JP3565529B2 - 半導体光電陰極およびこれを用いた半導体光電陰極装置 - Google Patents
半導体光電陰極およびこれを用いた半導体光電陰極装置 Download PDFInfo
- Publication number
- JP3565529B2 JP3565529B2 JP13378996A JP13378996A JP3565529B2 JP 3565529 B2 JP3565529 B2 JP 3565529B2 JP 13378996 A JP13378996 A JP 13378996A JP 13378996 A JP13378996 A JP 13378996A JP 3565529 B2 JP3565529 B2 JP 3565529B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor
- semiconductor layer
- layer
- photocathode
- contact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/34—Photo-emissive cathodes
Landscapes
- Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)
- Led Devices (AREA)
- Light Receiving Elements (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、光の入射により電子を発生させ、外部から印加した電圧でこれを加速して放出する半導体光電陰極及びこれを用いた半導体光電陰極装置に関する。
【0002】
【従来の技術】
外部バイアス電圧により、半導体内部に電界を形成して光電子を放出面まで移送させて真空中に放出させる光電陰極としては、米国特許3958143号に示されているT.E.光電陰極がある。T.E.光電陰極の動作機構はいくつかの文献で示されている通りであり、簡単に説明するならばIII−V族半導体(p− )表面全面にショットキ電極を形成して正の電位を与えることにより、光電陰極内部に傾斜電場を形成して光電子を形成して光電子を加速させ上位伝導帯に遷移させて表面障壁を越えさせ、真空中に放出させる。光応答波長に関しては、2.1μmまで確認されその有効性が示されている。また、この半導体光電陰極の光電変換効率を向上させるために、ショットキ電極の形状を全面から格子状に工夫することで効率の向上も図られている。
【0003】
また、米国特許5047821号や特開平4−269419号公報には、半導体光電陰極を安定して再現性よく製造する技術が示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの半導体光電陰極の量子効率は0.1%と通常の光検出器と比較して低く、実用的な光検出器として用いるためには、さらなる量子効率の向上が望まれる。この量子効率の低さは、表面に形成されるショットキ電極への光電子の捕獲に起因していると考えられる。
【0005】
本発明は以上の問題に鑑みてなされたものであり、さらに量子効率を改善することができる半導体光電陰極およびこれを用いた半導体光電陰極装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、入射した光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極および半導体光電陰極装置(光検出管、イメージ管、光電子増倍管、ストリークカメラ、イメージインテンシファイアなど)を対象とするものである。
【0007】
そこで、本発明においては、入射される光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極において、p型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、開口を有し、第2半導体層とPN接合を成して第2半導体層の表面を覆うように形成されたコンタクト層と、コンタクト層上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、コンタクト層の開口内に形成された第3半導体層と、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上であって、第2半導体層の内部に配置された半導体部とを備える構成とした。
【0008】
このように本発明の半導体光電陰極は、まず、光や電磁波がp型第1半導体層に入射することによって、第1半導体層では正孔電子対が発生する。このとき電子は伝導帯のガンマ谷の下限のエネルギー準位(第1エネルギー準位)に励起されている。そして、PN接合をなすコンタクト層には第1半導体層よりも高い電位が与えられるので、発生した電子はこの電位による電界に力を受けてコンタクト層方向へ走行する。第2半導体層は、第1半導体層よりもその濃度が低い場合には、第2半導体層内に第1半導体層よりも広い範囲に空乏層領域が発生する。この空乏層領域には電界が生じており、走行中の電子はこの電界で加速されてエネルギーを受け取るので、伝導帯中のガンマ谷の下限のエネルギー準位よりもさらに上の衛星谷(LまたはX谷)またはガンマ谷のより高いエネルギー準位(第2エネルギー準位)に励起されながらコンタクト層方向に走行する。
【0009】
一方、第2半導体層の内部には、コンタクト層をその厚み方向に貫く延長線上に第2半導体層よりも広いエネルギーバンドギャップを有する半導体部が配置されているので、この半導体部の存在に起因してポテンシャル障壁が発生する。このポテンシャルにより走行中の電子の軌道は曲げられて、電子はコンタクト層の開口方向へ走行する。コンタクト層の開口内または開口を貫く軸の延長線上には第3半導体層が形成されているので、電子はこの第3半導体層内に導入される。第3半導体層の仕事関数は第2半導体層の仕事関数よりも小さいので、電子は第3半導体層から容易に真空中へ放出される。この第3半導体層は、仕事関数が低いアルカリ金属を主成分とする化合物半導体などが好ましい。例えば、第3半導体層の材料としては、Cs−O、Cs−I、Cs−Te、Sb−Cs、Sb−Rb−Cs,Sb−K−Cs、Sb−Na−K、Sb−Na−K−Cs、Ag−O−Csなどの組み合わせが列挙される。
【0010】
また、本発明においては、入射される光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極において、p型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、第2半導体層よりも広いエネルギーバンドギャップを有し、第2半導体層上に形成された半導体部と、開口を有し、半導体部とPN接合を成して半導体部の表面を覆うように形成されたコンタクト層と、コンタクト層上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、コンタクト層の開口をその軸方向に貫ぬく延長線上であって、第2半導体層上に形成された第3半導体層とを備える構成とした。
【0011】
このように本発明の半導体光電陰極は、まず、光や電磁波がp型第1半導体層に入射することによって、第1半導体層では正孔電子対が発生する。このとき電子は伝導帯のガンマ谷の下限のエネルギー準位(第1エネルギー準位)に励起されている。そして、PN接合をなすコンタクト層には第1半導体層よりも高い電位が与えられるので、発生した電子はこの電位による電界に力を受けてコンタクト層方向へ走行する。第2半導体層の濃度が1半導体層の濃度よりも低い場合には、第2半導体層内に第1半導体層よりも広い範囲に空乏層領域が発生する。この空乏層領域には電界が生じており、走行中の電子はこの電界からエネルギーを受け取るので、伝導帯中のガンマ谷の下限のエネルギー準位よりもさらに上の衛星谷(LまたはX谷)またはガンマ谷のより高いエネルギー準位(第2エネルギー準位)に励起されながらコンタクト層方向に走行する。
【0012】
一方、第2半導体層の表面には、第2半導体層よりも広いエネルギーバンドギャップを有する半導体部が配置され、またコンタクト層の開口部をその厚み方向に貫く延長線上の第2半導体上には第3半導体層が形成されている。したがって、この半導体部の存在に起因してポテンシャル障壁が発生する。このポテンシャルにより走行中の電子の軌道は曲げられて、電子はコンタクト層の開口方向へ走行する。そして、電子は第3半導体層内に導入される。第3半導体層の仕事関数は第2半導体層の仕事関数よりも小さいので、電子は第3半導体層から容易に真空中へ放出される。この第3半導体層は、仕事関数が低いアルカリ金属を主成分とする化合物半導体などを用いることが好ましい。例えば、第3半導体層の材料としては、Cs−O、Cs−I、Cs−Te、Sb−Cs、Sb−Rb−Cs,Sb−K−Cs、Sb−Na−K、Sb−Na−K−Cs、Ag−O−Csなどの組み合わせが列挙される。
【0013】
また、本発明においては、半導体部は環状の部分を有しており、この環状の部分内の面積は、コンタクト層の開口内の面積よりも小さくしてもよい。
【0014】
このように半導体部が環状の部分を有していて、この環状の部分内の面積はコンタクト層の開口内の面積よりも小さくすると、電子はこの環状の半導体層により曲げられてコンタクト層に吸収されずに開口部へ集束される。
【0015】
また、本発明においては、半導体部はメッシュ形状を有する構成としてもよい。
【0016】
このように半導体部がメッシュ形状を有すると、電子が第3半導体層の表面から高い均一性で放出される。
【0017】
また、本発明においては、第2半導体層は、この第2半導体層と第1半導体層との界面近傍に、第2半導体層内の第3半導体層側の領域のエネルギーバンドギャップと第1半導体層のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層を有する構成としてもよい。
【0018】
このように第2半導体層が、この第2半導体層と第1半導体層との界面近傍に第2半導体層内の第3半導体層側の領域のエネルギーバンドギャップと第1半導体層のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層を有するようにしたので、第2半導体層と第1半導体層との界面の結晶性を良好に保持してリーク電流や再結合電流を減少できる。
【0019】
また、本発明においては、半導体部は、ストライプ状に配置された半導体部分を含む構成としてもよい。
【0020】
このように半導体部をストライプ状に配置したので、第3半導体の表面から高い均一性で電子が放出される。また、これらの半導体部は、お互いに交差する半導体部分を備えていてもよい。
【0021】
また、本発明においては、大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、半導体光電陰極は、半導体基板と、半導体基板上に形成されたp型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、開口を有し、第2半導体層とPN接合を成して第2半導体層の表面を覆うように形成されたコンタクト層と、コンタクト層上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、コンタクト層の開口内に形成された第3半導体層と、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上であって、第2半導体層の内部に配置された半導体部と、表面電極に電気的に接続され、密閉容器を貫通する第1接続ピンと、半導体基板または第1半導体層に電気的に接続され、密閉容器を貫通する第2接続ピンとを備え、陽極は、この陽極に電気的に接続され、密閉容器を貫通する第3接続ピンを備える構成とした。
【0022】
このように半導体光電陰極と陽極とを密閉容器内に配置して形成した半導体光電陰極装置は、第1接続ピンと第2接続ピンとの間に第1接続ピンの電位が第2接続ピンの電位よりも高くなるように電圧を印加するとともに、第2接続ピンと第3接続ピンとの間に第3接続ピンの電位が第1接続ピンの電位よりも高くなるように電圧を印加して使用する。この状態で前述の半導体光電陰極から放出された電子は陽極で収集される。したがって、この陽極に接続された第3接続ピンから入射した光または電磁波に対応した電流を取り出すことができる。
【0023】
また、本発明においては、第1半導体層は、この第1半導体層と半導体基板との界面近傍に、第1半導体層内の第2半導体層側の領域のエネルギーバンドギャップと半導体基板のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層を有する構成としてもよい。
【0024】
このように第1半導体層は、この第1半導体層と半導体基板との界面近傍に、第1半導体層内の第2半導体層側の領域のエネルギーバンドギャップと半導体基板のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層を有するようにしたので、半導体基板と第1半導体層との界面の結晶性を良好に保持してリーク電流や再結合電流を減少できる。
【0025】
また、本発明においては、半導体光電陰極装置は、半導体光電陰極と陽極との間に配置された電子増倍器を含む構成としてもよい。
【0026】
このように半導体光電陰極装置は、半導体光電陰極と陽極との間に配置された電子増倍器を含むようにしたので、半導体光電陰極からの光電子を増幅できる。たとえば、半導体光電陰極と陽極との間に半導体光電陰極から放出された電子を増倍するためのダイノードやマイクロチャンネルプレート(MCP)を配置することとしてもよい。
【0027】
また、本発明においては、陽極は、蛍光物質を含む部材を含むようにしてもよい。
【0028】
このように陽極は蛍光物質を含む部材を含むようにしたので、陽極は光電子の到達により蛍光を発する。
【0029】
また、本発明においては、大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、半導体光電陰極は、半導体基板と、半導体基板上に形成されたp型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、第2半導体層と陽極との間に配置されたコンタクト層と、コンタクト上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、第2半導体層と陽極との間に配置された第3半導体層と、コンタクト層とPN接合をなし、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上に配置された半導体部と、表面電極に電気的に接続され、密閉容器を貫通する第1接続ピンと、半導体基板または第1半導体層に電気的に接続され、密閉容器を貫通する第2接続ピンとを備え、陽極は、この陽極に電気的に接続され、密閉容器を貫通する第3接続ピンを備える構成とした。
【0030】
このように大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、半導体光電陰極は、半導体基板と、半導体基板上に形成されたp型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、第2半導体層と陽極との間に配置されたコンタクト層と、コンタクト上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、第2半導体層と陽極との間に配置された第3半導体層と、コンタクト層とPN接合をなし、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上に配置された半導体部と、表面電極に電気的に接続され、密閉容器を貫通する第1接続ピンと、半導体基板または第1半導体層に電気的に接続され、密閉容器を貫通する第2接続ピンとを備え、陽極は、この陽極に電気的に接続され、密閉容器を貫通する第3接続ピンを備える構成として、第1接続ピンと第2接続ピンとの間に第1接続ピンの電位が第2接続ピンの電位よりも高くなるように電圧を印加するとともに、第2接続ピンと第3接続ピンとの間に第3接続ピンの電位が第1接続ピンの電位よりも高くなるように電圧を印加して使用される。このようにすると前述の半導体光電陰極から放出された電子は陽極で収集される。したがって、この陽極に接続された第3接続ピンから入射した光または電磁波に対応した電流を取り出すことができる。
【0031】
【発明の実施の形態】
以下、本発明に係る半導体光電陰極の発明の実施の形態について添付図面を用いて説明する。なお、同一要素には同一符号を用いることとし、重複する説明は省略する。
【0032】
(第1の実施の形態)
図1は、第1の実施の形態に係る半導体光電陰極の斜視図である。本実施の形態の半導体光電陰極CTは、まず、半導体基板10上に光の入射に応答して電子を発生するp型の第1半導体層20(光吸収層)が形成されている。この第1半導体層20は第1不純物濃度を有しており、この第1半導体層20上には、第1不純物濃度よりも低い不純物濃度を有する第2不純物濃度のp型の第2半導体層30(電子移送層)が形成されている。そして、第2半導体層30の表面を覆うように開口を有する網目(メッシュ)形状もしくは格子形状のコンタクト層50が形成されている。コンタクト層50は、その層上にオーミック接触する表面電極80を備えている。
【0033】
また、第2半導体層30の表面であって、コンタクト層50の開口内には第3半導体層40(活性層)が形成されている。この第3半導体層40は、第2半導体層30の仕事関数より小さな仕事関数を有している。第2半導体層30の内部には、第2不純物濃度程度もしくはこれ以下の不純物濃度を有する第3不純物濃度の半導体部60(チャネル格子)が埋設されている。そして、半導体部60は、コンタクト層50をその厚み方向に貫く延長線上に設置されている。
【0034】
また、この半導体部60は網目(メッシュ)形状もしくは格子形状を有しており、この格子形状の1つの格子の目で規定される環状の部分内の面積は、コンタクト層50の開口内の面積よりも小さい。なお、半導体部60の形状は、コンタクト層の形状と対応している。これにより、電子は半導体部60によって効率よく開口方向へ曲げられ、また、この電子は半導体部60が格子形状であるので、第3半導体層の表面から高い均一性で放出されることになる。なお、p型第1半導体層20にはオーミック電極70が設置されている。
【0035】
本実施の形態においては、これらの半導体層の構成材料や層厚は以下のように設定される。
【0036】
半導体基板10は(100)p型InP半導体基板であり、第1半導体層20は半導体基板10にエピタキシャル成長によって形成された不純物濃度1×1018〜1020/cm3 のp型InGaAs半導体である。そして、第1半導体層20の膜厚はこの層の電子拡散長で決定される厚さ(例えば、1.5〜2.5μm)が適当である。p型の第2半導体層30は厚さ1.0〜10μm、不純物濃度約1×1017/cm3 のp型InP半導体であり、半導体部60は不純物濃度1×1016/cm3 以下のp− のAlAsSb半導体である。第3半導体層40はp型第2半導体層30の仕事関数より小さな仕事関数を有する(Cs・O)半導体である。
【0037】
また、第3半導体層の材料としては、Cs−O、Cs−I、Cs−Te、Sb−Cs、Sb−Rb−Cs,Sb−K−Cs、Sb−Na−K、Sb−Na−K−Cs、Ag−O−Cs、などの組み合わせが列挙される。なお、これらの半導体層の材料は、以下の物質も選択しうる。すなわち、[半導体基板10、p型第1半導体層20(光吸収層)、p型第2半導体層30(電子移送層)、半導体部60(チャネル格子)]の構成材料の組み合わせは、各層の間で格子整合がとれるもの同士の組み合わせが妥当であり、この格子整合は各層の格子定数の差が±0.3%以内であることが望ましい。したがって、このような構成材料の組み合わせの範囲は以下の表に示す通りである。なお、半導体基板は、所定の基板上に半導体の薄膜を形成して使用してもよい。このように基板を用いると、基板を薄膜の支持材とて使用できる。例えば、GaN、AlN系では、基板としてサファイヤ、SiC、スピネル等が好ましい。
【0038】
【表1】
【0039】
次に、この半導体光電陰極CTの動作について説明する。
【0040】
図2は、図1の半導体光電陰極CTを線分A−Aに沿って切った断面図である。なお、同図には、第3半導体層40に対向して設置された陽極90が示されている。同図に示すようにオーミック電極70と表面電極80との間には、表面電極80がオーミック電極70よりも高い電位になるような電圧(例えば、3.5V)が印加されている。また、オーミック電極70と陽極90との間には、陽極90が、オーミック電極70よりも高い電位になるような電圧(例えば、100V)が印加されている。なお、この半導体光電陰極CTおよび陽極90は10−10 torr以下の環境下に配置されている。この半導体光電陰極CTおよび陽極90の配置される環境の圧力は、電子放出の観点からは少なくとも大気圧以下の圧力であって10−5torr以下であることが望ましい。
【0041】
このような条件下の半導体光電陰極CTに光や電磁波が入射すると、まず、光や電磁波がp型の第1半導体層20に入射することによって、第1半導体層20では正孔電子対が発生する。このとき電子は伝導帯のガンマ谷の下限のエネルギー準位(第1エネルギー準位)に励起されている。そして、表面電極80には第1半導体層よりも高い電位が与えられるので、これにより発生した電界に力を受けて、発生した電子はコンタクト層50方向へ走行する。p型の第2半導体層30の濃度は第1半導体層20の濃度より低いので、第2半導体層30内には、第1半導体層20よりも強い電界が発生する。この電界により走行中の電子はエネルギーを受け取って、伝導帯中のガンマ谷の下限のエネルギー準位よりもさらに上の衛星谷(LまたはX谷)またはガンマ谷より高いエネルギー準位(第2エネルギー準位)に励起されてコンタクト層50方向に走行する。
【0042】
ここで、第2半導体層30の内部には、コンタクト層50をその厚み方向に貫く延長線上に第3不純物濃度の半導体部60が埋設されているので、この半導体部60の存在に起因して発生するポテンシャル障壁により、走行中の電子の軌道は曲げられて、電子はコンタクト層50の開口方向へ走行する。コンタクト層50の開口内には第3半導体層40が形成されているので、電子はこの第3半導体層40内に導入される。第3半導体層40の仕事関数は、第2半導体層30の仕事関数より小さいので、電子は第3半導体層40から容易に真空中へ放出される。放出された電子は、陽極90方向に力を受けて、陽極90方向に進行する。
【0043】
次に、この半導体光電陰極CTにおける電子の走行について、エネルギーバンド図を用いて説明する。
【0044】
図3(a)は、図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図である。また、同図(b)および(c)は、それぞれ、同図(a)の線分A−A断面および線分B−B断面における半導体光電陰極CTのエネルギーバンド図である。なお、同図(b)および(c)は、半導体光電陰極CTにバイアスを印加しない場合のエネルギーバンド図である。
【0045】
同図から明らかなように、半導体部60は、第2半導体層30よりも広いエネルギーバンドギャップを有しているので、半導体部60の伝導帯Ecの下端のエネルギー準位はp型の第2半導体層よりも正の方向へシフトしており(ポテンシャルは負の方向へシフトしている)、半導体光電陰極CT内部には、励起された電子がコンタクト層50方向に進行しにくいポテンシャル障壁が形成されている。
【0046】
次にこの半導体光電陰極CTにバイアスを印加した場合の電子の振る舞いを図4を用いて説明する。
【0047】
図4(a)は、図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図である。また、同図(b)および(c)は、それぞれ、同図(a)の線分A−A断面および線分B−B断面における半導体光電陰極CTのエネルギーバンド図である。なお、図5は、図4に示した電子の挙動をさらに分かりやすく説明するための電子に対するポテンシャル図である。
【0048】
図4(c)から明らかなように、バイアスを印加した場合においても半導体部60は、第2半導体層30よりも広いエネルギーバンドギャップを有しているので、励起された電子E1がコンタクト層50方向に進行しにくいポテンシャル障壁として機能する。このようなポテンシャル障壁により、第2半導体層30中を走行する電子E1は、その軌道を変化させられて半導体部60を避けて第3半導体層40方向に進行する。
【0049】
表面電極80にバイアスが印加されると、電子E1は、その進行方向が第2半導体層30上のコンタクト層50の形成されていない領域に形成された第3半導体層40方向に曲げられる。すなわち、電子E1は半導体部60とこの半導体部60に隣接した半導体部60との間の領域Rを通過するので、線分A−A断面上を通過する電子流の密度は増加することになる(図5参照)。この半導体層60によって挟まれた領域Rを通過する際には、図4(b)のように、伝導帯Ecのガンマ谷の下限のエネルギー準位に励起された状態で第2半導体層30内を進行する電子E1は第2半導体層30内に発生させられた電界により加速されてエネルギーを得るので、このエネルギー準位よりもさらに高いエネルギー準位の衛星谷(LまたはX谷)またはガンマ谷のより高いエネルギー準位に励起される。電子が、半導体層60で挟まれた領域Rを通過後、第3半導体層40に進入するまでの間には、発散する方向の力が電子に働くが、この間の距離を例えば0.5〜2.0μmとし、また、半導体層60とコンタクト層50の幅を、半導体層60の幅≧コンタクト層50の幅となるように設定すれば、現実的に半導体基板10、第1半導体層20および第2半導体層30において発生した電子E1のほとんどは、コンタクト層50に吸収されることなく第3半導体層40に進入する。第3半導体層40の仕事関数は第2半導体層30よりも小さく、図4(b)および図5に示すように電子E1は効率よく真空中に放出される。
【0050】
図6は、図1に示した半導体光電陰極CTが密閉容器内に収納された半導体光電陰極装置を一部破断して示す斜視図である。本半導体光電陰極装置は、大気圧よりも低い圧力(10−5torr以下であって望ましくは10−10 torr以下の圧力)の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備えている。半導体光電陰極CTは、これに電気的に接続された第1接続ピン1および第2接続ピン2を有しており、陽極90はこれに電気的に接続された第3接続ピン90aを有している。第1接続ピン1、第2接続ピン2および第3接続ピン90aは密閉容器100を貫通している。なお、半導体光電陰極CTの陽極90側には光や電磁波が入射される入射窓110が配置されている。入射窓110は、容器100に接着することとしてもよい。
【0051】
このような半導体光電陰極CTと陽極90とを密閉容器100内に配置して形成した半導体光電陰極装置は、第1接続ピン1と第2接続ピン2との間に第1接続ピン1の電位が第2接続ピン2の電位よりも高くなるように電圧を印加するとともに、第2接続ピン2と第3接続ピン90aとの間に第3接続ピン90aの電位が第1接続ピン1の電位よりも高くなるように電圧を印加して使用する。なお、図1に示した半導体光電陰極CTを参照すれば、表面電極80およびオーミック電極70は、それぞれ金などの金属50aおよび金属70aを介して第1接続ピン1および第2接続ピン2に接続されており、陽極90は、これに接続された第3接続ピン90aを備えている。
【0052】
次に、図1に示した半導体光電陰極CTの製造方法について説明する。
【0053】
図7は、図1に示した半導体光電陰極CTの製造方法を半導体光電陰極CTの断面構成を用いて説明するための工程断面図である。
【0054】
まず、半導体基板10を用意する。そして、この半導体基板10上に、第1半導体層20、第2半導体30a、半導体層60aおよびレジスト層200aを順次積層した(図7(a))。各半導体層の積層はMBE(分子線エピタキシャル成長)法、MOCVD(有機金属気相成長)法などのエピタキシャル成長法を用いる。
【0055】
その後、レジスト層200aを表面から半導体層60aに到達するまでエッチンッグしてメッシュ状のレジスト200を形成した(図7(b))。次に、このレジスト200をマスクとして半導体層60aをエッチングしてメッシュ状の半導体部60を形成した(図7(c))。しかる後、第2半導体30aおよび半導体部60の表面を覆うように第2半導体30aを構成する材料をこれらの第2半導体30aおよび半導体部60上に堆積して第2半導体層30を形成した(図7(d))。さらに、第2半導体層30上に図1のような配置になるようにコンタクト層50a、表面電極80aおよびレジスト300aを形成した(図7(e))。レジスト層300aを表面から表面電極80aに達するまでエッチングして半導体層60に対応したメッシュ状のレジストを形成して、このエッチングしたレジストをマスクにしてさらに表面電極80aおよびコンタクト層50aをエッチングして、メッシュ状のコンタクト層50および表面電極80を形成した(図7(f))。次に、大気よりも低圧の環境下でこれを加熱して第2半導体層30を清浄化した後,これらコンタクト層50、表面電極80および第2半導体層30を覆うように第3半導体層40を堆積して図1に示した半導体光電陰極を得た(図7(g))。
【0056】
なお、本実施の形態では、半導体基板10、第1半導体層20および第2半導体層30としてそれぞれInP、InGaAsおよびInPを用い、厚さ200nmのレジスト膜を用いた。
【0057】
第1半導体層20の不純物濃度(キャリア濃度)はp+ (1×1018〜1×1019/cm3 )である。この第1半導体層20の厚さは1.5〜2.5μmが適当である。第2半導体層30の不純物濃度(キャリア濃度)はp− (1×1017/cm3 以下)である。この第2半導体層30の厚さは1.0〜10μmが適当である。半導体部60の不純物濃度(キャリア濃度)はp−−(1×1017〜1×1014/cm3 )である。この半導体部60の厚さは0.5〜2.0μmが適当である。コンタクト層50は、n+(1×1018〜1×1019/cm3)である。このコンタクト層の厚さは、1μm〜数μm程度が好ましい。また、表面電極80は、Alなどの金属を用いた真空蒸着法によりコンタクト層50上に堆積することができる。また、本製造方法では、第3半導体層40をCs2 Oとし、Cs2 OはCs(セシウム)とO(酸素)の交互蒸着またはこれらの材料を含む原料ガスを交互供給することにより形成した。
【0058】
なお、図1に示した半導体光電陰極CTのp型の第1半導体層20は、図8に示すように、このp型第1半導体層20と半導体基板10との界面近傍に、p型第1半導体層20内のp型第2半導体層30側の第1領域20aのエネルギーバンドギャップと半導体基板10のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層20bを有することとしても良い。これにより、本半導体光電陰極CT1において、半導体基板10とp型第1半導体層20との界面の結晶性を良好に保持してリーク電流や再結合電流を減少させることができ、また、光電子はポテンシャル障壁で反跳されて効率よく第2半導体層30に導かれる。
【0059】
また、p型第2半導体層30は、このp型第2半導体層30とp型第1半導体層20との界面近傍に、p型第2半導体層30内の第3半導体層40側の第2領域30aのエネルギーバンドギャップと第1半導体層20のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層30bを有することとしても、p型第2半導体層30とp型第1半導体層20との界面の結晶性を良好に保持してリーク電流や再結合電流を減少させることができる。すなわち、この第2グレーデッド層20bは、第1領域20aの格子定数と半導体基板10の格子定数との中間の格子定数を有し、第1グレーデッド層30bは、第2領域30aの格子定数と第1領域20aの格子定数との中間の格子定数を有している。
【0060】
また、図1に示した半導体光電陰極CTでは、オーミック電極70を第1半導体層に設けたが、これは図9に示すように半導体基板10の裏面に設置されることとしてもよい。このようにオーミック電極70が半導体基板10に設置されることとすれば、図1に示した半導体光電陰極CTと比較してオーミック電極70を容易にこの半導体基板10に設置することができる。なお、本半導体光電陰極CT2も図8に示した半導体光電陰極CT1と同様に第2グレーデッド層20bおよび第1グレーデッド層30bを設けることとしてもよい。
【0061】
なお、以上の図1、図8および図9を用いて説明された半導体光電陰極(CT、CT1およびCT2)は、図6に示した密閉容器100内に設置することができる。
【0062】
(第2の実施の形態)
次に、半導体光電陰極の第2の実施の形態について図10〜図11を用いて説明する。なお、各半導体層を構成する材料および不純物濃度は、図1を用いて説明した半導体光電陰極CTと同様である。
【0063】
図10に示す半導体光電陰極CT3は、図3に示した半導体光電陰極CTと第2半導体層30内の半導体部60の位置が異なっている。すなわち、この半導体光電陰極CT3は、半導体基板10上にp型第1半導体層20、p型第2半導体層30および第3半導体層40が順次積層して形成されており、p型第2半導体層30内には格子状の半導体部60が埋め込まれている。そして、この埋め込まれた半導体部60上の第3半導体層40の形成されていない面には、コンタクト層50が存在し、さらにこのコンタクト層50上にはこの層とオーミック接触した表面電極80が存在する。また、第1半導体層20には、オーミック電極70が設けられている。これらの電極50および電極70は、それぞれ金などの金属50aおよび金属70aを介して図示しない接続ピンに接続されている。陽極90は、第3半導体層40に対向して配置されており、図示しない接続ピンに接続されている。この半導体光電陰極CT3および陽極90は、図1に示した半導体光電陰極CTと同様に図6に示したような密閉容器100内に設置される。
【0064】
図11は、図10に示した半導体光電陰極CT3の製造方法を断面を用いて説明するための工程断面図である。まず、半導体基板10を用意する。そして、この半導体基板上に、第1半導体層20、第2半導体30a、半導体層60aおよびレジスト層200aを順次積層した(図11(a))。各半導体層の積層はMBE(分子線エピタキシャル成長)法を用いた。その後、レジスト層200aを表面から半導体層60aに到達するまでエッチンッグしてメッシュ状のレジスト200を形成した(図11(b))。次に、このレジスト200をマスクとして半導体層60aをエッチングしてメッシュ状の半導体部60を形成した(図11(c))。しかる後、第2半導体30aおよび半導体部60の表面を覆うように第2半導体30aと同じ材料を、これらの第2半導体30aおよび半導体部60上に堆積して第2半導体層30を形成した(図11(d))。次に、第2半導体層30をその表面から半導体部60が露出するまで研磨した(図11(e))。さらに、第2半導体層30および半導体層60上にコンタクト層50a、表面電極層80aおよびレジスト300aを順次積層して形成した(図11(f))。次に、レジスト300aを表面から表面電極層80aに達するまでエッチングして半導体層60に対応したレジストパターンを形成した。このレジストをマスクにして表面電極層80aとコンタクト層50aを順次エッチングして、メッシュ状のコンタクト層50および表面電極80を形成した(図11(g))。大気圧より低圧の環境下でこれを加熱して第2半導体層30を清浄化した後に、これらコンタクト層50、表面電極80および第2半導体層30を覆うように第3半導体層40を堆積して、図10に示した半導体光電陰極CT3を得た(図11(h))。
【0065】
(第3の実施の形態)
次に、半導体光電陰極の第3の実施の形態について図12を用いて説明する。なお、各半導体層を構成する材料および不純物濃度は、図1を用いて説明した半導体光電陰極CTと同様である。
【0066】
図12は、本実施の形態の半導体光電陰極CT4を厚み方向に切った断面図である。この半導体光電陰極CT4は、図3に示した半導体光電陰極CTにおいて第2半導体層30内に設置されていた半導体部60が、第2半導体層30と一面のみで接触されることとした構造を有している。すなわち、本半導体光電陰極CT4は、半導体基板10上にp型の第1半導体層20、p型の第2半導体層30、第3半導体層40、格子状の半導体部60、コンタクト層50および表面電極80が順次積層して形成されている。そして、第2半導体層30の表面、半導体部60、コンタクト層50および表面電極80を覆うように第3半導体層40が形成されている。また、第1半導体層20には、オーミック電極70が設けられている。これらの電極80および電極70は、それぞれ金などの金属50aおよび金属70aを介して図示しない接続ピンに接続されている。陽極90は、第3半導体層40に対向して配置されており、図示しない接続ピンに接続されている。この半導体光電陰極CT3および陽極90は、図1に示した半導体光電陰極CTと同様に図6に示したような密閉容器100内に設置される。
【0067】
本実施の形態の半導体光電陰極は、その構造上、第2半導体層30をエッチングしないでも半導体部60を形成できるので、図1〜図11に示した半導体光電陰極と比較して簡易に製造できるばかりでなく、エッチングによる第2半導体層30の結晶性の劣化を防止することができる。
【0068】
(第4の実施の形態)
次に、半導体光電陰極の第4の実施の形態について説明する。図13(a)は、本実施の形態に係る半導体光電陰極の平面図であり、図13(b)は、図13(a)のA−A´線分に沿って切った半導体光電陰極の断面図であり、図13(c)は、図13(b)のB−B´線分に沿って切った半導体光電陰極の断面図である。
【0069】
この半導体光電陰極は、半導体基板310、半導体基板310上に形成された第1半導体層320、第1半導体層320上に形成された第2半導体層330、第2半導体層330上に形成された第3半導体層(活性層)340、第2半導体層330内に埋設された半導体部360、第2半導体層330上に形成されたコンタクト層350、このコンタクト層350上にオーミック接触する表面電極380を備えている。
【0070】
詳説すれば、半導体基板310上には、光の入射に応答して電子を発生するp型の第1半導体層320(光吸収層)が形成されている。この第1半導体層320は、第1不純物濃度を有している。この第1半導体層320上には、第1不純物濃度よりも低い不純物濃度を有する第2不純物濃度のp型の第2半導体層330(電子移送層)が形成されている。そして、第2半導体層330の表面を覆うようなストライプ状(櫛型状)のコンタクト層350および表面電極380が形成されている。すなわち、コンタクト層350は、ストライプ状の半導体部分を含んでいる。コンタクト層350は、第2半導体層330とPN接合をなしている。第2半導体層330の表面であって、ストライプ(縞)状のコンタクト層350の隙間には第3半導体層340(活性層)が形成されている。この第3半導体層340は、第2半導体層330の仕事関数より小さな仕事関数を有している。第2半導体層330の内部には、第2不純物濃度程度もしくはこれ以下の不純物濃度を有する第3不純物濃度の半導体部360(チャネル格子)が埋設されている。半導体部360は、コンタクト層350および表面電極380をその厚み方向に貫く延長線上に設置されている。
【0071】
本実施の形態の半導体部360は、ストライプ形状を有しているので、この半導体光電陰極に光が入射することによって、半導体光電陰極内において発生した電子は半導体光電陰極内の電界によって第1半導体層320から活性層340方向に走行する。第2半導体層330内には、櫛形の半導体部360が埋設されているので、この電子は半導体部360によって効率よくストライプ350の隙間方向へ曲げらる。ストライプ350の隙間には活性層340が配置されているので、この電子が第3半導体層340の表面から高い均一性で放出されることになる。なお、半導体基板310にはこの基板310にバイアスを印加するためのオーミック電極370が設置されている。
【0072】
(第5の実施の形態)
次に、本発明の第5の実施の形態について説明する。図14は、本実施の形態に係る半導体光電陰極を一部破断して示す斜示図である。なお、図14は、この半導体光電陰極の構造を分かりやすくするため、コンタクト層50と表面電極80の層構造をこの半導体光電陰極の断面部のみに描いている。この半導体光電陰極は、図1に示したコンタクト層50をコンタクト層50a,50b…に分割し、さらに図1に示した表面電極80を表面電極80a,80b…に分割したものである。コンタクト層50aおよび表面電極80aとコンタクト層50bおよび表面電極80bとは電気的に絶縁されているので、表面電極80aには表面電極80bと独立した電位を印加することができる。なお、他の要素(10,20,30,40,60,70)の構成材料および不純物濃度は、図1に示した要素と同じである。
【0073】
(第6の実施の形態)
次に、本発明の第6の実施の形態について説明する。図15は、この実施の形態にかかる半導体光電陰極を一部破断して示す斜示図である。なお、図15は、この半導体光電陰極の構造を分かりやすくするため、コンタクト層50と表面電極80の層構造を半導体光電陰極の断面のみに描いている。図16(a)は、図15に示した半導体光電陰極の平面図であり、図16(b)は、図16(a)の半導体光電陰極を線分A−A´に沿って切った半導体光電陰極の断面図である。なお、図16(a)は、この半導体光電陰極の構造を分かりやすく説明するため、図16(b)に示される活性層40が省略されて描かれている。この半導体光電陰極は、図14に示した表面電極80a,80bに夫々リード電極80a´,80b´を接続したものである。リード電極80a´の終端部分は、表面電極80aに電位を与えるための端子を構成しており、リード電極80b´の終端部分は、表面電極80bに電位を与えるための端子を構成している。表面電極80aおよび表面電極80bと表面電極80cおよび表面電極80dとの間にリード電極が配置されているので、このリード電極80a´または80b´が活性層40から放出された電子の通過を邪魔することがない。なお、他の要素(10,20,30,40,60,70)の構成材料および不純物濃度は、図14に示した要素と同じである。
【0074】
(第7の実施の形態)
次に、本発明の第7の実施の形態について説明する。図17(a)は、この半導体光電陰極の平面図であり、図17(b)は、図17(a)の半導体光電陰極を線分B−B´に沿って切った半導体光電陰極の断面図である。なお、図17(a)は、この半導体光電陰極の構造を分かりやすく説明するため、図17(b)に示される活性層40が省略されて描かれている。
【0075】
この半導体光電陰極は、図15および図16に示された半導体光電陰極の半導体部60の位置、コンタクト層50a,50bの位置および表面電極80a、80bの位置を変化させたものである。第2半導体層30内には、半導体部60が埋設されている。半導体部60の表面には直接にコンタクト層50a〜50dが形成されている。それぞれのコンタクト層50a〜50dの開口内であって、第2半導体層上には、活性層40が形成されている。この構造の半導体光電陰極は、各ピクセル50a〜50dから独立に電子を放出することができるとともに、図10を用いて説明したように、その製造方法が簡単であるという利点がある。なお、要素(10,20,30,40,50a,50b,60,70、80a、80b)の構成材料および不純物濃度は、図1に示した要素と同じである。
【0076】
(第8の実施の形態)
次に、本発明の第8の実施の形態について説明する。図18(a)は、この半導体光電陰極の平面図であり、図18(b)は、図18(a)の半導体光電陰極を線分C−C´に沿って切った半導体光電陰極の断面図である。なお、図18(a)は、この半導体光電陰極の構造を分かりやすく説明するため、図18(b)に示される活性層40が省略されて描かれている。
【0077】
この半導体光電陰極は、図15および図16に示された半導体光電陰極の半導体部60の位置、コンタクト層50a,50bの位置および表面電極80a,80bの位置を変化させたものである。第2半導体層30内には、半導体部60が埋設されている。半導体部60の表面には直接にコンタクト層50a〜50dが形成されている。それぞれのコンタクト層50a〜50dの開口内であって、第2半導体層上には、活性層40が形成されている。この構造の半導体光電陰極は、各表面電極80a〜80dに電位を与えることによって、各ピクセル50a〜50dから独立に電子を放出することができるとともに、図12を用いて説明したように、その製造方法が簡単であるという利点がある。なお、要素(10,20,30,40,50a、50b、60,70、80a、80b)の構成材料および不純物濃度は、図1に示した要素と同じである。
【0078】
次に、図15および図16に示した半導体光電陰極における電子放出の制御について説明する。以下では、光が半導体光電陰極に入射することにより電子を半導体光電陰極内に蓄積する「蓄積モード」、この電子を放出する「放出モード」、半導体部に外部から電圧を印加することにより半導体光電陰極内に蓄積された電子を半導体光電陰極に取り付けられた導体に吸収させる「吸収モード」について説明する。
【0079】
(蓄積モード)
図19(a)は、図15および図16に示した半導体光電陰極に陽極90を接続した半導体光電陰極装置の断面図である。同図内において、電極70は、半導体基板10に取り付けられており、符号901、902、501は、オーミック電極を表している。電極70とアノード90との間には電源V1 が接続されており、電極70の電位よりもアノード90の電位はV1 (ボルト)高い。電極70と表面電極80c,80dとの間には電源V2 が接続されており、電極70の電位よりも表面電極80c、80dの電位の方がV2 (ボルト)高い。電位V2 は電位V1 よりも低く、この電圧源V2 は可変である。なお、ここでは、表面電極80cと表面電極80dとは接続されており、これらの電極50c、50dには共通の電位が与えられることとする。
【0080】
図19(b)は、図19(a)のX−X´を結ぶ線上の半導体光電陰極のエネルギーバンド図である(V2 =0〜1ボルト)。第1半導体層20に光hνが入射されることにより、この第1半導体層20内において発生した電子eは、第1半導体層20内部の電界の力または拡散によって第2半導体層30内にはいる。図19(a)の一点鎖線より上(図面の上)の領域は、半導体部60と第2半導体層30との濃度差により形成された空乏領域である。したがって、第1半導体層20から活性層40方向への電子の通り道は、この空乏領域によりカットされる(ピンチオフ状態)。
【0081】
図19(c)は、図19(a)のY−Y´を結ぶ線上の半導体光電陰極のエネルギーバンド図である(V2 =0〜1ボルト)。図19(b)および図19(c)に示すように、第1半導体層10内において発生した電子eは、第2半導体層30内に蓄積される。
【0082】
(放出モード)
図19(d)は、図19(a)のX−X´を結ぶ線上の半導体光電陰極のエネルギーバンド図である(V2 =2〜数10ボルト)。このように、第2半導体層30内に蓄積された電子eは、表面電極80cと電極70との間に2〜数10ボルトの電圧を加えることにより、半導体光電陰極から放出される。
【0083】
図20は、図16に示した半導体光電陰極を用いた半導体光電陰極装置の断面図である。遮光材料から構成される筒状の外側ケースCA1の内壁には、透明材料から構成される密閉容器(内側ケース)CA2が嵌まっている。外側ケースCA1の開口付近には、レンズL1が固定されている。半導体光電陰極装置の外側からこの半導体光電陰極装置内に入力された光は、レンズL1で集光されて、密閉容器CA2内に配置された半導体光電陰極CT5上に像を結ぶ。半導体光電陰極CTの電極70とリード電極80cとの間には電圧源V2 が接続されている。また、密閉容器CA2内には、入射した電子に感応する2次元イメージセンサIM配置されている。2次元イメージセンサIMは、このイメージセンサIMの表面から入力された電子をリード線RE4から取り出す装置である。イメージセンサIMは、入射して電子に感応する層IM2と層IM2の裏面に設けられたバックコンタクトIM1とを備えており、バックコンタクトIM1にはリードRE2が接続されている。リードRE2とリードRE1との間には、電圧源V1 が接続されており、リードRE1には電極70が接続されているので、半導体光電陰極CT5から出射された電子はアノードIM方向に進行する。なお、密閉容器内の圧力は、大気圧よりも低い圧力であり、10−5torr以下の圧力であって、10−10 torr以下の圧力であることが望ましい。したがって、図面の左側から半導体光電陰極装置(微弱光検出管)に入力された光は、電気信号として検出することができる。なお、カソードCT5とアノードIMとの間には、マイクロチャンネルプレートを配置することとしてもよい。
【0084】
以上、説明したように、本発明に係る半導体光電陰極は、光を検出する機器に適用することができる。上記では半導体光電陰極を用いたイメージ管について説明したが、これは、電子増倍管やストリークカメラにも適用することが可能である。すなわち、半導体光電陰極を利用した装置は、マイクロチャンネルプレート(MCP)やダイノードあるいは二次電子増倍部をアノードとカソードとの間に設けることとしてもよく、電子の軌道を偏向する偏向電極をアノードとカソードとの間に設けることとしてもよい。さらには、アノードには蛍光塗料を塗布した蛍光部材を用いることとしてもよく、蛍光材料を含んだ蛍光板を用いることとしてもよい。
【0085】
【発明の効果】
以上の通り、本発明によれば、第2半導体層の内部または表面には、半導体部が配置されているので、電子はコンタクト層および表面電極の開口方向へ走行する。コンタクト層および表面電極の開口内または開口を貫く軸の延長線上には第3半導体層が形成されているので、電子はこの第3半導体層内に導入される。このように電子はコンタクト層をさけて第3半導体層から真空中へ放出されるのでコンタクト層でこの電子が吸収される割合が減少する。したがって、入射した光のエネルギーに対して陽極で収集される電子の量が増加し、このような半導体光電陰極を用いた半導体光電陰極は高い検出感度を保持することができる。また、半導体部を配置することで、開口率100%で、構造上の画素分離が不要となり、さらに信号の変調も可能となる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る半導体光電陰極の斜視図である。
【図2】図2は、図1の半導体光電陰極CTを線分A−Aに沿って切った断面図である。
【図3】図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図(a)、同図(a)の線分A−A断面における半導体光電陰極CTのエネルギーバンド図(b)および線分B−B断面における半導体光電陰極CTのエネルギーバンド図(c)である。なお、同図(b)および(c)は、半導体光電陰極CTにバイアスを印加しない場合のエネルギーバンド図である。
【図4】図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図(a)、同図(a)の線分A−A断面上における半導体光電陰極CTのエネルギーバンド図(b)および線分B−B断面上における半導体光電陰極CTのエネルギーバンド図(c)である。なお、同図(b)および(c)は、半導体光電陰極CTにバイアスを印加した場合のエネルギーバンド図である。
【図5】図5は、図4に示した電子の挙動をさらに分かりやすく説明するための電子に対するポテンシャル図である。
【図6】図1に示した半導体光電陰極CTが密閉容器内に収納された半導体光電陰極装置を一部破断して示す斜視図である。
【図7】図1に示した半導体光電陰極CTの製造方法を半導体光電陰極CTの断面構成を用いて説明するための工程断面図である。
【図8】第1の実施の形態に係る半導体光電陰極の他の構成を厚み方向に切った断面を用いて示す断面図である。
【図9】第1の実施の形態に係る半導体光電陰極の他の構成を厚み方向に切った断面を用いて示す断面図である。
【図10】第2の実施の形態の半導体光電陰極CT3を厚み方向に切った断面図である。
【図11】図10に示した半導体光電陰極CT3の製造方法を断面を用いて説明するための工程断面図である。
【図12】第3の実施の形態の半導体光電陰極CT4を厚み方向に切った断面図である。
【図13】第4の実施の形態の半導体光電陰極の平面図(a)、同図(a)中の線分A−A´に沿って切った断面図(b)、同図(b)中の線分B−B´に沿って切った断面図である。
【図14】第5の実施の形態の半導体光電陰極を一部破断して示す斜示図である。
【図15】第6の実施の形態の半導体光電陰極を一部破断して示す斜示図である。
【図16】図15に示した半導体光電陰極の平面図(a)、同図(a)の線分A−A´に沿って切った断面図(b)である。
【図17】第7の実施の形態の半導体光電陰極をの平面図(a)、同図(a)の線分B−B´に沿って切った断面図(b)である。
【図18】第8の実施の形態の半導体光電陰極をの平面図(a)、同図(a)の線分C−C´に沿って切った断面図(b)である。
【図19】半導体光電陰極および陽極の断面図(a)、同図(a)中の線分X−X´に沿ったエネルギーバンド図(b)、同図(a)中の線分Y−Y´に沿ったエネルギーバンド図(電子蓄積時)(c)、同図(a)中の線分Y−Y´に沿ったエネルギーバンド図(電子放出時)(d)である。
【図20】半導体光電陰極CT5を実装した半導体光電陰極装置の断面図である。
【符号の説明】
10…半導体基板、20…第1半導体層、30…第2半導体層、40…第3半導体層、50…コンタクト層、60…半導体部、70…オーミック電極、80…表面電極、90…陽極。
【発明の属する技術分野】
本発明は、光の入射により電子を発生させ、外部から印加した電圧でこれを加速して放出する半導体光電陰極及びこれを用いた半導体光電陰極装置に関する。
【0002】
【従来の技術】
外部バイアス電圧により、半導体内部に電界を形成して光電子を放出面まで移送させて真空中に放出させる光電陰極としては、米国特許3958143号に示されているT.E.光電陰極がある。T.E.光電陰極の動作機構はいくつかの文献で示されている通りであり、簡単に説明するならばIII−V族半導体(p− )表面全面にショットキ電極を形成して正の電位を与えることにより、光電陰極内部に傾斜電場を形成して光電子を形成して光電子を加速させ上位伝導帯に遷移させて表面障壁を越えさせ、真空中に放出させる。光応答波長に関しては、2.1μmまで確認されその有効性が示されている。また、この半導体光電陰極の光電変換効率を向上させるために、ショットキ電極の形状を全面から格子状に工夫することで効率の向上も図られている。
【0003】
また、米国特許5047821号や特開平4−269419号公報には、半導体光電陰極を安定して再現性よく製造する技術が示されている。
【0004】
【発明が解決しようとする課題】
しかしながら、これらの半導体光電陰極の量子効率は0.1%と通常の光検出器と比較して低く、実用的な光検出器として用いるためには、さらなる量子効率の向上が望まれる。この量子効率の低さは、表面に形成されるショットキ電極への光電子の捕獲に起因していると考えられる。
【0005】
本発明は以上の問題に鑑みてなされたものであり、さらに量子効率を改善することができる半導体光電陰極およびこれを用いた半導体光電陰極装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、入射した光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極および半導体光電陰極装置(光検出管、イメージ管、光電子増倍管、ストリークカメラ、イメージインテンシファイアなど)を対象とするものである。
【0007】
そこで、本発明においては、入射される光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極において、p型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、開口を有し、第2半導体層とPN接合を成して第2半導体層の表面を覆うように形成されたコンタクト層と、コンタクト層上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、コンタクト層の開口内に形成された第3半導体層と、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上であって、第2半導体層の内部に配置された半導体部とを備える構成とした。
【0008】
このように本発明の半導体光電陰極は、まず、光や電磁波がp型第1半導体層に入射することによって、第1半導体層では正孔電子対が発生する。このとき電子は伝導帯のガンマ谷の下限のエネルギー準位(第1エネルギー準位)に励起されている。そして、PN接合をなすコンタクト層には第1半導体層よりも高い電位が与えられるので、発生した電子はこの電位による電界に力を受けてコンタクト層方向へ走行する。第2半導体層は、第1半導体層よりもその濃度が低い場合には、第2半導体層内に第1半導体層よりも広い範囲に空乏層領域が発生する。この空乏層領域には電界が生じており、走行中の電子はこの電界で加速されてエネルギーを受け取るので、伝導帯中のガンマ谷の下限のエネルギー準位よりもさらに上の衛星谷(LまたはX谷)またはガンマ谷のより高いエネルギー準位(第2エネルギー準位)に励起されながらコンタクト層方向に走行する。
【0009】
一方、第2半導体層の内部には、コンタクト層をその厚み方向に貫く延長線上に第2半導体層よりも広いエネルギーバンドギャップを有する半導体部が配置されているので、この半導体部の存在に起因してポテンシャル障壁が発生する。このポテンシャルにより走行中の電子の軌道は曲げられて、電子はコンタクト層の開口方向へ走行する。コンタクト層の開口内または開口を貫く軸の延長線上には第3半導体層が形成されているので、電子はこの第3半導体層内に導入される。第3半導体層の仕事関数は第2半導体層の仕事関数よりも小さいので、電子は第3半導体層から容易に真空中へ放出される。この第3半導体層は、仕事関数が低いアルカリ金属を主成分とする化合物半導体などが好ましい。例えば、第3半導体層の材料としては、Cs−O、Cs−I、Cs−Te、Sb−Cs、Sb−Rb−Cs,Sb−K−Cs、Sb−Na−K、Sb−Na−K−Cs、Ag−O−Csなどの組み合わせが列挙される。
【0010】
また、本発明においては、入射される光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極において、p型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、第2半導体層よりも広いエネルギーバンドギャップを有し、第2半導体層上に形成された半導体部と、開口を有し、半導体部とPN接合を成して半導体部の表面を覆うように形成されたコンタクト層と、コンタクト層上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、コンタクト層の開口をその軸方向に貫ぬく延長線上であって、第2半導体層上に形成された第3半導体層とを備える構成とした。
【0011】
このように本発明の半導体光電陰極は、まず、光や電磁波がp型第1半導体層に入射することによって、第1半導体層では正孔電子対が発生する。このとき電子は伝導帯のガンマ谷の下限のエネルギー準位(第1エネルギー準位)に励起されている。そして、PN接合をなすコンタクト層には第1半導体層よりも高い電位が与えられるので、発生した電子はこの電位による電界に力を受けてコンタクト層方向へ走行する。第2半導体層の濃度が1半導体層の濃度よりも低い場合には、第2半導体層内に第1半導体層よりも広い範囲に空乏層領域が発生する。この空乏層領域には電界が生じており、走行中の電子はこの電界からエネルギーを受け取るので、伝導帯中のガンマ谷の下限のエネルギー準位よりもさらに上の衛星谷(LまたはX谷)またはガンマ谷のより高いエネルギー準位(第2エネルギー準位)に励起されながらコンタクト層方向に走行する。
【0012】
一方、第2半導体層の表面には、第2半導体層よりも広いエネルギーバンドギャップを有する半導体部が配置され、またコンタクト層の開口部をその厚み方向に貫く延長線上の第2半導体上には第3半導体層が形成されている。したがって、この半導体部の存在に起因してポテンシャル障壁が発生する。このポテンシャルにより走行中の電子の軌道は曲げられて、電子はコンタクト層の開口方向へ走行する。そして、電子は第3半導体層内に導入される。第3半導体層の仕事関数は第2半導体層の仕事関数よりも小さいので、電子は第3半導体層から容易に真空中へ放出される。この第3半導体層は、仕事関数が低いアルカリ金属を主成分とする化合物半導体などを用いることが好ましい。例えば、第3半導体層の材料としては、Cs−O、Cs−I、Cs−Te、Sb−Cs、Sb−Rb−Cs,Sb−K−Cs、Sb−Na−K、Sb−Na−K−Cs、Ag−O−Csなどの組み合わせが列挙される。
【0013】
また、本発明においては、半導体部は環状の部分を有しており、この環状の部分内の面積は、コンタクト層の開口内の面積よりも小さくしてもよい。
【0014】
このように半導体部が環状の部分を有していて、この環状の部分内の面積はコンタクト層の開口内の面積よりも小さくすると、電子はこの環状の半導体層により曲げられてコンタクト層に吸収されずに開口部へ集束される。
【0015】
また、本発明においては、半導体部はメッシュ形状を有する構成としてもよい。
【0016】
このように半導体部がメッシュ形状を有すると、電子が第3半導体層の表面から高い均一性で放出される。
【0017】
また、本発明においては、第2半導体層は、この第2半導体層と第1半導体層との界面近傍に、第2半導体層内の第3半導体層側の領域のエネルギーバンドギャップと第1半導体層のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層を有する構成としてもよい。
【0018】
このように第2半導体層が、この第2半導体層と第1半導体層との界面近傍に第2半導体層内の第3半導体層側の領域のエネルギーバンドギャップと第1半導体層のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層を有するようにしたので、第2半導体層と第1半導体層との界面の結晶性を良好に保持してリーク電流や再結合電流を減少できる。
【0019】
また、本発明においては、半導体部は、ストライプ状に配置された半導体部分を含む構成としてもよい。
【0020】
このように半導体部をストライプ状に配置したので、第3半導体の表面から高い均一性で電子が放出される。また、これらの半導体部は、お互いに交差する半導体部分を備えていてもよい。
【0021】
また、本発明においては、大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、半導体光電陰極は、半導体基板と、半導体基板上に形成されたp型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、開口を有し、第2半導体層とPN接合を成して第2半導体層の表面を覆うように形成されたコンタクト層と、コンタクト層上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、コンタクト層の開口内に形成された第3半導体層と、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上であって、第2半導体層の内部に配置された半導体部と、表面電極に電気的に接続され、密閉容器を貫通する第1接続ピンと、半導体基板または第1半導体層に電気的に接続され、密閉容器を貫通する第2接続ピンとを備え、陽極は、この陽極に電気的に接続され、密閉容器を貫通する第3接続ピンを備える構成とした。
【0022】
このように半導体光電陰極と陽極とを密閉容器内に配置して形成した半導体光電陰極装置は、第1接続ピンと第2接続ピンとの間に第1接続ピンの電位が第2接続ピンの電位よりも高くなるように電圧を印加するとともに、第2接続ピンと第3接続ピンとの間に第3接続ピンの電位が第1接続ピンの電位よりも高くなるように電圧を印加して使用する。この状態で前述の半導体光電陰極から放出された電子は陽極で収集される。したがって、この陽極に接続された第3接続ピンから入射した光または電磁波に対応した電流を取り出すことができる。
【0023】
また、本発明においては、第1半導体層は、この第1半導体層と半導体基板との界面近傍に、第1半導体層内の第2半導体層側の領域のエネルギーバンドギャップと半導体基板のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層を有する構成としてもよい。
【0024】
このように第1半導体層は、この第1半導体層と半導体基板との界面近傍に、第1半導体層内の第2半導体層側の領域のエネルギーバンドギャップと半導体基板のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層を有するようにしたので、半導体基板と第1半導体層との界面の結晶性を良好に保持してリーク電流や再結合電流を減少できる。
【0025】
また、本発明においては、半導体光電陰極装置は、半導体光電陰極と陽極との間に配置された電子増倍器を含む構成としてもよい。
【0026】
このように半導体光電陰極装置は、半導体光電陰極と陽極との間に配置された電子増倍器を含むようにしたので、半導体光電陰極からの光電子を増幅できる。たとえば、半導体光電陰極と陽極との間に半導体光電陰極から放出された電子を増倍するためのダイノードやマイクロチャンネルプレート(MCP)を配置することとしてもよい。
【0027】
また、本発明においては、陽極は、蛍光物質を含む部材を含むようにしてもよい。
【0028】
このように陽極は蛍光物質を含む部材を含むようにしたので、陽極は光電子の到達により蛍光を発する。
【0029】
また、本発明においては、大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、半導体光電陰極は、半導体基板と、半導体基板上に形成されたp型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、第2半導体層と陽極との間に配置されたコンタクト層と、コンタクト上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、第2半導体層と陽極との間に配置された第3半導体層と、コンタクト層とPN接合をなし、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上に配置された半導体部と、表面電極に電気的に接続され、密閉容器を貫通する第1接続ピンと、半導体基板または第1半導体層に電気的に接続され、密閉容器を貫通する第2接続ピンとを備え、陽極は、この陽極に電気的に接続され、密閉容器を貫通する第3接続ピンを備える構成とした。
【0030】
このように大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、半導体光電陰極は、半導体基板と、半導体基板上に形成されたp型の第1半導体層と、第1半導体層上に形成されたp型の第2半導体層と、第2半導体層と陽極との間に配置されたコンタクト層と、コンタクト上にありコンタクト層とオーミック接触する表面電極と、第2半導体層の仕事関数より小さな仕事関数を有し、第2半導体層と陽極との間に配置された第3半導体層と、コンタクト層とPN接合をなし、第2半導体層よりも広いエネルギーバンドギャップを有し、コンタクト層をその厚み方向に貫く延長線上に配置された半導体部と、表面電極に電気的に接続され、密閉容器を貫通する第1接続ピンと、半導体基板または第1半導体層に電気的に接続され、密閉容器を貫通する第2接続ピンとを備え、陽極は、この陽極に電気的に接続され、密閉容器を貫通する第3接続ピンを備える構成として、第1接続ピンと第2接続ピンとの間に第1接続ピンの電位が第2接続ピンの電位よりも高くなるように電圧を印加するとともに、第2接続ピンと第3接続ピンとの間に第3接続ピンの電位が第1接続ピンの電位よりも高くなるように電圧を印加して使用される。このようにすると前述の半導体光電陰極から放出された電子は陽極で収集される。したがって、この陽極に接続された第3接続ピンから入射した光または電磁波に対応した電流を取り出すことができる。
【0031】
【発明の実施の形態】
以下、本発明に係る半導体光電陰極の発明の実施の形態について添付図面を用いて説明する。なお、同一要素には同一符号を用いることとし、重複する説明は省略する。
【0032】
(第1の実施の形態)
図1は、第1の実施の形態に係る半導体光電陰極の斜視図である。本実施の形態の半導体光電陰極CTは、まず、半導体基板10上に光の入射に応答して電子を発生するp型の第1半導体層20(光吸収層)が形成されている。この第1半導体層20は第1不純物濃度を有しており、この第1半導体層20上には、第1不純物濃度よりも低い不純物濃度を有する第2不純物濃度のp型の第2半導体層30(電子移送層)が形成されている。そして、第2半導体層30の表面を覆うように開口を有する網目(メッシュ)形状もしくは格子形状のコンタクト層50が形成されている。コンタクト層50は、その層上にオーミック接触する表面電極80を備えている。
【0033】
また、第2半導体層30の表面であって、コンタクト層50の開口内には第3半導体層40(活性層)が形成されている。この第3半導体層40は、第2半導体層30の仕事関数より小さな仕事関数を有している。第2半導体層30の内部には、第2不純物濃度程度もしくはこれ以下の不純物濃度を有する第3不純物濃度の半導体部60(チャネル格子)が埋設されている。そして、半導体部60は、コンタクト層50をその厚み方向に貫く延長線上に設置されている。
【0034】
また、この半導体部60は網目(メッシュ)形状もしくは格子形状を有しており、この格子形状の1つの格子の目で規定される環状の部分内の面積は、コンタクト層50の開口内の面積よりも小さい。なお、半導体部60の形状は、コンタクト層の形状と対応している。これにより、電子は半導体部60によって効率よく開口方向へ曲げられ、また、この電子は半導体部60が格子形状であるので、第3半導体層の表面から高い均一性で放出されることになる。なお、p型第1半導体層20にはオーミック電極70が設置されている。
【0035】
本実施の形態においては、これらの半導体層の構成材料や層厚は以下のように設定される。
【0036】
半導体基板10は(100)p型InP半導体基板であり、第1半導体層20は半導体基板10にエピタキシャル成長によって形成された不純物濃度1×1018〜1020/cm3 のp型InGaAs半導体である。そして、第1半導体層20の膜厚はこの層の電子拡散長で決定される厚さ(例えば、1.5〜2.5μm)が適当である。p型の第2半導体層30は厚さ1.0〜10μm、不純物濃度約1×1017/cm3 のp型InP半導体であり、半導体部60は不純物濃度1×1016/cm3 以下のp− のAlAsSb半導体である。第3半導体層40はp型第2半導体層30の仕事関数より小さな仕事関数を有する(Cs・O)半導体である。
【0037】
また、第3半導体層の材料としては、Cs−O、Cs−I、Cs−Te、Sb−Cs、Sb−Rb−Cs,Sb−K−Cs、Sb−Na−K、Sb−Na−K−Cs、Ag−O−Cs、などの組み合わせが列挙される。なお、これらの半導体層の材料は、以下の物質も選択しうる。すなわち、[半導体基板10、p型第1半導体層20(光吸収層)、p型第2半導体層30(電子移送層)、半導体部60(チャネル格子)]の構成材料の組み合わせは、各層の間で格子整合がとれるもの同士の組み合わせが妥当であり、この格子整合は各層の格子定数の差が±0.3%以内であることが望ましい。したがって、このような構成材料の組み合わせの範囲は以下の表に示す通りである。なお、半導体基板は、所定の基板上に半導体の薄膜を形成して使用してもよい。このように基板を用いると、基板を薄膜の支持材とて使用できる。例えば、GaN、AlN系では、基板としてサファイヤ、SiC、スピネル等が好ましい。
【0038】
【表1】
【0039】
次に、この半導体光電陰極CTの動作について説明する。
【0040】
図2は、図1の半導体光電陰極CTを線分A−Aに沿って切った断面図である。なお、同図には、第3半導体層40に対向して設置された陽極90が示されている。同図に示すようにオーミック電極70と表面電極80との間には、表面電極80がオーミック電極70よりも高い電位になるような電圧(例えば、3.5V)が印加されている。また、オーミック電極70と陽極90との間には、陽極90が、オーミック電極70よりも高い電位になるような電圧(例えば、100V)が印加されている。なお、この半導体光電陰極CTおよび陽極90は10−10 torr以下の環境下に配置されている。この半導体光電陰極CTおよび陽極90の配置される環境の圧力は、電子放出の観点からは少なくとも大気圧以下の圧力であって10−5torr以下であることが望ましい。
【0041】
このような条件下の半導体光電陰極CTに光や電磁波が入射すると、まず、光や電磁波がp型の第1半導体層20に入射することによって、第1半導体層20では正孔電子対が発生する。このとき電子は伝導帯のガンマ谷の下限のエネルギー準位(第1エネルギー準位)に励起されている。そして、表面電極80には第1半導体層よりも高い電位が与えられるので、これにより発生した電界に力を受けて、発生した電子はコンタクト層50方向へ走行する。p型の第2半導体層30の濃度は第1半導体層20の濃度より低いので、第2半導体層30内には、第1半導体層20よりも強い電界が発生する。この電界により走行中の電子はエネルギーを受け取って、伝導帯中のガンマ谷の下限のエネルギー準位よりもさらに上の衛星谷(LまたはX谷)またはガンマ谷より高いエネルギー準位(第2エネルギー準位)に励起されてコンタクト層50方向に走行する。
【0042】
ここで、第2半導体層30の内部には、コンタクト層50をその厚み方向に貫く延長線上に第3不純物濃度の半導体部60が埋設されているので、この半導体部60の存在に起因して発生するポテンシャル障壁により、走行中の電子の軌道は曲げられて、電子はコンタクト層50の開口方向へ走行する。コンタクト層50の開口内には第3半導体層40が形成されているので、電子はこの第3半導体層40内に導入される。第3半導体層40の仕事関数は、第2半導体層30の仕事関数より小さいので、電子は第3半導体層40から容易に真空中へ放出される。放出された電子は、陽極90方向に力を受けて、陽極90方向に進行する。
【0043】
次に、この半導体光電陰極CTにおける電子の走行について、エネルギーバンド図を用いて説明する。
【0044】
図3(a)は、図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図である。また、同図(b)および(c)は、それぞれ、同図(a)の線分A−A断面および線分B−B断面における半導体光電陰極CTのエネルギーバンド図である。なお、同図(b)および(c)は、半導体光電陰極CTにバイアスを印加しない場合のエネルギーバンド図である。
【0045】
同図から明らかなように、半導体部60は、第2半導体層30よりも広いエネルギーバンドギャップを有しているので、半導体部60の伝導帯Ecの下端のエネルギー準位はp型の第2半導体層よりも正の方向へシフトしており(ポテンシャルは負の方向へシフトしている)、半導体光電陰極CT内部には、励起された電子がコンタクト層50方向に進行しにくいポテンシャル障壁が形成されている。
【0046】
次にこの半導体光電陰極CTにバイアスを印加した場合の電子の振る舞いを図4を用いて説明する。
【0047】
図4(a)は、図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図である。また、同図(b)および(c)は、それぞれ、同図(a)の線分A−A断面および線分B−B断面における半導体光電陰極CTのエネルギーバンド図である。なお、図5は、図4に示した電子の挙動をさらに分かりやすく説明するための電子に対するポテンシャル図である。
【0048】
図4(c)から明らかなように、バイアスを印加した場合においても半導体部60は、第2半導体層30よりも広いエネルギーバンドギャップを有しているので、励起された電子E1がコンタクト層50方向に進行しにくいポテンシャル障壁として機能する。このようなポテンシャル障壁により、第2半導体層30中を走行する電子E1は、その軌道を変化させられて半導体部60を避けて第3半導体層40方向に進行する。
【0049】
表面電極80にバイアスが印加されると、電子E1は、その進行方向が第2半導体層30上のコンタクト層50の形成されていない領域に形成された第3半導体層40方向に曲げられる。すなわち、電子E1は半導体部60とこの半導体部60に隣接した半導体部60との間の領域Rを通過するので、線分A−A断面上を通過する電子流の密度は増加することになる(図5参照)。この半導体層60によって挟まれた領域Rを通過する際には、図4(b)のように、伝導帯Ecのガンマ谷の下限のエネルギー準位に励起された状態で第2半導体層30内を進行する電子E1は第2半導体層30内に発生させられた電界により加速されてエネルギーを得るので、このエネルギー準位よりもさらに高いエネルギー準位の衛星谷(LまたはX谷)またはガンマ谷のより高いエネルギー準位に励起される。電子が、半導体層60で挟まれた領域Rを通過後、第3半導体層40に進入するまでの間には、発散する方向の力が電子に働くが、この間の距離を例えば0.5〜2.0μmとし、また、半導体層60とコンタクト層50の幅を、半導体層60の幅≧コンタクト層50の幅となるように設定すれば、現実的に半導体基板10、第1半導体層20および第2半導体層30において発生した電子E1のほとんどは、コンタクト層50に吸収されることなく第3半導体層40に進入する。第3半導体層40の仕事関数は第2半導体層30よりも小さく、図4(b)および図5に示すように電子E1は効率よく真空中に放出される。
【0050】
図6は、図1に示した半導体光電陰極CTが密閉容器内に収納された半導体光電陰極装置を一部破断して示す斜視図である。本半導体光電陰極装置は、大気圧よりも低い圧力(10−5torr以下であって望ましくは10−10 torr以下の圧力)の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備えている。半導体光電陰極CTは、これに電気的に接続された第1接続ピン1および第2接続ピン2を有しており、陽極90はこれに電気的に接続された第3接続ピン90aを有している。第1接続ピン1、第2接続ピン2および第3接続ピン90aは密閉容器100を貫通している。なお、半導体光電陰極CTの陽極90側には光や電磁波が入射される入射窓110が配置されている。入射窓110は、容器100に接着することとしてもよい。
【0051】
このような半導体光電陰極CTと陽極90とを密閉容器100内に配置して形成した半導体光電陰極装置は、第1接続ピン1と第2接続ピン2との間に第1接続ピン1の電位が第2接続ピン2の電位よりも高くなるように電圧を印加するとともに、第2接続ピン2と第3接続ピン90aとの間に第3接続ピン90aの電位が第1接続ピン1の電位よりも高くなるように電圧を印加して使用する。なお、図1に示した半導体光電陰極CTを参照すれば、表面電極80およびオーミック電極70は、それぞれ金などの金属50aおよび金属70aを介して第1接続ピン1および第2接続ピン2に接続されており、陽極90は、これに接続された第3接続ピン90aを備えている。
【0052】
次に、図1に示した半導体光電陰極CTの製造方法について説明する。
【0053】
図7は、図1に示した半導体光電陰極CTの製造方法を半導体光電陰極CTの断面構成を用いて説明するための工程断面図である。
【0054】
まず、半導体基板10を用意する。そして、この半導体基板10上に、第1半導体層20、第2半導体30a、半導体層60aおよびレジスト層200aを順次積層した(図7(a))。各半導体層の積層はMBE(分子線エピタキシャル成長)法、MOCVD(有機金属気相成長)法などのエピタキシャル成長法を用いる。
【0055】
その後、レジスト層200aを表面から半導体層60aに到達するまでエッチンッグしてメッシュ状のレジスト200を形成した(図7(b))。次に、このレジスト200をマスクとして半導体層60aをエッチングしてメッシュ状の半導体部60を形成した(図7(c))。しかる後、第2半導体30aおよび半導体部60の表面を覆うように第2半導体30aを構成する材料をこれらの第2半導体30aおよび半導体部60上に堆積して第2半導体層30を形成した(図7(d))。さらに、第2半導体層30上に図1のような配置になるようにコンタクト層50a、表面電極80aおよびレジスト300aを形成した(図7(e))。レジスト層300aを表面から表面電極80aに達するまでエッチングして半導体層60に対応したメッシュ状のレジストを形成して、このエッチングしたレジストをマスクにしてさらに表面電極80aおよびコンタクト層50aをエッチングして、メッシュ状のコンタクト層50および表面電極80を形成した(図7(f))。次に、大気よりも低圧の環境下でこれを加熱して第2半導体層30を清浄化した後,これらコンタクト層50、表面電極80および第2半導体層30を覆うように第3半導体層40を堆積して図1に示した半導体光電陰極を得た(図7(g))。
【0056】
なお、本実施の形態では、半導体基板10、第1半導体層20および第2半導体層30としてそれぞれInP、InGaAsおよびInPを用い、厚さ200nmのレジスト膜を用いた。
【0057】
第1半導体層20の不純物濃度(キャリア濃度)はp+ (1×1018〜1×1019/cm3 )である。この第1半導体層20の厚さは1.5〜2.5μmが適当である。第2半導体層30の不純物濃度(キャリア濃度)はp− (1×1017/cm3 以下)である。この第2半導体層30の厚さは1.0〜10μmが適当である。半導体部60の不純物濃度(キャリア濃度)はp−−(1×1017〜1×1014/cm3 )である。この半導体部60の厚さは0.5〜2.0μmが適当である。コンタクト層50は、n+(1×1018〜1×1019/cm3)である。このコンタクト層の厚さは、1μm〜数μm程度が好ましい。また、表面電極80は、Alなどの金属を用いた真空蒸着法によりコンタクト層50上に堆積することができる。また、本製造方法では、第3半導体層40をCs2 Oとし、Cs2 OはCs(セシウム)とO(酸素)の交互蒸着またはこれらの材料を含む原料ガスを交互供給することにより形成した。
【0058】
なお、図1に示した半導体光電陰極CTのp型の第1半導体層20は、図8に示すように、このp型第1半導体層20と半導体基板10との界面近傍に、p型第1半導体層20内のp型第2半導体層30側の第1領域20aのエネルギーバンドギャップと半導体基板10のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層20bを有することとしても良い。これにより、本半導体光電陰極CT1において、半導体基板10とp型第1半導体層20との界面の結晶性を良好に保持してリーク電流や再結合電流を減少させることができ、また、光電子はポテンシャル障壁で反跳されて効率よく第2半導体層30に導かれる。
【0059】
また、p型第2半導体層30は、このp型第2半導体層30とp型第1半導体層20との界面近傍に、p型第2半導体層30内の第3半導体層40側の第2領域30aのエネルギーバンドギャップと第1半導体層20のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層30bを有することとしても、p型第2半導体層30とp型第1半導体層20との界面の結晶性を良好に保持してリーク電流や再結合電流を減少させることができる。すなわち、この第2グレーデッド層20bは、第1領域20aの格子定数と半導体基板10の格子定数との中間の格子定数を有し、第1グレーデッド層30bは、第2領域30aの格子定数と第1領域20aの格子定数との中間の格子定数を有している。
【0060】
また、図1に示した半導体光電陰極CTでは、オーミック電極70を第1半導体層に設けたが、これは図9に示すように半導体基板10の裏面に設置されることとしてもよい。このようにオーミック電極70が半導体基板10に設置されることとすれば、図1に示した半導体光電陰極CTと比較してオーミック電極70を容易にこの半導体基板10に設置することができる。なお、本半導体光電陰極CT2も図8に示した半導体光電陰極CT1と同様に第2グレーデッド層20bおよび第1グレーデッド層30bを設けることとしてもよい。
【0061】
なお、以上の図1、図8および図9を用いて説明された半導体光電陰極(CT、CT1およびCT2)は、図6に示した密閉容器100内に設置することができる。
【0062】
(第2の実施の形態)
次に、半導体光電陰極の第2の実施の形態について図10〜図11を用いて説明する。なお、各半導体層を構成する材料および不純物濃度は、図1を用いて説明した半導体光電陰極CTと同様である。
【0063】
図10に示す半導体光電陰極CT3は、図3に示した半導体光電陰極CTと第2半導体層30内の半導体部60の位置が異なっている。すなわち、この半導体光電陰極CT3は、半導体基板10上にp型第1半導体層20、p型第2半導体層30および第3半導体層40が順次積層して形成されており、p型第2半導体層30内には格子状の半導体部60が埋め込まれている。そして、この埋め込まれた半導体部60上の第3半導体層40の形成されていない面には、コンタクト層50が存在し、さらにこのコンタクト層50上にはこの層とオーミック接触した表面電極80が存在する。また、第1半導体層20には、オーミック電極70が設けられている。これらの電極50および電極70は、それぞれ金などの金属50aおよび金属70aを介して図示しない接続ピンに接続されている。陽極90は、第3半導体層40に対向して配置されており、図示しない接続ピンに接続されている。この半導体光電陰極CT3および陽極90は、図1に示した半導体光電陰極CTと同様に図6に示したような密閉容器100内に設置される。
【0064】
図11は、図10に示した半導体光電陰極CT3の製造方法を断面を用いて説明するための工程断面図である。まず、半導体基板10を用意する。そして、この半導体基板上に、第1半導体層20、第2半導体30a、半導体層60aおよびレジスト層200aを順次積層した(図11(a))。各半導体層の積層はMBE(分子線エピタキシャル成長)法を用いた。その後、レジスト層200aを表面から半導体層60aに到達するまでエッチンッグしてメッシュ状のレジスト200を形成した(図11(b))。次に、このレジスト200をマスクとして半導体層60aをエッチングしてメッシュ状の半導体部60を形成した(図11(c))。しかる後、第2半導体30aおよび半導体部60の表面を覆うように第2半導体30aと同じ材料を、これらの第2半導体30aおよび半導体部60上に堆積して第2半導体層30を形成した(図11(d))。次に、第2半導体層30をその表面から半導体部60が露出するまで研磨した(図11(e))。さらに、第2半導体層30および半導体層60上にコンタクト層50a、表面電極層80aおよびレジスト300aを順次積層して形成した(図11(f))。次に、レジスト300aを表面から表面電極層80aに達するまでエッチングして半導体層60に対応したレジストパターンを形成した。このレジストをマスクにして表面電極層80aとコンタクト層50aを順次エッチングして、メッシュ状のコンタクト層50および表面電極80を形成した(図11(g))。大気圧より低圧の環境下でこれを加熱して第2半導体層30を清浄化した後に、これらコンタクト層50、表面電極80および第2半導体層30を覆うように第3半導体層40を堆積して、図10に示した半導体光電陰極CT3を得た(図11(h))。
【0065】
(第3の実施の形態)
次に、半導体光電陰極の第3の実施の形態について図12を用いて説明する。なお、各半導体層を構成する材料および不純物濃度は、図1を用いて説明した半導体光電陰極CTと同様である。
【0066】
図12は、本実施の形態の半導体光電陰極CT4を厚み方向に切った断面図である。この半導体光電陰極CT4は、図3に示した半導体光電陰極CTにおいて第2半導体層30内に設置されていた半導体部60が、第2半導体層30と一面のみで接触されることとした構造を有している。すなわち、本半導体光電陰極CT4は、半導体基板10上にp型の第1半導体層20、p型の第2半導体層30、第3半導体層40、格子状の半導体部60、コンタクト層50および表面電極80が順次積層して形成されている。そして、第2半導体層30の表面、半導体部60、コンタクト層50および表面電極80を覆うように第3半導体層40が形成されている。また、第1半導体層20には、オーミック電極70が設けられている。これらの電極80および電極70は、それぞれ金などの金属50aおよび金属70aを介して図示しない接続ピンに接続されている。陽極90は、第3半導体層40に対向して配置されており、図示しない接続ピンに接続されている。この半導体光電陰極CT3および陽極90は、図1に示した半導体光電陰極CTと同様に図6に示したような密閉容器100内に設置される。
【0067】
本実施の形態の半導体光電陰極は、その構造上、第2半導体層30をエッチングしないでも半導体部60を形成できるので、図1〜図11に示した半導体光電陰極と比較して簡易に製造できるばかりでなく、エッチングによる第2半導体層30の結晶性の劣化を防止することができる。
【0068】
(第4の実施の形態)
次に、半導体光電陰極の第4の実施の形態について説明する。図13(a)は、本実施の形態に係る半導体光電陰極の平面図であり、図13(b)は、図13(a)のA−A´線分に沿って切った半導体光電陰極の断面図であり、図13(c)は、図13(b)のB−B´線分に沿って切った半導体光電陰極の断面図である。
【0069】
この半導体光電陰極は、半導体基板310、半導体基板310上に形成された第1半導体層320、第1半導体層320上に形成された第2半導体層330、第2半導体層330上に形成された第3半導体層(活性層)340、第2半導体層330内に埋設された半導体部360、第2半導体層330上に形成されたコンタクト層350、このコンタクト層350上にオーミック接触する表面電極380を備えている。
【0070】
詳説すれば、半導体基板310上には、光の入射に応答して電子を発生するp型の第1半導体層320(光吸収層)が形成されている。この第1半導体層320は、第1不純物濃度を有している。この第1半導体層320上には、第1不純物濃度よりも低い不純物濃度を有する第2不純物濃度のp型の第2半導体層330(電子移送層)が形成されている。そして、第2半導体層330の表面を覆うようなストライプ状(櫛型状)のコンタクト層350および表面電極380が形成されている。すなわち、コンタクト層350は、ストライプ状の半導体部分を含んでいる。コンタクト層350は、第2半導体層330とPN接合をなしている。第2半導体層330の表面であって、ストライプ(縞)状のコンタクト層350の隙間には第3半導体層340(活性層)が形成されている。この第3半導体層340は、第2半導体層330の仕事関数より小さな仕事関数を有している。第2半導体層330の内部には、第2不純物濃度程度もしくはこれ以下の不純物濃度を有する第3不純物濃度の半導体部360(チャネル格子)が埋設されている。半導体部360は、コンタクト層350および表面電極380をその厚み方向に貫く延長線上に設置されている。
【0071】
本実施の形態の半導体部360は、ストライプ形状を有しているので、この半導体光電陰極に光が入射することによって、半導体光電陰極内において発生した電子は半導体光電陰極内の電界によって第1半導体層320から活性層340方向に走行する。第2半導体層330内には、櫛形の半導体部360が埋設されているので、この電子は半導体部360によって効率よくストライプ350の隙間方向へ曲げらる。ストライプ350の隙間には活性層340が配置されているので、この電子が第3半導体層340の表面から高い均一性で放出されることになる。なお、半導体基板310にはこの基板310にバイアスを印加するためのオーミック電極370が設置されている。
【0072】
(第5の実施の形態)
次に、本発明の第5の実施の形態について説明する。図14は、本実施の形態に係る半導体光電陰極を一部破断して示す斜示図である。なお、図14は、この半導体光電陰極の構造を分かりやすくするため、コンタクト層50と表面電極80の層構造をこの半導体光電陰極の断面部のみに描いている。この半導体光電陰極は、図1に示したコンタクト層50をコンタクト層50a,50b…に分割し、さらに図1に示した表面電極80を表面電極80a,80b…に分割したものである。コンタクト層50aおよび表面電極80aとコンタクト層50bおよび表面電極80bとは電気的に絶縁されているので、表面電極80aには表面電極80bと独立した電位を印加することができる。なお、他の要素(10,20,30,40,60,70)の構成材料および不純物濃度は、図1に示した要素と同じである。
【0073】
(第6の実施の形態)
次に、本発明の第6の実施の形態について説明する。図15は、この実施の形態にかかる半導体光電陰極を一部破断して示す斜示図である。なお、図15は、この半導体光電陰極の構造を分かりやすくするため、コンタクト層50と表面電極80の層構造を半導体光電陰極の断面のみに描いている。図16(a)は、図15に示した半導体光電陰極の平面図であり、図16(b)は、図16(a)の半導体光電陰極を線分A−A´に沿って切った半導体光電陰極の断面図である。なお、図16(a)は、この半導体光電陰極の構造を分かりやすく説明するため、図16(b)に示される活性層40が省略されて描かれている。この半導体光電陰極は、図14に示した表面電極80a,80bに夫々リード電極80a´,80b´を接続したものである。リード電極80a´の終端部分は、表面電極80aに電位を与えるための端子を構成しており、リード電極80b´の終端部分は、表面電極80bに電位を与えるための端子を構成している。表面電極80aおよび表面電極80bと表面電極80cおよび表面電極80dとの間にリード電極が配置されているので、このリード電極80a´または80b´が活性層40から放出された電子の通過を邪魔することがない。なお、他の要素(10,20,30,40,60,70)の構成材料および不純物濃度は、図14に示した要素と同じである。
【0074】
(第7の実施の形態)
次に、本発明の第7の実施の形態について説明する。図17(a)は、この半導体光電陰極の平面図であり、図17(b)は、図17(a)の半導体光電陰極を線分B−B´に沿って切った半導体光電陰極の断面図である。なお、図17(a)は、この半導体光電陰極の構造を分かりやすく説明するため、図17(b)に示される活性層40が省略されて描かれている。
【0075】
この半導体光電陰極は、図15および図16に示された半導体光電陰極の半導体部60の位置、コンタクト層50a,50bの位置および表面電極80a、80bの位置を変化させたものである。第2半導体層30内には、半導体部60が埋設されている。半導体部60の表面には直接にコンタクト層50a〜50dが形成されている。それぞれのコンタクト層50a〜50dの開口内であって、第2半導体層上には、活性層40が形成されている。この構造の半導体光電陰極は、各ピクセル50a〜50dから独立に電子を放出することができるとともに、図10を用いて説明したように、その製造方法が簡単であるという利点がある。なお、要素(10,20,30,40,50a,50b,60,70、80a、80b)の構成材料および不純物濃度は、図1に示した要素と同じである。
【0076】
(第8の実施の形態)
次に、本発明の第8の実施の形態について説明する。図18(a)は、この半導体光電陰極の平面図であり、図18(b)は、図18(a)の半導体光電陰極を線分C−C´に沿って切った半導体光電陰極の断面図である。なお、図18(a)は、この半導体光電陰極の構造を分かりやすく説明するため、図18(b)に示される活性層40が省略されて描かれている。
【0077】
この半導体光電陰極は、図15および図16に示された半導体光電陰極の半導体部60の位置、コンタクト層50a,50bの位置および表面電極80a,80bの位置を変化させたものである。第2半導体層30内には、半導体部60が埋設されている。半導体部60の表面には直接にコンタクト層50a〜50dが形成されている。それぞれのコンタクト層50a〜50dの開口内であって、第2半導体層上には、活性層40が形成されている。この構造の半導体光電陰極は、各表面電極80a〜80dに電位を与えることによって、各ピクセル50a〜50dから独立に電子を放出することができるとともに、図12を用いて説明したように、その製造方法が簡単であるという利点がある。なお、要素(10,20,30,40,50a、50b、60,70、80a、80b)の構成材料および不純物濃度は、図1に示した要素と同じである。
【0078】
次に、図15および図16に示した半導体光電陰極における電子放出の制御について説明する。以下では、光が半導体光電陰極に入射することにより電子を半導体光電陰極内に蓄積する「蓄積モード」、この電子を放出する「放出モード」、半導体部に外部から電圧を印加することにより半導体光電陰極内に蓄積された電子を半導体光電陰極に取り付けられた導体に吸収させる「吸収モード」について説明する。
【0079】
(蓄積モード)
図19(a)は、図15および図16に示した半導体光電陰極に陽極90を接続した半導体光電陰極装置の断面図である。同図内において、電極70は、半導体基板10に取り付けられており、符号901、902、501は、オーミック電極を表している。電極70とアノード90との間には電源V1 が接続されており、電極70の電位よりもアノード90の電位はV1 (ボルト)高い。電極70と表面電極80c,80dとの間には電源V2 が接続されており、電極70の電位よりも表面電極80c、80dの電位の方がV2 (ボルト)高い。電位V2 は電位V1 よりも低く、この電圧源V2 は可変である。なお、ここでは、表面電極80cと表面電極80dとは接続されており、これらの電極50c、50dには共通の電位が与えられることとする。
【0080】
図19(b)は、図19(a)のX−X´を結ぶ線上の半導体光電陰極のエネルギーバンド図である(V2 =0〜1ボルト)。第1半導体層20に光hνが入射されることにより、この第1半導体層20内において発生した電子eは、第1半導体層20内部の電界の力または拡散によって第2半導体層30内にはいる。図19(a)の一点鎖線より上(図面の上)の領域は、半導体部60と第2半導体層30との濃度差により形成された空乏領域である。したがって、第1半導体層20から活性層40方向への電子の通り道は、この空乏領域によりカットされる(ピンチオフ状態)。
【0081】
図19(c)は、図19(a)のY−Y´を結ぶ線上の半導体光電陰極のエネルギーバンド図である(V2 =0〜1ボルト)。図19(b)および図19(c)に示すように、第1半導体層10内において発生した電子eは、第2半導体層30内に蓄積される。
【0082】
(放出モード)
図19(d)は、図19(a)のX−X´を結ぶ線上の半導体光電陰極のエネルギーバンド図である(V2 =2〜数10ボルト)。このように、第2半導体層30内に蓄積された電子eは、表面電極80cと電極70との間に2〜数10ボルトの電圧を加えることにより、半導体光電陰極から放出される。
【0083】
図20は、図16に示した半導体光電陰極を用いた半導体光電陰極装置の断面図である。遮光材料から構成される筒状の外側ケースCA1の内壁には、透明材料から構成される密閉容器(内側ケース)CA2が嵌まっている。外側ケースCA1の開口付近には、レンズL1が固定されている。半導体光電陰極装置の外側からこの半導体光電陰極装置内に入力された光は、レンズL1で集光されて、密閉容器CA2内に配置された半導体光電陰極CT5上に像を結ぶ。半導体光電陰極CTの電極70とリード電極80cとの間には電圧源V2 が接続されている。また、密閉容器CA2内には、入射した電子に感応する2次元イメージセンサIM配置されている。2次元イメージセンサIMは、このイメージセンサIMの表面から入力された電子をリード線RE4から取り出す装置である。イメージセンサIMは、入射して電子に感応する層IM2と層IM2の裏面に設けられたバックコンタクトIM1とを備えており、バックコンタクトIM1にはリードRE2が接続されている。リードRE2とリードRE1との間には、電圧源V1 が接続されており、リードRE1には電極70が接続されているので、半導体光電陰極CT5から出射された電子はアノードIM方向に進行する。なお、密閉容器内の圧力は、大気圧よりも低い圧力であり、10−5torr以下の圧力であって、10−10 torr以下の圧力であることが望ましい。したがって、図面の左側から半導体光電陰極装置(微弱光検出管)に入力された光は、電気信号として検出することができる。なお、カソードCT5とアノードIMとの間には、マイクロチャンネルプレートを配置することとしてもよい。
【0084】
以上、説明したように、本発明に係る半導体光電陰極は、光を検出する機器に適用することができる。上記では半導体光電陰極を用いたイメージ管について説明したが、これは、電子増倍管やストリークカメラにも適用することが可能である。すなわち、半導体光電陰極を利用した装置は、マイクロチャンネルプレート(MCP)やダイノードあるいは二次電子増倍部をアノードとカソードとの間に設けることとしてもよく、電子の軌道を偏向する偏向電極をアノードとカソードとの間に設けることとしてもよい。さらには、アノードには蛍光塗料を塗布した蛍光部材を用いることとしてもよく、蛍光材料を含んだ蛍光板を用いることとしてもよい。
【0085】
【発明の効果】
以上の通り、本発明によれば、第2半導体層の内部または表面には、半導体部が配置されているので、電子はコンタクト層および表面電極の開口方向へ走行する。コンタクト層および表面電極の開口内または開口を貫く軸の延長線上には第3半導体層が形成されているので、電子はこの第3半導体層内に導入される。このように電子はコンタクト層をさけて第3半導体層から真空中へ放出されるのでコンタクト層でこの電子が吸収される割合が減少する。したがって、入射した光のエネルギーに対して陽極で収集される電子の量が増加し、このような半導体光電陰極を用いた半導体光電陰極は高い検出感度を保持することができる。また、半導体部を配置することで、開口率100%で、構造上の画素分離が不要となり、さらに信号の変調も可能となる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る半導体光電陰極の斜視図である。
【図2】図2は、図1の半導体光電陰極CTを線分A−Aに沿って切った断面図である。
【図3】図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図(a)、同図(a)の線分A−A断面における半導体光電陰極CTのエネルギーバンド図(b)および線分B−B断面における半導体光電陰極CTのエネルギーバンド図(c)である。なお、同図(b)および(c)は、半導体光電陰極CTにバイアスを印加しない場合のエネルギーバンド図である。
【図4】図1の半導体光電陰極CTの線分A−Aおよび線分B−Bを含む部分を抜き出して示した平面図(a)、同図(a)の線分A−A断面上における半導体光電陰極CTのエネルギーバンド図(b)および線分B−B断面上における半導体光電陰極CTのエネルギーバンド図(c)である。なお、同図(b)および(c)は、半導体光電陰極CTにバイアスを印加した場合のエネルギーバンド図である。
【図5】図5は、図4に示した電子の挙動をさらに分かりやすく説明するための電子に対するポテンシャル図である。
【図6】図1に示した半導体光電陰極CTが密閉容器内に収納された半導体光電陰極装置を一部破断して示す斜視図である。
【図7】図1に示した半導体光電陰極CTの製造方法を半導体光電陰極CTの断面構成を用いて説明するための工程断面図である。
【図8】第1の実施の形態に係る半導体光電陰極の他の構成を厚み方向に切った断面を用いて示す断面図である。
【図9】第1の実施の形態に係る半導体光電陰極の他の構成を厚み方向に切った断面を用いて示す断面図である。
【図10】第2の実施の形態の半導体光電陰極CT3を厚み方向に切った断面図である。
【図11】図10に示した半導体光電陰極CT3の製造方法を断面を用いて説明するための工程断面図である。
【図12】第3の実施の形態の半導体光電陰極CT4を厚み方向に切った断面図である。
【図13】第4の実施の形態の半導体光電陰極の平面図(a)、同図(a)中の線分A−A´に沿って切った断面図(b)、同図(b)中の線分B−B´に沿って切った断面図である。
【図14】第5の実施の形態の半導体光電陰極を一部破断して示す斜示図である。
【図15】第6の実施の形態の半導体光電陰極を一部破断して示す斜示図である。
【図16】図15に示した半導体光電陰極の平面図(a)、同図(a)の線分A−A´に沿って切った断面図(b)である。
【図17】第7の実施の形態の半導体光電陰極をの平面図(a)、同図(a)の線分B−B´に沿って切った断面図(b)である。
【図18】第8の実施の形態の半導体光電陰極をの平面図(a)、同図(a)の線分C−C´に沿って切った断面図(b)である。
【図19】半導体光電陰極および陽極の断面図(a)、同図(a)中の線分X−X´に沿ったエネルギーバンド図(b)、同図(a)中の線分Y−Y´に沿ったエネルギーバンド図(電子蓄積時)(c)、同図(a)中の線分Y−Y´に沿ったエネルギーバンド図(電子放出時)(d)である。
【図20】半導体光電陰極CT5を実装した半導体光電陰極装置の断面図である。
【符号の説明】
10…半導体基板、20…第1半導体層、30…第2半導体層、40…第3半導体層、50…コンタクト層、60…半導体部、70…オーミック電極、80…表面電極、90…陽極。
Claims (11)
- 入射される光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極において、
p型の第1半導体層と、
前記第1半導体層上に形成されたp型の第2半導体層と、
開口を有し、前記第2半導体層とPN接合を成して前記第2半導体層の表面を覆うように形成されたコンタクト層と、
前記コンタクト層上にあり前記コンタクト層とオーミック接触する表面電極と、
前記第2半導体層の仕事関数より小さな仕事関数を有し、前記コンタクト層の開口内に形成された第3半導体層と、
前記第2半導体層よりも広いエネルギーバンドギャップを有し、前記コンタクト層をその厚み方向に貫く延長線上であって、前記第2半導体層の内部に配置された半導体部と、
を備えることを特徴とする半導体光電陰極。 - 入射される光に感応して発生した電子を外部から電圧を印加することにより加速して放出する半導体光電陰極において、
p型の第1半導体層と、
前記第1半導体層上に形成されたp型の第2半導体層と、
前記第2半導体層よりも広いエネルギーバンドギャップを有し、前記第2半導体層上に形成された半導体部と、
開口を有し、前記半導体部とPN接合を成して前記半導体部の表面を覆うように形成されたコンタクト層と、
前記コンタクト層上にあり前記コンタクト層とオーミック接触する表面電極と、
前記第2半導体層の仕事関数より小さな仕事関数を有し、前記コンタクト層の開口をその軸方向に貫ぬく延長線上であって、前記第2半導体層上に形成された第3半導体層と、
を備えることを特徴とする半導体光電陰極。 - 前記半導体部は環状の部分を有しており、この環状の部分内の面積は、前記コンタクト層の前記開口内の面積よりも小さいことを特徴とする請求項1または請求項2に記載の半導体光電陰極。
- 前記半導体部はメッシュ形状を有していることを特徴とする請求項3に記載の半導体光電陰極。
- 前記第2半導体層は、この第2半導体層と前記第1半導体層との界面近傍に、前記第2半導体層内の前記第3半導体層側の領域のエネルギーバンドギャップと前記第1半導体層のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第1グレーデッド層を有することを特徴とする請求項1に記載の半導体光電陰極。
- 前記半導体部は、ストライプ状に配置された半導体部分を含むことを特徴とする請求項1または請求項2に記載の半導体光電陰極。
- 大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、
前記半導体光電陰極は、
半導体基板と、
前記半導体基板上に形成されたp型の第1半導体層と、
前記第1半導体層上に形成されたp型の第2半導体層と、
開口を有し、前記第2半導体層とPN接合を成して前記第2半導体層の表面を覆うように形成されたコンタクト層と、
前記コンタクト層上にあり前記コンタクト層とオーミック接触する表面電極と、
前記第2半導体層の仕事関数より小さな仕事関数を有し、前記コンタクト層の開口内に形成された第3半導体層と、
前記第2半導体層よりも広いエネルギーバンドギャップを有し、前記コンタクト層をその厚み方向に貫く延長線上であって、前記第2半導体層の内部に配置された半導体部と、
前記表面電極に電気的に接続され、前記密閉容器を貫通する第1接続ピンと、前記半導体基板または前記第1半導体層に電気的に接続され、前記密閉容器を貫通する第2接続ピンと、
を備え、
前記陽極は、
この陽極に電気的に接続され、前記密閉容器を貫通する第3接続ピン
を備えることを特徴とする半導体光電陰極装置。 - 前記第1半導体層は、この第1半導体層と前記半導体基板との界面近傍に、前記第1半導体層内の前記第2半導体層側の領域のエネルギーバンドギャップと前記半導体基板のエネルギーバンドギャップとの中間の広さのエネルギーバンドギャップを有する第2グレーデッド層を有することを特徴とする請求項7に記載の半導体光電陰極装置。
- 前記半導体光電陰極装置は、前記半導体光電陰極と前記陽極との間に配置された電子増倍器を含むことを特徴とする請求項7に記載の半導体光電陰極装置。
- 前記陽極は、蛍光物質を含む部材を含むことを特徴とする請求項7に記載の半導体光電陰極装置。
- 大気圧よりも低い圧力の環境を内部に提供する密閉容器内に配置された半導体光電陰極と陽極とを備える半導体光電陰極装置において、
前記半導体光電陰極は、
半導体基板と、
前記半導体基板上に形成されたp型の第1半導体層と、
前記第1半導体層上に形成されたp型の第2半導体層と、
前記第2半導体層と前記陽極との間に配置されたコンタクト層と、
前記コンタクト上にあり前記コンタクト層とオーミック接触する表面電極と、
前記第2半導体層の仕事関数より小さな仕事関数を有し、前記第2半導体層と前記陽極との間に配置された第3半導体層と、
前記コンタクト層とPN接合をなし、前記第2半導体層よりも広いエネルギーバンドギャップを有し、前記コンタクト層をその厚み方向に貫く延長線上に配置された半導体部と、
前記表面電極に電気的に接続され、前記密閉容器を貫通する第1接続ピンと、
前記半導体基板または前記第1半導体層に電気的に接続され、前記密閉容器を貫通する第2接続ピンと、
を備え、
前記陽極は、
この陽極に電気的に接続され、前記密閉容器を貫通する第3接続ピン
を備えることを特徴とする半導体光電陰極装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13378996A JP3565529B2 (ja) | 1996-05-28 | 1996-05-28 | 半導体光電陰極およびこれを用いた半導体光電陰極装置 |
EP97303615A EP0810621B1 (en) | 1996-05-28 | 1997-05-28 | Semiconductor photocathode and semiconductor photocathode apparatus using the same |
DE69723364T DE69723364T2 (de) | 1996-05-28 | 1997-05-28 | Halbleiterphotokathode und Vorrichtung unter Verwendung derselben |
US08/864,618 US5923045A (en) | 1996-05-28 | 1997-05-28 | Semiconductor photocathode and semiconductor photocathode apparatus using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13378996A JP3565529B2 (ja) | 1996-05-28 | 1996-05-28 | 半導体光電陰極およびこれを用いた半導体光電陰極装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09320457A JPH09320457A (ja) | 1997-12-12 |
JP3565529B2 true JP3565529B2 (ja) | 2004-09-15 |
Family
ID=15113056
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13378996A Expired - Fee Related JP3565529B2 (ja) | 1996-05-28 | 1996-05-28 | 半導体光電陰極およびこれを用いた半導体光電陰極装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US5923045A (ja) |
EP (1) | EP0810621B1 (ja) |
JP (1) | JP3565529B2 (ja) |
DE (1) | DE69723364T2 (ja) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6524170B2 (en) | 2001-03-19 | 2003-02-25 | Brookhaven Science Associates, Llc | Method of surface preparation of niobium |
JP3659201B2 (ja) * | 2001-07-11 | 2005-06-15 | ソニー株式会社 | 半導体発光素子、画像表示装置、照明装置及び半導体発光素子の製造方法 |
WO2003025263A1 (fr) * | 2001-09-13 | 2003-03-27 | Japan Science And Technology Agency | Substrat semi-conducteur de nitrure, son procede d'obtention et dispositif optique a semi-conducteur utilisant ledit substrat |
JP4002167B2 (ja) | 2002-11-14 | 2007-10-31 | 浜松ホトニクス株式会社 | 光電陰極 |
US20050184320A1 (en) * | 2004-02-20 | 2005-08-25 | Green Michael C. | Photoconductor having an embedded contact electrode |
US7531826B2 (en) * | 2005-06-01 | 2009-05-12 | Intevac, Inc. | Photocathode structure and operation |
US20070176160A1 (en) * | 2006-01-27 | 2007-08-02 | Hamamatsu Photonics K.K. | Electron tube |
US20100025796A1 (en) * | 2008-08-04 | 2010-02-04 | Amir Massoud Dabiran | Microchannel plate photocathode |
WO2015138635A1 (en) * | 2014-03-11 | 2015-09-17 | Terahertz Device Corporation | Front-side emitting mid-infrared light emitting diode fabrication |
US9589757B1 (en) * | 2015-09-23 | 2017-03-07 | Jefferson Science Associates, Llc | Nano-patterned superconducting surface for high quantum efficiency cathode |
ES2979258T3 (es) | 2017-05-30 | 2024-09-25 | Carrier Corp | Detector de luz de fototubo y película de semiconductor |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3958143A (en) * | 1973-01-15 | 1976-05-18 | Varian Associates | Long-wavelength photoemission cathode |
FR2591033B1 (fr) * | 1985-11-29 | 1988-01-08 | Thomson Csf | Photocathode a rendement eleve |
FR2592217B1 (fr) * | 1985-12-20 | 1988-02-05 | Thomson Csf | Photocathode a amplification interne |
US5047821A (en) * | 1990-03-15 | 1991-09-10 | Intevac, Inc. | Transferred electron III-V semiconductor photocathode |
JPH0750587B2 (ja) * | 1991-02-25 | 1995-05-31 | 浜松ホトニクス株式会社 | 半導体光電子放出体 |
JPH05234501A (ja) * | 1992-02-25 | 1993-09-10 | Hamamatsu Photonics Kk | 光電子放出面及びそれを用いた電子管 |
US5471051A (en) * | 1993-06-02 | 1995-11-28 | Hamamatsu Photonics K.K. | Photocathode capable of detecting position of incident light in one or two dimensions, phototube, and photodetecting apparatus containing same |
JP3433538B2 (ja) * | 1994-11-28 | 2003-08-04 | 浜松ホトニクス株式会社 | 半導体光電陰極およびこれを用いた半導体光電陰極装置 |
JP3537515B2 (ja) * | 1994-11-28 | 2004-06-14 | 浜松ホトニクス株式会社 | 半導体光電陰極およびこれを用いた半導体光電陰極装置 |
DE69527261T2 (de) * | 1994-12-21 | 2002-11-21 | Hamamatsu Photonics K.K., Hamamatsu | Photovervielfacher mit einer aus Halbleitermaterial bestehender Photokathode |
-
1996
- 1996-05-28 JP JP13378996A patent/JP3565529B2/ja not_active Expired - Fee Related
-
1997
- 1997-05-28 DE DE69723364T patent/DE69723364T2/de not_active Expired - Fee Related
- 1997-05-28 US US08/864,618 patent/US5923045A/en not_active Expired - Fee Related
- 1997-05-28 EP EP97303615A patent/EP0810621B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5923045A (en) | 1999-07-13 |
DE69723364T2 (de) | 2004-07-15 |
EP0810621A1 (en) | 1997-12-03 |
DE69723364D1 (de) | 2003-08-14 |
EP0810621B1 (en) | 2003-07-09 |
JPH09320457A (ja) | 1997-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4246995B2 (ja) | 電子線検出器、走査型電子顕微鏡、質量分析装置、及び、イオン検出器 | |
US8446094B2 (en) | Photocathode, electron tube, field assist type photocathode, field assist type photocathode array, and field assist type electron tube | |
US5374826A (en) | Hybrid photomultiplier tube with high sensitivity | |
US5475227A (en) | Hybrid photomultiplier tube with ion deflector | |
JP4805043B2 (ja) | 光電陰極、光電陰極アレイ、および電子管 | |
JP3565529B2 (ja) | 半導体光電陰極およびこれを用いた半導体光電陰極装置 | |
EP0592731B1 (en) | Semiconductor photo-electron-emitting device | |
JP3524249B2 (ja) | 電子管 | |
EP0718865B1 (en) | Photomultiplier having a photocathode comprised of semiconductor material | |
JP3433538B2 (ja) | 半導体光電陰極およびこれを用いた半導体光電陰極装置 | |
JP3537515B2 (ja) | 半導体光電陰極およびこれを用いた半導体光電陰極装置 | |
JP2923462B2 (ja) | 光電陰極および電子管 | |
US6069445A (en) | Having an electrical contact on an emission surface thereof | |
US5680007A (en) | Photomultiplier having a photocathode comprised of a compound semiconductor material | |
JP3433537B2 (ja) | 半導体光電陰極およびこれを用いた半導体光電陰極装置 | |
US6563264B2 (en) | Photocathode and electron tube | |
JP3565526B2 (ja) | 光電子放出面及びそれを用いた電子管 | |
JPH11135003A (ja) | 光電面及びそれを用いた電子管 | |
JP3429671B2 (ja) | 光電陰極及び電子管 | |
JPH1196897A (ja) | 光電陰極及びそれを用いた電子管 | |
JPH09213203A (ja) | 光電面及びそれを用いた光電変換管 | |
US6633125B2 (en) | Short wavelength infrared cathode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040528 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040607 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |