39に示すADPCM復号器1cの構成を概略的に示す図である。図42において、ADPCM復号器1cは、入力ノード101aを介して与えられるADPCM符号101に適応逆量子化処理を施して量子化差分信号127を生成する適応逆量子化器25と、量子化差分信号127と予測信号126とを加算してPCM符号105を生成してノード105aへ伝達する加算器27と、加算器27からのPCM符号105と適応逆量子化器25からの量子化差分信号127に従って適応予測を行なって予測信号126を生成して加算器27へ与える適応予測器26を含む。このADPCM復号器1cにおいても、PCM符号105と量子化差分信号127とに基づいて適応予測を行なって予測信号126が生成される。
【0023】
この図41および図42に見られるように、ADPCM符号器1bの内部フィードバックループ、すなわち適応逆量子化器22、加算器24および適応予測器21で構成されるフィードバックループの構成は、ADPCM復号器1cの内部構成と同じである。送信側および受信側においてADPCM符号器とADPCM復号器は、それぞれの適応逆量子化器および適応予測器の内部状態(適応予測のための係数)が完全に一致して動作する。したがって、送信側ADPCM符号器における適応逆量子化器22および適応予測器21の内部状態は、受信側のADPCM復号器1cに含まれる適応逆量子化器25および適応予測器26の内部状態と同じとなる。これにより、ADPCM復号器に入力されるPCM符号120とADPCM復号器1cからの出力されるPCM符号105が同じとなり、正確な音声信号の再生が可能となる。
【0024】
したがって、伝送誤りが発生したときに、エラーが発生したフレームのデータ(ADPCM符号)を正常な前フレームのデータで置換して復号を行なった場合、以下の問題が生じる。
【0025】
すなわち、図43に示すように、エラーが発生した場合、時刻t1およびt2においてそれぞれ再生出力切換スイッチの接続経路が切換えられる。したがって、この時刻t1およびt2においてデータの連続性がなくなり、この再生出力切換スイッチ1cbの切換直後にデータエラーが発生したことと等しくなる。すなわち、図43に示すように、エラー非検出状態からエラー検出状態への移行時においては、復号されるADPCM符号は、フレームn−1の最終ADPCM符号♯Nから、フレームn−1の先頭ADPCM符号♯1に変化する。また、エラー検出状態からエラー非検出状態への移行時においては、フレームn−1の最終ADPCM符号♯Nが復号された後、新たなフレームn+1の先頭ADPCM符号♯1が復号される。
【0026】
フレーム長が5ms〜10ms程度の場合、これらの連続した2フレーム間における音声信号波形は近似波形である確率が高いため、ADPCM復号器の内部パラメータもこれらの連続した2フレーム間においては近似した値をとることおよびADPCM符号の各符号がとり得る確率分布には偏りがあり、このため雑音発生確率が高い差分値の大きい符号(予測信号との誤差の大きい符号)が不連続点で連結される可能性が低いことなどから、このデータの不連続の影響を低く抑えることは可能である。
【0027】
しかしながら、エラー検出のフレームが1回発生した場合、再生出力切換スイッチ1cbの切換は時刻t1および時刻t2と2回行なわれるため、そのデータの不連続点も2箇所発生し、データエラーが2回発生したのと等しくなる。さらにこのエラー検出情報が2フレーム以上連続してエラー検出状態を示す場合には、1フレームの記憶容量を有するフレームバッファ1caを繰返して使用した場合、フレーム変更時においては、このフレームバッファ1caに格納された、エラー発生の直前のフレームの先頭ADPCM符号と最終ADPCM符号が連続的に復号されるため、隣接するフレーム間で発生するデータの不連続点が、このエラー検出情報がエラー検出状態に設定されるフレームの数に比例して増加し、雑音抑圧の効果が低減する。
【0028】
このデータ不連続点の増加を防止するためには、フレームバッファの記憶容量を、このエラー検出状態にあるフレームの連続数に対応するサイズにまで大きくする必要があり、装置規模の小型化に対する大きな障害となるという問題が生じる。
【0029】
それゆえ、この発明の目的は、装置規模を増加させることなく低消費電力化が可能でありかつ受信データエラー発生時に生じる雑音を効果的に抑圧することのできる受信データ伸長装置を提供することである。
【0030】
この発明の他の目的は、ADPCM符復号器を用いる携帯端末機における伝送エラー発生時の雑音を効果的に抑圧することのできる受信データ伸長装置を提供することである。
【0031】
【課題を解決するための手段】
請求項1に係る受信データ伸長装置は、伝送路を介してフレーム単位で与えられる圧縮符号化された受信圧縮符号化データにエラーが存在するか否かを示すエラー検出情報を入力するための入力ノードと、この入力ノードからのエラー検出情報のエラー非検出指示に応答して活性化され、受信圧縮符号化データに伸長処理を施して伸長符号化データを生成するための復号器と、エラー検出情報のエラー非検出指示に応答して書込状態とされ、復号器からの伸長符号化データを記憶しかつエラー検出情報のエラー検出指示に応答して読出状態とされて該記憶した伸長符号化データを出力するメモリ回路と、このメモリ回路から読出された伸長符号化データおよび復号器からの伸長符号化データを受け、エラー検出情報のエラー非検出指示に応答して、この復号器からの伸長符号化データを選択して出力しかつエラー検出情報のエラー検出指示に応答してメモリ回路から読出された伸長符号化データを選択して出力する再生出力切換スイッチとを備える。
【0032】
請求項に係る受信データ伸長装置は、エラー検出情報のエラー検出指示状態からエラー非検出状態への変化を検出する変化検出回路をさらに備える。圧縮符号化データは、ADPCM符号化データであり、復号器は、高速スケールファクタyuと低速スケールファクタylとを用いてこのADPCM符号化データの適応逆量子化処理を行なうためのスケールファクタyを生成する量子化スケールファクタユニットと、変化検出回路からの変化検出指示に応答して、高速スケールファクタyuを低速スケールファクタylとスケーリングファクタ2-aとを用いてyu=2-a・ylに置換する回路とを備える。ここで、aは、6≦a≦18の関係を満たす自然数である。
【0035】
請求項2に係る受信データ伸長装置は、伝送路を介してフレーム単位で与えられる圧縮符号化された受信圧縮符号化データにエラーが存在するか否かを示すエラー検出情報を入力するための入力ノードと、この入力ノードからのエラー検出情報のエラー非検出指示に応答して活性化され、受信圧縮符号化データに伸長処理を施して伸長符号化データを生成するための復号器と、エラー検出情報のエラー非検出指示に応答して書込状態とされ、復号器からの伸長符号化データを記憶しかつエラー検出情報のエラー検出指示に応答して読出状態とされて該記憶した伸長符号化データを出力するメモリ回路と、このメモリ回路から読出された伸長符号化データおよび復号器からの伸長符号化データを受け、エラー検出情報のエラー非検出指示に応答して、この復号器からの伸長符号化データを選択して出力しかつエラー検出情報のエラー検出指示に応答してメモリ回路から読出された伸長符号化データを選択して出力する再生出力切換スイッチとを備える。
請求項に係る受信データ伸長装置は、さらに、エラー検出情報のエラー検出指示からエラー非検出指示への変化に応答して予め定められた時間活性化され、再生出力切換スイッチの出力するデータの値を予め設定されたクリップ値と比較し、この比較結果が再生出力切換スイッチから出力するデータの値がクリップ値よりも大きいことを示すとき、再生出力切換スイッチの出力するデータが示す符号の振幅値をクリップ値に置換する置換手段をさらに備える。
【0036】
請求項に係る受信データ伸長装置は、請求項の装置が、さらに、エラー検出情報のエラー非検出指示に応答して活性化され、復号器の出力するデータの所定時間内の最大振幅値を検出して保持し、エラー検出情報のエラー検出からエラー非検出への変化に応答して該保持した最大振幅値をクリップ値として出力する手段を備える。
【0038】
請求項に係る受信データ伸長装置は、伝送路を介してフレーム単位で伝達されるADPCM符号化データについて、フレーム単位で各フレーム内のADPCM符号化データにエラーが存在するか否かを示すエラー検出情報を入力するノードと、このエラー検出情報のエラー非検出に応答して活性化され、伝送路を介して与えられるADPCM符号に伸長処理を施してADPCM符号化データを生成するADPCM復号器と、入力ノードからのエラー検出情報の状態変化時、このADPCM復号器の出力データの再生時に生じる雑音を抑圧するための雑音抑圧データを発生するための雑音抑圧データ発生器と、エラー検出情報のエラー非検出指示に応答してADPCM復号器の出力するデータを選択し、かつこのエラー検出情報のエラー検出指示に従って、雑音抑圧データ発生器からの雑音抑圧データを選択して出力する再生出力切換スイッチを含む。ADPCM復号器は、エラー検出情報のエラー検出指示状態のときにその伸張動作が停止され、伸張動作による内部状態がエラー検出情報がエラー非検出指示状態からエラー検出指示状態への変化直前の状態に保持される。
【0039】
【発明の実施の形態】
[実施の形態1]
図1は、この発明の実施の形態1に従う受信データ伸長部の構成を概略的に示す図である。図1において、受信データ伸長部は、伝送路に結合される入力ノード101aを介して与えられるADPCM符号101を受け、入力ノード102aを介して与えられるエラー検出情報のエラー非検出状態時に活性化され、この受けたADPCM符号101をPCM符号105へ伸長するADPCM復号器3と、エラー検出情報102のエラー非検出状態時に書込状態に設定され、このADPCM復号器3からのPCM符号105を格納するメモリ回路4と、エラー検出情報102に従って、ADPCM復号器3から出力されるPCM符号105とメモリ回路4から読出されたPCM符号106の一方を選択して次段のPCM復号器(図36参照)へ与えられるPCM符号107を生成する再生出力切換スイッチ5を含む。
【0040】
ADPCM復号器3は、このエラー検出情報102が、フレーム内に受信データエラーが発生していないことを示している場合には非活性状態とされ、復号動作を停止する。メモリ回路4は、このエラー検出情報102が、エラー検出状態に設定されたときには、データの書込が停止され、読出状態に設定され、エラー検出直前に格納されたPCM符号化データを読出す。再生出力切換スイッチ5は、このエラー検出情報102が入力ノード101aを介して与えられるADPCM符号列に受信データエラーが発生していないことを示しているときにはADPCM復号器3からのPCM符号105を選択してPCM符号107として出力し、一方、エラー検出情報102が、受信データエラー発生を示しているときにはメモリ回路4から読出されたPCM符号106を選択してPCM符号107を生成する。次に、この図1に示す受信データ伸長部の動作を、図2に示す動作シーケンス図を参照して説明する。なお、図2の信号波形にはトーン信号を一例として示す。
【0041】
エラー検出情報102がエラー非検出状態のときには、ADPCM復号器3は活性化され、復号動作(伸長処理)を実行し、ADPCM符号101からPCM符号105を生成する。したがってこの間、フレームn−2およびn−1に含まれるADPCM符号に従ってPCM符号105が生成される。再生出力切換スイッチ5は、エラー非検出状態においては、このADPCM復号器3からのPCM符号105を選択して出力している。したがって、このエラー非検出状態においては、PCM符号107は連続的に変化しており、なだらかな再生波形が得られる。このエラー非検出状態においては、メモリ回路4は、ADPCM復号器3からのPCM符号105を格納する。このメモリ回路4は、1つのPCM符号化データを格納するだけであり、順次その記憶内容が書込動作により更新される。
【0042】
フレームn−1からフレームnへの移行時の時刻t1において、エラー検出情報102がエラー検出状態に設定され、このフレームn内において受信データエラーが発生したことを示す。この状態においては、ADPCM復号器3は非活性状態とされ、復号動作が停止される。メモリ回路4は、書込状態から読出状態に切換えられ、その格納したフレームn−1の最終PCM符号を出力する。再生出力切換スイッチ5は、このメモリ回路4から読出されたPCM符号106を選択して出力する。メモリ回路4には、後に詳細に説明するが、1つのPCM符号のデータが格納されているだけである。したがってこのエラー検出期間においては、フレームn−1の最終PCM符号が持続的に出力される。したがって、このエラー非検出からエラー検出状態への移行時において、ADPCM符号101の不連続の影響は何ら生じず、雑音も発生しない。
【0043】
この受信データエラーが発生しているフレームnの区間においては、音声信号再生中にこのメモリ回路4から持続的に出力されるPCM符号により、ミュートが挿入されることになる(再生信号はDC信号である)。しかしながら、フレームの時間幅は5ms〜10msであり、このような短期間(5ms〜10ms)のミュートの挿入は、若干の再生音声における断続感が感知される程度であり、聴感品質の劣化は極めて小さい。
【0044】
このエラーフレーム期間が経過すると、エラー検出情報102は、時刻t2において、エラー非検出状態へ設定される。このエラー検出情報102のエラー非検出状態に従ってADPCM復号器3が再び活性化され、次のフレームn+1に含まれるADPCM符号101の復号動作を行なう。メモリ回路4は、このエラー検出情報102のエラー非検出状態に従って再び書込状態に設定され、ADPCM復号器3からのPCM符号105を書込む。再生出力切換スイッチ5は、再びADPCM復号器3からのPCM符号105を選択する。これにより、時刻t2以降のエラー非検出状態においては、順次与えられるフレームn+1、n+2、n+3、…のADPCM符号101に従ってPCM符号107が生成され、音声信号が再生される。
【0045】
この時刻t2以前においては、ADPCM復号器3は、復号処理を停止しており、その内部変数(内部状態)も、受信データエラーが発生する直前のフレームn−1の最後の処理時に更新された値をそのまま保持している。フレーム長が5ms〜10ms程度の場合、連続した2フレームにおける音声信号波形は近似波形である確率が高い。したがって、ADPCM復号器3に保持された内部変数の値を用いて復号処理を再開しても、従来と同等程度にADPCM符号の不連続に起因する雑音発生確率を低く抑えることができる。
【0046】
図3は、図1に示すメモリ回路4の動作シーケンスを示す図である。以下、図3を参照して、このメモリ回路4の動作について説明する。
【0047】
エラー検出情報102がエラー非検出状態に設定されているときには、メモリ回路4は書込状態にあり、ADPCM復号器3からのPCM符号105を格納する。このメモリ回路4は、このPCM符号の書込毎に、その記憶内容が更新される。したがって、常にこのメモリ回路4においては1つのPCM符号が格納される。時刻t1において、エラー検出情報102がエラー非検出状態からエラー検出状態に設定されると、このメモリ回路4は、フレームn−1の最後のPCM符号♯Nを格納している。エラー検出情報102がエラー検出状態にある間、メモリ回路4は読出状態に設定され、その記憶したフレームn−1のPCM符号♯Nを連続的に読出す。したがって、このエラーが発生しているフレームの区間、メモリ回路4に格納されるPCM符号化データの値はこのフレームn−1の最終PCM符号♯Nの値に固定され、したがってメモリ回路4から読出されるPCM符号106系列は、DCのPCM符号列となる。この時刻t1において、PCM符号は連続しており、ADPCM符号101の不連続の影響は生じない。
【0048】
時刻t2において、エラー検出情報102がエラー検出状態からエラー非検出状態に設定されると、メモリ回路4は再び書込状態に設定され、活性化されたADPCM復号器3からのPCM符号105を格納する。この時刻t2以降においては、次のフレームn+1の先頭PCM符号♯1以降のPCM符号がメモリ回路4に順次格納される。この時刻t2以前のエラー検出状態の間、ADPCM復号器3の内部状態は、フレームn−1の最終PCM符号♯N生成時の内部状態に保持されている。フレーム非検出状態においてADPCM符号の各符号がとり得る確率分布には偏りがあり、小さな差分値である確率が高い。また、フレーム長が5ms−10ms程度の場合、連続したフレーム間における音声波形は近似波形である確率も高い。したがって、このフレームn+1の先頭ADPCM符号♯1を、フレームn−1の最終ADPCM符号♯Nの復号時の内部状態(内部変数)に従って復号処理をしても、不連続点における差分値誤差が小さい値を取る確率が高く、発生する不連続の影響を小さくすることができ、不連続点以降での復号処理において雑音発生確率を低く抑えることができる。
【0049】
メモリ回路4としては、1つのPCM符号化データを格納する記憶容量を有しかつエラー検出情報に従って書込状態/読出状態に選択的に設定される構成であれば任意の構成を用いることができ、たとえば図4に示すような構成も利用することができる。
【0050】
図4は、図1に示すメモリ回路4の構成の一例を示す図である。図4において、メモリ回路4は、PCM符号データを格納するためのレジスタ回路4aと、エラー検出情報102のエラー非検出状態時活性化され、ADPCM復号器3からのPCM符号105をレジスタ回路4aへ書込む書込ゲート4bと、エラー検出情報102のエラー検出状態時活性化され、このレジスタ回路4aに格納されたPCM符号データを読出してPCM符号106を生成する読出ゲート4cを含む。レジスタ回路4aは、1つのPCM符号データを格納する容量を備える。
【0051】
この図4に示す構成を用いることにより、メモリ回路4を、容易に形成することができる。また、このメモリ回路4は、1つのPCM符号データを格納する記憶容量が要求されるだけであり、その占有面積は十分小さくすることができる。
【0052】
以上のように、この発明の実施の形態1に従えば、エラー非検出時においては、ADPCM復号器からのPCM符号に従ってPCM復号動作を行ない、エラー検出時においては、このエラー検出直前に生成されたPCM符号を用いてPCM復号処理を行ない、このエラー検出期間の間ADPCM復号器を非活性状態としているため、エラー非検出状態からエラー検出状態への移行時におけるADPCM符号の不連続の影響が生じることはなく、雑音が発生しない。また、エラー検出状態からエラー非検出状態移行時においては、ADPCM符号の影響は生じるものの、連続する2フレームの音声信号波形は近似波形である確率が高く、従来例と同等にこのADPCM符号の不連続に起因する雑音発生確率を低く抑えることができる。また、1つのPCM符号をメモリ回路は格納するだけであり、装置規模、および消費電流を低減できる。
【0053】
[実施の形態2]
図5は、この発明の実施の形態2に従う受信データ伸長部の構成を概略的に示す図である。図5において、受信データ伸長部は、ノード102aを介して与えられるエラー検出情報102のエラー検出状態からエラー非検出状態に変化する時点を検出するエラー変化点検出器6と、このエラー変化点検出器6からの変化点検出指示に応答して所定の内部変数を置換し、この内部変数に従って伝送路に結合される入力ノード101aからのADPCM符号101の伸長処理を施してPCM符号105を生成するADPCM復号器3と、エラー検出情報102のエラー非検出状態のときADPCM復号器3からのPCM符号105を格納するメモリ回路4と、エラー検出情報102に従って、ADPCM復号器3からのPCM符号105とメモリ回路4から読出されたPCM符号106の一方を選択的に通過させてPCM符号107として出力する再生出力切換スイッチ5を含む。
【0054】
ADPCM復号器3は、その内部構成は後に詳細に説明するが、先に図42を参照して説明したように、このADPCM符号に対し適応逆量子化処理を実行する。この適応逆量子化処理においては、各ADPCM符号に対して、量子化スケールファクタy(k)が用いられ、この適応的に求められた量子化スケールファクタy(k)に従ってADPCM符号から量子化差分信号が生成される。この量子化スケールファクタy(k)は、高速スケールファクタyu(k)と低速スケールファクタyl(k)を含む。高速スケールファクタyu(k)は、差分信号が大きな変動を示すような信号(たとえば音声)に対応し、低速のスケールファクタyl(k)は、差分信号が小さな変動を示すようなたとえば音声周波数帯域データ信号およびトーン信号などの信号に対応する。低速スケールファクタyl(k)は、変化速度が小さく、連続した2フレーム期間においてはほぼその値は一定であるとみなすことができる。このエラー検出状態からエラー非検出状態への移行時に、このADPCM復号器3において、この低速スケールファクタyl(k)のスケーリングにより求めた高速スケールファクタyu(k)によりエラー検出前の高速スケールファクタ値を置換する。次に、この図5に示す装置の動作を図6に示す動作シーケンス図を参照して説明する。
時刻t1前のエラー非検出状態においては、ADPCM復号器3は、活性状態にあり、受信したADPCM符号101に伸長処理を施してPCM符号105を生成する。メモリ回路4は、このADPCM復号器3からのPCM符号105を格納する。エラー検出情報102がエラー検出状態となると、ADPCM復号器3は復号動作を停止し、その内部状態は、エラー検出直前のフレームn−1の最終ADPCM符号の伸長処理時の状態に維持される。メモリ回路4は、書込状態から読出状態に変換され、受信データエラーが発生したフレームnの区間(時刻t1から時刻t2の区間)においては、メモリ回路4から読出されたエラー検出直前のフレームn−1の最終PCM符号106が読出されて、再生出力切換スイッチ5へ与えられる。これらの動作は、先の実施の形態1の動作と同じである。
【0055】
エラー検出情報102がエラー検出状態からエラー非検出状態へ変化すると、エラー変化点検出器6がエラー変化点検出指示をADPCM復号器3へ与える。ADPCM復号器3においては、このエラー変化点検出器6からのエラー変化点検出指示に応答して、その内部に保持された低速スケールファクタyl(k)をスケーリングした値(2−a・yl(k))でそれまでに保持していた高速スケールファクタyu(k)を置換する。この置換した高速スケールファクタおよび低速スケールファクタを用いてスケーリングファクタy(k)が生成され、時刻t2の後に与えられた正常フレームn+1のADPCM符号101の復号処理がADPCM復号器3において実行される。
【0056】
以降は、この与えられるADPCM符号に従ってその内部変数が変化し、順次復号処理が実行される。復号再開時に、この高速スケールファクタyu(k)をスケーリングされた低速スケールファクタyl(k)で置換することによる効果について以下に説明する。
【0057】
図7は、図5に示すADPCM復号器3の構成をより詳細に示す図である。図7において、ADPCM復号器3は、ADPCM符号101(I(k))と量子化スケールファクタy(k)とから量子化差分信号dq(k)を生成する適応逆量子化器3aと、量子化差分信号dq(k)と予測信号se(k)とから再生信号sr(k)を生成してPCM符号105として出力する再生信号算出器3bと、量子化差分信号dq(k)と再生信号sr(k)とから予測信号se(k)を生成する適応予測器3cを含む。信号は、すべてサンプリングされたディジタル信号であり、各信号に付された括弧内の文字kは、サンプリング時刻を示す。
【0058】
ADPCM復号器3は、さらに、ADPCM符号101(I(k))と適応速度制御変数al(k)とに従って量子化スケールファクタy(k)を生成する量子化スケールファクタ適応部3dと、量子化スケールファクタy(k)とADPCM符号101(I(k))と適応予測器3cからの適応係数a2(k)と量子化差分信号dq(k)に従って速度変数tr(k)およびtd(k)を生成して適応予測器3cおよび適応速度制御部3eへ与えるトーンおよび変化点検出器3gを含む。次に、各部の動作について説明する。
【0059】
適応逆量子化器3aは、量子化スケールファクタ適応部3dから与えられる量子化スケールファクタy(k)を用いて入力ADPCM符号101(I(k))を量子化差分信号dq(k)に変換する。この入力信号I(k)は、送信側において差分信号(予測信号se(k)と量子化PCM信号si(k)の差分信号)を量子化した後符号化されて伝送されたものである。適応量子化器においては、この差分信号が2を底とする対数に変換され、次いでスケールファクタy(k)で正規化される。すなわち、
log(d(k))−y(b)
の式に従って正規化された値が次いで量子化され、この量子化値を符号化することにより、ADPCM符号101(I(k))が得られる。
【0060】
適応逆量子化器3aは、この適応量子化器の適応量子化処理と逆の処理を行なう。すなわち、量子化スケールファクタ適応部3aから与えられた量子化スケールファクタy(k)により入力信号I(k)をスケーリングし、このスケーリングされた値を対数から真数に変換することにより量子化差分信号dq(k)が求められる。
【0061】
量子化スケールファクタ適応部3dは、ADPCM符号101(I(k))と適応速度制御変数al(k)に従ってスケールファクタy(k)を生成する。この量子化スケールファクタ適応部3dは、高速のスケールファクタyu(k)および低速のスケールファクタyl(k)を適応的に求める。高速のスケールファクタyu(k)は、たとえば音声のような差分信号が大きな変動を示すような信号に対応する。低速のスケールファクタyl(k)は、トーン信号および音声周波数帯域データのような、差分信号が小さな変動を示す信号に対応する。高速のスケールファクタyu(k)および低速のスケールファクタyl(k)は、それぞれ次式で与えられる。
【0062】
yu(k)=(1−2−5)・y(k)+2−5・W[I(k)]
yl(k)=(1−2−6)・yl(k−1)+2−6・yu(k)
但し、yu(k)は1.06≦yu(k)≦10.00の範囲に制限される。
【0063】
W[I(k)]は、入力I(k)に従って予め定められた値をとる離散的な値をとる関数である。係数(1−2−5)のような係数を用いることにより、適応化の過程において過去の影響が有限とされ、伝送誤りが生じた場合においても符号器と復号器の内部状態は両者が一致するように収束する。これらの係数はリンケージ(リーク)係数と呼ばれる。スケールファクタy(k)は、この高速スケールファクタyu(k)と低速のスケールファクタyl(k)とを次式に従って適応速度制御変数al(k)を用いて合成することにより求められる。
y(k)=al(k)・yu(k−1)+[1−al(k)]・yl(k−1)
ここで、0≦al(k)≦1である。
【0064】
量子化スケールファクタ適応部3dにおいては、リセット信号に従ってこの高速スケールファクタyu(k)および低速のスケールファクタyl(k)が所定の初期値(544および34816)にリセットされる。また、後に説明するように、エラー検出情報のエラー検出状態からエラー非検出状態への移行時、その高速のスケールファクタyu(k)が、低速のスケールファクタyl(k)をスケーリングした値により求められる(これについては後に詳細に説明する)。
【0065】
適応速度制御部3eからの適応速度制御変数al(k)は、音声信号の場合に1に近づき、音声周波数帯域データ信号およびトーン信号の場合は0に近づく。すなわち、スケールファクタy(k)は、音声信号の場合には、高速のスケールファクタyu(k)の影響が大きくなり、音声周波数帯域データ信号およびトーン信号の場合には、低速のスケールファクタyl(k)の影響が大きくなる。この適応速度制御変数al(k)は、差分信号の変化率より算出される。入力ADPCM符号101(I(k))の大きさの平均値を示す値が2種類算出される。
【0066】
dms(k)=(1−2−5)・dms(k−1)+2−5・F[I(k)]
dml(k)=(1−2−7)・dml(k−1)+2−7・F[I(k)]
関数F[I(k)]は、入力ADPCM符号101(I(k))の値に従って予め定められた離散的な値をとる関数である。dms(k)は、関数F[I(k)]の比較的短時間の平均値を示し、dml(k)は、関数F[I(k)]の比較的長時間の平均値を示す。これらの2種類の平均値dms(k)およびdml(k)を用いて変数ap(k)が以下のように定義される。
【0067】
(i) |dms(k)−dml(k)|≧2−3・dml(k)のとき:
ap(k)=(1−2−4)・ap(k−1)+2−3
(ii) y(k)<3のとき:
ap(k)=(1−2−4)・ap(k−1)+2−3
(iii) td(k)=1のとき:
ap(k)=(1−2−4)・ap(k−1)+2−3
(iv) tr(k)=1のとき:
ap(k)=1
(v) その他の場合:
ap(k)=(1−2−4)・ap(k−1)
上述の条件(i)において、変数ap(k)は、平均値dms(k)およびdml(k)の差の大きい場合には、すなわち、入力ADPCM符号I(k)の大きさの平均値が大きく変化している場合には、2に近づき(初項1/8、公比1/16の等比数列)、一方、両者の差が小さい場合には、すなわち入力ADPCM符号I(k)の大きさの平均値が比較的一定のときには、条件(v)から、0に近づく(公比15/16の等比数列)。
【0068】
上述の条件(ii)におけるy(k)<3は、空きチャンネルを用いた通信が行なわれていることを示し、この場合には、変数ap(k)は、2に近づく。
【0069】
狭帯域信号の場合は、後に説明するようにtd(k)=1で示される。この場合には、変数ap(k)は2に近づく。
【0070】
狭帯域信号の変化の検出時(tr(k)=1で示される場合(iv))、変数ap(k)は1にセットされる。この変数ap(k−1)から次式に従って適応速度制御変数al(k)が求められる。
【0071】
al(k)=1 :ap(k−1)>1、
al(k)=ap(k−1) :ap(k−1)≦1
この非対称な適応速度制御変数al(k)に対する制限により、入力ADPCM符号I(k)の絶対値が一定の値を保つようになるまで適応速度が速い状態から遅い状態へ移行するのを遅らせる。これは、パルス状の入力信号に対して誤って高速適応状態から低速適応状態へ移行するのを防止するためである。すなわち、パルス状の入力信号に対して、差分信号が大きく変化するため、高速適応状態で対応する必要がある。これは、適応速度制御変数al(k)を1に近づけ、高速のスケールファクタyu(k)の影響を大きくして量子化スケールファクタy(k)を算出することにより実現される。
【0072】
適応速度制御部3eにおいては、リセット信号の発生に従って、変数ap(k)が0に初期設定され、また平均値dms(k)およびdml(k)もそれぞれ0に初期設定される。したがって、適応速度制御変数al(k)もこれらの係数ap(k)、dms(k)、およびdml(k)のリセットに、初期値0にリセットされる。すなわちこのリセット動作により、適応速度が遅くされる(このリセット値により、スケールファクタy(k)は、高速のスケールファクタyu(k)が無効とされ、低速のスケールファクタyl(k)により与えられることになる)。
【0073】
適応予測器3cは、量子化差分信号dq(k)から予測信号se(k)を算出する。この適応予測器3cにおいては、2種類の適応予測が行なわれる。予測信号se(k)は次式に従って算出される。
【0074】
se(k)=Σai(k−1)・sr(k−i)+sez(k)
ただし、総和Σは、i=1および2について行なわれる。
【0075】
sez(k)=Σbi(k−1)・sq(k−i)
ただし、総和Σは、i=1から6について行なわれる。
【0076】
再生信号算出器3bで算出される再生信号sr(k−i)は次式で定義される。
【0077】
sr(k−i)=se(k−i)+dq(k−i)
予測信号se(k)を求めるために用いられる2次の極予測に用いられる係数a1(k)およびa2(k)は、それぞれ次式で与えられる。
【0078】
Figure 0003596841
ここで、p(k)=dq(k)+sez(k)である。関数fは、次式で定義される。
【0079】
f(a1)=4・a1 :|a1|≦2−1
f(a1)=2・sgn(a1) :|a1|>2−1
関数sgn[p(k)]は、p(k)の符号を示す。
【0080】
tr(k)=1の場合には、変数a1(k)およびa2(k)ともに0とされる(a1(k)=a2(k)=0)。
【0081】
もう1つの6次の零予測に用いられる係数bi(k)は、次式で与えられる。
Figure 0003596841
tr(k)=1のときには、係数b1(k)〜b6(k)はすべて0とされる(b1(k)=b2(k)=…=b6(k)=0)。
【0082】
再生信号算出部3bにおいて、リセット信号が与えられた場合には、再生信号sr(k−1)およびsr(k−2)が所定の値(32)にリセットされる。適応予測器3cにおいては、このリセット信号に従って係数b1(k−1)〜b6(k−1)がすべて0にリセットされ、また係数a1(k−1)およびa2(k−1)が0にリセットされ、さらにap(k−1)が0にリセットされ、応じて適応速度制御変数al(k)が0にリセットされる。さらに、適応予測器3cにおいては、変数p(k−1)およびp(k−2)は所定の値(0)にリセットされ、さらに量子化差分信号dq(k−1)〜dq(k−6)が所定の値(32)にリセットされる。
【0083】
トーンおよび変化点検出器3gにおいては、トーン信号および音声周波数帯域データ信号などの狭帯域信号を検出したとき、逆量子化器の適応速度を高速側へ移す。すなわち、この制御変数td(k)は次式で定義される。
【0084】
(i) a2(k)<−0.71875のとき:
td(k)=1
(ii) その他の場合:
td(k)=0
すなわち、この検出された狭帯域信号の変化を検出した場合には、適応予測器3cにおける係数a1,a2およびbi(k)がすべて0にセットされる。すなわち、変数tr(k)は次式で定義される。
【0085】
(i) a2(k)<−0.71875かつ|dq(k)|>24・2・esp(yl(k))のとき:
tr(k)=1
(ii) その他の場合:
tr(k)=0
この図7に示すADPCM復号器3の具体的構成は、ITU勧告G.726に詳細に示されている。
【0086】
図5に示すエラー変化点検出器6が、エラー検出情報のエラー検出状態からエラー非検出状態になる変化点を検出した際に再生信号振幅に大きく影響を与えるのはスケールファクタy(k)である。変化点での雑音発生を抑圧するためには、このスケールファクタy(k)の値ができるだけ正確な値であることが必要である。上述のように、スケールファクタy(k)は、
y(k)=
al(k)・yu(k−1)+[1−al(k)]・yl(k−1)
で与えられ、適応速度制御変数al(k)を用いて低速のスケールファクタyl(k)および高速のスケールファクタyu(k)を合成して得られる。すなわち、雑音を抑圧するためには、低速のスケールファクタyl(k)および高速のスケールファクタyu(k)が正確な値であることが必要である。
【0087】
低速のスケールファクタyl(k)は、次式に従って展開することができる。
Figure 0003596841
すなわち、低速のスケールファクタyl(k)は、(1−2−6)で重み付けされた高速のスケールファクタyu(k)の加算平均(時間についての平均値)であり、緩やかな変化をする。低速のスケールファクタyl(k)を求める処理においては、高速のスケールファクタyu(k)のローパスフィルタ処理を行なって低速のスケールファクタyl(k)が求められる。したがって、エラーが検出されたフレームを挟んで低速のスケールファクタyl(k)の値の変化は僅少とみなすことができ、ADPCM復号器3の復号処理停止により保持された値は、そのまま復号処理再開時における低速のスケールファクタyl(k)の値として用いることができる。高速のスケールファクタyu(k)については、初期化時のスケールファクタyu(k)とyl(k)の値544と34816の関係に基づき、この正確な値を与える低速のスケールファクタyl(k)を次式に従ってスケーリングして求める。
【0088】
yu(k)=2−6・yl(k)
上述の置換により、エラー検出情報102が、エラー検出状態からエラー非検出状態に変化する際に、このADPCM復号器3の内部変数である高速のスケールファクタyu(k)を、正確な値を与える低速のスケールファクタyl(k)を用いて置換することにより、ADPCM復号処理再開時におけるスケールファクタy(k)の誤差を縮小することができ、雑音発生を抑圧することができる。次に、この高速のスケールファクタyu(k)の低速のスケールファクタyl(k)による置換の理由について説明する。
【0089】
図8(A)は、低速のスケールファクタyl(k)のビット構成を示し、図8(B)は、高速のスケールファクタyu(k)のビット構成を示す図である。この低速のスケールファクタyl(k)および高速のスケールファクタyu(k)のビット構成は、前述のITU勧告G.726において規定されている。
【0090】
図8(A)に示すように、低速のスケールファクタyl(k)は2〜2−15 の桁を有する19ビットで表現される。枠内に示す数字は、各桁の重みを示す(たとえば、「3」は、2の桁を示す)。この低速のスケールファクタyl(k)は、リセット時、値34816にリセットされる。
【0091】
一方、図8(B)に示すように、高速のスケールファクタyu(k)は、2〜2−9の13ビットで表示される。この図8(B)においても、枠内の数字は各桁の重みを示す。この高速のスケールファクタyu(k)は、リセット時、値544にリセットされる。このリセット時、低速のスケールファクタyl(k)のリセット値(初期値)と高速のスケールファクタyu(k)のリセット値(初期値)の関係は、低速のスケールファクタylの初期値が、高速のスケールファクタyuの2倍の値となっている。すなわち、初期値においては、高速のスケールファクタyuは、低速のスケールファクタylを6ビット算術右シフトして(シフト後の上位ビットには0を挿入)上位13ビットをとることにより求めることができる。したがって、復号処理再開時の高速のスケールファクタyu(k)として、この初期化時と同様の関係を満たす高速のスケールファクタを用いれば、比較的正確な高速のスケールファクタyuが求められ、応じてスケールファクタy(k)の誤差を小さくすることができる。
【0092】
ここで、図8(A)および(B)に示すように、低速のスケールファクタyl(k)は、さらに12ビット右シフト処理を行なうことができる(1ビットは残す必要があるため)。したがって、低速のスケールファクタylを18ビット(6ビット+12ビット)算術右シフトし、その上位13ビットを高速のスケールファクタyu(k)として用いることもできる。したがって、復号処理再開時における高速のスケールファクタyuとしては、次式の関係を満たす値を採用することができる。
【0093】
yu=2−a・yl(k)
ただし、a:6≦a≦18を満たす自然数である。
【0094】
実際の処理においては、高速のスケールファクタyu(k)に対しては、下限値が定められており、1.06よりも小さい値は、すべてこの下限値でクリップされる。したがって、実際には、a>10は、すべて同じ高速のスケールファクタ値を与えるため、次式に従って復号処理再開時における高速のスケールファクタの置換が行なわれてもよい。
【0095】
yu(k)=2−a・yl(k)
ただし、a:6≦a≦10を満たす自然数である。
【0096】
この上述のような、aの値を6より大きな値に設定して、低速のスケールファクタyl(k)のスケーリング量を大きくとれば、スケールファクタy(k)の値も小さくなり、応じてADPCM復号器の復号処理再開直後の再生信号が一時的にミュートされた状態となり、a=6の場合と同等もしくはそれ以上の雑音発生抑圧効果を得ることができる。
【0097】
図9は、図7に示す量子化スケールファクタ適応部3dの内部構成を概略的に示す図である。図9において、量子化スケールファクタ適応部3dは、入力ADPCM符号I(k)を受け、関数Wおよびスケールファクタy(k)に従って高速のスケールファクタyu(k)を算出するyu算出部3daと、このyu算出部3daで算出された高速のスケールファクタを1サンプリング期間遅延するための遅延回路3dbと、yu算出部3daにより算出された高速のスケールファクタと1サンプリング前の低速のスケールファクタyl(k−1)とに従って低速のスケールファクタyl(k)を算出するyl算出部3dcと、yl算出部3dcの出力データを1サンプリング期間遅延して低速のスケールファクタyl(k−1)を生成する遅延回路3ddと、適応速度制御変数al(k)に従って遅延回路3dbおよび3ddから出力されるスケールファクタyu(k−1)およびyl(k−1)を合成してスケールファクタy(k)を生成する合成回路3deと、エラー検出情報102のエラー検出状態のときにこの遅延回路3dbからの低速のスケールファクタyl(k−1)に従って復号再開時に置換すべき更新された高速のスケールファクタを算出して出力する更新yu算出部3dfを含む。
【0098】
この更新yu算出部3dfからの更新高速スケールファクタは、図5に示すエラー変化点検出器6からの変化点検出信号に従って遅延回路3dbに格納される。これによって、遅延回路3dbの保持内容が更新される。次に、この図9に示す量子化スケールファクタ適応部3dの動作を、図10に示すフロー図を参照して説明する。
【0099】
エラー検出情報102に従って、受信データエラーが発生しているか否かの判定が行なわれる(ステップS1)。エラー検出情報102が、エラー検出状態に設定されている場合には、この量子化スケールファクタ適応部3dは、そのスケールファクタ算出動作を停止し、かつその内部変数を保持する(ステップS2)。この状態において、更新yu算出部3dfにおいて、低速のスケールファクタylのスケーリングにより、高速のスケールファクタyuが算出されて保持される。次いで、エラー検出情報102が、エラー検出状態にある間この状態が保持される。エラー検出情報102が、エラー検出状態からエラー非検出状態に変化すると(ステップS4)、遅延回路3dbは、変化点検出信号の活性化に従って更新yu算出部3dfで算出された高速のスケールファクタで、それまで保持していた高速のスケールファクタを置換する。この置換された高速のスケールファクタを用いて新たに与えられたADPCM符号I(k)に対するスケールファクタの算出動作が再開される(ステップS5)。
【0100】
この更新された高速のスケールファクタは、新たに与えられる高速のスケールファクタで書換えられて、各入力ADPCM符号I(k)に対するスケールファクタy(k)の算出動作が継続される。エラー検出情報102が、エラー非検出状態に設定されている場合には、復号動作は継続して実行されるため、ステップS6に従って、スケールファクタy(k)の算出動作が継続して実行される。
【0101】
この上述の説明においては、スケールファクタy(k)の算出は、ハードウェアを用いて実行されるように示されている。しかしながら、ソフトウェア的に、またはディジタル・シグナル・プロセサ(DSP)を用いて実行されてもよい。
【0102】
以上のように、この発明の実施の形態2に従えば、ADPCM符号の復号再開時において、高速のスケールファクタを保持している低速のスケールファクタのスケーリングされた値で置換しているため、処理再開時における量子化スケールファクタの値をほぼ正しい値に近づけることができ、処理再開時におけるADPCM符号の不連続に起因する雑音発生を抑圧することができる。
【0103】
[実施の形態3]
図11は、この発明の実施の形態3に従う受信データ伸長部の構成を概略的に示す図である。この図11に示す構成は、図1に示す実施の形態1と以下の点において異なっている。すなわち、この発明の実施の形態3においては、再生出力切換スイッチ5からのADPCM符号107を受け、エラー検出情報102のエラー検出状態への変化直後から、受けたADPCM符号107を徐々に減衰させて出力するフェードアウト処理部7が設けられる。このフェードアウト処理部7は、エラー検出情報102がエラー非検出状態のときには、再生出力切換スイッチ5から与えられるADPCM符号107をそのままADPCM符号108として出力し、ノード108aを介して次段のADPCM復号器へ与える。次に、この図11に示すこの発明の実施の形態3に従う受信データ伸長部の動作を図12に示す動作シーケンス図を参照して説明する。
【0104】
エラー検出情報102がエラー非検出状態のときには、ADPCM復号器3は、復号処理を実行しており、ADPCM復号器3から出力されるADPCM符号105が、再生出力切換スイッチ5により選択されてフェードアウト処理部7へ与えられる。エラー検出情報102がエラー非検出状態のときには、フェードアウト処理部7は、非活性状態にあり、この与えられたADPCM符号107をそのままADPCM符号108として出力する。したがってこのエラー非検出状態においては、ADPCM復号器3により生成されたADPCM符号に従った再生音声が得られる。
【0105】
時刻t1において、エラー検出情報102がエラー非検出状態からエラー検出状態に変化すると、ADPCM復号器3は、その復号処理を停止する。一方、メモリ回路4が書込状態から読出状態に変更され、このメモリ回路4から読出されたADPCM符号106が再生出力切換スイッチ5を介してフェードアウト処理部7へ与えられる。フェードアウト処理部7は、このエラー検出情報102のエラー検出状態指示に従って活性化され、再生出力切換スイッチ5から与えられるADPCM符号107(メモリ回路4の出力するADPCM符号106)を徐々に減衰させる。このフェードアウト処理部7の減衰処理により、ADPCM符号108の再生波形の振幅が徐々に減衰する。したがって、このメモリ回路4から読出されたADPCM符号106に従うDC値よりも、DCバイアスの小さなミュート状態となり、安定にミュート状態を保持することができる。また、このフェードアウト処理部7により、徐々にPCM符号108の振幅を減衰させることにより、急激に減衰させる場合に生じる雑音を抑圧することができ、このエラー検出情報のエラー非検出からエラー検出状態への変化時における雑音発生を抑圧して安定にミュート状態を保持することができる。
【0106】
図13は、図11に示すフェードアウト処理部7の構成を概略的に示す図である。図13において、フェードアウト処理部7は、エラー検出情報102のエラー検出状態指示時に活性化され、所定の減衰関数f(x,t)を発生する関数発生部7aと、エラー検出情報102のエラー検出状態指示時活性化され、この関数発生部7aからの関数f(x,t)を与えられたPCM符号107に適用して、PCM符号108を生成する演算部7bを含む。演算部7bは、エラー検出情報102がエラー非検出状態を示すときには、与えられたPCM符号107を単に通過させる転送ゲートとして機能する。
【0107】
関数発生部7aが発生する減衰関数f(x,t)において、tは時間を示し、xは入力PCM符号を示す。
【0108】
図14は、関数発生部7aが出力する減衰関数f(x,t)の形態の一例を示す図である。図14においては、この減衰関数f(x,t)の時間tについての変化f(x)を示す。この図14に示すように、減衰関数f(x,t)は、時間tの経過とともに、入力値xに対する減衰量を増加させる。このような減衰関数f(x,t)の一例としては、関数2−t・xがある。次に、この図13に示すフェードアウト処理部7の動作を図15に示すフロー図を参照して説明する。
【0109】
エラー検出情報102に従って、エラー検出情報102がエラー非検出状態からエラー検出状態に変化したかが識別される(ステップS10)。エラー検出情報102がエラー非検出状態指示を維持する間、このステップS10が繰返し実行される。エラー検出情報102が、エラー非検出状態指示からエラー検出状態へ変化すると、関数発生部7aおよび演算部7bが活性化され、減衰処理が実行される(ステップS11)。この減衰処理においては、関数発生部7aが、減衰関数f(x,t)を発生して演算部7bへ与える。演算部7bは、この関数発生部7aから与えられる関数f(x,t)に従って、入力されたPCM符号107を処理し、処理後の関数値を入力PCM符号107と同じ量子化幅で量子化した後PCM符号108に符号化して出力する。演算部7bは、予め定められた最大減衰値に到達すると、その最大減衰値で処理された値を継続的に出力する(ステップS12)。この最大減衰値は、出力PCM符号108の振幅値が0であってもよく、また有限の振幅値であってもよい。演算処理がこの状態で停止し、出力値が保持されて接続して出力されてもよい。このとき、メモリ回路の読出も停止する。
【0110】
この状態で、エラー検出情報102がエラー検出状態からエラー非検出状態に変化したか否かが判定される。エラー検出情報102が、エラー検出状態を維持している場合には、演算部7bは、最大減衰値を継続して出力する。エラー検出情報102がエラー検出状態からエラー非検出状態へ移行すると、演算部7bが、減衰処理を停止し、また関数発生部7aも、動作状態にあれば、その関数発生動作を停止する。これにより、演算部7bが入力PCM符号107を単に通過させる伝送ゲートとして機能する(ステップS14)。この状態で、ステップS10へ戻り、エラー検出情報102のモニタが行なわれる。
【0111】
このフェードアウト処理部7は、ハードウェアで構成されてもよく、またソフトウェアを用いてこのフェードアウト処理が実行されてもよい。
【0112】
以上のように、この発明の実施の形態3に従えば、エラー検出時においては、メモリ回路から読出されたPCM符号に対しフェードアウト処理を実行しているため、確実に、このエラー検出時に、再生音声に対し、ミュートをかけることができ、このエラー検出時の雑音発生を抑圧することができる。
【0113】
[実施の形態4]
図16は、この発明の実施の形態4に従う受信データ伸長部の構成を概略的に示す図である。この図16に示す実施の形態4に従う受信データ伸長部は、以下の点で図1に示す実施の形態1に従う受信データ伸長部と異なっている。
【0114】
すなわち、再生出力切換スイッチ5の出力するPCM符号107を受け、エラー検出情報102のエラー検出状態からエラー非検出状態への変化に応答して、この受けたPCM符号107に対し、所定の減衰量から減衰量0に復帰するまで徐々に増幅してPCM符号110を生成するフェードイン処理部8が設けられる。このフェードイン処理部8からのPCM符号110は、ノード110aを介して次段のPCM復号器へ与えられる。
【0115】
この図16に示す受信データ伸長部の動作を図17に示す動作シーケンス図を参照して説明する。
【0116】
エラー検出情報102がエラー非検出状態のときには、ADPCM復号器3は復号動作を停止しており、再生出力切換スイッチ5は、メモリ回路4から読出されたPCM符号106を選択してフェードイン処理部8へ与える。フェードイン処理部8は、このエラー検出情報102のエラー検出状態のときには、単に再生出力切換スイッチ5から与えられるPCM符号107を通過させて、PCM符号110として次段のPCM復号器へ与える。図17においては、振幅値0のPCM符号を示すが、所定のレベルのDC信号であればよい。時刻t2において、エラー検出情報102がエラー検出状態からエラー非検出状態へ移行すると、フェードイン処理部8が活性化され、予め定められた減衰量から徐々に減衰量を低減してこの再生出力切換スイッチ5から与えられる入力PCM符号107に対し増幅動作を開始する。PCM符号110の再生波形は、時間とともにその振幅が徐々に増加する。この減衰量が0に到達すると(または所定の時間が経過すると)、フェードイン処理部8は、この再生出力切換スイッチ5から与えられるPCM符号107に対する増幅動作を停止して、与えられたPCM符号107をそのまま通過させてPCM符号110として出力する。このエラー非検出状態においては、ADPCM復号器3が復号動作を実行しており、再生出力切換スイッチ5は、このADPCM復号器3からのPCM符号105を選択してフェードイン処理部8へ与えている。エラー検出状態からエラー非検出状態への変化時に、ADPCM符号に不連続が生じても、フェードイン処理部8は、最大の減衰量で与えられたPCM符号107に対する増幅動作を行なっている。したがって、このADPCM符号の不連続に起因する雑音の振幅は十分小さくされており、エラー検出状態からエラー非検出状態移行時における雑音発生が抑圧される。これにより、ADPCM復号器3の復号処理開始後における再生音声の聴感品質の劣化を軽減することができる。
【0117】
図18は、図16に示すフェードイン処理部8の構成を概略的に示す図である。図18において、フェードイン処理部8は、エラー検出情報102のエラー検出状態からエラー非検出状態への変化に応答して所定時間活性化され、増幅関数g(x,t)を発生する関数発生部8aと、エラー検出情報102のエラー検出状態からエラー非検出状態への変化に応答して関数発生部8aから与えられる関数g(x,t)を入力PCM符号107に適用してPCM符号110を生成する演算部8bを含む。演算部8bは、このエラー検出情報102がエラー検出状態からエラー非検出状態に移行してから所定時間が経過した後または関数発生部8aからの関数g(x,t)の減衰量が0に到達すると、転送ゲートとして機能し、PCM符号107を通過させてPCM符号110を生成する。
【0118】
図19は、関数発生部8aが発生する増幅関数g(x,t)の形の一例を示す図である。図19に示すように、この関数発生部8aから発生される関数g(x,t)は、時間tの経過とともに、その減衰量が小さくなり、最終的にその減衰量が0となる。関数g(x)としては、たとえば(1−2−t)・xがある。次に、この図18に示す増幅動作を図20に示すフローを参照して説明する。
【0119】
エラー検出情報102に従って、エラー検出状態からエラー非検出状態への変化が生じるか否かがモニタされる。エラー検出情報102がエラー検出状態のときには、フェードイン処理8は非活性状態にあり、増幅動作は行なわない。このとき、エラー検出情報102がエラー検出状態に設定されている場合、このフェードイン処理部8は、最大の減衰率で増幅動作を行なっていてもよい。エラー検出情報102がエラー検出状態からエラー非検出状態に変化すると、関数発生部8aおよび演算部8bが活性化され、演算部8bは、この関数発生部8aからの関数g(x,t)に従って入力PCM符号107に対し、増幅動作を実行する(ステップS21)。演算部8bは、この関数発生部8aからの関数g(x,t)の減衰量が0に到達したか否かの判定を行なう(ステップS22)。この判定動作は、単に、エラー検出情報102のエラー検出状態からエラー非検出状態への変化に従って所定の時間が経過したか否かに従って判定が行なわれてもよい。この時間経過時に、関数発生部8aの発生する関数g(x,t)の減衰量が0となるように構成されていればよい。
【0120】
この関数g(x,t)の減衰量が0に到達するまで、演算部8bは、この関数g(x,t)に従って増幅動作(減衰率が低減される減衰動作)を実行する。減衰量が0に到達すると、演算部8bは増幅動作を停止し、入力PCM符号107を通過させてPCM符号110を生成する。これにより、一連のフェードイン処理が完了する。
【0121】
以上のように、この発明の実施の形態4に従えば、エラー検出情報がエラー検出状態からエラー非検出状態への変化に応答して、その減衰量が時間とともに徐々に低減される減衰量をもって増幅動作を行なうフェードイン処理を実行しているため、復号処理開始時におけるADPCM符号の不連続に起因する雑音発生を抑圧することができる。
【0122】
[実施の形態5]
図21は、この発明の実施の形態5に従う受信データ伸長部の構成を概略的に示す図である。この図21に示す受信データ伸長部は、図1に示す受信データ伸長部と以下の点において異なっている。
【0123】
すなわち、図21に示す受信データ伸長部においては、再生出力切換スイッチ5から与えられるPCM符号107を受け、エラー検出情報102に従って選択的にフェードイン/フェードアウト処理を実行するフェードイン/アウト処理部9が設けられる。このフェードイン/アウト処理部9は、エラー検出情報102が、エラー非検出状態からエラー検出状態となると、再生出力切換スイッチ5から与えられるPCM符号107に対し、フェードアウト処理を実行し、徐々にこの出力PCM符号109の振幅を低減する。エラー検出情報102がエラー検出状態にある間、このフェードイン/アウト処理部9は、最大減衰量で減衰されたPCM符号109を保持する。フェードイン/アウト処理部9は、このエラー検出情報102が、エラー検出状態からエラー非検出状態へ変化すると、再生出力切換スイッチ5から与えられるPCM符号107に対しフェードイン処理を実行する。次に、この図21に示す受信データ伸長部の動作を、図22に示す動作シーケンス図を参照して説明する。
エラー検出情報102がエラー非検出状態の状態においては、ADPCM復号器3は、入力ADPCM符号101に従って、PCM符号105を生成する。再生出力切換スイッチ5は、このPCM符号105を選択してフェードイン/アウト処理部9へ与える。フェードイン/アウト処理部9は、このエラー検出情報102がエラー非検出状態にある間(非検出への変化時点から処理時間経過後)においては、再生出力切換スイッチ5から与えられるPCM符号を選択してPCM符号109として次段のPCM復号器へ与える。
【0124】
時刻t1において、エラー検出情報102がエラー非検出状態からエラー検出状態へ変化すると、ADPCM復号器3は、復号動作を停止する。再生出力切替スイッチ5はメモリ回路4からのPCM符号106を選択してこのPCM符号107としてフェードイン/アウト処理部9へ与える。フェードイン/アウト処理部9は、このエラー検出情報102のエラー非検出状態からエラー検出状態への変化に従って入力PCM符号107に対し実施の形態3と同様にフェードアウト処理を実行する。これにより、フェードイン/アウト処理部9から出力されるPCM符号109の再生波形は、徐々にその振幅が低減され、最大の減衰値に到達すると、その振幅値で保持される。
【0125】
図22においては、このフェードイン/アウト処理部9は、振幅値0にまでPCM符号109の振幅値を低減している処理状態が一例として示される。この最大減衰時におけるPCM符号の大きさは、0とならなくてもよく、所定の有限の値であってもよい。
【0126】
エラー検出情報102がエラー検出状態からエラー非検出状態へ時刻t2において変化すると、フェードイン/アウト処理部9は、再生出力切換スイッチ5から与えられるPCM符号107に対しフェードイン処理を実行する。再生出力切換スイッチ5は、このエラー検出情報102のエラー非検出状態に従って、ADPCM復号器3から与えられるPCM符号105を選択してフェードイン/アウト処理部9へ与える。これにより、復号されたPCM符号105に従ってフェードイン/アウト処理部9からのPCM符号109の再生波形の振幅は徐々に大きくされる。したがって、エラー検出状態からエラー非検出状態への移行時におけるADPCM符号の不連続が生じても、フェードイン/アウト処理部9において、フェードイン処理が行なわれるため、ADPCM符号の不連続時における再生音声波形の振幅値は小さく、不連続に起因する雑音発生を抑圧することができる。フェードイン/アウト処理部9は、この減衰量が0に到達すると、フェードイン処理を停止し、再生出力切換スイッチ5から与えられるPCM符号107を、このPCM符号109として伝達する。
【0127】
図23は、フェードイン/アウト処理部9の構成を概略的に示す図である。図23において、フェードイン/アウト処理部9は、エラー検出情報102のエラー検出状態への移行時活性化され、予め定められた減衰関数f(x,t)を発生する関数発生器9aと、エラー検出情報102のエラー検出状態からエラー非検出状態への変化時に活性化され、予め定められた増幅関数g(x,t)を発生する関数発生器9bと、エラー検出情報102に従って関数発生器9aおよび9bの出力する関数の一方を選択して出力する選択器9cと、エラー検出情報102のエラー検出状態への変化時およびエラー検出状態からエラー非検出状態への変化時に活性化され、選択器9cから与えられる関数を入力PCM符号107に適用してPCM符号109を生成する演算部9dを含む。この図23に示すフェードイン/アウト処理部9の構成は、図13および図18に示す構成を組合せたものである。したがって、この図23に示すフェードイン/アウト処理部9の動作は、図15および図20に示すフローを組合せることにより与えられる。すなわち、エラー検出情報102がエラー非検出状態でありかつエラー非検出状態への移行後所定時間経過後は、フェードイン/アウト処理部9は単に転送ゲートとして機能し、入力PCM符号107を通過させる。
【0128】
エラー検出情報102が、エラー非検出状態からエラー検出状態に変化すると、関数発生器9aが活性化され、選択器9cがこの関数発生器9aからの関数f(x,t)を選択して演算部9dへ与える。演算部9dは、このエラー検出情報102の変化に応答して、入力PCM符号107に対し選択器9cから与えられた関数を適用し、PCM符号109を生成する。これにより、PCM符号109の再生波形振幅値が徐々に低減され、エラーフレーム期間中最小振幅値で保持される。
【0129】
エラー検出情報102がエラー検出状態の間、PCM符号109は、最小振幅値の状態にある。
【0130】
エラー検出情報102がエラー検出状態からエラー非検出状態へ変化すると、関数発生器9bが活性化され、また選択器9cがこの関数g(x,t)を選択して演算部9dへ与える。演算部9dは、このエラー検出情報102のエラー非検出状態への変化に応答して、選択器9cから与えられる関数を入力PCM符号107に適用して、PCM符号109を生成する。これにより、PCM符号109の再生波形振幅が徐々に大きくなる。演算部9dは、この関数発生器9gから与えられる関数g(x,t)の減衰量が0に到達するかまたは、エラー検出情報102がエラー非検出状態への変化後所定時間が経過すると、増幅動作を停止し、転送ゲートとして機能し、入力PCM符号107を通過させてPCM符号109を生成する。
【0131】
この図23に示すフェードイン/アウト処理部9は、ハードウェアを用いて構成されてもよく、またDSPにより実現されてもよく、単にまたソフトウェアを用いて実現されてもよい。
【0132】
この発明の実施の形態5に従えば、エラー非検出状態からエラー検出状態への変化時、フェードアウト処理を実行し、エラー検出状態からエラー非検出状態への移行時このフェードアウトされた状態からフェードイン処理を実行してPCM符号109を生成している。したがって、エラー検出情報102のエラー検出状態からエラー非検出状態への変化時に、確実にフェードイン処理を実行することができ、ADPCM符号不連続時における雑音発生を確実に抑圧することができる。
【0133】
[実施の形態6]
図24は、この発明の実施の形態6に従う受信データ伸長部の構成を概略的に示す図である。図24に示す受信データ伸長部は、図1に示す実施の形態1に従う受信データ伸長部と以下の点において異なっている。すなわち、エラー検出情報102がエラー検出状態からエラー非検出状態へ変化すると、ノード113aから与えられるクリップ時間設定信号113に応答して活性化され、ノード114aから与えられるクリップ値信号114の示すクリップ値でこの再生出力切換スイッチ5から与えられるPCM符号107の振幅をクリップするクリップ処理部11が設けられる。クリップ処理部11によりその振幅がクリップ値信号114の示すクリップ値でクリップされたPCM符号115が生成され、ノード115aを介してこのPCM符号115が次段のPCM復号器へ与えられる。
【0134】
次にこの図24に示す受信データ伸長部の動作を図25に示す動作シーケンス部を参照して説明する。エラー検出情報102がエラー非検出状態のときには、ADPCM復号器3は、復号処理を実行してPCM符号105を生成する。再生出力切換スイッチ5は、ADPCM復号器3からのPCM符号105を選択してPCM符号107としてクリップ処理部11へ与える。クリップ処理部11は、エラー検出情報102がエラー非検出状態にあるため、クリップ処理は行なわず、この与えられたPCM符号107を通過させてPCM符号115を生成する。
【0135】
時刻t1において、エラー検出情報102がエラー非検出状態からエラー検出状態に変化すると、ADPCM復号器3は復号処理を停止し、再生出力切換スイッチ5は、メモリ回路4から読出されたPCM符号106を選択してクリップ処理部へ与える。このエラー検出時間においても、クリップ処理部11は、クリップ処理は行なわず、与えられた入力PCM符号107を通過させてPCM符号115を生成する。図25においては、このエラー検出時におけるPCM符号107(PCM符号115)の振幅は、0であるように示される。
【0136】
時刻t2において、エラー検出情報102がエラー検出状態からエラー非検出状態に変化すると、クリップ処理部11は、このクリップ時間設定信号113が設定する期間活性化されてクリップ処理を行なう。エラー非検出状態への移行に従って、再生出力切換スイッチ5は、ADPCM復号器3により生成されたPCM符号105を選択してPCM符号107としてクリップ処理部11へ与えている。クリップ処理部11は、この与えられたPCM符号107の振幅をクリップ値信号114と比較する。入力PCM符号107の振幅値がクリップ値信号114の値よりも大きい場合には、入力PCM符号107の振幅値がクリップ値振幅114が示すクリップ値で置換される。クリップ長設定信号113が設定する時間が経過すると、クリップ処理部11は、クリップ処理を停止し、この入力PCM符号107をクリップ処理を行なわずに通過させてPCM符号115を生成する。
【0137】
エラー検出情報102がエラー検出状態からエラー非検出状態への移行時に所定時間の間クリップ処理を行なうことにより、ADPCM符号101の不連続的の発生により、ADPCM復号器3が再生したPCM符号105の振幅値が異常に大きくなり、雑音の発生源となる可能性がある場合においても、この振幅値の大きなPCM符号105の振幅値が予め設定されたクリップ値信号114で制限することにより、雑音発生を抑圧することができる。
【0138】
図26は、図24に示すクリップ処理部11の構成を概略的に示す図である。図26において、クリップ処理部11は、エラー検出情報102のエラー非検出時クリップ長設定信号113の示す期間活性化されるタイマ15と、タイマ15の出力信号113bの活性化時活性化され、クリップ値信号114と入力PCM符号107の振幅値を比較する比較器11aと、比較器11aの出力信号に従ってクリップ値信号114およびPCM符号107の一方を選択的に通過させる選択器11bを含む。この選択器11bからPCM符号115が出力される。比較器11aは、エラー検出情報102がエラー検出状態にあるときおよびエラー検出情報102がエラー非検出状態にありかつタイマ15からの出力信号113aの非活性化時には、選択器11bに、PCM符号107を選択させる。次にこの図26に示すクリップ処理部の動作を、図27に示すフローを参照して説明する。
【0139】
まず、エラー検出情報102が、エラー検出状態からエラー非検出状態へ変化したか否かが判定される(ステップS30)。エラー検出情報102がエラー検出状態からエラー非検出状態へ変化すると、タイマ15が起動される(ステップS31)。タイマ15は、この起動時、クリップ長設定信号113の示す期間活性化され、その出力信号113bを活性化する。比較器11aは、エラー検出情報102のエラー非検出状態およびタイマ15の出力信号113aの活性化に従って活性状態とされ、比較動作を行なう(ステップS32)。この比較器11aは、入力PCM符号107のクリップ値信号114が示すクリップ値と入力PCM符号107の振幅の大小判別を行なう(ステップS33)。クリップ値信号114が示すクリップ値がPCM符号107の振幅よりも大きい場合には、選択器11bは、比較器11aの出力信号に従って、PCM符号107を選択してPCM符号115として出力する(ステップS34)。一方、クリップ値信号114の示すクリップ値がPCM符号107の振幅以下の場合には、選択器11bは、比較器11aの出力信号に従って、PCM符号107の振幅値をクリップ値で置換して出力する。すなわち、クリップ値信号114が示すクリップ値に入力PCM符号107の符号を付して出力する(ステップS35)。
【0140】
次に、タイマ15からの出力信号113bが活性状態にあるか否かの判定が行なわれる(ステップS36)。タイマ15からのクリップ長規定信号113bが活性状態にあり、クリップ区間を示している場合には、ステップS32へ戻り、再び比較動作が行なわれる。タイマ15の出力するクリップ長規定信号113aが非活性状態とされると、比較器11aは、比較動作を停止し、応じて選択器11bは、入力PCM符号107を選択してPCM符号115として出力する(ステップS37)。ステップS37の後には、ステップS30へ戻り、次の処理に備える。
【0141】
以上のようにして、エラー検出情報のエラー検出状態からエラー非検出状態への変化時所定のクリップ期間入力PCM符号107の振幅に対しクリップ処理を行なうことができる。この処理は、ハードウェアを用いて行なわれてもよく、またソフトウェア的に実行されてもよい。
【0142】
さらに、この図26に示す構成において、タイマ15はエラー検出情報102に従って起動している。クリップ長設定信号113としては、所定の期間内に与えられるサンプル数(入力PCM符号の数)を示す値であってもよい。この場合には、クリップ処理部11において、エラー検出情報102のエラー非検出状態への移行に従って、カウンタがカウント動作を行ない、入力PCM符号107の数をカウントする。このカウント値がクリップ長設定信号113が示すカウント値と等しくなるとクリップ値が停止される。この構成が用いられてもよい。
【0143】
以上のように、この発明の実施の形態6に従えば、エラー検出情報がエラー検出状態からエラー非検出状態への変化時、所定区間の間入力PCM符号の振幅値を所定のクリップ値でクリップするように構成したため、ADPCM復号処理再開時におけるADPCM符号の不連続により、雑音発生の可能性の高い異常な振幅を有するPCM符号の再生が抑圧され、応じて雑音発生が抑圧される。
【0144】
[実施の形態7]
図28は、この発明の実施の形態7に従う受信データ伸長部の構成を概略的に示す図である。この図28に示す受信データ伸長部は、図24に示す受信データ伸長部と以下の点において異なっている。すなわち、この図28に示す受信データ伸長部においては、エラー検出情報102のエラー非検出状態とクリップ処理指示113bの非処理指示とに応答して活性化され、各フレームごとに、所定区間内のPCM符号105の最大振幅値を検出し、該保持した最大振幅値をクリップ値信号114として出力する最大値検出回路12が設けられる。この最大値検出回路12は、エラー検出情報102のエラー検出状態およびクリップ処理実行中のときには、最大値検出動作を停止し、直前のフレームにおいて検出したPCM符号105の最大振幅値を保持する。クリップ処理部11は、このエラー検出情報102のエラー検出状態からエラー非検出状態への変化に応答して活性化され、最大値検出回路114からのクリップ値信号114に従って、再生出力切換スイッチ5から与えられるPCM符号107に対するクリップ処理を実行する。次にこの図28に示す受信データ伸長部の動作を、図29に示す動作シーケンス図を参照して説明する。
【0145】
エラー検出情報102がエラー非検出状態のときには、ADPCM復号器3が復号動作を実行してADPCM符号101をPCM符号105に伸長している。最大値検出回路12は、このエラー検出情報102のエラー非検出状態に従って各フレーム単位でフレーム内の所定の期間内におけるPCM符号105の最大振幅値を検出する。この最大値検出回路12は、各フレーム単位で、検出した最大値が更新される(エラー検出情報102がエラー非検出状態のとき)。
【0146】
時刻t1において、エラー検出情報102がエラー非検出状態からエラー検出状態に変化すると、ADPCM復号器3は、復号動作を停止し、再生出力切換スイッチ5は、メモリ回路4から読出されたPCM符号106を選択してクリップ処理部11へ与える。最大値検出回路12は、このエラー検出情報102のエラー検出状態への変化に応答して最大値検出動作を停止し、先のフレームにおいて検出した最大振幅値を保持する。クリップ処理部11は、このエラー検出情報102がエラー検出状態のときには、クリップ処理は行なわず、最大出力切換スイッチ5から与えられるPCM符号107を通過させてPCM符号115を出力する。メモリ回路4においては、このサイクルにおける最終ADPCM符号に対応するPCM符号が格納されており、したがってPCM符号106の振幅値が有限であるが、図29においては、この振幅値は0であるように示される。
【0147】
時刻t2において、エラー検出情報102がエラー検出状態からエラー非検出状態へ移行すると、最大値検出回路12は、保持した最大振幅値をクリップ値信号114としてクリップ処理部11へ与える。クリップ処理部11は、クリップ長期間設定信号113に従って所定期間このクリップ値信号114に従って再生出力切換スイッチ5から与えられるPCM符号107の振幅値に対するクリップ処理を実行する。このクリップ処理実行中も最大値検出回路12の動作を停止する。ADPCM復号器3は復号動作を実行しているが、この最大値検出回路12において検出された最大振幅値は、エラー検出直前のフレームにおける所定区間内のPCM符号の最大振幅値である。したがって連続する2フレームにおける音声波形は近似波形である確率が高いため、この先のフレーム内の所定区間内におけるPCM符号の最大振幅値をクリップ値として用いることにより、復号処理再開時におけるADPCM符号の不連続に起因して、再生されたPCM符号の振幅値が異常に大きくなり、雑音発生源となる信号を確実に抑圧することができる。このクリップ値信号114のクリップ値は、各フレームごとに更新されるため、各フレームに対応した適切なクリップ値を用いて復号処理再開時におけるクリップ処理を実行することができる。
【0148】
図30は、図28に示す最大値検出回路12の構成を概略的に示す図である。図30において、最大値検出回路12は、エラー検出情報102のエラー非検出状態とクリップ処理指示113bのクリップ処理非実行とに応答して活性化され、入力PCM符号105とレジスタ12bに格納されたPCM符号の振幅を比較する比較器12aを含む。レジスタ12bは、フレーム終了情報120のフレーム終了指示に応答してその記憶内容が初期値にリセットされ、また比較器12aからの出力信号が入力PCM符号105の振幅値が大きいことを示すとき、入力PCM符号105を格納する。レジスタ12bは、さらに、エラー検出情報102がエラー非検出状態からエラー検出状態へ変化すると、その記憶内容を次段のレジスタ12cへ転送する。レジスタ12cからクリップ値信号114が出力される。次にこの図30に示す最大値検出回路12の動作を図31に示すフローを参照して説明する。
【0149】
エラー検出情報102が、エラー非検出状態にあるか否かの判定が行なわれる(ステップS40)。続いて、クリップ処理期間中であるか否かの判定が行なわれる(ステップS46)。エラー検出情報102がエラー非検出状態であり、かつクリップ処理期間中でないときには、比較器12aが活性状態にあり、各フレームごとに、所定区間内で、入力PCM符号105の最大振幅値が検出される(ステップS41)。この最大振幅値検出処理時において以下の動作が行なわれる。
【0150】
レジスタ12bは、各フレームごとに、その格納値が所定の初期値(たとえば振幅値0)にリセットされる。比較器12aは、各フレームごとに、所定区間内で活性化され、入力PCM符号105の絶対値とレジスタ12bに格納された値とを比較する。入力PCM符号105の振幅値(絶対値)がレジスタ12bに格納された値よりも小さい場合には、レジスタ12bは、その記憶内容の更新は行なわない。一方、入力PCM符号105の振幅値がレジスタ12bに格納された値よりも大きい場合には、比較器12aの出力信号に従ってレジスタ12bは、入力PCM符号105の振幅値を格納する。この処理が、所定区間内で入力PCM符号105に対して実行される。この所定区間は、各フレームの始まりを示す信号に従って所定時間経過後または所定サンプル数経過後比較器12aが活性化される構成が用いられればよく、フレームの始まりは、フレーム同期パターンにより検出することができる。またフレーム終了情報120は、各フレーム間においては、フレーム間にある時間差が存在しており、これを検出することによりフレーム終了を検出することができる。
【0151】
フレーム終了情報120が、非活性状態にあり、フレームの終了を示していないときにはこの動作が繰返される(ステップS42)。一方、フレーム終了情報120がフレームの終了を示すと、レジスタ12bの格納値(所定区間内における最大振幅値がレジスタ12cに伝達され、また、レジスタ12bの記憶内容が初期値にリセットされる(ステップS43)。次いで再びステップS40からの処理が繰返される。
【0152】
一方、ステップS40において、エラー検出情報102がエラー検出状態のとき、またはステップS46においてクリップ期間中であると判定されたときには、最大値検出処理が停止される(ステップS44)。すなわち、比較器12aは、比較動作は行なわず、またレジスタ12bも、その記憶内容の更新は行なわれない。この状態においては、フレーム終了情報120がフレームの終了を示しても、エラー検出情報102がエラー検出状態にあるときには、レジスタ12bからレジスタ12cへのデータ転送は禁止される(ステップS45)。エラー検出情報102が、エラー非検出状態へ変化すると、再びステップS41からの処理により、各フレームごとに所定区間での最大振幅値検出処理が行なわれる。このとき、レジスタ12cは、エラー検出直前のフレームにおける所定区間内の最大振幅値を保持しており、クリップ値信号114として出力している。このエラー検出状態からエラー非検出状態への変化後の最初のフレームにおいては、このレジスタ12cの格納データをクリップ値信号114として、クリップ処理部11においてPCM符号107に対するクリップ処理が行なわれる。
【0153】
クリップ処理部11の動作は、先の図26に示すクリップ処理部の構成および図27に示すクリップ処理部の動作と同じである。与えられるクリップ値信号がエラー検出フレームに応じて変化することが異なるだけである。
【0154】
以上のように、この発明の実施の形態7に従えば、各フレームごとに、所定区間内でPCM符号の最大振幅値を検出して保持し、エラー検出状態からエラー非検出状態への移行時には、このエラー検出前のフレームにおける所定区間内のPCM符号の最大振幅値をクリップ値信号として用いてPCM符号の振幅のクリップ処理を行なっているため、エラー検出状態からエラー非検出状態移行時におけるADPCM符号の不連続に起因する異常振幅を有するPCM符号の発生を抑圧することができる。またこのクリップ値は、エラー検出フレームごとに定められるため、最適なクリップ値を設定してクリップ処理を行なうことができ、聴感品質の劣化を抑制することができる。
【0155】
[実施の形態8]
図32は、この発明の実施の形態8に従う受信データ伸長部の構成を概略的に示す図である。図32において、受信データ伸長部は、伝送路に結合されるノード101aを介して与えられるADPCM符号101をPCM符号105に伸長するADPCM復号器3と、ノード102aから与えられるエラー検出情報102のエラー検出指示に応答して活性化され、背景雑音116を発生する背景雑音発生器13と、エラー検出情報102に従ってADPCM復号器3からのPCM符号105および背景雑音発生器13からの背景雑音116の一方を選択して、PCM符号117として出力する再生出力切換スイッチ5を含む。この再生出力切換スイッチ5からのPCM符号117は、ノード117aを介して次段のPCM復号器へ与えられる。
【0156】
ADPCM復号器3は、先の実施の形態1から7の構成と同様、エラー検出情報102がエラー検出状態にある間、その復号動作が停止される。次に、この図32に示す受信データ伸長部の動作を図33に示す動作シーケンス図を参照して説明する。
【0157】
エラー検出情報102がエラー非検出状態のときには、ADPCM復号器3は活性状態にあり、ADPCM符号101をPCM符号105に伸長する。再生出力切換スイッチ5は、このADPCM復号器3からのPCM符号105を選択してノード117aを介してPCM符号117として伝達する。この状態において背景雑音発生器13は非活性状態にある。
【0158】
時刻t1において、エラー検出情報102がエラー非検出状態からエラー検出状態に変化すると、ADPCM復号器3は、復号処理を停止する。背景雑音発生器13は、このエラー検出情報102のエラー検出状態指示に応答して活性化され、背景雑音116を発生する。再生出力切換スイッチ5は、この背景雑音116を選択してPCM符号117として出力する。
【0159】
時刻t2において、エラー検出情報102が、エラー検出状態からエラー非検出状態へ変化すると、背景雑音発生器13は背景雑音116の発生を停止する。一方ADPCM復号器3は、再び復号動作を開始し、ADPCM符号101をPCM符号105に伸長する。再生出力切換スイッチ5は、このADPCM復号器3からのPCM符号105を選択して出力する。
【0160】
このエラー検出時においてADPCM復号器3の復号処理を停止させて、背景雑音を発生することにより、エラー検出時において受信信号が完全に無音となる状態を避けることができ、再生音声の違和感を軽減することができる。ADPCM復号器3は、エラー検出時その復号処理が停止されており、内部状態は維持しているため、ADPCM符号の不連続は、エラー検出情報102がエラー検出状態からエラー非検出状態へ変化するときにのみ生じる。今この場合において、背景雑音が挿入されており、この不連続による雑音の効果を低減することができる。
【0161】
図34は、図32に示す背景雑音発生器13の構成の一例を示す図である。図34において、背景雑音発生器13は、エラー検出情報102のエラー検出状態指示に応答して活性化され、疑似雑音(PN)パターンを発生するPNパターン発生器13aと、このPNパターン発生器13aからのPNパターンの帯域を制限する1/fフィルタ13bを含む。1/fフィルタ13bから背景雑音116が出力される。1/fフィルタ13bは、周波数fに従って通過レベルを低減する。次にこの図34に示す背景雑音発生器13の動作を図35に示すフローを参照して説明する。
【0162】
エラー検出情報102が、エラー非検出状態からエラー検出状態へ変化したか否かが監視される(ステップS50)。エラー検出情報102がエラー非検出状態の場合には、この背景雑音発生器13は動作せず、非活性状態を維持する。エラー検出情報102がエラー非検出状態からエラー検出状態に変化すると、PNパターン発生器13aが活性化され、PNパターンを発生する(ステップS51)。このPNパターン発生器13aからのPNパターンは、1/fフィルタ13bにより帯域制限されて、背景雑音116として出力される。これにより、PNパターンが発生しても、1/fフィルタ13bの帯域制限により、不快感を与える雑音が発生されるのを抑制することができる。
【0163】
この背景雑音116の発生は、エラー検出情報102がエラー検出状態にある間実行される(ステップS52)。エラー検出情報102が、ステップS52においてエラー非検出状態へ変化したと判定されると、このPNパターン発生器13aは非活性状態とされ、背景雑音116の発生が停止される(ステップS53)。エラー非検出状態においては、ADPCM復号器3により生成されたPCM符号105による音声再生が行なわれる。
【0164】
以上のように、この発明の実施の形態8に従えば、エラー検出時、ADPCM復号器の処理を停止させるとともに、背景雑音を挿入するように構成しているため、受信信号が完全に無音状態となるのを防止することができ、再生音声の違和感を軽減することができる。
【0165】
上述の実施の形態1から8においては、ADPCM復号器の構成が示される。しかしながら、圧縮符号化された符号を伸長処理して伸長符号を生成する方式の受信データ伸長部であれば、本発明は適用可能である。また、各構成において、各処理は、ハードウェア、ソフトウェアおよびディジタル・シグナル・プロセサなどを用いて実現されてもよい。
【0166】
また、エラー検出情報としては以下のものが用いられてもよい。フレーム内にエラー検出訂正符号を含め、エラー検出を行ない、訂正可能なエラーは訂正する。フレーム内に訂正不可能なエラーが存在するときのみエラー検出情報をエラー検出状態に設定する。
【0167】
【発明の効果】
エラー検出情報に従って、受信データにエラーが発生していることが示された場合には、復号器の復号処理が停止され、再生出力切換スイッチは、メモリ回路から読出された伸長符号化データを選択して出力する。エラー検出情報がエラー検出状態のときには、メモリ回路は、リード状態(データ読出状態)に設定され、データの書込は停止されている。したがってこのメモリ回路に格納された伸長符号化データは、エラー検出情報がエラー非検出状態からエラー検出状態へ切換わる直前に復号器が出力した伸長符号化データとなり、直流(DC)の信号として出力される。5ms〜10msの時間幅を有するフレーム構成の場合には、音声信号再生中に、このDC信号により、5ms〜10msのミュートが挿入されることになるが、聴感品質は、若干の断続感が感知される程度である。
【0168】
エラー検出情報がエラー検出状態からエラー非検出状態へ変化する際には、復号器の内部状態は、このエラー検出情報がエラー検出状態に変化する直前の内部状態を保持しているため、従来と同様に、圧縮符号の不連続は発生するものの、従来例と同程度の聴感品質を保つことができる。また、エラー検出情報がエラー非検出状態からエラー検出状態へ移行すると、復号器は復号処理を停止しており、このときの圧縮化符号の不連続は無関係であり、エラー検出状態の間、このエラー検出状態移行直前の伸長化符号が持続的に出力される。したがって、この圧縮符号の不連続は、エラー検出情報のエラー検出状態からエラー非検出状態への移行時のみとなり、従来よりもこの圧縮符号の不連続の発生回数を半分にすることができ、雑音発生確率を低減することができる。
【0169】
ADPCM復号器においては、適応逆量子化処理を行なうためのスケーリングファクタを算出するために、高速スケールファクタyuおよび低速スケールファクタylが用いられる。エラー検出情報のエラー検出状態からエラー非検出状態への移行時に、この高速スケールファクタyuを、スケーリングされた低速スケーリングファクタyl、すなわち2−a・ylに設定する。低速スケーリングファクタylは、高速スケールファクタyuの時間にわたる加算平均を示しており、その変化が小さく、エラー検出状態からエラー非検出状態への移行前に与えられるADPCM符号に対する低速スケールファクタの値とエラー非検出状態からエラー検出状態移行時における低速スケーリングファクタylの値はほぼ同じとみることができる。したがって、この低速スケーリングファクタylを用いて高速スケーリングファクタyuを算出すれば、エラー非検出状態からエラー検出状態移行時における高速スケールファクタyuを用いる場合よりも誤差を縮小することができ、この値を用いてスケーリングファクタyを求めることにより、エラー非検出状態移行後のADPCM符号に対し、より誤差の小さなスケーリングファクタyを算出することができ、このADPCM符号不連続点における雑音発生確率を低減することができる。
【0170】
また、エラー検出情報がエラー非検出状態からエラー検出状態へ変化した直後において、メモリ回路から読出されかつ再生出力切換スイッチにより選択された伸長化符号の大きさを徐々に減衰させることにより、エラー検出状態移行時において復号器の動作停止後に生じる再生音声の違和感を軽減することができる。
【0171】
また、エラー検出情報がエラー検出状態からエラー非検出状態へ変化した場合には、再生出力切換スイッチにより選択された伸長化符号が予め減衰され、この減衰量が0に復帰するまで徐々に増幅する。これにより、復号器の復号処理開始後における、圧縮符号の不連続に起因する雑音の影響は十分に抑制され、減衰量が0に復帰した状態においては、この復号器の内部状態は送信側符号器のそれと一致しており、エラー検出情報がエラー検出状態からエラー非検出状態へ変化した際の再生音声の違和感が軽減される。
【0172】
また、エラー検出情報のエラー検出状態からエラー非検出状態への移行時、すなわち復号器の復号処理開始時に、その出力データの振幅値をクリップ値で制限している。これにより、圧縮符号の不連続の発生により復号器が発生した伸長符号の振幅値が異常となっても、雑音の発生源となり得る異常な振幅値の信号を除去することができ、雑音の発生を軽減することができる。
【0173】
エラー検出情報がエラー非検出状態のとき所定時間内の伸長符号の最大値を各所定時間幅単位で更新しながら算出し、その最大絶対値をクリップ値として用いることにより、エラー検出前の伸長符号の振幅値よりもこの復号処理再開後の圧縮符号の不連続に起因する異常に大きな振幅値を有する伸長符号の振幅を適応的に制限することができ、雑音の発生源となるのを抑圧することができ、雑音の発生を低減することができる。
【0174】
また、エラー検出情報がエラー検出状態のときに、すなわち復号器の復号処理停止時においては背景雑音発生器からの背景雑音を出力することにより、エラー検出状態時において受信信号が完全に無音となる状態を避けることができる。
【0175】
また、フレーム単位で伝達されるADPCM符号化データについてフレーム単位でエラーの有無を示すエラー検出情報に従って、ADPCM復号器および雑音抑圧データ発生器の出力の一方を選択することにより、エラー検出時におけるこのADPCM符号の不連続に起因する雑音を抑圧することができる。また、ADPCM復号器をエラー検出時に動作を停止させることにより、内部状態はエラー検出前の状態を維持し、復号再開時において新たに与えられるADPCM符号に対する内部状態のずれを小さくすることができる。
【0176】
以上のように、この発明に従えば、受信データエラーが発生した場合、復号器の処理を停止し、その内部状態を保持するように構成したため、フレームバッファを用いることなく伝送誤り時の雑音抑圧を改善することが可能となる。またフレームバッファが不要となり、ハードウェア構成を小さくすることができ、低消費電力および装置規模を小型にすることができる。また、連続的に受信データエラーが発生した場合においても、復号器の処理停止時間が長くなるだけであり、符号の不連続点が増加することはなく、応じて雑音発生確率が高くなることもない。
【図面の簡単な説明】
【図1】この発明の実施の形態1に従う受信データ伸長部の構成を概略的に示す図である。
【図2】図1に示す受信データ伸長部の動作シーケンスを示す図である。
【図3】図1に示す受信データ伸長部のエラー検出情報変化時の動作シーケンスをより詳細に示す図である。
【図4】図1に示すメモリ回路の構成の一例を概略的に示す図である。
【図5】この発明の実施の形態2に従う受信データ伸長部の構成を概略的に示す図である。
【図6】図5に示す受信データ伸長部の動作シーケンスを示す図である。
【図7】この発明に用いられるADPCM復号器の詳細な構成を示す図である。
【図8】(A)は低速のスケールファクタの構成を示し、(B)は、高速のスケールファクタの構成を示す図である。
【図9】図7に示す量子化スケールファクタ適応部の構成を概略的に示す図である。
【図10】図7に示す量子化スケールファクタ適応部の動作を示すフロー図である。
【図11】この発明の実施の形態3に従う受信データ伸長部の構成を概略的に示す図である。
【図12】図11に示す受信データ伸長部の動作シーケンスを示す図である。
【図13】図11に示すフェードアウト処理部の構成を概略的に示す図である。
【図14】図13に示す関数発生部の発生する関数の一例を示す図である。
【図15】図13に示すフェードアウト処理部の動作を示すフロー図である。
【図16】この発明の実施の形態4に従う受信データ伸長部の構成を概略的に示す図である。
【図17】図16に示す受信データ伸長部の動作シーケンスを示す図である。
【図18】図16に示すフェードイン処理部の構成を概略的に示す図である。
【図19】図18に示す関数発生部の発生する関数の一例を示す図である。
【図20】図18に示すフェードイン処理部の動作を示すフロー図である。
【図21】この発明の実施の形態5に従う受信データ伸長部の構成を概略的に示す図である。
【図22】図21に示す受信データ伸長部の動作シーケンスを示す図である。
【図23】図21に示すフェードイン/アウト処理部の構成を概略的に示す図である。
【図24】この発明の実施の形態6に従う受信データ伸長部の構成を概略的に示す図である。
【図25】図24に示す受信データ伸長部の動作シーケンスを示す図である。
【図26】図24に示すクリップ処理部の構成の一例を概略的に示す図である。
【図27】図26に示すクリップ処理部の動作を示すフロー図である。
【図28】この発明の実施の形態7に従う受信データ伸長部の構成を概略的に示す図である。
【図29】図28に示す受信データ伸長部の動作シーケンスを示す図である。
【図30】図28に示す最大値検出回路の構成の一例を概略的に示す図である。
【図31】図30に示す最大値検出回路の動作を示すフロー図である。
【図32】この発明の実施の形態8に従う受信データ伸長部の構成を概略的に示す図である。
【図33】図32に示す受信データ伸長部の動作シーケンスを示す図である。
【図34】図32に示す背景雑音発生器の構成の一例を概略的に示す図である。
【図35】図34に示す背景雑音発生器の動作を示すフロー図である。
【図36】従来の通信端末機の構成を概略的に示す図である。
【図37】従来の通信端末機における受信ADPCM符号のフレーム構成を概略的に示す図である。
【図38】従来の通信端末機におけるエラー検出情報発生部の構成を概略的に示す図である。
【図39】従来の伝送誤り雑音抑圧部の構成を概略的に示す図である。
【図40】図39に示す装置の動作シーケンスを示す図である。
【図41】図36に示すADPCM復号器の構成を詳細に示す図である。
【図42】図36に示すADPCM復号器の構成をより詳細に示す図である。
【図43】従来の伝送誤り雑音抑圧方式の問題点を説明するための図である。
【符号の説明】
3 ADPCM復号器、4 メモリ回路、5 再生出力切換スイッチ、6 エラー変化点検出器、3a 適応逆量子化器、3d 量子化スケールファクタ適応部、7 フェードアウト処理部、8 フェードイン処理部、9 フェードイン/アウト処理部、11 クリップ処理部、12 最大値検出回路、13 背景雑音発生器。

Claims (4)

  1. 伝送路を介してフレーム単位で与えられる圧縮符号化された受信圧縮符号化データにエラーが存在するか否かを示すエラー検出情報を入力するための入力ノード、
    前記入力ノードからのエラー検出情報のエラー非検出指示に応答して活性化され、前記受信圧縮符号化データに伸張処理を施して伸張符号化データを生成する復号器、
    前記エラー検出情報のエラー非検出指示に応答して書込状態とされ、前記復号器からの伸張符号化データを記録しかつ前記エラー検出情報のエラー検出指示に応答して読出状態とされて該記録した伸張符号化データを出力するメモリ回路、
    前記メモリ回路から読出された伸張符号化データと前記復号器から与えられる伸張符号化データとを受け、前記エラー検出情報のエラー非検出指示に応答して前記復号器からの伸張符号化データを選択して出力しかつ前記エラー検出情報のエラー検出指示に応答して前記メモリ回路から読出された伸張符号化データを選択して出力する再生出力切換スイッチ、および
    前記エラー検出情報のエラー検出指示状態からエラー非検出指示状態への変化を検出する変化検出回路を備え、
    前記圧縮符号化データはADPCM符号化データであり、
    前記復号器は、高速スケールファクタyuと低速スケールファクタylとを用いてADPCM符号化データの適応逆量子化処理を行うためのスケールファクタyを生成するための量子化スケールファクタユニット、および
    前記変化検出回路からの変化検出指示に応答して、前記低速スケールファクタylと所定のスケーリングファクタ2−aとを用いて前記高速スケールファクタyuを、
    yu=2−a・yl、ただし、aは6≦a≦18の自然数
    に置換する回路を備える、受信データ伸張装置。
  2. 伝送路を介してフレーム単位で与えられる圧縮符号化された受信圧縮符号化データにエラーが存在するか否かを示すエラー検出情報を入力するための入力ノード
    前記入力ノードからのエラー検出情報のエラー非検出指示に応答して活性化され、受信圧縮符号化データに伸張処理を施して伸張符号化データを生成する復号器、
    前記エラー検出情報のエラー非検出指示に応答して書込状態とされ、復号器からの伸張符号化データを記録しかつエラー検出情報のエラー検出指示に応答して読出状態とされて該記録した伸張符号化データを出力するメモリ回路、
    前記メモリ回路から読出された伸張符号化データと復号器から与えられる伸張符号化データとを受け、エラー検出情報のエラー非検出指示に応答して復号器からの伸張符号化データを選択して出力しかつエラー検出情報のエラー検出指示に応答してメモリ回路から読出された伸張符号化データを選択して出力する再生出力切換スイッチ、および
    前記エラー検出情報のエラー検出指示からエラー非検出指示への変化に応答して、予め定められた時間活性化され、前記再生出力切換スイッチの出力する伸張符号化データの絶対値を予め定められたクリップ値と比較し、該比較結果が伸張符号化データの絶対値がクリップ値よりも大きいことを示すとき、再生出力切換スイッチの出力するデータが示す符号を振幅値をクリップ値に置換する手段を備える、受信データ伸張装置。
  3. 前記エラー検出情報のエラー非検出指示に応答して活性化され、前記復号器の出力する伸張符号化データの所定時間内の最大振幅値を検出して各所定時間単位で保持し、かつ前記エラー検出情報のエラー検出指示からエラー非検出指示への変化に応答して該保持した最大振幅値を前記クリップ値として出力する手段をさらに備える、請求項記載の受信データ伸張装置。
  4. 伝送路を介してフレーム単位で伝達されるADPCM符号化データについて、フレーム単位で各フレーム内のADPCM符号化データにエラーが存在するか否かを示すエラー検出情報を入力するための入力ノード、
    前記伝送路を介して与えられるADPCM符号化データを受け、前記エラー検出情報がエラー非検出指示状態のときに活性化され、与えられたADPCM符号化データに伸張処理を施してPCM符号化データを生成し、かつ前記エラー検出情報のエラー検出指示状態のときにその伸張動作が停止され、伸張動作による内部状態がエラー検出情報がエラー非検出指示状態からエラー検出指示状態に変化する直前の状態に保持されるADPCM復号器、
    前記エラー検出情報の状態変化時に、前記ADPCM復号器の出力するPCM符号の不連続による雑音を抑制するための雑音抑制データを発生するための雑音抑制データ発生器、および
    前記ADPCM復号器および前記雑音抑制データ発生器に結合され、前記エラー検出情報のエラー検出指示に応答して前記雑音抑制データ発生器からの雑音抑制データを選択して出力しかつエラー検出情報のエラー非検出指示状態に応答して前記ADPCM復号器からのPCM符号を選択して出力する再生出力切換スイッチを備える、受信データ伸張装置。
JP1120597A 1997-01-24 1997-01-24 受信データ伸長装置 Expired - Fee Related JP3596841B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1120597A JP3596841B2 (ja) 1997-01-24 1997-01-24 受信データ伸長装置
KR1019970032660A KR100262721B1 (ko) 1997-01-24 1997-07-14 수신 데이터 신장장치
ES97112731T ES2140168T3 (es) 1997-01-24 1997-07-24 Expansor de datos de recepcion con reduccion de ruido al generarse error de datos de recepcion.
DK97112731T DK0856960T3 (da) 1997-01-24 1997-07-24 Modtagelsesdata-expander
DE69700620T DE69700620T2 (de) 1997-01-24 1997-07-24 Empfangsdatenexpander
EP97112731A EP0856960B1 (en) 1997-01-24 1997-07-24 Reception data expander
US08/924,503 US5925146A (en) 1997-01-24 1997-09-05 Reception data expander having noise reduced in generation of reception data error

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120597A JP3596841B2 (ja) 1997-01-24 1997-01-24 受信データ伸長装置

Publications (2)

Publication Number Publication Date
JPH10209977A JPH10209977A (ja) 1998-08-07
JP3596841B2 true JP3596841B2 (ja) 2004-12-02

Family

ID=11771521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120597A Expired - Fee Related JP3596841B2 (ja) 1997-01-24 1997-01-24 受信データ伸長装置

Country Status (7)

Country Link
US (1) US5925146A (ja)
EP (1) EP0856960B1 (ja)
JP (1) JP3596841B2 (ja)
KR (1) KR100262721B1 (ja)
DE (1) DE69700620T2 (ja)
DK (1) DK0856960T3 (ja)
ES (1) ES2140168T3 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6427219B1 (en) * 1998-06-24 2002-07-30 Conexant Systems, Inc. Method and apparatus for detecting and correcting errors using cyclic redundancy check
US6622275B2 (en) * 1998-09-12 2003-09-16 Qualcomm, Incorporated Method and apparatus supporting TDD/TTY modulation over vocoded channels
JP2000278142A (ja) * 1999-03-23 2000-10-06 Toshiba Video Products Japan Kk デジタルデータ記録再生装置
KR100601627B1 (ko) * 1999-11-26 2006-07-14 삼성전자주식회사 블루투스 베이스밴드에서 수신된 데이터 패킷의 디코딩장치 및 디코딩 방법
US6931124B1 (en) * 2000-01-13 2005-08-16 Acoustic Technology, Inc. Soft mute circuit
JP3881157B2 (ja) * 2000-05-23 2007-02-14 株式会社エヌ・ティ・ティ・ドコモ 音声処理方法及び音声処理装置
CN1205540C (zh) * 2000-12-29 2005-06-08 深圳赛意法微电子有限公司 含有解码器的电路、时分寻址的方法和一个微控制器
JP2002237803A (ja) * 2001-02-08 2002-08-23 Oki Electric Ind Co Ltd 受信回路
US7321559B2 (en) * 2002-06-28 2008-01-22 Lucent Technologies Inc System and method of noise reduction in receiving wireless transmission of packetized audio signals
JP3922979B2 (ja) * 2002-07-10 2007-05-30 松下電器産業株式会社 伝送路符号化方法、復号化方法、及び装置
JP4398323B2 (ja) * 2004-08-09 2010-01-13 ユニデン株式会社 デジタル無線通信装置
WO2006079348A1 (en) 2005-01-31 2006-08-03 Sonorit Aps Method for generating concealment frames in communication system
KR100736608B1 (ko) * 2005-05-31 2007-07-09 엘지전자 주식회사 오디오 출력 장치 및 오디오 출력 방법
JP4257862B2 (ja) 2006-10-06 2009-04-22 パナソニック株式会社 音声復号化装置
JP4915575B2 (ja) * 2007-05-28 2012-04-11 パナソニック株式会社 音声伝送システム
JP4915576B2 (ja) * 2007-05-28 2012-04-11 パナソニック株式会社 音声伝送システム
JP4915577B2 (ja) * 2007-05-28 2012-04-11 パナソニック株式会社 音声伝送システム
JP5053712B2 (ja) * 2007-05-29 2012-10-17 京セラ株式会社 無線端末および無線端末の音声再生方法
JP2009047914A (ja) * 2007-08-20 2009-03-05 Nec Corp 音声復号化装置、音声復号化方法、音声復号化プログラムおよびプログラム記録媒体
US8204753B2 (en) * 2007-08-23 2012-06-19 Texas Instruments Incorporated Stabilization and glitch minimization for CCITT recommendation G.726 speech CODEC during packet loss scenarios by regressor control and internal state updates of the decoding process
JP2009093056A (ja) * 2007-10-11 2009-04-30 Oki Semiconductor Co Ltd ディジタル音声通信方法及びディジタル音声通信装置
JP5256756B2 (ja) 2008-02-05 2013-08-07 パナソニック株式会社 Adpcm音声伝送システムの音声処理装置およびその音声処理方法
US20100138724A1 (en) * 2008-12-01 2010-06-03 Dsp Group Ltd. Adaptive error protection for wireless communications
AU2009353896B2 (en) * 2009-10-15 2013-05-23 Widex A/S Hearing aid with audio codec and method
US8468421B2 (en) * 2010-06-23 2013-06-18 International Business Machines Corporation Memory system for error checking fetch and store data
KR20130123713A (ko) * 2012-05-03 2013-11-13 현대모비스 주식회사 팝 노이즈 제거 방법
JP6379351B2 (ja) 2014-04-02 2018-08-29 パナソニックIpマネジメント株式会社 無線通信装置、無線通信装置の制御方法
US9934788B2 (en) * 2016-08-01 2018-04-03 Bose Corporation Reducing codec noise in acoustic devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7807171A (nl) * 1978-06-30 1980-01-03 Philips Nv Ontvanger voor digitale signalen in lijncode.
US5309443A (en) * 1992-06-04 1994-05-03 Motorola, Inc. Dynamic muting method for ADPCM coded speech
JPH05347594A (ja) * 1992-06-16 1993-12-27 Matsushita Electric Ind Co Ltd 伝送符号誤り補償装置
WO1996022637A1 (de) * 1995-01-20 1996-07-25 Siemens Aktiengesellschaft Signalverarbeitungsverfahren für ein blockweise codiertes audiosignal in einem audio-nachrichtenübertragungssystem

Also Published As

Publication number Publication date
US5925146A (en) 1999-07-20
DE69700620T2 (de) 2000-04-06
JPH10209977A (ja) 1998-08-07
KR100262721B1 (ko) 2000-08-01
KR19980069844A (ko) 1998-10-26
EP0856960A1 (en) 1998-08-05
DK0856960T3 (da) 2000-04-10
ES2140168T3 (es) 2000-02-16
EP0856960B1 (en) 1999-10-13
DE69700620D1 (de) 1999-11-18

Similar Documents

Publication Publication Date Title
JP3596841B2 (ja) 受信データ伸長装置
KR100563293B1 (ko) 음성 복호화에서 음성 프레임 오류 은폐를 위한 방법 및시스템
JPWO2005117366A1 (ja) 音声パケット再生方法、音声パケット再生装置、音声パケット再生プログラム、記録媒体
JPH0226898B2 (ja)
JP2001344905A (ja) データ再生装置、その方法及び記録媒体
JPH0927757A (ja) 消去中の音の復元の方法と装置
JP5235309B2 (ja) 音声再生装置および音声再生方法
JP2904083B2 (ja) 音声符号化切替えシステム
JP4572755B2 (ja) 復号化装置,復号化方法及びデジタル音声通信システム
JPH08211898A (ja) サブバンド・オーディオ信号合成装置
EP0798908B1 (en) Speech encoder/decoder with speech recording and reproduction functions
JP3436940B2 (ja) 無線通信装置
JP3649854B2 (ja) 音声符号化装置
JP3187953B2 (ja) 無線通信装置
JP3254460B2 (ja) Adpcm符号化音声復号化方法
JP3508850B2 (ja) 疑似背景雑音生成方法
JP3603469B2 (ja) 音声品質改善装置
JP3262941B2 (ja) サブバンド分割符号化オーディオ復号器
JP2640598B2 (ja) 音声復号装置
JPH09149104A (ja) 擬似背景雑音生成方法
JP2003099096A (ja) オーディオ復号処理装置及びこの装置に用いられる誤り補償装置
JP3200887B2 (ja) 音声波形復号化装置
JPH0969266A (ja) 音声補正方法及びその装置
JPH05113798A (ja) 音声復号方法
JPH0690207A (ja) Adpcm受信機

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees