JP3576644B2 - 情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法 - Google Patents
情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法 Download PDFInfo
- Publication number
- JP3576644B2 JP3576644B2 JP17549095A JP17549095A JP3576644B2 JP 3576644 B2 JP3576644 B2 JP 3576644B2 JP 17549095 A JP17549095 A JP 17549095A JP 17549095 A JP17549095 A JP 17549095A JP 3576644 B2 JP3576644 B2 JP 3576644B2
- Authority
- JP
- Japan
- Prior art keywords
- probe
- recording
- recording medium
- voltage
- wiring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/12—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
- G11B9/14—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B9/00—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor
- G11B9/12—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor
- G11B9/14—Recording or reproducing using a method not covered by one of the main groups G11B3/00 - G11B7/00; Record carriers therefor using near-field interactions; Record carriers therefor using microscopic probe means, i.e. recording or reproducing by means directly associated with the tip of a microscopic electrical probe as used in Scanning Tunneling Microscopy [STM] or Atomic Force Microscopy [AFM] for inducing physical or electrical perturbations in a recording medium; Record carriers or media specially adapted for such transducing of information
- G11B9/1409—Heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q60/00—Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
- G01Q60/10—STM [Scanning Tunnelling Microscopy] or apparatus therefor, e.g. STM probes
- G01Q60/16—Probes, their manufacture, or their related instrumentation, e.g. holders
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q70/00—General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
- G01Q70/06—Probe tip arrays
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01Q—SCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
- G01Q80/00—Applications, other than SPM, of scanning-probe techniques
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B19/00—Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
- G11B19/02—Control of operating function, e.g. switching from recording to reproducing
- G11B19/04—Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/86—Scanning probe structure
- Y10S977/875—Scanning probe structure with tip detail
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Microscoopes, Condenser (AREA)
- Measuring Leads Or Probes (AREA)
Description
【0001】
【産業上の利用分野】
本発明は記録媒体にプローブを対向させて電圧を印加し、記録を行う情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法に関するものである。
【0002】
【従来の技術】
近年、ナノメートル以下の分解能で導電性物質表面を観察可能な走査型トンネネル顕微鏡(以下STMと略す)が開発され(米国特許第4343993号明細書)、金属・半導体表面の原子配列、有機分子の配向等の観察が原子・分子スケールでなされている。また、STM技術を発展させ、絶縁物質等の表面をSTMと同様の分解能で観察可能な原子間力顕微鏡(以下AFMと略す)も開発された(米国特許第4724318号明細書)。
このSTMの原理を応用し、試料の代わりに記録媒体を用い、STM構成でトンネル電流を一定にするように記録媒体−探針間隔をフィードバック制御しながら、記録媒体に探針をアクセスし、記録媒体−探針間に電圧を印加し、原子・分子のスケールのビットサイズの記録再生を行うことにより、高密度メモリーを実現するという提案がなされている(米国特許第4575822号明細書、特開昭63−161552号公報、特開昭63−161553号公報)。
さらに、STMとAFMとを組み合わせた構成で、導電性を有する弾性体プローブを用い、プロープ先端の探針を記録媒体に対し接触させた状態で走査を行い、記録再生を行うという提案もなされている(特開平01−245445号公報、特開平03−194124号公報)。
このような、従来における接触走査方式では、基本的に弾性体プローブの弾性変形を利用して、記録媒体表面に沿ってプローブをならうように走査させるため、記録媒体に局所的欠陥や厚さむらがあったりすると、記録再生時に電流が流れすぎて発生する熱等により、探針や媒体が破壊する場合があった。
このため、記録再生の回路中に電流制限抵抗を挿入しその電流値を一定に制限するという提案がなされている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述のような電流制限抵抗を記録再生回路中に単に挿入したのでは、記録速度が低下してしまうという問題点が生じる。
これを図11〜13を用いて以下に説明する。
図11は、接触走査方式の記録再生装置の概念図である。
図において、1301は記録媒体、1302は記録媒体に接触した状態で記録再生を行う弾性体からなるプローブ、1303はプローブ先端に設けられた導電性探針、1304は記録再生信号印加および取り出しのための配線である。
また、記録信号印加手段1305から電流制限抵抗RL1306、プローブ1302上の配線1304、探針1303を経て、記録信号が記録媒体1301に印加される。
実際の装置構成では、プローブが記録媒体に対し、近接しているので、プローブ上の配線や探針と記録媒体との間に浮遊容量と呼ばれるある大きさの静電容量Csが存在する。
一方、探針と記録媒体との間には、接触抵抗、探針−記録媒体間にわずかに(=ナノメートルオーダー)存在する空間のトンネル抵抗、記録媒体自身の膜抵抗等からなるギャップ抵抗RGが存在する。
【0004】
これらの関係を表す等価回路を図13に示す。
記録信号パルスの角振動数をω(ω=2πf:fは記録信号パルスの振動数)とすると、浮遊容量Csl503によるインピーダンス1/ωCsは、電流制限抵抗RLより小さくなる。
実際の装置における典型値としては、浮遊容量Cs〜1[pF]、記録信号パルスの周波数f=100[kHz]程度であるからω〜6×105[rad/s]、1/ωCs〜1.7[MΩ]となる。ギャップ抵抗RGおよび電流制限抵抗RLの値の典型値は、それぞれRG=1〜1000[GΩ]、RL〜10[MΩ]である。
1/ωCs<<RGであるから、パルス印加電圧VPはRLと1/ωCs、RGとの間でほぼRL:1/ωCsの比に分圧されると考えられる。記録信号電圧VPを印加した際に、実際に記録媒体に加わる電圧VGは、VG=(1/ωCs)・VP/(1/ωCs+RL)〜0.14VPとなり、VPに比べ、小さい値となる。
これはωが大きく、すなわち高周波記録信号ではより顕著となる。
この場合の記録用印加電圧波形VPと実際に記録媒体に加わる電圧VGの波形の比較を図12に示す。
図において、記録媒体に加わる電圧波形VGは、記録用印加電圧波形VPに比べ、ピーク値が小さく、しかも時間的になまったものとなっていることを示している。
【0005】
以上のような状態では、記録用信号VPを印加しても、記録媒体に加わる電圧は記録のしきい値を越えず、記録が行われない。
しかも、時間的になまってしまうため、連続に記録用信号パルスを印加することができず、記録速度が低下してしまう。
【0006】
そこで、本発明は上記問題を解決し、信頼性が高く、記録速度を低下させることなく記録が可能な情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するため、電流制限抵抗をプローブにおける探針の一部と前記配線との間または該探針近傍の前記配線中に配置するか、或はそれを基板と該記録層との間、又は該記録層中に配置するか、又はパルス印加回路系の浮遊容量を低減する等の手段により、記録用パルス印加回路系の周波数特性の向上を図り、記録することを可能としたものである。
すなわち、本発明は第1に、記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録装置のプローブにおいて、該プローブが導電性を有する先端の尖鋭な探針と、該探針に接続され該探針に記録のためのパルス電圧を印加するための配線とを有し、該探針と前記配線との接続部における該探針の一部と前記配線との間、または該探針近傍の前記配線中に、記録時に印加する電圧によって該探針と前記記録媒体間に流れる電流値が過大となることを制限する電流制限抵抗を有していることを特徴としている。
第2に、記録媒体に、先端の尖鋭な探針と該探針に記録のためのパルス電圧を印加するための配線とを有するプローブを対向させて、電圧を印加し記録を行う情報記録装置の記録媒体において、該記録媒体が導電性を有する基板と該基板上の記録層とで構成され、該基板と該記録層との間、又は該記録層中に、記録時に印加する電圧によって該探針と該記録媒体間に流れる電流値が過大となることを制限する電流制限抵抗層を有することを特徴としている。
第3に、記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録装置のプローブにおいて、該プローブが導電性を有する先端の尖鋭な探針と該探針に電圧を印加するための配線とを有し、この探針と配線とが電圧を印加する手段の印加電圧信号電位に電気接続された電磁シールドによって覆われていることを特徴としている。
第4に、上記した本発明の該探針と前記配線との接続部における該探針の一部と前記配線との間または該探針近傍の前記配線中に、電流制限抵抗を有するプローブ、或は前記基板と記録層との間、又は前記記録層中に前記電流制限抵抗層を有している記録媒体、又は電磁シールドによって覆われたプローブを用いて情報記録方法を構成し、それらの電流制限抵抗、電流制限抵抗層、電磁シールド等により、記録時に探針と記録媒体間に流れる電流を制限して、前記記録媒体と探針と記録信号電圧印加手段を含む回路ループの周波数特性を向上させ記録を行うことを特徴としている。
さらに、本発明におけるこれらのプローブ及び記録媒体、並びにこれらを用いた情報記録方法の細部の特徴については、以下の説明により明らかにする。
【0008】
【作用】
本発明は、上記構成により記録用パルス印加回路系の周波数特性を向上させ、記録速度を低下させることなく記録できるようにしたものである。
以下、これを順を追って説明する。
まず、図10を用いて、本発明を適用するプローブ接触走査方式記録再生装置の原理を説明する。
導電性を有する基板1201上の記録層1214からなる記録媒体1202に対し、先端の探針1205が接触するように、複数のプローブ1203が配置されている。各プローブ1203において、探針1205は弾性変形を生じる弾性体1204により支持されている。
ここで、典型値としては、弾性体1204の弾性変形の弾性定数が約0.1[N/m]、弾性変形量が約1[μm]であるが、このとき記録媒体に対する探針の接触力は約10−7[N]程度となる。
記録媒体1202に取り付けられたxyz駆動機構1209により、プローブ1203と記録媒体1202とは相対的に3次元方向に移動される。記録媒体1202に対し、プローブ1203のxy方向及びz方向位置を調節し、記録媒体1202上の所望の位置に、かつ所望の接触力で接触させた状態にプローブ1203が位置合わせされる。
記録信号発生器1206から発生された記録信号が増幅器1207、電流制限抵抗1208、弾性体1204上の配線を通して各探針1205から記録媒体1202に印加される。このようにして、記録層1214の探針1205先端が接触する部分に局所的に記録が行われる。
【0009】
上述の装置における記録層1214としては、電圧印加により流れる電流が変化するような材料を用いる。具体例としては、第1に、特開昭63−161552号公報、、特開昭63−161553号公報に開示されているようなポリイミドやSOAZ(ビス−n−オクチルスクアリリウムアズレン)等電気メモリー効果を有するLB膜(=Langmuir−Blodgette法により作製された有機単分子膜の累積膜)が挙げられる。
この材料は、探針−LB膜−基板間にしきい値以上の電圧(5〜10[V]程度)を印加すると間のLB膜の導電性が変化(OFF状態→ON状態)し、再生用のバイアス電圧(0.01〜2[V]程度)を印加した際に流れる電流が増大するものである。
第2の具体例として、GeTe、GaSb、SnTe等の非晶質薄膜材料が挙げられる。
この材料は、探針−非晶質薄膜材料−基板間に電圧を印加し、流れる電流により発生する熱により、非晶質→結晶質への相転移を起こさせるものである。これにより材料の導電性が変化し、再生用のバイアス電圧を印加した際に流れる電流が増大するものである。
第3の具体例として、ZnやW、Si、GaAs等の酸化性金属・半導体材料が挙げられる。
この材料は、探針−酸化性金属・半導体材料間に電圧を印加すると、流れる電流により、材料表面に吸着している水や大気中の酸素と反応し、表面に酸化膜が形成されるために材料表面の接触抵抗が変化し、バイアス電圧を印加した際に流れる電流が減少するものである。
【0010】
上述のように記録が行われたビットの再生は次のように行う。
スイッチ1213により、各プローブ1203への信号配線を再生系に切り替えた後、バイアス電圧印加手段1210により、探針1205と基板1201との間にバイアス電圧を印加し、間に流れる電流を電流検出器1211により検出する。
記録媒体1202上の記録ビットの部分は記録がなされていない部分に比べ、電流が多く(または、少なく)流れるため、再生信号処理器1212において、この電流の違いを検出し、再生信号とする。
上記のプローブ接触走査方式記録再生装置において記録媒体に対しプローブを走査する際、プローブ1203の探針1205先端は記録媒体1202に対し、常に接触した状態を保つ。
このような接触走査方式の利点としては、探針1205先端を記録媒体1202に対し接触させたまま走査する場合に、記録媒体1202表面に凹凸があっても、弾性体1204の弾性変形によりこれを吸収するため、探針1205先端と記録媒体1202表面の接触力はほぼ一定に保たれ、探針1205先端や記録媒体1202表面が破壊することが避けられる。
また、この方式はピエゾ素子等、個々のプローブのz方向位置合わせ手段が不必要であるため、構成が複雑にならず、特に複数のプローブを有する装置に適している。
さらに、記録媒体1202に対する個々のプローブ1203のz方向位置のフィードバック制御が不必要であるため、記録媒体1202に対するプローブ1203の高速走査が可能となる。
【0011】
そして、このような接触走査方式においては、前述の[従来の技術]の項で述べたような接触走査中の記録用電圧パルス印加において、過大電流が流れるためにおこる探針あるいは媒体の破壊を回避するために、図10中に示すように電流制限抵抗1208を用いることが効果的である。
しかしながら、この電流制限抵抗をプローブから離れた位置に置いたのでは[発明が解決しようとする課題]の項で述べたように記録用パルス印加回路系の周波数特性が低下してしまい、記録媒体に加わる電圧がなまって小さくなってしまうという問題が生じる。
これを避けるためには、次の3通りの手段が考えられる。
すなわち、
(1)電流制限抵抗を探針又はその近傍に配置する。
(2)電流制限抵抗を記録媒体の探針対向部分近傍に配置する。
(3)パルス印加回路系の浮遊容量を低減する。
という3通りの手段である。
上記(1)の手段において、電流制限抵抗を探針の近傍に配置する場合、図14に示すように、パルス印加手段側から見ると、電流制限抵抗RL1601とギャップ抵抗RG1602とが直列の関係になり、これらと浮遊容量Cs1603とが並列の関係になる。
したがって、RL+RGにパルス印加電圧VPが加わることになり、RL<<RGである(典型値:RL〜10[MΩ]、RG=1〜1000[GΩ])から、記録媒体に加わる電圧VGは、VG〜VPとなって、記録媒体に加わる電圧がなまって小さくなることはなくなる。
上記(2)の手段において、電流制限抵抗を記録媒体の探針接触部分近傍に配置する場合も、図16に示すように、パルス印加手段側から見ると、ギャップ抵抗RG1802と電流制限抵抗RL1801とが直列の関係になり、これらと浮遊容量Cs1803とが並列の関係になる。RG+RLにパルス印加電圧VPが加わることになり、RL<<RGである(典型値:RL〜10[MΩ]、RG=1〜1000[GΩ])から、記録媒体に加わる電圧VGは、VG〜VPとなる。
したがって、記録媒体に加わる電圧がなまって小さくなることはなくなる。
上記(3)の手段において、パルス印加回路系の浮遊容量を低減すると、図13において、浮遊容量Csl503によるインピーダンス1/ωCs(ωはパルスの角振動数、ω=2πf、fは記録信号パルスの振動数)を、ギャップ抵抗RGより十分小さいまま、電流制限抵抗RLよりも大きくすることができる。
典型的な数値例を挙げると、ω〜2π×105[rad/s]として、Cs〜0.01[pF]程度まで浮遊容量を低減すると、1/ωCs〜160[MΩ]となり、RG=1〜1000[GΩ]よりも十分小さく、RL〜10[MΩ]よりも大きくなる。
このとき、パルス印加電圧VPはRLと1/ωCs、RGとの間で、ほぼRL:1/ωCsの比に分圧されるが、RL<1/ωCsであるから、記録媒体に加わる電圧VGは、VG〜VPとなる。
したがって、パルス印加電圧に比べ、記録媒体に加わる電圧がなまって小さくなることはなくなる。
【0012】
【実施例】
次に、上記(1)〜(3)のそれぞれを実現するための具体的手段について、実施例により詳細に説明する。
[実施例1]
本発明の実施例1を図1に示す。図1は電流制限抵抗をトーション型弾性体に支持される可動部材上の探針近傍の配線中に設けたプローブの例である。
図1において、トーション型弾性体101、102に支持された可動部材103上に探針104、配線105、電流制限薄膜抵抗106が設けられている。トーション型弾性体101、102がねじれることにより可動部材103に傾きが生じ、図1中z方向に探針104が移動可能である。
【0013】
電流制限薄膜抵抗106は探針104の近傍に設けられているため、探針104および探針104から電流制限薄膜抵抗106までの部分の配線105と、探針104に対向する記録媒体(不図示)との間の浮遊容量が微小になる。したがって、等価回路的には図14と同様となる。
本実施例のプローブの作製プロセスを図2を用いて説明する。<100>の面方位を有するSi基板表面に膜厚1[μm]の熱酸化膜(SiO2)を形成し(図2a)、SiO2をトーション型形状にパターニングし、可動部材形状を形成する(図2b)。可動部材上に電流引き出し用のAl配線を形成(図2c)した後、スパッタ法により、カーボン薄膜をコーティングし、パターニング後、電流制限薄膜抵抗を形成する(図2d)。
次いでレプリカに形成した探針を張り合わせる方法や開口部を設けたマスク越しに材料を回転蒸着し、針状に構造物を形成するスピント法を用いて、探針を形成(図2e)後、KOH溶液により、Si基板を異方性エッチングすることにより、空隙部分を形成し、トーション型可動部材を形成する(図2f)。
【0014】
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて(ただし、図10中の電流制限抵抗1208はプローブ上の電流制限薄膜抵抗(図1における106)に対応する。)、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ、周波数特性が向上した。
本実施例の特徴として、周波数特性向上の程度は後述の実施例2程ではないものの、作製プロセスが比較的単純であるので、コストが低く、弾性体部分にそり・歪が生じにくいという利点がある。
なお、本実施例では弾性体形状として、トーション型のものを例に挙げ説明したが、他の形状、例えばカンチレバー型でもよい。
【0015】
[実施例2]
本発明の実施例2を図3に示す。図3は電流制限抵抗をカンチレバー型弾性体上の探針と一体に設けたプローブの例である。
図3において、カンチレバー型弾性体301上に探針302、配線303、電流制限抵抗部分304が設けられている。カンチレバー型弾性体301に撓みが生じることにより、図3中z方向に探針302が移動可能である。
電流制限抵抗部分304は探針302と一体に設けられているため、探針302から電流制限抵抗部分304までの部分と、探針302に対向する記録媒体(不図示)との間の浮遊容量が微小になる。したがって、等価回路的には図14と同様となる。
本実施例のプローブの作製プロセスを図4を用いて説明する。
<100>の面方位を有するSi基板表面に膜厚0.1[μm]の熱酸化膜(SiO2)を形成した後、探針作製のためにSiO2を矩形マスク形状にパターニングし、KOH溶液で異方性エッチングを行い、四角錘型の溝を形成する(図4a)。
エッチングでSiO2を除去した後、探針およびカンチレバー上電流引き出し用の配線を形成するために、レジストをパターニング(図4b)後、Ptを蒸着し、探針および配線を形成する(図4c)。
レジストをエッチング、Ptをパターニング、レジストを塗布し、電流制限抵抗部分形成用マスク形状にパターニングした後(図4d)、スパッタ法によりカーボン薄膜をコーティングし、電流制限抵抗部分を形成する(図4e)。
カンチレバー形成用マスク形状にパターニング後(図4f)、低圧CVDにより、1[μm]膜厚のSi3N4薄膜を形成し、基板上にカンチレバー形状を形成する(図4g)。
次に、切断用溝を形成し、部分的に剥離用のCr薄膜を施したガラスを基板に陽極接合(図4h)後、ガラスを切断し(図4i)、KOH溶液でSiをエッチングしてカンチレバーを形成する(図4j)。
【0016】
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて(ただし、図10中の電流制限抵抗1208はプローブ上の電流制限薄膜抵抗(図3における304)に対応する。)、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ周波数特性が向上した。
本実施例の特徴として、前述の実施例1に比べ、作製プロセスがやや複雑ではあるものの周波数特性がより向上するという利点がある。
なお、本実施例では弾性体形状として、カンチレバー型のものを例に挙げ説明したが、他の形状、例えばトーション型でもよい。
【0017】
[実施例3]
本発明の実施例3を図5に示す。図5は電流制限抵抗を記録層と基板との間に設けた記録媒体の例である。
図5において、導電性を有する基板701上に電流制限抵抗薄膜702、その上に記録層708を形成し、これを記録媒体703とする。この記録層708に接するようにプローブ704を配置する。
電流制限抵抗薄膜702が記録層708と基板701との間に形成されているため、探針が対向する部分の面積がプローブ704全体と基板701が対向している面積に比べて十分に小さく、探針705から探針に対向する記録層部分707を経て電流制限抵抗薄膜702中の電流制限抵抗部分706までの間の浮遊容量は、探針705と基板701との間の浮遊容量に比べて、ほとんど0といえる程無視できる程度になる。したがって、等価回路的には図16と同様となる。
本実施例の電流制限抵抗薄膜が形成された記録媒体の作製は次のようにして行う。マイカ(白雲母)をへき開したものを下地基板とし、これを真空中で600[℃]程度に加熱した状態で、上面にAgやCuを蒸着する。
これにより、マイカ上にAgやCuがエピタキシャル成長し、AgやCuの平滑な面が得られ、これを導電性基板とする。この基板を、水蒸気雰囲気中で300[℃]程度に加熱することにより、AgやCu表面に酸化膜を形成し、この酸化膜を電流制限薄膜抵抗とする。
この酸化膜上に前述の電気メモリー性を有するLB膜、非晶質薄膜材料、酸化性金属・半導体材料のような記録層を成膜する。
ここで、酸化膜の代わりに別の高抵抗材料、例えば、電気メモリー性を有せず高抵抗性を示すLB膜、Si3N4といった材料の薄膜を導電性基板上に成膜し、電流制限薄膜抵抗としてもよい。
このようにして作製した記録媒体を図10のプローブ接触走査型記録再生装置(ただし、電流制限抵抗1208は、記録媒体1202と基板1201との間に電流制限抵抗薄膜の形で位置する)に用いて、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ周波数特性が向上した。
さて、図5において、電流制限抵抗薄膜は探針と記録層の間、すなわち、記録層の上面に設けても同様の効果を有する。このとき、図16において、RGとRLの位置関係を逆にすればよい。このような記録媒体の作製例としては、導電性基板上に記録層を成膜後、さらに記録層の表面に高抵抗材料薄膜を成膜し、これを電流制限薄膜抵抗とすればよい。
また、電流制限抵抗薄膜を記録層と一体に設けても同様の効果を有する。
このような記録媒体の作製例として、例えば、前記電気メモリー性LB膜材料の場合は、基板上に酸化膜を設ける代わりに、電気メモリー効果を有しないような別の高抵抗性LB膜材料と1層毎に交互に成膜したものを記録媒体とすればよい。本実施例の特徴として、記録媒体の作製プロセス中に酸化膜等の電流制限抵抗薄膜の成膜プロセスを加えるだけであるので、他の実施例に比べ、かなリコストが低くなるという利点がある。プローブ側に電流制限抵抗を設ける訳ではないので、プローブの作製プロセスを複雑にすることがないという利点も合わせ持つ。ここで注意すべきこととして、図17に示すように、電流制限抵抗1901を基板1902から見て探針1903と逆の側に設けると、本実施例と同様の効果は得られない。この場合、等価回路的には図18と同様になる。
この場合は、図13と同様、ギャップ抵抗RG2001と浮遊容量Csとが並列となる。
浮遊容量Cs2002によるインピーダンス1/ωCsがギャップ抵抗RGおよび電流制限抵抗RLより小さい場合、VG<VPとなり、図12に示すように記録媒体に加わる電圧がなまって小さくなってしまうことになる。
【0018】
[実施例4]
本発明の実施例4を図6に示す。図6はパルス印加回路系の浮遊容量を低減したプローブの実施例である。
図6において、カンチレバー型弾性体801上に探針802、配線803が設けられている。
カンチレバー型弾性体801の固定端は、カンチレバー支持部材805によりプローブ基板804に固定されている。カンチレバー型弾性体801に撓みが生じることにより、図6中z方向に探針802が移動可能である。さらに、カンチレバー型弾性体801全体は電磁シールド806で覆われている。
電磁シールド806はパルス印加手段の記録パルス信号の電位に電気的に接続されている。
この接続の様子を図19に示す。図19において、電磁シールド2101は、記録信号印加手段2102と電流制限抵抗2103の間に接続されている。こうすることにより、探針2104・配線2105と記録媒体2106との間の浮遊容量が低減される。
再び図6において、電磁シールド806の一部、探針802の近傍には探針802先端がシールド外に出るような微小開口807が形成されている。なお、図6は説明のために電磁シールドの一部分を取り除いて描いてある。
探針802先端を除き、探針802の根元、配線803が電磁シールド806に完全に覆われているので、探針・配線と記録媒体(不図示)との間の浮遊容量を極めて小さくすることができる。
等価回路的には図13と同様であるが、浮遊容量Csl503の値を小さくすることができる。したがって、浮遊容量Csl503によるインピーダンス1/ωCsは、電流制限抵抗RLより十分大きくなる。
本実施例のプローブの作製プロセスを図7を用いて説明する。表面に酸化膜(SiO2)を形成したSi基板表面に膜厚3[μm]のレジスト膜を形成した後、低圧CVD法により、1[μm]膜厚のSi3N4薄膜を形成する(図7a)。これをカンチレバー形状にパターニング後(図7b)、2[μm]膜厚のSi3N4薄膜を成膜・パターニングし、カンチレバー支持Si3N4部材を形成する(図7c)。
カンチレバー上電流引き出し用の配線を形成するために、再びレジスト成膜後、パターニングを行い、Alを蒸着し、Al配線を形成する(図7d)。次に、カンチレバー形状先端部分にスピント法により、高さ10[μm]のAu探針を形成する(図7e)。
Al配線と電磁シールドとを絶縁するための絶縁体を形成した後、再び5[μm]の厚さにレジストを塗布し、電磁シールド内部形状にパターニングを行う(図7f)。
電磁シールド用にAl膜を1[μm]の厚さに蒸着後(図7g)、パターニングし、探針の部分に直径3[μm]程度の微小開口を形成する(図7h)。最後に、オゾンプラズマ法により、レジスト部分をエッチングにより除去する(図7i)。
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ、周波数特性が向上した。
本実施例の特徴として、作製プロセスが複雑であるものの探針・配線と基板間の浮遊容量を極めて小さくすることができるので、周波数特性が特に向上するという利点を有する。
なお、本実施例では弾性体形状として、カンチレバー型のものを例に挙げ説明したが、他の形状、例えばトーション型でもよい。
【0019】
[実施例5]
本発明の実施例5を図8に示す。図8はパルス印加回路系の浮遊容量を低減した別のプローブの実施例である。
図8において、カンチレバー型弾性体1001上に探針1002、配線1003が設けられている。
カンチレバー型弾性体1001に撓みが生じることにより、図8中z方向に探針1002が移動可能である。さらに、カンチレバー型弾性体1001のおもて面(記録媒体に対向する面)は電磁シールド1004、1005で覆われている。電磁シールド1004、1005はパルス印加手段の記録パルス信号の電位に電気的に接続されている。
この接続の様子は前述の実施例4と同様である。電磁シールド1004の一部、探針1002の近傍には探針1002先端がシールド外に出るような微小開口1006が形成されている。
探針1002先端を除き、探針1002の根元、配線1003が電磁シールド1004、1005に覆われているので、探針・配線と記録媒体・基板との間の浮遊容量を小さくすることができる。
等価回路的には図13と同様であるが、浮遊容量Cs1503の値を小さくすることができる。したがって、浮遊容量Cs1503によるインピーダンス1/ωCsは、電流制限抵抗RLより大きくなる。
本実施例のプローブの作製プロセスを図9を用いて説明する。表面から1[μm]の深さまでp++層が形成されるようにBをドーピングした<100>の面方位を有するn−Si基板表面に酸化膜(SiO2)を形成する(図9a)。探針形成用マスク形状にSiO2膜およびp++層をエッチングにより除去した後(図9b)、KOH溶液により、異方性エッチングを行い、四角錘の溝を形成する(図9c)。
次にイオン注入法によりBをドーピングすることにより、四角錘の溝中にp++層を形成し(図9d)、これを300℃の水蒸気中で処理することにより、p++層中に酸化膜(SiO2)層を形成する(図9e)。これに、探針および配線形成用のPtを蒸着する(図9f)。
次に、切断用溝を形成し、部分的に剥離用のCr薄膜を施したガラスを基板に陽極接合後(図9g)、KOH溶液で探針先端部分のSiO2層が露出するまでn−Si基板をエッチングする(図9h)。ついで、HF溶液により、探針先端に露出したSiO2層を取り除き、Pt探針を露出させる(図9i)。最後にガラスを切断し、KOH溶液で残りのn−Siをエッチングしてカンチレバーを形成する(図9j)。
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ、周波数特性が向上した。
本実施例の特徴として、周波数特性向上の程度は前述の実施例4程ではないものの、作製プロセスが比較的単純であるので、コストが低いという利点がある。
なお、本実施例では弾性体形状として、カンチレバー型のものを例に挙げ説明したが、他の形状、例えばトーション型でもよい。
【0020】
【発明の効果】
本発明は、以上の構成により記録信号印加回路系の周波数特性を向上させることができるから、記録媒体に加わる記録用信号電圧波形の大きさが小さくなったり、また波形が時間的になまることを防止することができ、確実で信頼性の高い記録を行うことができる。
さらに、本発明によると連続に記録用信号パルスを印加することが可能となり、記録速度を低下させることなく記録を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施例1における電流制限抵抗をトーション型弾性体に支持される可動部材上の探針近傍の配線中に設けたプローブの実施例を示す図である。
【図2】本発明の実施例1における電流制限抵抗をトーション型弾性体に支持される可動部材上の探針近傍の配線中に設けたプローブの作製プロセスを説明する図である。
【図3】本発明の実施例2における電流制限抵抗をカンチレバー型弾性体上の探針と一体に設けたプローブを示す図である。
【図4】本発明の実施例2における電流制限抵抗をカンチレバー型弾性体上の探針と一体に設けたプローブの作製プロセスを説明する図である。
【図5】本発明の実施例3における電流制限抵抗を記録層と基板との間に設けた記録媒体を示す図である。
【図6】本発明の実施例4におけるパルス印加回路系の浮遊容量を低減したプローブを示す図である。
【図7】本発明の実施例4におけるパルス印加回路系の浮遊容量を低減したプローブの作製プロセスを説明する図である。
【図8】本発明の実施例5におけるパルス印加回路系の浮遊容量を低減したプローブを示す図である。
【図9】本発明の実施例5におけるパルス印加回路系の浮遊容量を低減したプローブの作製プロセスを説明する図である。
【図10】本発明を適用するプローブ接触走査方式記録再生装置の原理および構成を説明する図である。
【図11】接触走査方式の記録再生装置の概念図である。
【図12】記録用印加電圧波形と、実際に記録媒体に加わる電圧がなまって小さくなってしまう場合の波形との比較を示す図である。
【図13】浮遊容量とギャップ抵抗が並列の関係にあり、これらと電流制限抵抗とが直列の関係にある場合の等価回路図である。
【図14】電流制限抵抗とギャップ抵抗が直列の関係にあり、これらと浮遊容量とが並列の関係にある場合の等価回路図である。
【図15】記録用印加電圧波形と、実際に記録媒体に加わる電圧がなまったり、波高値が小さくなるようなことのない波形との比較を示す図である。
【図16】ギャップ抵抗と電流制限抵抗が直列の関係にあり、これらと浮遊容量とが並列の関係にある場合の等価回路図である。
【図17】電流制限抵抗を基板から見て探針と逆の側に設けた例を示す図である。
【図18】浮遊容量とギャップ抵抗が並列の関係にあり、これらと電流制限抵抗とが直列の関係にある場合の等価回路図である。
【図19】電磁シールドの接続方法を説明する図である。
【符号の説明】
101:トーション型弾性体
102:トーション型弾性体
103:可動部材
104:探針
105:配線
106:電流制限薄膜抵抗
301:カンチレバー型弾性体
302:探針
303:配線
304:電流制限抵抗部分
701:基板
702:電流制限抵抗薄膜
703:記録媒体
704:プローブ
705:探針
706:電流制限抵抗部分
707:探針に対向する記録層部分
708:記録層
801:カンチレバー型弾性体
802:電流制限抵抗薄膜
803:配線
804:プローブ基板
805:カンチレバー支持部材
806:電磁シールド
807:微小開口
1001:カンチレバー型弾性体
1002:探針
1003:配線
1004:電磁シールド
1005:電磁シールド
1006:微小開口
1201:基板
1202:記録媒体
1203:プローブ
1204:弾性体
1205:探針
1206:記録信号発生器
1207:増幅器
1208:電流制限抵抗
1209:xyz駆動機構
1210:バイアス電圧印加手段
1211:電流検出器
1212:再生信号処理器
1213:スイッチ
1214:記録層
1301:記録媒体
1302:プローブ
1303:探針
1304:配線
1305:記録信号印加手段
1306:電流制限抵抗
1307:プローブと記録媒体間の浮遊容量
1501:電流制限抵抗
1502:ギャップ抵抗
1503:浮遊容量
1601:電流制限抵抗
1602:ギャップ抵抗
1603:浮遊容量
1801:電流制限抵抗
1802:ギャップ抵抗
1803:浮遊容量
1901:電流制限抵抗
1902:基板
1903:探針
2001:ギャップ抵抗
2002:浮遊容量
2003:電流制限抵抗
2101:電磁シールド
2102:記録信号印加手段
2103:電流制限抵抗
2104:探針
2105:配線
2106:記録媒体
【産業上の利用分野】
本発明は記録媒体にプローブを対向させて電圧を印加し、記録を行う情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法に関するものである。
【0002】
【従来の技術】
近年、ナノメートル以下の分解能で導電性物質表面を観察可能な走査型トンネネル顕微鏡(以下STMと略す)が開発され(米国特許第4343993号明細書)、金属・半導体表面の原子配列、有機分子の配向等の観察が原子・分子スケールでなされている。また、STM技術を発展させ、絶縁物質等の表面をSTMと同様の分解能で観察可能な原子間力顕微鏡(以下AFMと略す)も開発された(米国特許第4724318号明細書)。
このSTMの原理を応用し、試料の代わりに記録媒体を用い、STM構成でトンネル電流を一定にするように記録媒体−探針間隔をフィードバック制御しながら、記録媒体に探針をアクセスし、記録媒体−探針間に電圧を印加し、原子・分子のスケールのビットサイズの記録再生を行うことにより、高密度メモリーを実現するという提案がなされている(米国特許第4575822号明細書、特開昭63−161552号公報、特開昭63−161553号公報)。
さらに、STMとAFMとを組み合わせた構成で、導電性を有する弾性体プローブを用い、プロープ先端の探針を記録媒体に対し接触させた状態で走査を行い、記録再生を行うという提案もなされている(特開平01−245445号公報、特開平03−194124号公報)。
このような、従来における接触走査方式では、基本的に弾性体プローブの弾性変形を利用して、記録媒体表面に沿ってプローブをならうように走査させるため、記録媒体に局所的欠陥や厚さむらがあったりすると、記録再生時に電流が流れすぎて発生する熱等により、探針や媒体が破壊する場合があった。
このため、記録再生の回路中に電流制限抵抗を挿入しその電流値を一定に制限するという提案がなされている。
【0003】
【発明が解決しようとする課題】
しかしながら、上述のような電流制限抵抗を記録再生回路中に単に挿入したのでは、記録速度が低下してしまうという問題点が生じる。
これを図11〜13を用いて以下に説明する。
図11は、接触走査方式の記録再生装置の概念図である。
図において、1301は記録媒体、1302は記録媒体に接触した状態で記録再生を行う弾性体からなるプローブ、1303はプローブ先端に設けられた導電性探針、1304は記録再生信号印加および取り出しのための配線である。
また、記録信号印加手段1305から電流制限抵抗RL1306、プローブ1302上の配線1304、探針1303を経て、記録信号が記録媒体1301に印加される。
実際の装置構成では、プローブが記録媒体に対し、近接しているので、プローブ上の配線や探針と記録媒体との間に浮遊容量と呼ばれるある大きさの静電容量Csが存在する。
一方、探針と記録媒体との間には、接触抵抗、探針−記録媒体間にわずかに(=ナノメートルオーダー)存在する空間のトンネル抵抗、記録媒体自身の膜抵抗等からなるギャップ抵抗RGが存在する。
【0004】
これらの関係を表す等価回路を図13に示す。
記録信号パルスの角振動数をω(ω=2πf:fは記録信号パルスの振動数)とすると、浮遊容量Csl503によるインピーダンス1/ωCsは、電流制限抵抗RLより小さくなる。
実際の装置における典型値としては、浮遊容量Cs〜1[pF]、記録信号パルスの周波数f=100[kHz]程度であるからω〜6×105[rad/s]、1/ωCs〜1.7[MΩ]となる。ギャップ抵抗RGおよび電流制限抵抗RLの値の典型値は、それぞれRG=1〜1000[GΩ]、RL〜10[MΩ]である。
1/ωCs<<RGであるから、パルス印加電圧VPはRLと1/ωCs、RGとの間でほぼRL:1/ωCsの比に分圧されると考えられる。記録信号電圧VPを印加した際に、実際に記録媒体に加わる電圧VGは、VG=(1/ωCs)・VP/(1/ωCs+RL)〜0.14VPとなり、VPに比べ、小さい値となる。
これはωが大きく、すなわち高周波記録信号ではより顕著となる。
この場合の記録用印加電圧波形VPと実際に記録媒体に加わる電圧VGの波形の比較を図12に示す。
図において、記録媒体に加わる電圧波形VGは、記録用印加電圧波形VPに比べ、ピーク値が小さく、しかも時間的になまったものとなっていることを示している。
【0005】
以上のような状態では、記録用信号VPを印加しても、記録媒体に加わる電圧は記録のしきい値を越えず、記録が行われない。
しかも、時間的になまってしまうため、連続に記録用信号パルスを印加することができず、記録速度が低下してしまう。
【0006】
そこで、本発明は上記問題を解決し、信頼性が高く、記録速度を低下させることなく記録が可能な情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明は、上記目的を達成するため、電流制限抵抗をプローブにおける探針の一部と前記配線との間または該探針近傍の前記配線中に配置するか、或はそれを基板と該記録層との間、又は該記録層中に配置するか、又はパルス印加回路系の浮遊容量を低減する等の手段により、記録用パルス印加回路系の周波数特性の向上を図り、記録することを可能としたものである。
すなわち、本発明は第1に、記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録装置のプローブにおいて、該プローブが導電性を有する先端の尖鋭な探針と、該探針に接続され該探針に記録のためのパルス電圧を印加するための配線とを有し、該探針と前記配線との接続部における該探針の一部と前記配線との間、または該探針近傍の前記配線中に、記録時に印加する電圧によって該探針と前記記録媒体間に流れる電流値が過大となることを制限する電流制限抵抗を有していることを特徴としている。
第2に、記録媒体に、先端の尖鋭な探針と該探針に記録のためのパルス電圧を印加するための配線とを有するプローブを対向させて、電圧を印加し記録を行う情報記録装置の記録媒体において、該記録媒体が導電性を有する基板と該基板上の記録層とで構成され、該基板と該記録層との間、又は該記録層中に、記録時に印加する電圧によって該探針と該記録媒体間に流れる電流値が過大となることを制限する電流制限抵抗層を有することを特徴としている。
第3に、記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録装置のプローブにおいて、該プローブが導電性を有する先端の尖鋭な探針と該探針に電圧を印加するための配線とを有し、この探針と配線とが電圧を印加する手段の印加電圧信号電位に電気接続された電磁シールドによって覆われていることを特徴としている。
第4に、上記した本発明の該探針と前記配線との接続部における該探針の一部と前記配線との間または該探針近傍の前記配線中に、電流制限抵抗を有するプローブ、或は前記基板と記録層との間、又は前記記録層中に前記電流制限抵抗層を有している記録媒体、又は電磁シールドによって覆われたプローブを用いて情報記録方法を構成し、それらの電流制限抵抗、電流制限抵抗層、電磁シールド等により、記録時に探針と記録媒体間に流れる電流を制限して、前記記録媒体と探針と記録信号電圧印加手段を含む回路ループの周波数特性を向上させ記録を行うことを特徴としている。
さらに、本発明におけるこれらのプローブ及び記録媒体、並びにこれらを用いた情報記録方法の細部の特徴については、以下の説明により明らかにする。
【0008】
【作用】
本発明は、上記構成により記録用パルス印加回路系の周波数特性を向上させ、記録速度を低下させることなく記録できるようにしたものである。
以下、これを順を追って説明する。
まず、図10を用いて、本発明を適用するプローブ接触走査方式記録再生装置の原理を説明する。
導電性を有する基板1201上の記録層1214からなる記録媒体1202に対し、先端の探針1205が接触するように、複数のプローブ1203が配置されている。各プローブ1203において、探針1205は弾性変形を生じる弾性体1204により支持されている。
ここで、典型値としては、弾性体1204の弾性変形の弾性定数が約0.1[N/m]、弾性変形量が約1[μm]であるが、このとき記録媒体に対する探針の接触力は約10−7[N]程度となる。
記録媒体1202に取り付けられたxyz駆動機構1209により、プローブ1203と記録媒体1202とは相対的に3次元方向に移動される。記録媒体1202に対し、プローブ1203のxy方向及びz方向位置を調節し、記録媒体1202上の所望の位置に、かつ所望の接触力で接触させた状態にプローブ1203が位置合わせされる。
記録信号発生器1206から発生された記録信号が増幅器1207、電流制限抵抗1208、弾性体1204上の配線を通して各探針1205から記録媒体1202に印加される。このようにして、記録層1214の探針1205先端が接触する部分に局所的に記録が行われる。
【0009】
上述の装置における記録層1214としては、電圧印加により流れる電流が変化するような材料を用いる。具体例としては、第1に、特開昭63−161552号公報、、特開昭63−161553号公報に開示されているようなポリイミドやSOAZ(ビス−n−オクチルスクアリリウムアズレン)等電気メモリー効果を有するLB膜(=Langmuir−Blodgette法により作製された有機単分子膜の累積膜)が挙げられる。
この材料は、探針−LB膜−基板間にしきい値以上の電圧(5〜10[V]程度)を印加すると間のLB膜の導電性が変化(OFF状態→ON状態)し、再生用のバイアス電圧(0.01〜2[V]程度)を印加した際に流れる電流が増大するものである。
第2の具体例として、GeTe、GaSb、SnTe等の非晶質薄膜材料が挙げられる。
この材料は、探針−非晶質薄膜材料−基板間に電圧を印加し、流れる電流により発生する熱により、非晶質→結晶質への相転移を起こさせるものである。これにより材料の導電性が変化し、再生用のバイアス電圧を印加した際に流れる電流が増大するものである。
第3の具体例として、ZnやW、Si、GaAs等の酸化性金属・半導体材料が挙げられる。
この材料は、探針−酸化性金属・半導体材料間に電圧を印加すると、流れる電流により、材料表面に吸着している水や大気中の酸素と反応し、表面に酸化膜が形成されるために材料表面の接触抵抗が変化し、バイアス電圧を印加した際に流れる電流が減少するものである。
【0010】
上述のように記録が行われたビットの再生は次のように行う。
スイッチ1213により、各プローブ1203への信号配線を再生系に切り替えた後、バイアス電圧印加手段1210により、探針1205と基板1201との間にバイアス電圧を印加し、間に流れる電流を電流検出器1211により検出する。
記録媒体1202上の記録ビットの部分は記録がなされていない部分に比べ、電流が多く(または、少なく)流れるため、再生信号処理器1212において、この電流の違いを検出し、再生信号とする。
上記のプローブ接触走査方式記録再生装置において記録媒体に対しプローブを走査する際、プローブ1203の探針1205先端は記録媒体1202に対し、常に接触した状態を保つ。
このような接触走査方式の利点としては、探針1205先端を記録媒体1202に対し接触させたまま走査する場合に、記録媒体1202表面に凹凸があっても、弾性体1204の弾性変形によりこれを吸収するため、探針1205先端と記録媒体1202表面の接触力はほぼ一定に保たれ、探針1205先端や記録媒体1202表面が破壊することが避けられる。
また、この方式はピエゾ素子等、個々のプローブのz方向位置合わせ手段が不必要であるため、構成が複雑にならず、特に複数のプローブを有する装置に適している。
さらに、記録媒体1202に対する個々のプローブ1203のz方向位置のフィードバック制御が不必要であるため、記録媒体1202に対するプローブ1203の高速走査が可能となる。
【0011】
そして、このような接触走査方式においては、前述の[従来の技術]の項で述べたような接触走査中の記録用電圧パルス印加において、過大電流が流れるためにおこる探針あるいは媒体の破壊を回避するために、図10中に示すように電流制限抵抗1208を用いることが効果的である。
しかしながら、この電流制限抵抗をプローブから離れた位置に置いたのでは[発明が解決しようとする課題]の項で述べたように記録用パルス印加回路系の周波数特性が低下してしまい、記録媒体に加わる電圧がなまって小さくなってしまうという問題が生じる。
これを避けるためには、次の3通りの手段が考えられる。
すなわち、
(1)電流制限抵抗を探針又はその近傍に配置する。
(2)電流制限抵抗を記録媒体の探針対向部分近傍に配置する。
(3)パルス印加回路系の浮遊容量を低減する。
という3通りの手段である。
上記(1)の手段において、電流制限抵抗を探針の近傍に配置する場合、図14に示すように、パルス印加手段側から見ると、電流制限抵抗RL1601とギャップ抵抗RG1602とが直列の関係になり、これらと浮遊容量Cs1603とが並列の関係になる。
したがって、RL+RGにパルス印加電圧VPが加わることになり、RL<<RGである(典型値:RL〜10[MΩ]、RG=1〜1000[GΩ])から、記録媒体に加わる電圧VGは、VG〜VPとなって、記録媒体に加わる電圧がなまって小さくなることはなくなる。
上記(2)の手段において、電流制限抵抗を記録媒体の探針接触部分近傍に配置する場合も、図16に示すように、パルス印加手段側から見ると、ギャップ抵抗RG1802と電流制限抵抗RL1801とが直列の関係になり、これらと浮遊容量Cs1803とが並列の関係になる。RG+RLにパルス印加電圧VPが加わることになり、RL<<RGである(典型値:RL〜10[MΩ]、RG=1〜1000[GΩ])から、記録媒体に加わる電圧VGは、VG〜VPとなる。
したがって、記録媒体に加わる電圧がなまって小さくなることはなくなる。
上記(3)の手段において、パルス印加回路系の浮遊容量を低減すると、図13において、浮遊容量Csl503によるインピーダンス1/ωCs(ωはパルスの角振動数、ω=2πf、fは記録信号パルスの振動数)を、ギャップ抵抗RGより十分小さいまま、電流制限抵抗RLよりも大きくすることができる。
典型的な数値例を挙げると、ω〜2π×105[rad/s]として、Cs〜0.01[pF]程度まで浮遊容量を低減すると、1/ωCs〜160[MΩ]となり、RG=1〜1000[GΩ]よりも十分小さく、RL〜10[MΩ]よりも大きくなる。
このとき、パルス印加電圧VPはRLと1/ωCs、RGとの間で、ほぼRL:1/ωCsの比に分圧されるが、RL<1/ωCsであるから、記録媒体に加わる電圧VGは、VG〜VPとなる。
したがって、パルス印加電圧に比べ、記録媒体に加わる電圧がなまって小さくなることはなくなる。
【0012】
【実施例】
次に、上記(1)〜(3)のそれぞれを実現するための具体的手段について、実施例により詳細に説明する。
[実施例1]
本発明の実施例1を図1に示す。図1は電流制限抵抗をトーション型弾性体に支持される可動部材上の探針近傍の配線中に設けたプローブの例である。
図1において、トーション型弾性体101、102に支持された可動部材103上に探針104、配線105、電流制限薄膜抵抗106が設けられている。トーション型弾性体101、102がねじれることにより可動部材103に傾きが生じ、図1中z方向に探針104が移動可能である。
【0013】
電流制限薄膜抵抗106は探針104の近傍に設けられているため、探針104および探針104から電流制限薄膜抵抗106までの部分の配線105と、探針104に対向する記録媒体(不図示)との間の浮遊容量が微小になる。したがって、等価回路的には図14と同様となる。
本実施例のプローブの作製プロセスを図2を用いて説明する。<100>の面方位を有するSi基板表面に膜厚1[μm]の熱酸化膜(SiO2)を形成し(図2a)、SiO2をトーション型形状にパターニングし、可動部材形状を形成する(図2b)。可動部材上に電流引き出し用のAl配線を形成(図2c)した後、スパッタ法により、カーボン薄膜をコーティングし、パターニング後、電流制限薄膜抵抗を形成する(図2d)。
次いでレプリカに形成した探針を張り合わせる方法や開口部を設けたマスク越しに材料を回転蒸着し、針状に構造物を形成するスピント法を用いて、探針を形成(図2e)後、KOH溶液により、Si基板を異方性エッチングすることにより、空隙部分を形成し、トーション型可動部材を形成する(図2f)。
【0014】
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて(ただし、図10中の電流制限抵抗1208はプローブ上の電流制限薄膜抵抗(図1における106)に対応する。)、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ、周波数特性が向上した。
本実施例の特徴として、周波数特性向上の程度は後述の実施例2程ではないものの、作製プロセスが比較的単純であるので、コストが低く、弾性体部分にそり・歪が生じにくいという利点がある。
なお、本実施例では弾性体形状として、トーション型のものを例に挙げ説明したが、他の形状、例えばカンチレバー型でもよい。
【0015】
[実施例2]
本発明の実施例2を図3に示す。図3は電流制限抵抗をカンチレバー型弾性体上の探針と一体に設けたプローブの例である。
図3において、カンチレバー型弾性体301上に探針302、配線303、電流制限抵抗部分304が設けられている。カンチレバー型弾性体301に撓みが生じることにより、図3中z方向に探針302が移動可能である。
電流制限抵抗部分304は探針302と一体に設けられているため、探針302から電流制限抵抗部分304までの部分と、探針302に対向する記録媒体(不図示)との間の浮遊容量が微小になる。したがって、等価回路的には図14と同様となる。
本実施例のプローブの作製プロセスを図4を用いて説明する。
<100>の面方位を有するSi基板表面に膜厚0.1[μm]の熱酸化膜(SiO2)を形成した後、探針作製のためにSiO2を矩形マスク形状にパターニングし、KOH溶液で異方性エッチングを行い、四角錘型の溝を形成する(図4a)。
エッチングでSiO2を除去した後、探針およびカンチレバー上電流引き出し用の配線を形成するために、レジストをパターニング(図4b)後、Ptを蒸着し、探針および配線を形成する(図4c)。
レジストをエッチング、Ptをパターニング、レジストを塗布し、電流制限抵抗部分形成用マスク形状にパターニングした後(図4d)、スパッタ法によりカーボン薄膜をコーティングし、電流制限抵抗部分を形成する(図4e)。
カンチレバー形成用マスク形状にパターニング後(図4f)、低圧CVDにより、1[μm]膜厚のSi3N4薄膜を形成し、基板上にカンチレバー形状を形成する(図4g)。
次に、切断用溝を形成し、部分的に剥離用のCr薄膜を施したガラスを基板に陽極接合(図4h)後、ガラスを切断し(図4i)、KOH溶液でSiをエッチングしてカンチレバーを形成する(図4j)。
【0016】
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて(ただし、図10中の電流制限抵抗1208はプローブ上の電流制限薄膜抵抗(図3における304)に対応する。)、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ周波数特性が向上した。
本実施例の特徴として、前述の実施例1に比べ、作製プロセスがやや複雑ではあるものの周波数特性がより向上するという利点がある。
なお、本実施例では弾性体形状として、カンチレバー型のものを例に挙げ説明したが、他の形状、例えばトーション型でもよい。
【0017】
[実施例3]
本発明の実施例3を図5に示す。図5は電流制限抵抗を記録層と基板との間に設けた記録媒体の例である。
図5において、導電性を有する基板701上に電流制限抵抗薄膜702、その上に記録層708を形成し、これを記録媒体703とする。この記録層708に接するようにプローブ704を配置する。
電流制限抵抗薄膜702が記録層708と基板701との間に形成されているため、探針が対向する部分の面積がプローブ704全体と基板701が対向している面積に比べて十分に小さく、探針705から探針に対向する記録層部分707を経て電流制限抵抗薄膜702中の電流制限抵抗部分706までの間の浮遊容量は、探針705と基板701との間の浮遊容量に比べて、ほとんど0といえる程無視できる程度になる。したがって、等価回路的には図16と同様となる。
本実施例の電流制限抵抗薄膜が形成された記録媒体の作製は次のようにして行う。マイカ(白雲母)をへき開したものを下地基板とし、これを真空中で600[℃]程度に加熱した状態で、上面にAgやCuを蒸着する。
これにより、マイカ上にAgやCuがエピタキシャル成長し、AgやCuの平滑な面が得られ、これを導電性基板とする。この基板を、水蒸気雰囲気中で300[℃]程度に加熱することにより、AgやCu表面に酸化膜を形成し、この酸化膜を電流制限薄膜抵抗とする。
この酸化膜上に前述の電気メモリー性を有するLB膜、非晶質薄膜材料、酸化性金属・半導体材料のような記録層を成膜する。
ここで、酸化膜の代わりに別の高抵抗材料、例えば、電気メモリー性を有せず高抵抗性を示すLB膜、Si3N4といった材料の薄膜を導電性基板上に成膜し、電流制限薄膜抵抗としてもよい。
このようにして作製した記録媒体を図10のプローブ接触走査型記録再生装置(ただし、電流制限抵抗1208は、記録媒体1202と基板1201との間に電流制限抵抗薄膜の形で位置する)に用いて、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ周波数特性が向上した。
さて、図5において、電流制限抵抗薄膜は探針と記録層の間、すなわち、記録層の上面に設けても同様の効果を有する。このとき、図16において、RGとRLの位置関係を逆にすればよい。このような記録媒体の作製例としては、導電性基板上に記録層を成膜後、さらに記録層の表面に高抵抗材料薄膜を成膜し、これを電流制限薄膜抵抗とすればよい。
また、電流制限抵抗薄膜を記録層と一体に設けても同様の効果を有する。
このような記録媒体の作製例として、例えば、前記電気メモリー性LB膜材料の場合は、基板上に酸化膜を設ける代わりに、電気メモリー効果を有しないような別の高抵抗性LB膜材料と1層毎に交互に成膜したものを記録媒体とすればよい。本実施例の特徴として、記録媒体の作製プロセス中に酸化膜等の電流制限抵抗薄膜の成膜プロセスを加えるだけであるので、他の実施例に比べ、かなリコストが低くなるという利点がある。プローブ側に電流制限抵抗を設ける訳ではないので、プローブの作製プロセスを複雑にすることがないという利点も合わせ持つ。ここで注意すべきこととして、図17に示すように、電流制限抵抗1901を基板1902から見て探針1903と逆の側に設けると、本実施例と同様の効果は得られない。この場合、等価回路的には図18と同様になる。
この場合は、図13と同様、ギャップ抵抗RG2001と浮遊容量Csとが並列となる。
浮遊容量Cs2002によるインピーダンス1/ωCsがギャップ抵抗RGおよび電流制限抵抗RLより小さい場合、VG<VPとなり、図12に示すように記録媒体に加わる電圧がなまって小さくなってしまうことになる。
【0018】
[実施例4]
本発明の実施例4を図6に示す。図6はパルス印加回路系の浮遊容量を低減したプローブの実施例である。
図6において、カンチレバー型弾性体801上に探針802、配線803が設けられている。
カンチレバー型弾性体801の固定端は、カンチレバー支持部材805によりプローブ基板804に固定されている。カンチレバー型弾性体801に撓みが生じることにより、図6中z方向に探針802が移動可能である。さらに、カンチレバー型弾性体801全体は電磁シールド806で覆われている。
電磁シールド806はパルス印加手段の記録パルス信号の電位に電気的に接続されている。
この接続の様子を図19に示す。図19において、電磁シールド2101は、記録信号印加手段2102と電流制限抵抗2103の間に接続されている。こうすることにより、探針2104・配線2105と記録媒体2106との間の浮遊容量が低減される。
再び図6において、電磁シールド806の一部、探針802の近傍には探針802先端がシールド外に出るような微小開口807が形成されている。なお、図6は説明のために電磁シールドの一部分を取り除いて描いてある。
探針802先端を除き、探針802の根元、配線803が電磁シールド806に完全に覆われているので、探針・配線と記録媒体(不図示)との間の浮遊容量を極めて小さくすることができる。
等価回路的には図13と同様であるが、浮遊容量Csl503の値を小さくすることができる。したがって、浮遊容量Csl503によるインピーダンス1/ωCsは、電流制限抵抗RLより十分大きくなる。
本実施例のプローブの作製プロセスを図7を用いて説明する。表面に酸化膜(SiO2)を形成したSi基板表面に膜厚3[μm]のレジスト膜を形成した後、低圧CVD法により、1[μm]膜厚のSi3N4薄膜を形成する(図7a)。これをカンチレバー形状にパターニング後(図7b)、2[μm]膜厚のSi3N4薄膜を成膜・パターニングし、カンチレバー支持Si3N4部材を形成する(図7c)。
カンチレバー上電流引き出し用の配線を形成するために、再びレジスト成膜後、パターニングを行い、Alを蒸着し、Al配線を形成する(図7d)。次に、カンチレバー形状先端部分にスピント法により、高さ10[μm]のAu探針を形成する(図7e)。
Al配線と電磁シールドとを絶縁するための絶縁体を形成した後、再び5[μm]の厚さにレジストを塗布し、電磁シールド内部形状にパターニングを行う(図7f)。
電磁シールド用にAl膜を1[μm]の厚さに蒸着後(図7g)、パターニングし、探針の部分に直径3[μm]程度の微小開口を形成する(図7h)。最後に、オゾンプラズマ法により、レジスト部分をエッチングにより除去する(図7i)。
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ、周波数特性が向上した。
本実施例の特徴として、作製プロセスが複雑であるものの探針・配線と基板間の浮遊容量を極めて小さくすることができるので、周波数特性が特に向上するという利点を有する。
なお、本実施例では弾性体形状として、カンチレバー型のものを例に挙げ説明したが、他の形状、例えばトーション型でもよい。
【0019】
[実施例5]
本発明の実施例5を図8に示す。図8はパルス印加回路系の浮遊容量を低減した別のプローブの実施例である。
図8において、カンチレバー型弾性体1001上に探針1002、配線1003が設けられている。
カンチレバー型弾性体1001に撓みが生じることにより、図8中z方向に探針1002が移動可能である。さらに、カンチレバー型弾性体1001のおもて面(記録媒体に対向する面)は電磁シールド1004、1005で覆われている。電磁シールド1004、1005はパルス印加手段の記録パルス信号の電位に電気的に接続されている。
この接続の様子は前述の実施例4と同様である。電磁シールド1004の一部、探針1002の近傍には探針1002先端がシールド外に出るような微小開口1006が形成されている。
探針1002先端を除き、探針1002の根元、配線1003が電磁シールド1004、1005に覆われているので、探針・配線と記録媒体・基板との間の浮遊容量を小さくすることができる。
等価回路的には図13と同様であるが、浮遊容量Cs1503の値を小さくすることができる。したがって、浮遊容量Cs1503によるインピーダンス1/ωCsは、電流制限抵抗RLより大きくなる。
本実施例のプローブの作製プロセスを図9を用いて説明する。表面から1[μm]の深さまでp++層が形成されるようにBをドーピングした<100>の面方位を有するn−Si基板表面に酸化膜(SiO2)を形成する(図9a)。探針形成用マスク形状にSiO2膜およびp++層をエッチングにより除去した後(図9b)、KOH溶液により、異方性エッチングを行い、四角錘の溝を形成する(図9c)。
次にイオン注入法によりBをドーピングすることにより、四角錘の溝中にp++層を形成し(図9d)、これを300℃の水蒸気中で処理することにより、p++層中に酸化膜(SiO2)層を形成する(図9e)。これに、探針および配線形成用のPtを蒸着する(図9f)。
次に、切断用溝を形成し、部分的に剥離用のCr薄膜を施したガラスを基板に陽極接合後(図9g)、KOH溶液で探針先端部分のSiO2層が露出するまでn−Si基板をエッチングする(図9h)。ついで、HF溶液により、探針先端に露出したSiO2層を取り除き、Pt探針を露出させる(図9i)。最後にガラスを切断し、KOH溶液で残りのn−Siをエッチングしてカンチレバーを形成する(図9j)。
このようにして作製したプローブを図10のプローブ接触走査型記録再生装置に用いて、記録用の電圧パルスを印加したところ、図15に示すように、記録媒体に加わる電圧VGは、波形がなまって波高値が小さくなるようなことはなく、記録用印加パルス電圧VPの波形とほぼ同じ形、波高値の波形が得られ、周波数特性が向上した。
本実施例の特徴として、周波数特性向上の程度は前述の実施例4程ではないものの、作製プロセスが比較的単純であるので、コストが低いという利点がある。
なお、本実施例では弾性体形状として、カンチレバー型のものを例に挙げ説明したが、他の形状、例えばトーション型でもよい。
【0020】
【発明の効果】
本発明は、以上の構成により記録信号印加回路系の周波数特性を向上させることができるから、記録媒体に加わる記録用信号電圧波形の大きさが小さくなったり、また波形が時間的になまることを防止することができ、確実で信頼性の高い記録を行うことができる。
さらに、本発明によると連続に記録用信号パルスを印加することが可能となり、記録速度を低下させることなく記録を行うことができる。
【図面の簡単な説明】
【図1】本発明の実施例1における電流制限抵抗をトーション型弾性体に支持される可動部材上の探針近傍の配線中に設けたプローブの実施例を示す図である。
【図2】本発明の実施例1における電流制限抵抗をトーション型弾性体に支持される可動部材上の探針近傍の配線中に設けたプローブの作製プロセスを説明する図である。
【図3】本発明の実施例2における電流制限抵抗をカンチレバー型弾性体上の探針と一体に設けたプローブを示す図である。
【図4】本発明の実施例2における電流制限抵抗をカンチレバー型弾性体上の探針と一体に設けたプローブの作製プロセスを説明する図である。
【図5】本発明の実施例3における電流制限抵抗を記録層と基板との間に設けた記録媒体を示す図である。
【図6】本発明の実施例4におけるパルス印加回路系の浮遊容量を低減したプローブを示す図である。
【図7】本発明の実施例4におけるパルス印加回路系の浮遊容量を低減したプローブの作製プロセスを説明する図である。
【図8】本発明の実施例5におけるパルス印加回路系の浮遊容量を低減したプローブを示す図である。
【図9】本発明の実施例5におけるパルス印加回路系の浮遊容量を低減したプローブの作製プロセスを説明する図である。
【図10】本発明を適用するプローブ接触走査方式記録再生装置の原理および構成を説明する図である。
【図11】接触走査方式の記録再生装置の概念図である。
【図12】記録用印加電圧波形と、実際に記録媒体に加わる電圧がなまって小さくなってしまう場合の波形との比較を示す図である。
【図13】浮遊容量とギャップ抵抗が並列の関係にあり、これらと電流制限抵抗とが直列の関係にある場合の等価回路図である。
【図14】電流制限抵抗とギャップ抵抗が直列の関係にあり、これらと浮遊容量とが並列の関係にある場合の等価回路図である。
【図15】記録用印加電圧波形と、実際に記録媒体に加わる電圧がなまったり、波高値が小さくなるようなことのない波形との比較を示す図である。
【図16】ギャップ抵抗と電流制限抵抗が直列の関係にあり、これらと浮遊容量とが並列の関係にある場合の等価回路図である。
【図17】電流制限抵抗を基板から見て探針と逆の側に設けた例を示す図である。
【図18】浮遊容量とギャップ抵抗が並列の関係にあり、これらと電流制限抵抗とが直列の関係にある場合の等価回路図である。
【図19】電磁シールドの接続方法を説明する図である。
【符号の説明】
101:トーション型弾性体
102:トーション型弾性体
103:可動部材
104:探針
105:配線
106:電流制限薄膜抵抗
301:カンチレバー型弾性体
302:探針
303:配線
304:電流制限抵抗部分
701:基板
702:電流制限抵抗薄膜
703:記録媒体
704:プローブ
705:探針
706:電流制限抵抗部分
707:探針に対向する記録層部分
708:記録層
801:カンチレバー型弾性体
802:電流制限抵抗薄膜
803:配線
804:プローブ基板
805:カンチレバー支持部材
806:電磁シールド
807:微小開口
1001:カンチレバー型弾性体
1002:探針
1003:配線
1004:電磁シールド
1005:電磁シールド
1006:微小開口
1201:基板
1202:記録媒体
1203:プローブ
1204:弾性体
1205:探針
1206:記録信号発生器
1207:増幅器
1208:電流制限抵抗
1209:xyz駆動機構
1210:バイアス電圧印加手段
1211:電流検出器
1212:再生信号処理器
1213:スイッチ
1214:記録層
1301:記録媒体
1302:プローブ
1303:探針
1304:配線
1305:記録信号印加手段
1306:電流制限抵抗
1307:プローブと記録媒体間の浮遊容量
1501:電流制限抵抗
1502:ギャップ抵抗
1503:浮遊容量
1601:電流制限抵抗
1602:ギャップ抵抗
1603:浮遊容量
1801:電流制限抵抗
1802:ギャップ抵抗
1803:浮遊容量
1901:電流制限抵抗
1902:基板
1903:探針
2001:ギャップ抵抗
2002:浮遊容量
2003:電流制限抵抗
2101:電磁シールド
2102:記録信号印加手段
2103:電流制限抵抗
2104:探針
2105:配線
2106:記録媒体
Claims (7)
- 記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録装置のプローブにおいて、該プローブが導電性を有する先端の尖鋭な探針と、該探針に接続され該探針に記録のためのパルス電圧を印加するための配線とを有し、該探針と前記配線との接続部における該探針の一部と前記配線との間または該探針近傍の前記配線中に、記録時に印加する電圧によって該探針と前記記録媒体間に流れる電流値が過大となることを制限する電流制限抵抗を有していることを特徴とするプローブ。
- 前記電流制限抵抗が、前記探針の一部と前記配線との間における該探針を構成する部材中に設けられていることを特徴とする請求項1に記載のプローブ。
- 記録媒体に、先端の尖鋭な探針と該探針に記録のためのパルス電圧を印加するための配線とを有するプローブを対向させて、電圧を印加し記録を行う情報記録装置の記録媒体において、該記録媒体が導電性を有する基板と該基板上の記録層とで構成され、該基板と該記録層との間、又は該記録層中に、記録時に印加する電圧によって該探針と該記録媒体間に流れる電流値が過大となることを制限する電流制限抵抗層を有することを特徴とする記録媒体。
- 記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録装置のプローブにおいて、該プローブが導電性を有する先端の尖鋭な探針と該探針に電圧を印加するための配線とを有し、この探針と配線とが電圧を印加する手段の印加電圧信号電位に電気接続された電磁シールドによって覆われていることを特徴とするプローブ。
- 請求項1または請求項2に記載のプローブを記録媒体に対向させて電圧を印加し記録を行う情報記録方法であって、前記電流制限抵抗により、記録時に探針と記録媒体間に流れる電流値が過大となることを制限して、前記記録媒体と探針と記録信号電圧印加手段を含む回路ループの周波数特性を向上させ記録を行うことを特徴とする情報記録方法。
- 請求項3に記載の記録媒体にプローブを対向させて電圧を印加し記録を行う情報記録方法であって、前記電流制限抵抗層により、記録時に探針と記録媒体間に流れる電流値が過大となることを制限して、前記記録媒体と探針と記録信号電圧印加手段を含む回路ループの周波数特性を向上させ記録を行うことを特徴とする情報記録方法。
- 請求項4に記載のプローブを記録媒体に対向させて電圧を印加し記録を行う情報記録方法であって、前記プローブにおける前記電磁シールドにより、前記探針並びに配線と記録媒体間の静電容量を低減して、前記記録媒体と探針と記録信号電圧印加手段を含む回路ループの周波数特性を向上させ記録を行うことを特徴とする情報記録方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17549095A JP3576644B2 (ja) | 1995-06-19 | 1995-06-19 | 情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法 |
US08/665,457 US5751686A (en) | 1995-06-19 | 1996-06-18 | Scanning probe tip covered with an electrical resistance to limit recording/reproducing current |
EP96109888A EP0750298A3 (en) | 1995-06-19 | 1996-06-19 | Probe and recording medium for information recording apparatus, and information recording apparatus utilizing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17549095A JP3576644B2 (ja) | 1995-06-19 | 1995-06-19 | 情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH097238A JPH097238A (ja) | 1997-01-10 |
JP3576644B2 true JP3576644B2 (ja) | 2004-10-13 |
Family
ID=15996963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17549095A Expired - Fee Related JP3576644B2 (ja) | 1995-06-19 | 1995-06-19 | 情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US5751686A (ja) |
EP (1) | EP0750298A3 (ja) |
JP (1) | JP3576644B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19638977A1 (de) * | 1996-09-23 | 1998-03-26 | Siemens Ag | Kraftmikroskopiesonde |
JP3679525B2 (ja) * | 1996-10-07 | 2005-08-03 | キヤノン株式会社 | 情報記録再生装置、および情報記録再生方法 |
KR100425338B1 (ko) * | 1997-05-22 | 2005-02-23 | 삼성전자주식회사 | 산화를이용한고밀도기록매체및그구동방법 |
KR100425339B1 (ko) * | 1997-05-22 | 2005-02-23 | 삼성전자주식회사 | 산화를이용한다진법고밀도기록매체의구동방법 |
JP3949831B2 (ja) * | 1998-11-11 | 2007-07-25 | セイコーインスツル株式会社 | 光カンチレバーとその製造方法 |
FR2786005B1 (fr) * | 1998-11-17 | 2002-04-12 | Commissariat Energie Atomique | Procede d'ecriture et de lecture d'un support d'informations comprenant un materiau avec une succession de zones presentant respectivement un premier et un deuxieme etats physiques |
KR100389903B1 (ko) * | 2000-12-01 | 2003-07-04 | 삼성전자주식회사 | 접촉 저항 측정을 이용한 정보 저장 장치 및 그 기록과재생 방법 |
US7073938B2 (en) * | 2001-10-31 | 2006-07-11 | The Regents Of The University Of Michigan | Micromachined arrayed thermal probe apparatus, system for thermal scanning a sample in a contact mode and cantilevered reference probe for use therein |
FR2832845A1 (fr) * | 2001-11-27 | 2003-05-30 | Commissariat Energie Atomique | Support d'enregistrement a transition de phase et systeme d'enregistrement utilisant un tel support |
US7057997B2 (en) * | 2003-04-23 | 2006-06-06 | Hewlett-Packard Development Company, L.P. | Class of electron beam based data storage devices and methods of use thereof |
FR2856184B1 (fr) * | 2003-06-13 | 2008-04-11 | Commissariat Energie Atomique | Dispositif d'enregistrement de donnees comportant des micro-pointes et un support d'enregistrement |
DE602005007023D1 (de) * | 2004-06-22 | 2008-07-03 | Ibm | Datenspeichereinrichtung und verfahren zum betrieb einer datenspeichereinrichtung |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2872529A (en) * | 1953-03-10 | 1959-02-03 | Hans E Hollmann | Apparatus for recording signals |
US2922986A (en) * | 1956-04-24 | 1960-01-26 | Bell Telephone Labor Inc | Ferroelectric memory device |
US3202973A (en) * | 1963-04-18 | 1965-08-24 | Ht Res Inst | Electrostatic reproducing apparatus |
GB1088117A (en) * | 1965-11-10 | 1967-10-25 | Standard Telephones Cables Ltd | Recording on a moving medium |
CH643397A5 (de) * | 1979-09-20 | 1984-05-30 | Ibm | Raster-tunnelmikroskop. |
US4575822A (en) * | 1983-02-15 | 1986-03-11 | The Board Of Trustees Of The Leland Stanford Junior University | Method and means for data storage using tunnel current data readout |
US4724318A (en) * | 1985-11-26 | 1988-02-09 | International Business Machines Corporation | Atomic force microscope and method for imaging surfaces with atomic resolution |
JP2556492B2 (ja) * | 1986-12-24 | 1996-11-20 | キヤノン株式会社 | 再生装置及び再生法 |
JP2556491B2 (ja) * | 1986-12-24 | 1996-11-20 | キヤノン株式会社 | 記録装置及び記録法 |
JP2756254B2 (ja) * | 1988-03-25 | 1998-05-25 | キヤノン株式会社 | 記録装置及び再生装置 |
JPH03194124A (ja) * | 1989-12-21 | 1991-08-23 | Mazda Motor Corp | 過給機を備えたエンジンの制御装置 |
JP2743213B2 (ja) * | 1990-07-25 | 1998-04-22 | キヤノン株式会社 | 記録及び/又は再生を行なう装置および方法 |
JP2741629B2 (ja) * | 1990-10-09 | 1998-04-22 | キヤノン株式会社 | カンチレバー型プローブ、それを用いた走査型トンネル顕微鏡及び情報処理装置 |
US5216631A (en) * | 1990-11-02 | 1993-06-01 | Sliwa Jr John W | Microvibratory memory device |
ATE225557T1 (de) * | 1991-07-17 | 2002-10-15 | Canon Kk | Informationsaufzeichnungs-/-wiedergabegerät oder -verfahren zur informationsaufzeichnung/- wiedergabe auf/von einem informationsaufzeichnungsmedium unter verwendung einer vielzahl von sondenelektroden |
JP3402661B2 (ja) * | 1992-07-06 | 2003-05-06 | キヤノン株式会社 | カンチレバー型プローブ、及びこれを用いた情報処理装置 |
JPH06187675A (ja) * | 1992-09-25 | 1994-07-08 | Canon Inc | 情報処理装置、及びそれを用いる情報処理方法 |
US5323377A (en) * | 1992-11-27 | 1994-06-21 | Chen Zhi Q | Electrical data recording and retrieval based on impedance variation |
JP3162883B2 (ja) * | 1993-09-29 | 2001-05-08 | キヤノン株式会社 | 情報記録再生装置 |
JPH08106658A (ja) * | 1994-10-04 | 1996-04-23 | Canon Inc | 情報記録再生装置および記録方法、ならびにリソグラフィー装置および描画方法 |
-
1995
- 1995-06-19 JP JP17549095A patent/JP3576644B2/ja not_active Expired - Fee Related
-
1996
- 1996-06-18 US US08/665,457 patent/US5751686A/en not_active Expired - Fee Related
- 1996-06-19 EP EP96109888A patent/EP0750298A3/en not_active Ceased
Also Published As
Publication number | Publication date |
---|---|
US5751686A (en) | 1998-05-12 |
EP0750298A3 (en) | 1998-03-11 |
JPH097238A (ja) | 1997-01-10 |
EP0750298A2 (en) | 1996-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3148946B2 (ja) | 探針駆動機構並びに該機構を用いたトンネル電流検出装置、情報処理装置、圧電式アクチュエータ | |
US7391707B2 (en) | Devices and methods of detecting movement between media and probe tip in a probe data storage system | |
US6477132B1 (en) | Probe and information recording/reproduction apparatus using the same | |
JP3030574B2 (ja) | 微小変位型情報検知探針素子及びこれを用いた走査型トンネル顕微鏡、原子間力顕微鏡、情報処理装置 | |
JP3192887B2 (ja) | プローブ、該プローブを用いた走査型プローブ顕微鏡、および前記プローブを用いた記録再生装置 | |
US5959957A (en) | Probe and a cantilever formed with same material | |
JP3679519B2 (ja) | トンネル電流または微小力または磁気力検出用の微小ティップの製造方法、並びにその微小ティップを有するプローブの製造方法とそのプローブ、該プローブを有するプローブユニットと走査型プローブ顕微鏡及び情報記録再生装置 | |
JP2741629B2 (ja) | カンチレバー型プローブ、それを用いた走査型トンネル顕微鏡及び情報処理装置 | |
JP3576644B2 (ja) | 情報記録装置のプローブ及び記録媒体、並びにこれらを用いた情報記録方法 | |
US6011261A (en) | Probe formed of mono-crystalline SI, the manufacturing method thereof, and an information processing device using the probe | |
JPH05284765A (ja) | カンチレバー型変位素子、及びこれを用いたカンチレバー型プローブ、及びこのカンチレバー型プローブを用いた走査型トンネル顕微鏡並びに情報処理装置 | |
JPH04321954A (ja) | カンチレバー型プローブ、及びこれを用いた走査型トンネル顕微鏡、情報処理装置 | |
JPH0721598A (ja) | プローブユニット及びこれを用いた情報処理装置 | |
JP3305304B2 (ja) | 探針駆動機構並びに該機構を用いた圧電式アクチュエータの製造方法 | |
JP3234722B2 (ja) | 円弧状反りレバー型アクチュエータ、該アクチュエータの駆動方法及び情報入出力用プローブを用いた情報処理装置 | |
JP2934057B2 (ja) | プローブユニット及びこれを使用する情報記録及び/又は再生装置 | |
JP3118654B2 (ja) | 情報処理装置及び走査型トンネル電子顕微鏡 | |
JPH06333276A (ja) | 記録媒体及びその製造方法、及び該記録媒体を用いた情報処理装置 | |
JPH06180870A (ja) | 記憶装置 | |
JPH11326771A (ja) | プローブ、走査型プローブ顕微鏡、記録再生装置 | |
JPH0875759A (ja) | 微小変位素子及びこれを用いたデバイス | |
JP2000137932A (ja) | 情報の記録または再生を行うプローブおよびその作製方法、並びにそのプローブを用いた情報記録再生方法および情報記録再生装置 | |
JP2000132878A (ja) | 情報の記録再生装置 | |
JPH10247342A (ja) | 記録媒体の作製方法と記録媒体、および該記録媒体を用いた情報処理方法と情報処理装置 | |
JPH08313543A (ja) | トンネル電流乃至は原子間力等を検知するプローブ及びその製造方法、並びに該プローブを用いた走査型プローブ顕微鏡又は情報処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040312 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040625 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040708 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |