JP3587797B2 - 薄膜磁気ヘッド - Google Patents

薄膜磁気ヘッド Download PDF

Info

Publication number
JP3587797B2
JP3587797B2 JP2001103346A JP2001103346A JP3587797B2 JP 3587797 B2 JP3587797 B2 JP 3587797B2 JP 2001103346 A JP2001103346 A JP 2001103346A JP 2001103346 A JP2001103346 A JP 2001103346A JP 3587797 B2 JP3587797 B2 JP 3587797B2
Authority
JP
Japan
Prior art keywords
layer
shield
shield layer
magnetic
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001103346A
Other languages
English (en)
Other versions
JP2002298313A (ja
Inventor
正路 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2001103346A priority Critical patent/JP3587797B2/ja
Priority to US10/109,193 priority patent/US6765768B2/en
Publication of JP2002298313A publication Critical patent/JP2002298313A/ja
Application granted granted Critical
Publication of JP3587797B2 publication Critical patent/JP3587797B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Heads (AREA)
  • Hall/Mr Elements (AREA)
  • Thin Magnetic Films (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、磁気検出素子の上下にギャップ層を介してシールド層が設けられた薄膜磁気ヘッドに係り、特に狭ギャップ化においても、シールドと磁気検出素子間の電気的絶縁性を十分に確保することができると共に、放熱性及び前記シールド層の軟磁気特性を良好にすることが可能な薄膜磁気ヘッドに関する。
【0002】
【従来の技術】
図8は、従来における薄膜磁気ヘッドを記録媒体との対向面側から見た部分断面図である。
【0003】
符号1は、例えばNiFe合金で形成された下部シールド層である。前記下部シールド層1上には、例えばAlで形成された下部ギャップ層2が形成されている。
【0004】
図8に示すように、前記下部ギャップ層2の上には磁気検出素子3が形成されている。前記磁気検出素子3は、多層膜4とトラック幅方向(図示X方向)の両側に形成されたハードバイアス層5と電極層6とで構成される。
【0005】
前記磁気検出素子3は、前記多層膜4が、例えば反強磁性層、固定磁性層、非磁性導電層及びフリー磁性層で形成されたスピンバルブ型薄膜素子である。
【0006】
図8に示すように、前記磁気検出素子3の上には、例えばAlなどで形成された上部ギャップ層7が形成され、前記上部ギャップ層7の上には、例えばNiFe合金で形成された上部シールド層8が形成されている。
【0007】
ところで今後の高記録密度化に伴い、シールド層1、8間の間隔(ギャップ長Gl)を狭くし、いわゆる狭ギャップ化を実現する必要性がある。前記狭ギャップ化には、上記した下部ギャップ層2及び上部ギャップ層7の膜厚を薄くする必要性がある。
【0008】
【発明が解決しようとする課題】
例えば記録密度が40Gbit/inから70Gbit/inに高くなるとシールド層1、8間のギャップ長Glを600Å程度までに小さくしなければならないと言われている。
【0009】
このとき、例えば磁気検出素子3の膜厚が200Å程度以上であると、下部ギャップ層2および上部ギャップ層7を共に200Å程度以下の薄い膜で形成しなければならなくなる。
【0010】
しかしながら、このように下部ギャップ層2および上部ギャップ層7を薄くしていくと、前記ギャップ層2、7にピンホールなどが発生しやすく、この結果、前記磁気検出素子3とシールド層1および8間の電気的な絶縁性が低下してしまう。
【0011】
前記磁気検出素子3を構成する電極層6と前記上部シールド層8間の絶縁性が低下すると、前記電極層6と上部シールド層8間で電気的短絡が発生しやすく、磁気検出素子3の再生出力の向上を妨げる原因となる。
【0012】
その一方で、今後の高記録密度化に伴い、磁気検出素子3からの発熱量が増加すると、前記磁気検出素子3から出る熱を適切にシールド層1、8にまで導く必要があり、すなわち前記ギャップ層2、7には良好な放熱性が要求される。
【0013】
またシールド層1、8は、余分な外部磁界(ノイズ)が前記磁気検出素子3に入らないように、前記外部磁界を吸収するためのシールド機能を備えている必要性があり、そのために前記シールド層1、8は軟磁気特性(ソフト性)が良好である必要性がある。
【0014】
そこで本発明は上記従来の問題を解決するためのものであり、特に狭ギャップ化においても、シールドと磁気検出素子間の電気的絶縁性を十分に確保することができると共に、放熱性及び前記シールド層の軟磁気特性を良好にすることが可能な薄膜磁気ヘッドを提供することを目的としている。
【0015】
【課題を解決するための手段】
本発明は、磁気検出素子と、前記磁気検出素子の上下にギャップ層を介して形成されたシールド層とを有する薄膜磁気ヘッドにおいて、
少なくとも一方の前記シールド層は前記磁気検出素子と逆面側から前記磁気検出素子側にかけて酸素含有量又は窒素含有量が徐々に大きくなる領域を有することを特徴とするものである。
【0016】
本発明では、前記シールド層は以下の磁性材料で形成される層を有することが好ましい。
組成式は、Fe (元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)で示され、組成比a、b、cは原子%で、50≦a≦70、5≦b≦30、10≦c≦30、a+b+c=100なる関係を満足する磁性材料。
または、組成式は(Co 1−g で示され、
TはFe,Niのうちどちらか一方あるいは両方を含む元素であり、Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素であり、Lは、Au,Ag,Cu,Ru,Rh,Os,Ir,Pt,Pdから選ばれる1種あるいは2種以上の元素であり、組成比を示すgは、0≦g≦0.7、x,y,z,wは原子%で、3≦y≦30、0≦z≦20、7≦w≦40、20≦y+z+w≦60の関係を満足し、残部はxである磁性材料。
または、組成式は、Fe (元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)で示され、組成比 d 、e、 f は原子%で、60≦d≦80、10≦e≦15、5≦f≦30、d+e+f=100となる関係を満足する磁性材料。
例えば本発明では、前記シールド層は2層構造であり、前記磁気検出素子と対向する側の第2シールド層に前記磁気検出素子と逆面側から前記磁気検出素子にかけて酸素含有量又は窒素含有量が徐々に大きくなる領域が形成されることが好ましい。
なお、前記第2シールド層は前述した磁性材料である、Fe 合金、(Co 1−g 合金、Fe 合金によって形成されることが好ましい。
【0017】
前記第2シールド層は、第1シールド層よりも比抵抗が高く、電気的絶縁性が良好である。従って電気的な絶縁は、前記ギャップ層と第2シールド層の双方の膜厚で確保することができるため、ギャップ層の膜厚が薄くなり狭ギャップ化が促進されても、従来より磁気検出素子と前記第1シールド層間の電気的な絶縁性を向上させることが可能である。
【0018】
また前記第2シールド層を、電気的な絶縁性を十分に確保できる程度の薄い膜厚で形成すれば、高記録密度化に伴って電流密度が増大することで前記磁気検出素子の素子温度が上昇してもその熱をギャップ層及び第2シールド層を介して適切に第1シールド層にまで逃すことができ、放熱性にも優れた薄膜磁気ヘッドを製造することが可能になる。
【0019】
また前記第2シールド層は、第1シールド層より比抵抗が高い例えば下記に例示する磁性材料で形成される。すなわち前記第2シールド層も磁性材料で形成されて、シールドとしての機能を有する層となっている。
【0020】
従って本発明では、ギャップ長Glは、あくまでも下部ギャップ層、磁気検出素子、および上部ギャップ層の総合膜厚で決定され、今後の高記録密度化における狭ギャップ化において、前記第2シールド層は、電気的な絶縁性の向上とともにシールド機能をも有する層となっている。
【0021】
また本発明では、前記第1シールド層と第2シールド層は接して形成されていることが好ましい。これにより前記第1シールド層と第2シールド層間は強磁性結合される。このため前記第2シールド層が単体で形成された場合に、前記第2シールド層の透磁率などの軟磁気特性(ソフト性)がさほど良好でなかったとしても、軟磁気特性に優れた第1シールド層と直接接合されることで、前記第2シールド層の軟磁気特性は第1シールド層の軟磁気特性に引きずられて、前記第2シールド層の軟磁気特性を向上させることができ、前記第2シールド層をシールド層として適切に機能させることができる。
【0022】
従って本発明では、前記第2シールド層には磁性材料で比抵抗の高い材質を用い、これによって電気的絶縁性の向上とともに、第2シールド層と第1シールド層の双方でシールド機能を発揮できる薄膜磁気ヘッドを製造することができる。
【0023】
また本発明では、前記第2シールド層と前記第2シールド層に隣接するギャップ層とを足した総合膜厚は、100Å以上で500Å以下であることが好ましい。これによって電気的絶縁性の向上とともに放熱性にも優れた薄膜磁気ヘッドを製造することができる。
【0024】
また前記総合膜厚は100Å以上で200Å以下であることがより好ましい。これにより記録密度が40Gbit/inから70Gbit/inの狭ギャップ化に対応することが可能になる。
【0025】
また本発明では、前記第2シールド層の膜厚は20Å以上で200Å以下であることが好ましい。
【0026】
また本発明では、前記第2シールド層の膜厚は20Å以上で100Å以下であることがより好ましい。
【0027】
また本発明では、前記第1シールド層の膜厚は5×10Å以上で3μm以下であることが好ましい。
【0028】
上記した第1シールド層及び第2シールド層の膜厚の設定により、電気的絶縁性の向上を図ることができると共に放熱性及び第2シールド層の軟磁気特性の向上を図ることが可能である。
【0038】
上記した本発明において好ましい磁性材料はいずれも比抵抗が非常に高く、例えば組成比によっては前記比抵抗を10μΩ・cm程度にまで大きくできる。従って上記した磁性材料を第2シールド層として用いれば、電気的絶縁性の向上を効果的に図ることが可能である。それと共に第2シールド層は第1シールド層との強磁性結合によりその軟磁気特性は向上し、前記第2シールド層を第1シールド層と共にシールド層として機能させることができる。なお本発明では、前記第2シールド層は上記した磁性材料に限られず、比抵抗が高い磁性材料であればいずれの磁性材料で形成されてもよい。
また、本発明は磁気検出素子と、前記磁気検出素子の上下にギャップ層を介して形成されたシールド層とを有する薄膜磁気ヘッドの製造方法において、
前記ギャップ層の下側のシールド層を形成するときには、Feから成るターゲットと、Feの酸化物から成るターゲットと元素Mの酸化物から成るターゲットをスパッタし、このときFeのターゲットに対する供給電力をFe酸化物及び元素Mの酸化物のターゲットに対する供給電力に比べて大きくする工程と、
徐々に、Fe酸化物及び元素M(元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)の酸化物のターゲットに対する供給電力を大きくしていき、磁気検出素子と近い位置における下部シールド層の酸素含有量を大きくする工程を有し、
前記ギャップ層の上側のシールド層を形成するときには、Fe酸化物及び元素Mの酸化物のターゲットに対する供給電力をFeのターゲットに対する供給電力より大きくする工程と、
徐々に、Feで形成されたターゲットの供給電力を徐々に上げていき、Fe組成比を大きくしていく工程を有することを特徴とするものである。
【0039】
【発明の実施の形態】
図1は本発明における第1実施形態の薄膜磁気ヘッドを記録媒体との対向面側から見た部分断面図である。
【0040】
図1に示す薄膜磁気ヘッドは、浮上式ヘッドを構成するスライダのトレーリング側端面に形成されたものであり、この薄膜磁気ヘッドは外部信号を読み取る再生ヘッド(MRヘッド)である。
【0041】
本発明では前記再生ヘッドの上に記録用のインダクティブヘッドが形成されていてもよい。前記インダクティブヘッドはコア層とコイル層とで構成される。図1に示す符号21は後述するように上部シールド層と呼ばれる層であるが、前記上部シールド層21は、前記インダクティブヘッドを構成する下部コア層と兼用されてもよい。あるいは前記下部コア層は前記上部シールド層21とは別に形成されてもよい。上部シールド層21と下部コア層が別々に形成されるときには、前記上部シールド層21と下部コア層間に絶縁層が形成される。
【0042】
図1に示す符号10は下部第1シールド層である。下部第1シールド層10は、NiFe合金(パーマロイ)、FeAlSi合金(センダスト)、CoFe合金、CoFeNi合金などの磁性材料で形成される。
【0043】
シールドとして良好に機能させるには、高透磁率、高飽和磁束密度、低保磁力などの良好な軟磁気特性を持つことが重要であるが、上記した磁性材料はいずれもこれら軟磁気特性を有するものとなっている。前記下部第1シールド層10は、透磁率が500であることが好ましい。また前記下部第1シールド層10の比抵抗は数十μΩ・cm程度と非常に低い。
【0044】
次に前記下部第1シールド層10の上には下部第2シールド層12が形成される。前記下部第2シールド層12は下部第1シールド層10よりも比抵抗の高い磁性材料で形成される。
【0045】
次に前記下部第2シールド層12の上には下部ギャップ層13が形成される。前記下部ギャップ層13は、AlやSiOなどの一般的な絶縁材料で形成される。
【0046】
次に前記下部ギャップ層13の上面には磁気検出素子14が形成される。この実施形態では、磁気検出素子14は図面中央に形成された多層膜15と、その両側(図示X方向)に形成されたハードバイアス層16と電極層17とからなる。前記多層膜15の部分は巨大磁気抵抗効果を利用したGMR構造や異方性磁気抵抗効果を利用したAMR構造、トンネル型磁気抵抗効果を利用したTMR構造などで形成される。なお前記多層膜15の具体的構造については後で詳述することとする。
【0047】
次に前記磁気検出素子14の上には、下部ギャップ層13と同じくAlやSiOなどの絶縁材料で形成された上部ギャップ層18が形成されている。
【0048】
次に前記上部ギャップ層18の上には、上部第2シールド層19が形成されている。前記上部第2シールド層19は、その上に形成される上部第1シールド層11よりも比抵抗の高い磁性材料で形成される。
【0049】
前記上部第1シールド層11は、下部第1シールド層10と同じくNiFe合金(パーマロイ)、FeAlSi合金(センダスト)、CoFe合金、CoFeNi合金などの磁性材料で形成される。
【0050】
次に本発明における薄膜磁気ヘッドを構成する第2シールド層12、19の機能について以下に説明する。図1に示すように本発明では、磁気検出素子14の下に下部ギャップ層13を介して形成された下部シールド層20は、下部第1シールド層10と下部第2シールド層12の2層構造で形成されている。
【0051】
同様に、磁気検出素子14の上に上部ギャップ層18を介して形成された上部シールド層21は、上部第1シールド層11と上部第2シールド層19の2層構造で形成される。
【0052】
そして下部第2シールド層12は下部第1シールド層10よりも比抵抗の高い磁性材料で形成され、同様に上部第2シールド層19は上部第1シールド層11よりも比抵抗の高い磁性材料で形成されている。
【0053】
今後、高記録密度化が進むと、磁気検出素子14、下部ギャップ層13及び上部ギャップ層18の総合膜厚で決定されるギャップ長G1を狭くする必要性があり、記録密度が40Gbit/inから70Gbit/inになると、前記ギャップ長Glを例えば600Å以下で形成しなければならなくなる。
【0054】
このように狭ギャップ化が進むと、下部ギャップ層13及び上部ギャップ層18を益々薄く形成する必要性があり、これによって前記ギャップ層13、18とシールド層20、21間の電気的な絶縁性の低下が問題となるが、本発明では、前記シールド層20、21に、前記ギャップ層13、18と対向する側に比抵抗の高い第2シールド層12、19を設けたことで、この第2シールド層12、19もギャップ層13、18とともに高い電気的な絶縁性を有する層となっている。
【0055】
従って図1に示す電極層17から多層膜15に流れる際のセンス電流が、磁気検出素子14とシールド層20、21間を短絡して分流ロスが発生する可能性を低減させることができる。
【0056】
しかも図1に示す第2シールド層12、19は磁性材料で形成されており、この第2シールド層12、19も第1シールド層10、11とともにシールド層として機能するものである。
【0057】
前記第2シールド層12、19を構成する具体的な磁性材料については後で詳述することとするが、前記第2シールド層12、19は、第1シールド層10、11よりも高い比抵抗を有することが必須条件であり、それ以外の特性、例えば透磁率などの軟磁気特性については、第2シールド層12、19が単体で形成されたとき、第1シールド層10、11より悪くてもよい。
【0058】
図1のように本発明では前記第1シールド層10,11と第2シールド層12、19とが直接接合されることが好ましく、これにより前記第1シールド層10,11と第2シールド層12、19間には強磁性結合が発生する。
【0059】
この強磁性結合によって前記第2シールド層12、19の軟磁気特性が単体では悪くても、前記第2シールド層12、19の軟磁気特性は、第1シールド層10,11の軟磁気特性に引きずられて、前記第2シールド層12、19の軟磁気特性を向上させることが可能である。
【0060】
従って本発明では、前記第2シールド層12、19は、ギャップ層13、18とともに電気的絶縁を確保するための層として機能すると共に、第1シールド層10,11とともにシールド機能をも発揮する層となっている。
【0061】
次に第1シールド層10,11及び第2シールド層12、19の膜厚などについて説明する。
【0062】
まず本発明では、前記第2シールド層12、19と前記第2シールド層12、19に隣接するギャップ層13、18との総合膜厚t5、t6は100Å以上で500Å以下であることが好ましい。
【0063】
本発明では、高記録密度化における狭ギャップ化により、前記ギャップ層13、18の膜厚が薄くなっても、前記第2シールド層12、19と前記ギャップ層13、18との総合膜厚t5、t6を上記数値範囲内に設定すれば、電気的絶縁性を従来に比べて向上させることができる。
【0064】
なお前記総合膜厚t5、t6が500Åよりも大きくなると電気的な絶縁性をさらに向上させることができるが、逆に放熱性が低下しやすくなり好ましくない。
【0065】
放熱性は、ギャップ層13、18及び第2シールド層12、19の熱伝導率に左右される。熱伝導率が高ければ放熱性は良好であるが、前記熱伝導率が低いと放熱性は低下する。
【0066】
ギャップ層13、18には、一般的にAlなどが使用されるが、Alなどの熱伝導率はさほど良くはない。また第2シールド層12、19に用いられる磁性材料は、後で説明するように、例えばFeMO合金などであるが、これら磁性材料は、アモルファス相の中に微結晶相が混在する膜構成となっている。
【0067】
熱伝導率の向上には結晶性が良好であることが好ましいが、このようにアモルファス相が混在していると熱伝導率は低下しやすい。従ってギャップ層13、18及び第2シールド層12、19は、さほど熱伝導率は良くなく、従ってギャップ層13、18及び第2シールド層12、19の総合膜厚t5、t6を厚くすると放熱性の低下が懸念される。したがって本発明では、前記総合膜厚t5、t6を500Å以下に設定している。
【0068】
また本発明では、前記総合膜厚t5、t6を100Å以上で200Å以下にすることができ、これにより記録密度が40Gbit/inから70Gbit/inの狭ギャップ化に適切に対応可能な薄膜磁気ヘッドを製造することができる。
【0069】
次に、前記第2シールド層12、19の膜厚t1、t2は20Å以上で200Å以下であることが好ましい。
【0070】
前記第2シールド層12、19の膜厚t1、t2が20Åよりも小さくなると、第2シールド層12,19の電気的な絶縁機能が急激に低下して磁気検出素子14と第1シールド層10、11間の電気的絶縁性を良好に確保することができなくなる。
【0071】
一方、第2シールド層12、19の膜厚t1、t2が、200Åよりも大きくなると、第2シールド層12、19の電気的な絶縁機能は良好であるが、薄膜磁気ヘッドの放熱性の悪化や、さらには前記第2シールド層12、19の軟磁気特性の低下によりシールド機能が低下して好ましくない。
【0072】
前記第2シールド層12、19の軟磁気特性は、第1シールド層10、11間との強磁性結合により向上するが、第2シールド層12、19が上記膜厚t1、t2よりも厚く形成されると、前記第2シールド層12、19全体の軟磁気特性を向上させることが困難になり、したがって第2シールド層12、19全体を適切にシールドとして機能させることができなくなる。
【0073】
よって本発明では前記第2シールド層12、19の膜厚t1、t2を20Å以上で200Å以下に設定した。
【0074】
なお前記第2シールド層12、19の膜厚t1、t2は20Å以上で100Å以下であることがより好ましい。かかる場合、特に第2シールド層12、19とギャップ層13、18との総合膜厚t5、t6を100Å以上で200Å以下に適切に設定することが可能になる。
【0075】
次に前記第1シールド層10、11の膜厚t3、t4は5×10Å以上で3μm以下であることが好ましい。
【0076】
前記第1シールド層10、11の膜厚t3、t4が5×10Åよりも小さいと前記第1シールド層10、11のシールド機能が低下して好ましくない。
【0077】
一方、シールド機能を向上させるには前記第1シールド層10、11の膜厚t3、t4は厚いことが好ましいが、前記第1シールド層10、11の膜厚t3、t4が3μmよりも大きくなると、表面粗さが大きくなり、前記第1シールド層10、11の上に形成される各層の形成が困難となり好ましくない。
【0078】
よって本発明では前記第1シールド層10、11の膜厚t3、t4を5×10以上で3μm以下に設定した。
【0079】
次に本発明では、(第2シールド層12、19の膜厚t1、t2)/(第1シールド層10、11の膜厚と第2シールド層12、19の総合膜厚)は、6.5×10−4〜4×10−2であることが好ましい。これによって第2シールド層12、19の電気的な絶縁性の向上を図ることができると共に、放熱性の向上及び第2シールド層12、19の軟磁気特性の向上を図ることが可能である。
【0080】
次に第2シールド層12、19の材質について以下に説明する。
本発明では、前記第2シールド層12、19は酸化物磁性材料で形成されることが好ましい。具体的には以下の磁性材料で形成されることが好ましい。
【0081】
(1)Mn−Zn系フェライトあるいはNi−Zn系フェライト
これら磁性材料は比抵抗が高いので電気的絶縁性を向上させることができると共に、第1シールド層10、11と第2シールド層12、19との強磁性結合により、前記第2シールド層12、19の軟磁気特性を適切に向上させることができ、前記第2シールド層12、19を第1シールド層10,11とともにシールド層として機能させることができる。
【0082】
(2)組成式は、Fe(元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)で示され、組成比a、b、cは原子%で、50≦a≦70、5≦b≦30、10≦c≦30、a+b+c=100なる関係を満足する。
【0083】
上記組成比で形成されたFeMO合金であれば比抵抗を400〜2×10μΩcmにできる。
【0084】
(3)組成式が、(Co1−g
ただし、TはFe,Niのうちどちらか一方あるいは両方を含む元素であり、Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素であり、Lは、Au,Ag,Cu,Ru,Rh,Os,Ir,Pt,Pdから選ばれる1種あるいは2種以上の元素であり、組成比を示すgは、0≦g≦0.7、x,y,z,wは原子%で、3≦y≦30、0≦z≦20、7≦w≦40、20≦y+z+w≦60の関係を満足し、残部はxである。
【0085】
上記組成比で形成された(CoT)MLO合金であれば、比抵抗を数千μΩcmにできる。
【0086】
あるいは前記第2シールド層12、19は酸化物磁性材料ではなく以下の磁性材料で形成されてもよい。
【0087】
(4)組成式は、Fe(元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)で示され、組成比d、e、fは原子%で、60≦d≦80、10≦e≦15、5≦f≦30、d+e+f=100となる関係を満足する。
【0088】
上記組成比で形成されたFeMN合金であれば比抵抗を400〜2×10μΩcmにできる。
【0089】
上記した(2)〜(4)の磁性膜は、いずれも元素Mの酸化物や窒化物を多量に含むアモルファス相に、Feを主体とする微結晶相、あるいは元素TとCoとを主体とする微結晶相が混在した膜構造を有し、前記アモルファス相の部分が高い比抵抗を有しているものと考えられる。
【0090】
なお本発明では、前記第2シールド層12及び19が、上記した磁性材料以外の材質で形成されてもかまわない。前記第2シールド層12及び19の比抵抗は具体的には1000μΩ・cm以上であることが好ましいので、そのような比抵抗を有する磁性材料を選択して前記第2シールド層12及び19に使用することが好ましい。
【0091】
次に前記第2シールド層12及び19の特性について以下に説明する。
前記第2シールド層12及び19は、比抵抗が1000μΩ・cm以上であることが好ましい。より好ましくは10μΩ・cm以上である。この程度の比抵抗を有することで、前記第2シールド層12及び19の電気的な絶縁機能を向上させることができ、今後の狭ギャップ化においても電気的絶縁性に優れた薄膜磁気ヘッドを製造することができる。
【0092】
また前記第2シールド層12及び19の透磁率μは、200以上であることが好ましい。なおこの数値は、第2シールド層12及び19が第1シールド層10、11と重ねられた状態での値である。
【0093】
すなわち第2シールド層12及び19が単体で形成されたときの、前記第2シールド層12及び19の透磁率μは上記の下限値よりも低くてもよいが、前記第1シールド層10、11と重ねられることで前記第1シールド層10、11との間に働く強磁性結合によって前記第2シールド層12及び19の透磁率を200〜2000程度にまで向上させることが可能になるのである。
【0094】
第1シールド層10、11と重ねられた状態での前記第2シールド層12及び19の透磁率を200以上に向上させることができることで、前記第2シールド層12及び19のシールド機能を適切に向上させることが可能である。
【0095】
次に、前記下部ギャップ層13及び上部ギャップ層18の好ましい材質について説明する。
【0096】
上記したように前記下部ギャップ層13及び上部ギャップ層18はAlやSiOなどの一般的な絶縁材料で形成されるが、これら絶縁材料は、熱伝導率がさほど良くはないので、前記ギャップ層13、18を絶縁性に優れ且つ熱伝導率が良好な絶縁材料で形成することが好ましい。前記ギャップ層13、18の熱伝導率の向上は、放熱性を良好にできる点で好ましい。
【0097】
具体的には前記ギャップ層13、18をAlN,Al−Si−N、Al−Si−O、SiC,DLC(ダイヤモンドライクカーボン),BN,MgO,SiAlON,AlON,Si,SiCO,SiN,SiON,SiCONのいずれか1種または2種以上の絶縁材料で形成することが好ましい。これら絶縁材料は、いずれも従来からギャップ層として使用されているAlなどの熱伝導率よりも高い熱伝導率を有している。
【0098】
次に第2シールド層12及び19の製造方法について説明する。
本発明では前記第2シールド層12及び19をスパッタ法で形成することが好ましい。スパッタ装置には、RF2極スパッタ装置、RF3極スパッタ装置、イオンビームスパッタ装置、または対向ターゲット式スパッタ装置などの既存の装置の使用が可能である。前記第2シールド層12及び19をスパッタ法により形成することで、第1シールド層10、11に比べて薄く形成される第2シールド層12及び19を上記した膜厚t1、t2の範囲内で適切に形成することができる。
【0099】
またスパッタ法以外に、前記第2シールド層12及び19を蒸着法やMBE(モレキュラー−ビーム−エピタキシー)法あるいはICB(イオン−クラスター−ビーム)法などで形成することも可能である。
【0100】
上記したスパッタ法では、上記した組成から成る例えばFeMOターゲットを用いて成膜を行う。かかる場合、第2シールド層12、19全体はほぼ均一な組成で形成されることになる。
【0101】
一方、例えばターゲットを複数用意して前記第2シールド層12、19を形成することも可能である。例えば、Feから成るターゲット、Feの酸化物から成るターゲット、および元素Mの酸化物から成るターゲットを用意する。
【0102】
これら各ターゲットに与えられる供給電力を変化させず一定にしてスパッタ成膜する場合には、前記第2シールド層12、19はほぼ均一な組成で形成されることになる。
【0103】
しかしこれら3つのターゲットに対する供給電力を変えながらスパッタ成膜することもできる。上部第2シールド層19をスパッタ成膜する際、例えば成膜初期段階では、Fe酸化物から成るターゲットと元素Mの酸化物から成るターゲットに対する供給電力を大きくしておき、成膜初期段階での膜中に含まれる酸素含有量を多くする。これにより成膜初期段階での上部第2シールド層19の比抵抗を十分に大きくすることができる。その後、徐々にFeターゲットの供給電力を上げていく。これにより上部第2シールド層19に含まれる酸素含有量は、磁気検出素子14から離れるにしたがって徐々に低下していくものの、逆にFe量は多くなっていく。
【0104】
このように複数のターゲットを用いてスパッタ成膜する際に各ターゲットに与えられる供給電力を変化させることで、磁気検出素子14から離れるにしたがって、第2シールド層12、19に含まれる酸素含有量が徐々に変化する、いわゆる組成変調を起させることもできる。
【0105】
前記第2シールド層12、19の電気的絶縁性は、特に下部ギャップ層13の下面側、および上部ギャップ層18の上面側で必要になるから、磁気検出素子14に近づくにつれて第2シールド層12、19の酸素含有量を徐々に大きくしていけば、前記第2シールド層12、19の比抵抗を磁気検出素子14に近づくにつれて大きくすることができ、これにより前記ギャップ層13、18と第2シールド層12、19とにおける電気的絶縁性を効果的に向上させることができると共に、前記第2シールド層12、19のFe含有量を、磁気検出素子14から離れるにしたがって徐々に大きくすることができるので、前記第2シールド層12、19の軟磁気特性を第1シールド層10、11に対向する側で良好にできる。第2シールド層12、19の軟磁気特性は第1シールド層10、11と強磁性結合することで前記第1シールド層10、11の軟磁気特性に引きずられて向上するが、前記第2シールド層12、19の成膜段階において、前記第2シールド層12、19の軟磁気特性を、第1シールド層10、11と対向する側で良好にしておけば、第1シールド層10、11との強磁性結合によって、前記第2シールド層12、19の軟磁気特性は、前記第1シールド層10、11の軟磁気特性に引きずられやすくなって前記第2シールド層12、19全体の軟磁気特性を良好に向上させることができる。
【0106】
またFe量が増えることで膜中の微結晶相が増えて、一方アモルファス相は減少していくものと考えられる。したがって磁気検出素子14から離れるにしたがって第2シールド層12、19内のFe含有量を多くしていけば前記第2シールド層12、19の放熱性を向上させることができると考えられる。
【0107】
次に本発明における他の薄膜磁気ヘッドの実施形態について以下に説明する。なお図1と同じ符号が付けられている層は図1と同じ層を示している。
【0108】
図2における第2実施形態は図1と下部シールド層20の構成が異なるのみで、それ以外の構成は図1と同じである。
【0109】
すなわち図1では前記下部シールド層20は下部第1シールド層10と前記下部第1シールド層10よりも比抵抗の高い下部第2シールド層12の2層構造であるのに対し、図2における下部シールド層は、図1における下部第1シールド層10の1層構造である。
【0110】
一方、図2における上部シールド層21は図1と同様に、上部第1シールド層11と前記上部第1シールド層11よりも比抵抗の高い上部第2シールド層19の2層構造で構成されている。
【0111】
図2に示す実施形態では、磁気検出素子14を構成する電極層17が、上部シールド層21に上部ギャップ層18を介して対向している。したがってこの実施形態の場合、特に電気的絶縁性は、電極層17と上部シールド層21間で適切に確保することが好ましい。
【0112】
従って図2に示すように、上部シールド層21を2層構造とし、電極層17上を上部ギャップ層18と上部第2シールド層19の2層構成で電気的絶縁性を確保するようにすることが好ましい。
【0113】
なお前記電極層17がハードバイアス層16の下に形成されるときは、下部シールド層20を図1のように2層構造にすることが好ましいことは言うまでもない。
【0114】
次に図3は本発明における第3実施形態の薄膜磁気ヘッドを記録媒体との対向面側から見た部分断面図である。
【0115】
この実施形態では、図2と異なり下部シールド層20のみが2層構造となっている。
【0116】
前記下部シールド層20を構成する下部第2シールド層12に上記した(2)〜(4)に示すFeMO系やFeMN系などの磁性材料、あるいはCoMN系の磁性材料を使用する場合には、成膜後に熱処理を施す必要がある。熱処理で微結晶相を析出させるためである。前記熱処理の温度は例えば400度以上と非常に高温である。
【0117】
従って、上部シールド層側を2層構造にし、上部第2シールド層19に上記の磁性材料を使用した場合には、熱処理によって、その下に形成されている磁気検出素子14に多大な悪影響を与えることが懸念される。
【0118】
このため特に高温の熱処理を必要とする磁性材料を第2シールド層として使用する場合には、下部シールド層20側のみを2層構造にし、上記した熱処理を施した後に、前記磁気検出素子14を形成することが好ましい。
【0119】
ただし、例えばCoMO系などの磁性材料は200度前後の熱処理を行えばよいので、このようにさほど高くない熱処理温度で処理が可能な磁性材料を使用する場合には、図1や図2のように上部シールド層21側を2層構造にしてもよい。
【0120】
次に図4は本発明における薄膜磁気ヘッドの第4実施形態における構造を記録媒体との対向面側から見た部分断面図である。なお図1と同じ符号が付けられている層は図1と同じ層を示している。
【0121】
図4における実施形態では、下部シールド層22及び上部シールド層23は1層構造である。したがって構造上、従来(図8を参照のこと)と変わるところはない。
【0122】
しかしこの実施形態では以下の点で従来とは異なっている。すなわち前記下部シールド層22及び上部シールド層23には、磁気検出素子14側に、前記磁気検出素子14と逆面側に比べて比抵抗が高い領域が設けられているのである。
【0123】
このように前記シールド層22、23の磁気検出素子14側の比抵抗を、磁気検出素子14と逆面側の比抵抗に比べて高くする方法は、例えば上記したスパッタ方法を用い、前記シールド層22、23に組成変調を起させることで達成することができる。
【0124】
例えば前記シールド層22、23を上記した(2)のFeMO合金で形成するとする。このとき例えばFeから成るターゲットと、Feの酸化物から成るターゲットと元素Mの酸化物から成るターゲットの3つを用意する。
【0125】
そして下部シールド層22をスパッタ成膜する場合、まず前記下部シールド層22を5×10Å以上で3μm以下の範囲までスパッタ成膜する段階では、Feから成るターゲットの供給電力を、Fe酸化物及び元素Mの酸化物のターゲットに対する供給電力に比べて大きくし、前記下部シールド層22のFe含有量を大きくする。この領域では酸素含有量が低いことで比抵抗はさほど高くなく一方、Fe含有量が大きいことで軟磁気特性に優れた領域となっている。
【0126】
またFe含有量が大きいことでこの領域内の微結晶相は多く、一方アモルファス相は少ないと考えられるので放熱性にも優れていると考えられる。
【0127】
次に徐々に、Fe酸化物及び元素Mの酸化物のターゲットに対する供給電力を大きくしていき、磁気検出素子14と近い位置における下部シールド層22の酸素含有量を大きくして比抵抗を向上させていく。この比抵抗の高い領域でのFeMOの組成比は上記した(2)に示す組成比の範囲内である。また(2)の組成比で形成された領域の膜厚を、20Å以上で200Å以下の範囲内に調整する。
【0128】
一方、上部シールド層23をスパッタ成膜するときは、まず成膜の初期段階では、Fe酸化物及び元素Mの酸化物のターゲットに対する供給電力を大きくしておき、磁気検出素子14に近い位置における上部シールド層23の酸素含有量を大きくして比抵抗を向上させておく。この比抵抗の高い領域でのFeMOの組成比は上記した(2)に示す組成比の範囲内である。また(2)の組成比で形成された領域の膜厚を、20Å以上で200Å以下の範囲内に調整する。
【0129】
次にFeで形成されたターゲットの供給電力を徐々に上げていき、前記上部シールド層23の残りの膜厚(5×10〜3μmÅ以下)内でのFe組成比を大きくして、前記上部シールド層23の軟磁気特性を向上させる。またFe含有量が大きいことでこの領域内の微結晶相は多く、一方アモルファス相は少ないと考えられるのでこの領域での放熱性は優れていると考えられる。
【0130】
上記のようにして形成された下部シールド層22及び上部シールド層23であれば、磁気検出素子14に近い側に比抵抗の大きい領域が形成されているから、この領域とギャップ層13、18とで薄膜磁気ヘッドの電気的な絶縁性を向上させることができると共に、磁気検出素子14から遠ざかるにつれて下部シールド層22及び上部シールド層23の軟磁気特性は向上しているので、前記シールド層22、23のシールド機能を効果的に確保することができる。また前記磁気検出素子14から遠い側の領域では、膜中に微結晶相が多く占め、放熱性も高いものと考えられる。
【0131】
なお前記下部シールド層22及び上部シールド層23を上記した(1)(3)(4)に示す磁性材料で形成できることは言うまでもないが、上記した(4)で示すFeMN合金の場合は、元素Nの組成比を適切に調整しながら、磁気検出素子14に近い側に、磁気検出素子14の逆面側に比べて比抵抗の高い領域を設けるようにする。
【0132】
また図4のように単層で形成され、且つ組成変調を起して磁気検出素子14に近い側に比抵抗の高い領域が設けられたシールド層は、少なくとも上部シールド層23及び下部シールド層22のどちらか一方に形成されていればよい。
【0133】
なお図4では下部シールド層22及び上部シールド層23全体がスパッタ成膜されることになるが、図1、2では、下部第2シールド層12及び上部第2シールド層19がスパッタ成膜され、下部第1シールド層10及び上部第1シールド層11はスパッタ成膜されてもよいし、あるいはメッキ形成されてもよい。
【0134】
次に磁気検出素子14を構成する多層膜15の構成について説明する。
図5は、本発明の一実施形態の磁気検出素子14の構成を記録媒体との対向面側から見た部分断面図である。
【0135】
図5に示す磁気検出素子14はシングルスピンバルブ型薄膜素子と呼ばれる構造である。
【0136】
図5に示す多層膜15は下から反強磁性層30、固定磁性層31、非磁性導電層32、フリー磁性層33の順で形成されている。
【0137】
前記反強磁性層30は例えばPtMn合金などで形成される。またこの実施形態では前記固定磁性層31が、磁性層34/非磁性中間層35/磁性層36の膜構成で形成された積層フェリ構造となっている。前記磁性層34は、NiFe合金、CoFeNi合金、CoFe合金、Coなどの磁性材料で形成される。また非磁性中間層35は、Ru、Rh、Ir、Cr、Re、Cuのうち1種あるいは2種以上の非磁性材料で形成される。
【0138】
積層フェリ構造では、磁性層34と磁性層36の磁気モーメント(飽和磁化Ms×膜厚t)が互いに異なるように調整され、磁性層34の磁化は例えば図示Y方向と逆方向に磁化され、反強磁性層30との間で発生する交換結合磁界によってピン止めされると、もう一方の磁性層36の磁化は、磁性層34との間で発生するRKKY相互作用による交換結合磁界によって、図示Y方向を向き前記磁性層34の磁化と反平行状態になってピン止めされる。
【0139】
またこの実施形態ではフリー磁性層33も固定磁性層31と同じように積層フェリ構造となっている。前記フリー磁性層33は例えば磁性層37/非磁性中間層38/磁性層39の3層構造である。
【0140】
前記磁性層37及び39は互いに異なる磁気モーメントを有している。図5に示すように前記磁性層37のトラック幅方向(図示X方向)の両側にはCoPtなどで形成されたハードバイアス層40が形成され、前記ハードバイアス層40からの縦バイアス磁界の影響を受けて前記磁性層37の磁化が図示X方向と逆方向に向くと、前記磁性層39の磁化は、前記磁性層37との間で発生するRKKY相互作用における交換結合磁界によって図示X方向を向き、前記磁性層37の磁化と反平行状態にされる。
【0141】
図5に示すように、前記ハードバイアス層40の下には例えばCrなどで形成された配向膜41が形成されており、また前記ハードバイアス層40の上にはW(タングステン)やCuなどで形成された電極層42が形成されている。
【0142】
なおこの図5に示す磁気検出素子14では、多層膜15の順番が下から反強磁性層30、固定磁性層31、非磁性中間層32、およびフリー磁性層33となっているが、これが逆の順番であってもよい。
【0143】
また固定磁性層31及び/またはフリー磁性層33は積層フェリ構造である必要はなく、例えば磁性材料の単層構造あるいは多層構造であってもよい。
【0144】
また電極層42は、ハードバイアス層40の上に形成されているが、前記多層膜15の両側に下から電極層42、ハードバイアス層40の順に積層形成されていてもよい。
【0145】
図6は本発明における別の実施形態の磁気検出素子14の構造を記録媒体との対向面側から見た部分断面図である。
【0146】
図6に示す磁気検出素子14の構造はトンネル型磁気抵抗効果型素子と呼ばれる構造である。図5との違いは、図5における非磁性導電層32はCuなどの非磁性導電材料で形成されていたが、図6では固定磁性層31とフリー磁性層33との間にAlやSiOなどの絶縁材料で形成された中間層43が形成さている。
【0147】
また図6に示す磁気検出素子14では、前記多層膜15の上下に電極層44、44が形成されている。トンネル型磁気抵抗効果型素子では、2つの磁性層(ここでは固定磁性層31とフリー磁性層33)に電圧を印加すると、中間層43を電流(トンネル電流)が流れ、トンネル効果が発揮される。
【0148】
前記トンネル型磁気抵抗効果型素子は、このトンネル効果の原理を利用して記録媒体からの洩れ磁界を検出するものである。
【0149】
この実施形態でも図5と同様に多層膜15のトラック幅方向の両側にはハードバイアス層40が形成されているが、前記ハードバイアス層40と電極層44間には絶縁層45、45が形成されており、前記絶縁層45により前記電極層44からのセンス電流が前記ハードバイアス層40に分流しないようになっている。
【0150】
なお図6と同じ構造ではあって、中間層43の部分が図5と同じ非磁性導電層32で形成されたCPP型のスピンバルブ型薄膜素子というものがある。かかる磁気検出素子でも本発明を適用できる。
【0151】
なお図6のように多層膜15の上下に電極層44、44が形成された実施形態では、図1のように下部シールド層20及び上部シールド層21の双方を2層構造にし、磁気検出素子14と近い側に比抵抗の高い下部第2シールド層12及び上部第2シールド層19を設けることが電気的絶縁性を向上させる上で好ましい。
【0152】
図7は、本発明における他の実施形態の磁気検出素子14の構造を記録媒体との対向面側から見た部分断面図である。
【0153】
図7に示す実施形態では、フリー磁性層33の上下に非磁性導電層32、32、固定磁性層31、31、および反強磁性層30、30が1層づつ形成された、いわゆるデュアルスピンバルブ型薄膜素子と呼ばれる構造である。
【0154】
この実施形態では、前記フリー磁性層33は、CoFe合金やCoなどで形成された磁性層46、46、およびNiFe合金などで形成された磁性層47の3層構造である。前記磁性層46は、前記非磁性導電層32と前記磁性層47間で金属元素が拡散することを防止するための拡散防止層であり、抵抗変化量(ΔR)及び抵抗変化率(ΔR/R)の向上を図ることができる。なお前記フリー磁性層33は、図5と同じように積層フェリ構造で形成されていてもよい。
【0155】
この実施形態でも前記多層膜15のトラック幅方向における両側には、下からCrなどの配向膜41、ハードバイアス層40、および電極層42が形成されている。
【0156】
なお図7に示す多層膜15を利用して、前記多層膜15の上下に電極層42、42が形成されたCPP(current perpendicular to the plane)型のデュアル型スピンバルブ型薄膜素子においても本発明を適用でき、また多層膜15の非磁性導電層32を絶縁層の中間層43に代えて前記多層膜15の上下に電極層42、42が形成されたデュアル型のトンネル型磁気抵抗効果型素子においても本発明を適用できる。
【0157】
また図5ないし図7以外の磁気検出素子の構造としては、NiFe合金などで形成された磁気抵抗層(MR層)と、Taなどで形成されたシャント層と、NiFe合金などで形成されたSAL層との3層で形成された異方性磁気抵抗効果を用いたAMR型磁気抵抗効果素子であってもよい。
【0158】
【発明の効果】
以上詳述した本発明によれば、磁気抵抗効果素子にギャップ層を介して形成され、少なくとも一方のシールド層の磁気検出素子側には、前記磁気検出素子と逆面側に比べて比抵抗が高い領域が設けられている。
【0159】
具体的な構造としては、前記シールド層は2層構造であり、前記磁気検出素子と対向する側の第2シールド層は、他方の第1シールド層に比べて比抵抗が高くなっている。
【0160】
従って電気的な絶縁は、前記ギャップ層と第2シールド層の双方の膜厚で確保することができるため、ギャップ層の膜厚が薄くなり狭ギャップ化が促進されても、従来より磁気検出素子と前記第1シールド層間の電気的な絶縁性を向上させることが可能である。
【0161】
また前記第2シールド層を、電気的な絶縁性を十分に確保できる程度の薄い膜厚で形成すれば、高記録密度化に伴って電流密度が増大することで前記磁気検出素子の素子温度が上昇してもその熱をギャップ層及び第2シールド層を介して適切に第1シールド層にまで逃すことができ、放熱性にも優れた薄膜磁気ヘッドを製造することが可能になる。
【0162】
また前記第2シールド層は、第1シールド層より比抵抗が高い磁性材料で形成されており、軟磁気特性に優れる第1シールド層との強磁性結合により、前記第2シールド層の軟磁気特性を向上させることができ、前記第2シールド層を第1シールド層とともにシールド層として適切に機能させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の薄膜磁気ヘッドの構造を記録媒体との対向面側から見た部分断面図、
【図2】本発明の第2実施形態の薄膜磁気ヘッドの構造を記録媒体との対向面側から見た部分断面図、
【図3】本発明の第3実施形態の薄膜磁気ヘッドの構造を記録媒体との対向面側から見た部分断面図、
【図4】本発明の第4実施形態の薄膜磁気ヘッドの構造を記録媒体との対向面側から見た部分断面図、
【図5】本発明の一実施形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図6】本発明の別の実施形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図7】本発明の別の実施形態の磁気検出素子の構造を記録媒体との対向面側から見た部分断面図、
【図8】従来の薄膜磁気ヘッドの構造を記録媒体との対向面側から見た部分断面図、
【符号の説明】
10 下部第1シールド層
11 上部第1シールド層
12 下部第2シールド層
13 下部ギャップ層
14 磁気検出素子
15 多層膜
17 電極層
18 上部ギャップ層
19 上部第2シールド層
20、22 下部シールド層
21、23 上部シールド層

Claims (13)

  1. 磁気検出素子と、前記磁気検出素子の上下にギャップ層を介して形成されたシールド層とを有する薄膜磁気ヘッドにおいて、
    少なくとも一方の前記シールド層は前記磁気検出素子と逆面側から前記磁気検出素子側にかけて酸素含有量又は窒素含有量が徐々に大きくなる領域を有することを特徴とする薄膜磁気ヘッド。
  2. 前記シールド層は以下の磁性材料で形成される層を有する請求項1記載の薄膜磁気ヘッド。
    組成式は、Fe(元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)で示され、組成比a、b、cは原子%で、50≦a≦70、5≦b≦30、10≦c≦30、a+b+c=100なる関係を満足する。
  3. 前記シールド層は、以下の磁性材料で形成される層を有する請求項1記載の薄膜磁気ヘッド。
    (Co1−g
    ただし、TはFe,Niのうちどちらか一方あるいは両方を含む元素であり、Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素であり、Lは、Au,Ag,Cu,Ru,Rh,Os,Ir,Pt,Pdから選ばれる1種あるいは2種以上の元素であり、組成比を示すgは、0≦g≦0.7、x,y,z,wは原子%で、3≦y≦30、0≦z≦20、7≦w≦40、20≦y+z+w≦60の関係を満足し、残部はxである。
  4. 前記シールド層は、以下の磁性材料で形成される層を有する請求項1に記載の薄膜磁気ヘッド。
    組成式は、Fe(元素Mは、Ti,Zr,Hf,Nb,Ta,Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)で示され、組成比d、e、fは原子%で、60≦d≦80、10≦e≦15、5≦f≦30、d+e+f=100となる関係を満足する。
  5. 前記シールド層は2層構造であり、前記磁気検出素子と対向する側の第2シールド層に前記磁気検出素子と逆面側から前記磁気検出素子にかけて酸素含有量又は窒素含有量が徐々に大きくなる領域が形成されている請求項1ないし4のいずれかに記載の薄膜磁気ヘッド。
  6. 前記第2シールド層が前記磁性材料によって形成されている請求項5記載の薄膜磁気ヘッド。
  7. 前記第1のシールド層と第2のシールド層は接して形成されている請求項5または6に記載の薄膜磁気ヘッド。
  8. 前記第2シールド層と前記第2シールド層に隣接するギャップ層とを足した総合膜厚は、100Å以上で500Å以下である請求項5ないし7のいずれかに記載の薄膜磁気ヘッド。
  9. 前記総合膜厚は100Å以上で200Å以下である請求項記載の薄膜磁気ヘッド。
  10. 前記第2シールド層の膜厚は20Å以上で200Å以下である請求項8または9記載の薄膜磁気ヘッド。
  11. 前記第2シールド層の膜厚は20Å以上で100Å以下である請求項10記載の薄膜磁気ヘッド。
  12. 前記第1シールド層の膜厚は5×10Å以上で3μm以下である請求項5ないし11のいずれかに記載の薄膜磁気ヘッド。
  13. 磁気検出素子と、前記磁気検出素子の上下にギャップ層を介して形成されたシールド層とを有する薄膜磁気ヘッドの製造方法において、
    前記ギャップ層の下側のシールド層を形成するときには、Feから成るターゲットと、Feの酸化物から成るターゲットと元素M(元素Mは、Ti,Zr,Hf,Nb,Ta, Cr,Mo,Si,P,C,W,B,Al,Ga,Geと希土類元素から選ばれる1種または2種以上の元素)の酸化物から成るターゲットをスパッタし、このときFeのターゲットに対する供給電力をFe酸化物及び元素Mの酸化物のターゲットに対する供給電力に比べて大きくする工程と、
    徐々に、Fe酸化物及び元素Mの酸化物のターゲットに対する供給電力を大きくしていき、磁気検出素子と近い位置における下部シールド層の酸素含有量を大きくする工程を有し、
    前記ギャップ層の上側のシールド層を形成するときには、Fe酸化物及び元素Mの酸化物のターゲットに対する供給電力をFeのターゲットに対する供給電力より大きくする工程と、
    徐々に、Feで形成されたターゲットの供給電力を徐々に上げていき、Fe組成比を大きくしていく工程を有することを特徴とする磁気検出素子の製造方法。
JP2001103346A 2001-04-02 2001-04-02 薄膜磁気ヘッド Expired - Fee Related JP3587797B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001103346A JP3587797B2 (ja) 2001-04-02 2001-04-02 薄膜磁気ヘッド
US10/109,193 US6765768B2 (en) 2001-04-02 2002-03-28 Thin-film magnetic head having ensured insulation between shield and magnetic detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001103346A JP3587797B2 (ja) 2001-04-02 2001-04-02 薄膜磁気ヘッド

Publications (2)

Publication Number Publication Date
JP2002298313A JP2002298313A (ja) 2002-10-11
JP3587797B2 true JP3587797B2 (ja) 2004-11-10

Family

ID=18956417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001103346A Expired - Fee Related JP3587797B2 (ja) 2001-04-02 2001-04-02 薄膜磁気ヘッド

Country Status (2)

Country Link
US (1) US6765768B2 (ja)
JP (1) JP3587797B2 (ja)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587792B2 (ja) * 2001-03-15 2004-11-10 アルプス電気株式会社 磁気検出素子及びその製造方法
US7035062B1 (en) * 2001-11-29 2006-04-25 Seagate Technology Llc Structure to achieve sensitivity and linear density in tunneling GMR heads using orthogonal magnetic alignments
JP2004005763A (ja) * 2002-04-10 2004-01-08 Tdk Corp 薄膜磁気ヘッドおよびその製造方法ならびに磁気ディスク装置
US7196882B2 (en) * 2002-07-23 2007-03-27 Micron Technology, Inc. Magnetic tunnel junction device and its method of fabrication
JP4065787B2 (ja) * 2002-08-30 2008-03-26 株式会社日立グローバルストレージテクノロジーズ 磁気ヘッドおよび磁気記録再生装置
US7016166B1 (en) * 2002-10-10 2006-03-21 Seagate Technology Llc Mag-tab design for biasing magnetic sensors
US7116526B2 (en) * 2002-11-22 2006-10-03 International Business Machines Corporation Lead overlay sensor with improved current path
US7050272B1 (en) * 2002-12-30 2006-05-23 Storage Technology Corporation Reduction of contact noise in single-ended magnetoresistive read elements
US6995957B2 (en) * 2003-03-18 2006-02-07 Hitachi Global Storage Technologies Netherland B.V. Magnetoresistive sensor having a high resistance soft magnetic layer between sensor stack and shield
US7064934B2 (en) * 2003-06-12 2006-06-20 Seagate Technology Llc Magnetoresistive sensor with reduced operating temperature
US7075758B2 (en) * 2003-09-08 2006-07-11 Headway Technologies, Inc. Supplementary shield for CPP GMR read head
US7236333B2 (en) * 2003-12-11 2007-06-26 Seagate Technology Llc Domain wall free shields of MR sensors
JP4482667B2 (ja) 2004-09-13 2010-06-16 独立行政法人産業技術総合研究所 冷却効果を持つ配線構造
US7382589B2 (en) * 2004-11-18 2008-06-03 Headway Technologies, Inc. CPP with elongated pinned layer
JP2007142257A (ja) * 2005-11-21 2007-06-07 Alps Electric Co Ltd 磁気検出素子
JP4705478B2 (ja) * 2006-01-19 2011-06-22 ヒタチグローバルストレージテクノロジーズネザーランドビーブイ 磁気ヘッド
US20080088983A1 (en) * 2006-10-11 2008-04-17 Gereon Meyer Damping control in magnetic nano-elements using ultrathin damping layer
US20080112095A1 (en) * 2006-11-15 2008-05-15 Hitachi Global Storage Technologies Netherlands B.V. Dual current-perpendicular-to-the-plane (cpp) magnetoresistive sensor with heusler alloy free layer and minimal current-induced noise
US8286333B2 (en) * 2008-03-19 2012-10-16 Seagate Technology Llc Method of manufacturing a magnetic head
US8208228B2 (en) * 2009-09-23 2012-06-26 Hitachi Global Storage Technologies Netherlands B.V. Current-perpendicular-to-the-plane (CPP) magnetoresistive read head with multiple sensing elements for patterned-media
JP5132706B2 (ja) * 2010-03-31 2013-01-30 株式会社東芝 磁気ヘッド、磁気ヘッドアセンブリおよび磁気記録再生装置
JP6067306B2 (ja) * 2011-10-11 2017-01-25 日本碍子株式会社 被膜部材の製造方法
KR101952359B1 (ko) * 2014-09-29 2019-02-26 엘지이노텍 주식회사 복합자성시트 및 이를 포함하는 무선충전모듈
CN108806527A (zh) * 2018-08-10 2018-11-13 深圳市艾比森光电股份有限公司 Led显示屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04298810A (ja) * 1991-03-27 1992-10-22 Fujitsu Ltd 磁気抵抗効果型ヘッド
JPH09138918A (ja) * 1995-09-13 1997-05-27 Toshiba Corp 磁気抵抗効果型ヘッド
SG68063A1 (en) * 1997-07-18 1999-10-19 Hitachi Ltd Magnetoresistive effect type reproducing head and magnetic disk apparatus equipped with the reproducing head
JP3155234B2 (ja) 1997-09-17 2001-04-09 アルプス電気株式会社 薄膜磁気ヘッドおよびその製造方法
JP2000048327A (ja) 1998-07-31 2000-02-18 Alps Electric Co Ltd 薄膜磁気ヘッド
EP1187103A3 (en) * 2000-08-04 2003-01-08 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element
JP3920053B2 (ja) * 2001-05-01 2007-05-30 アルプス電気株式会社 磁気検出素子の製造方法

Also Published As

Publication number Publication date
US20020141119A1 (en) 2002-10-03
US6765768B2 (en) 2004-07-20
JP2002298313A (ja) 2002-10-11

Similar Documents

Publication Publication Date Title
JP3587797B2 (ja) 薄膜磁気ヘッド
JP3291208B2 (ja) 磁気抵抗効果型センサおよびその製造方法とそのセンサを備えた磁気ヘッド
JP3958947B2 (ja) 磁気検出素子及びその製造方法
US6980403B2 (en) Magnetic sensing element with side shield layers
JP3563375B2 (ja) 磁気検出素子及び前記磁気検出素子を用いた薄膜磁気ヘッド
US7023670B2 (en) Magnetic sensing element with in-stack biasing using ferromagnetic sublayers
US8107201B2 (en) Hard bias design for extra high density recording
KR100690492B1 (ko) 자기 저항 효과 소자, 자기 헤드, 및 자기 기억 장치
JPH1011723A (ja) 磁気抵抗効果型トランスデューサ、その製造方法及び磁気記録装置
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
US20120161263A1 (en) Current perpendicular to plane (CPP) magnetoresistive sensor having dual composition hard bias layer
JP2008060202A (ja) Cpp構造の磁気抵抗効果素子の製造方法。
US7054115B2 (en) Spin-valve thin-film magnetic element and method for making the same
US7045224B2 (en) Magnetic detecting element having antiferromagnetic film having predetermined space in track width direction and method for manufacturing the same
JP2003338644A (ja) 磁気検出素子及びその製造方法
US7092218B2 (en) Magnetic head comprising magnetic domain control layer formed on ABS-side of magnetic flux guide for GMR element and method of manufacturing the magnetic head
US6643107B1 (en) Spin valve thin film magnetic element and method of manufacturing the same
JP3774388B2 (ja) 磁気検出素子
JP3836294B2 (ja) 磁気ヘッド、及びこれを用いた磁気記録再生装置
US7218485B2 (en) GMR element having fixed magnetic layer provided on side surface of free magnetic layer
JP3137598B2 (ja) 磁気抵抗効果素子、磁気変換素子および反強磁性膜
US6586121B2 (en) Spin-valve thin-film magnetic element
JP3774375B2 (ja) 磁気検出素子及びその製造方法、ならびに前記磁気検出素子を用いた薄膜磁気ヘッド
JP2001052315A (ja) スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
JP3939519B2 (ja) 磁気検出素子及びその製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees