JP3549045B2 - スイッチング増幅器 - Google Patents

スイッチング増幅器 Download PDF

Info

Publication number
JP3549045B2
JP3549045B2 JP33344399A JP33344399A JP3549045B2 JP 3549045 B2 JP3549045 B2 JP 3549045B2 JP 33344399 A JP33344399 A JP 33344399A JP 33344399 A JP33344399 A JP 33344399A JP 3549045 B2 JP3549045 B2 JP 3549045B2
Authority
JP
Japan
Prior art keywords
delay
delta
sigma modulation
switching
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33344399A
Other languages
English (en)
Other versions
JP2001156557A (ja
Inventor
正浩 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP33344399A priority Critical patent/JP3549045B2/ja
Publication of JP2001156557A publication Critical patent/JP2001156557A/ja
Application granted granted Critical
Publication of JP3549045B2 publication Critical patent/JP3549045B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Amplifiers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、音声信号などのアナログ信号あるいはマルチビット信号をデルタシグマ変調して1ビット変換した1ビットデジタル信号を高効率で増幅するスイッチング増幅器に関するものである。
【0002】
【従来の技術】
デルタシグマ変調によって得られる1ビットデジタル信号は、積分器や加算器(後述する)の係数を適宜選択することによって、有効周波数帯域を広くしたり、ダイナミックレンジを広くしたりして、音源等に合わせた周波数特性を設定できるという優れた特徴を有している。このため、CD(Compact Disk)、SACD(Super Audio Compact Disk)の新しい規格では、この1ビットデジタル信号が採用され、製品化されている。
【0003】
一方、デルタシグマ変調によって得られる1ビットデジタル信号は、音声信号等の記録や機器間の伝送にあたって使用されるだけではない。この1ビットデジタル信号をそのまま半導体電力増幅素子に入力し、得られた大電圧のスイッチングパルスにローパスフィルタを通過させるだけで、電力増幅された復調アナログ信号を得ることもできる。
【0004】
しかも、上記半導体電力増幅素子は、従前の増幅器のように、その線形域(不飽和域)が増幅に使用されるのではなくて、非線形域(飽和域)が増幅に使用されるので、デルタシグマ変調を用いるスイッチング増幅器は、極めて高効率で電力増幅を行うことができる。このような利点を生かして、製品化が始まろうとしている。
【0005】
ここで、図3を参照しながら、デルタシグマ変調を用いた従来のスイッチング増幅器の典型例について説明する。
【0006】
図3は、上記従来のスイッチング増幅器1の電気的構成を示すブロック図である。このスイッチング増幅器1は、図3に示すように、デルタシグマ変調回路3、定電圧スイッチング回路9、及びローパスフィルタ(LPF)10から構成されている。
【0007】
上記デルタシグマ変調回路3は、加算器8、積分器・加算器群4、量子化器5、及び減衰器6とから構成されている。加算器8は、入力信号源2を介して入力される音声信号から減衰器6の出力を減算し、減算結果を積分器・加算器群4に送るようになっている。
【0008】
上記積分器・加算器群4は、縦続接続され、入力された音声信号を順次積分していく高次の積分器(後述する図4の積分器a0〜a6参照)と、各積分器からの出力を相互に加算する加算器(後述する図4の加算器18参照)とを備えている。
【0009】
この積分器・加算器群4の上記加算器からの出力は、量子化器5に送られ、量子化器5から1ビットデジタル信号がデルタシグマ変調回路3の出力として上記定電圧スイッチング回路9に送られる。
【0010】
この定電圧スイッチング回路9には、直流電圧+Eと直流電圧−Eが供給されており、ここで、1ビットデジタル信号に基づいて、直流電圧+E及び−Eのスイッチングが行われ、定電圧パルス信号として上記ローパスフィルタ10に送られる。ローパスフィルタ10では、上記の定電圧パルス信号がアナログ音声信号に復調されて、スピーカ11に送られ、音声が再生される。
【0011】
上記定電圧スイッチング回路9からの定電圧パルス信号は、上記減衰器6で減衰され、上記加算器8を介して上記積分器・加算器群4にネガティブフィードバックされる。これにより、上記量子化器5からの1ビットデジタル信号が入力された音声信号に対応したものになるようにフィードバック制御される。
【0012】
上記構成によれば、入力信号源2からスイッチング増幅器1に音声信号が入力されると、デルタシグマ変調回路3によって1ビットデジタル信号に変換された後、定電圧スイッチング回路9に送られ、ここで、該1ビットデジタル信号に応じて変化する定電圧パルス信号が生成され、ローパスフィルタ10を介してアナログ音声信号に復調された後、スピーカ11によって音響化される。
【0013】
上記構成を有するスイッチング増幅器1は、従前の増幅器のように、半導体電力増幅素子の線形域(不飽和域)を増幅に使用するのではなくて、定電圧スイッチング回路9に使用される半導体電力増幅素子を非線形域(飽和域)で使用するので、極めて高効率に電力増幅を行うことができるという優れた特徴を有している。
【0014】
ここで、図4を参照しながら、従来のデルタシグマ変調回路3の構成例を説明する。
【0015】
図4は、従来の7次のデルタシグマ変調回路の構成例を示すブロック図であり、同図に示すように、入力された音声信号(X)を順次積分していく縦続接続された7次の積分器a0〜a6と、これら積分器a0〜a6のそれぞれからの出力を極性を交互に変えて加算する加算器k1〜k7と、上記積分器a0〜a6の出力側にそれぞれ遅延器を介して設けられる乗算器c1〜c7(乗算器c1〜c7の乗算係数をそれぞれc1〜c7とする。)と、部分負帰還ループを形成する乗算器b1、b2、及びb3(乗算器b1、b2、及びb3の乗算係数をそれぞれb1、b2、及びb3とする。)と、上記乗算器c1〜c7の出力の加算を行う加算器18と、この加算器18の出力に対して、所定のクロック(図示しない)に応答して1ビットデジタル信号(Y)に量子化する量子化器20と、この量子化器20からの1ビットデジタル信号(Y)を1標本化クロック分だけ遅延させる遅延器19と、この遅延器19からの1ビットデジタル信号(Y)をアナログに変換したものを極性を反転させて上記音声信号(X)に加算する加算器17とを備えて構成される。
【0016】
なお、図4中、Z−1で示すブロックは遅延器を表す。また、図4中、加算器17、k2、k4、及びk6付近に記載の「−」は極性を反転することを表し、このように極性が反転された後、対応する各加算器でそれぞれ加算される。
【0017】
上記構成により、量子化器20からの1ビットデジタル信号(Y)が、入力信号(X)に対応したものとなるように、フィードバック制御が行われる。また、上記乗算器の各乗算係数(a0〜a6、b1〜b3、及びc1〜c7)を適宜選択することによって、有効周波数帯域を広くしたり、ダイナミックレンジを広くしたりして、適宜、音源に合わせた周波数特性を設定し得る。
【0018】
【発明が解決しようとする課題】
しかしながら、上記従来のスイッチング増幅器1においては、定電圧スイッチング回路9で使用される上記半導体電力増幅素子に、ターンオン及びターンオフ時に遅延時間が生じてしまう。このようにして生じた遅延時間のために、上記デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持できなくなる。その結果、上記定電圧スイッチング回路9からの定電圧パルス信号の上記積分器・加算器群4へのネガティブフィードバック制御が十分に行えなくなるので、所望の周波数帯域やダイナミックレンジが得られないという問題点を有している。
【0019】
【課題を解決するための手段】
本発明に係る発明のスイッチング増幅器は、上記課題を解決するために、入力信号をデルタシグマ変調するデルタシグマ変調回路と、上記デルタシグマ変調回路の出力に基づいて、所定の直流電圧を電力増幅素子によりスイッチングして定電圧パルス信号を出力する定電圧スイッチング回路と、上記の定電圧パルス信号をアナログ信号に復調して出力する復調回路とを備えたスイッチング増幅器において、次の措置を講じたことを特徴としている。
【0020】
すなわち、上記スイッチング増幅器は、上記デルタシグマ変調回路が、上記の電力増幅素子のスイッチングの際に生じる遅延時間を相殺する遅延補償回路を備えたことを特徴としている。
【0021】
上記構成によれば、入力信号はデルタシグマ変調回路においてデルタシグマ変調された後、定電圧スイッチング回路に送られ、ここで、所定の直流電圧が電力増幅素子によってスイッチングされ、定電圧パルス信号として復調回路(例えば、ローパスフィルタ)に送られる。復調回路では、定電圧パルス信号がアナログ信号に復調されて外部へ出力される。この復調されたアナログ信号は、スピーカ等に入力されると、入力信号が再生されることになる。
【0022】
上記電力増幅素子においては、スイッチングの際(ターンオン及びターンオフ時)に遅延時間が生じる。このようにして生じた遅延時間のために、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持できなくなる。その結果、スイッチング増幅器においては、所望の周波数帯域やダイナミックレンジが得られなくなってしまう。
【0023】
そこで、上記スイッチング増幅器によれば、デルタシグマ変調回路に遅延補償回路が設けられている。これにより、電力増幅素子のスイッチングの際に生じる上記の遅延時間が遅延補償回路によって相殺されるので、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持できることになる。その結果、スイッチング増幅器は、所望の周波数帯域やダイナミックレンジを得ることが可能となる。
【0024】
上記のスイッチング増幅器において、上記デルタシグマ変調回路は、上記の定電圧パルス信号を負帰還するフィードバックループを備え、上記の遅延補償回路は、該フィードバックループ内に設けられ、上記電力増幅素子のスイッチングの際に遅延時間に略等しい遅延時間を生ずるものであることが好ましい。
【0025】
上記電力増幅素子においては、スイッチングの際(ターンオン及びターンオフ時)に遅延時間が生じる。このようにして生じた遅延時間のために、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持できなくなる。この結果、上記定電圧スイッチング回路からの定電圧パルス信号のデルタシグマ変調回路へのネガティブフィードバック制御が十分に行えなくなり、スイッチング増幅器においては所望の周波数帯域やダイナミックレンジが得られなくなってしまう。
【0026】
そこで、上記の遅延補償回路を上記フィードバックループ内に設けることによって、上記フィードバックループ内で生じた遅延時間が該ループを介して負帰還される。これにより、電力増幅素子のスイッチングの際に生じる上記の遅延時間が、負帰還されてきたフィードバックループ内の遅延時間によって略相殺されるので、上記電力増幅素子に係る遅延時間による悪影響が回避され、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持することが可能となる。その結果、上記定電圧スイッチング回路からの定電圧パルス信号のデルタシグマ変調回路へのネガティブフィードバック制御が十分に行われるので、スイッチング増幅器は所望の周波数帯域やダイナミックレンジを有することが可能となる。
【0027】
上記の遅延補償回路は、第1の遅延器と、第2の遅延器と第3の遅延器をシリーズに接続した遅延器群とが並列接続されたものであることが好ましい。この場合、簡単な構成で、遅延補償回路を実現できる。
【0028】
また、上記の第1の遅延器に更に第1の乗算器が直列に接続されていると共に、上記遅延器群に更に第2の乗算器が直列に接続されていることが好ましい。この場合、第1及び第2の乗算器を設けることによって、位相だけではなくて振幅(レベル)も正確に設定でき、これによりフィードバック量の精度が向上するので、遅延補償の精度が向上する。
【0029】
更に、上記の第1の乗算器の乗算係数と上記の第2の乗算器の乗算係数との和が1であることが好ましい。この場合、遅延補償の精度が著しく向上する。
【0030】
また、上記フィードバックループは、上記デルタシグマ変調回路の出力を減衰させる減衰器と、この減衰器の出力を遅延させる遅延器と、遅延器の出力を加算して上記デルタシグマ変調回路の入力側に送る加算器とを備えることが好ましい。このように、上記フィードバックループは簡単な構成で実現できる。
【0031】
【発明の実施の形態】
本発明の実施の一形態について図1及び図2に基づいて説明すれば、以下のとおりである。なお、前述の従来のスイッチング増幅器1と同じ機能を有する部材には同じ参照番号を付記し、詳細な説明は省略する。
【0032】
本実施の形態に係るスイッチング増幅器は、デルタシグマ変調回路が次の点において図4で示した従来のデルタシグマ変調回路と異なっている。すなわち、図4の従来のデルタシグマ変調回路においては、量子化器20からの1ビットデジタル信号(Y)が遅延器19を介して加算器17に入力される構成であった。
【0033】
これに対して、本実施の形態に係るスイッチング増幅器においては、図1に示すように、乗算器21(減衰器)と遅延器22とが直列に接続されたものと、乗算器23(減衰器)、遅延器24、及び遅延器25が直列に接続されたものとが互いに並列に接続されたものが、上記量子化器20から上記加算器17へのフィードバックループ内に設けられた構成を有している。この量子化器20からの1ビットデジタル信号(Y)は、遅延補償されて加算器17に入力されるようになっている。
【0034】
上記乗算器21は、量子化器20からの1ビットデジタル信号(Y)に対して乗算係数のd1を乗算して上記遅延器22に送るものである。上記遅延器22では、乗算係数d1が乗算された1ビットデジタル信号(Y)が1標本化クロック分だけ遅延されて加算器26に送られる。
【0035】
上記乗算器23は、量子化器20からの1ビットデジタル信号(Y)に対して乗算係数の(1−d1)を乗算して上記遅延器24に送るものである。上記遅延器24では、乗算係数d1が乗算された1ビットデジタル信号(Y)が1標本化クロック分だけ遅延された後、上記遅延器25に送られ、ここで更に1標本化クロック分だけ遅延されて加算器26に送られる。つまり、上記遅延器24及び25では、上記乗算器23の出力が、合計2標本化クロック分だけ遅延される。
【0036】
上記乗算器21及び23では、各乗算係数に基づいて、量子化器20からの1ビットデジタル信号(Y)の振幅が、上記遅延による影響を相殺できるように調整される。つまり、遅延による影響を受けた1ビットデジタル信号(Y)の位相、及び振幅の双方が相殺されることになる。このように、位相、及び振幅の双方を高精度に相殺するためには、上記乗算器21の乗算係数と上記乗算器23の乗算係数との和が1であることが好ましい。
【0037】
上記加算器26では、上記のようにして1標本化クロック分だけ遅延された1ビットデジタル信号(Y)と、上記のようにして2標本化クロック分だけ遅延された1ビットデジタル信号(Y)とに対して加算が行われ、その加算結果は極性が反転されて上記加算器17に送られ、ここで、上記音声信号(X)に加算される。
【0038】
本実施の形態において上記構成を採用したのは、次の理由に基づいている。すなわち、スイッチング増幅器1において、定電圧スイッチング回路9で使用される上記半導体電力増幅素子に、スイッチング時(ターンオン及びターンオフ時)に遅延時間が生じ、このようにして生じた遅延時間は前記遅延器19の遅延だけでは補償できず、このために、デルタシグマ変調回路がアルゴリズムどおりの伝達特性を維持できなくなる。上記構成の採用は、このような不具合を克服するためである。
【0039】
上記乗算器21の乗算係数をd1とすると、上記乗算器23の乗算係数は(1−d1)となるように設定されている。例えば、使用する半導体電力増幅素子の遅延時間が約100nsecである場合、上記乗算器21の乗算係数をd1を0.44とし、乗算係数a0=1/10、乗算係数a1=1/3、乗算係数a2=3/10、乗算係数a3=1/15、乗算係数a4=1/20、乗算係数a5=1/30、乗算係数a6=1/77、乗算係数b1=1/80、乗算係数b2=1/125、乗算係数b3=1/125、乗算係数c1=5、乗算係数c2=2.5、乗算係数c3=2、乗算係数c4=2、乗算係数c5=1.25、乗算係数c6=1、及び乗算係数c7=1にそれぞれ設定することによって、デルタシグマ変調回路内のフィードバックループ内の遅延時間を約100nsecにできる。
【0040】
つまり、使用する半導体電力増幅素子のターンオン及びターンオフ時に生じる遅延時間と、デルタシグマ変調回路内のフィードバックループ(負帰還ループ)内の遅延時間とを一致させることによって、半導体電力増幅素子で生じる遅延時間が相殺され、スイッチング増幅器がアルゴリズムどおりの伝達特性を維持することができる。
【0041】
ここで、図1に示したデルタシグマ変調回路の量子化ノイズ分布を図2に示す。また、比較のために、図4に示した従来のデルタシグマ変調回路の量子化ノイズ分布を図5に示す。図2及び図5から、図1のデルタシグマ変調回路の方が、図4の従来のデルタシグマ変調回路よりも量子化ノイズが抑制されていることがわかる。
【0042】
デルタシグマ変調回路内のフィードバックループ内のフィードバック信号が1である場合に対する最大入力信号レベルを発振限界値としたとき、従来のデルタシグマ変調回路の発振限界値は0.71であるのに対し、本実施の形態に係るデルタシグマ変調回路の発振限界値は0.74であった。これは、所望の電力増幅効率が得られたことを意味する。
【0043】
また、オーディオ性能は、従来のデルタシグマ変調回路におけるSN比が108dB、ダイナミックレンジが110dBであるのに対し、本実施の形態に係るデルタシグマ変調回路におけるSN比は117dB、ダイナミックレンジが120dBであったことがわかる。これは、所望のオーディオ性能が得られたことを意味する。
【0044】
なお、図2及び図5は、FFT周波数分析結果を示しており、これらの図に示されるノイズ分布の2乗平均値と最大入力信号強度の比をとったものがS/Nである。このS/Nに聴感補正(Aカーブ)を掛けたものがダイナミックレンジであり、図2及び図5からデルタシグマ変調回路における上記発振限界値、上記SN比、及び上記ダイナミックレンジの各値が得られる。
【0045】
ところで、量子化器20と加算器17との間に設けられる上記遅延補償回路(並列回路)において、乗算器21と遅延器22とが直列に接続されたものと、乗算器23、遅延器24、及び遅延器25が直列に接続されたものとが互いに並列に接続される例について説明してきたが、本発明はこれに限定されるものではなく、使用する半導体電力増幅素子のスイッチング時(ターンオン及びターンオフ時)に生じる遅延時間と、デルタシグマ変調回路内のフィードバックループ内の遅延時間とを一致させることができる構成であればよい。
【0046】
また、本発明は、上記遅延補償回路が上記フィードバックループ内に設けられており、上記の半導体電力増幅素子のスイッチングの際に生じる遅延時間を相殺できる構成が上記デルタシグマ変調回路内に設けられた構成であ
【0047】
更に、上記説明では、乗算器21及び23を設ける例について説明したが、これに限定されるものではなく、遅延補償の精度の点(振幅(レベル)が完全に相殺できない点)においては少し劣るが、上記乗算器21及び23が設けられていない構成(すなわち、上記遅延器22と、上記遅延器24及び上記遅延器25をシリーズに接続した遅延器群とが並列接続された構成)でもよい。
【0048】
本発明に係る第1スイッチング増幅器は、以上のように、入力信号をデルタシグマ変調し、その変調信号に基づいて定電圧をスイッチングし、そのスイッチング出力をローパスフィルタによってアナログ変換して出力することによって上記入力信号を効率よく電力増幅する、デルタシグマ変調を用いるスイッチング増幅器であって、デルタシグマ変調部分を上記入力信号を高次積分し、各積分器の出力を相互に加算して出力する積分器・加算器群と、該積分器・加算器群からの出力を量子化する量子化器と、該量子化器の量子化結果に基づいて上記定電圧をスイッチングするスイッチング回路と、該スイッチング回路のスイッチング出力を遅延器を介して上記積分器・加算器群の入力側にフィードバックするフィードバックループとを含んで構成し、上記フィードバックループ内に第1の遅延器と、第2の遅延器と第3の遅延器をシリーズに接続した遅延器群とが並列接続されている構成を有している。
【0049】
また、本発明に係る第2スイッチング増幅器は、以上のように、入力信号をデルタシグマ変調し、その変調信号に基づいて定電圧をスイッチングし、そのスイッチング出力をローパスフィルタによってアナログ変換して出力することによって上記入力信号を効率よく電力増幅する、デルタシグマ変調を用いるスイッチング増幅器であって、デルタシグマ変調部分を上記入力信号を高次積分し、各積分器の出力を相互に加算して出力する積分器・加算器群と、該積分器・加算器群からの出力を量子化する量子化器と、該量子化器の量子化結果に基づいて上記定電圧をスイッチングするスイッチング回路と、該スイッチング回路のスイッチング出力を遅延器を介して上記積分器・加算器群の入力側にフィードバックするフィードバックループとを含んで構成し、上記フィードバックループ内に第1の遅延器と第1の乗算器と、第2及び第3の遅延器及び第2の乗算器をシリーズに接続したものとが並列接続されている構成を有している。
【0050】
また、本発明に係る第3スイッチング増幅器は、以上のように、上記の第2スイッチング増幅器のフィードバックループ内の第1の乗算器の乗算係数と第2の乗算器の乗算係数との和が1に等しい構成を有している。
【0051】
また、本発明に係る第4スイッチング増幅器は、以上のように、上記の第1乃至第3スイッチング増幅器の何れかに記載のスイッチング増幅器において、上記フィードバックループは、減衰器、加算器、及び遅延器で構成されている。
【0052】
また、本発明に係る第5スイッチング増幅器は、以上のように、入力信号をデルタシグマ変調し、その変調信号に基づいて定電圧をスイッチングし、そのスイッチング出力をローパスフィルタによってアナログ変換して出力することによって上記入力信号を効率よく電力増幅する、デルタシグマ変調を用いるスイッチング増幅器であって、上記定電圧スイッチング回路のスイッチング素子特性により発生する信号遅延時間とフィードバック内の遅延時間が一致する構成を有している。
【0053】
上記の第1乃至第5スイッチング増幅器によれば、定電圧スイッチング回路に使用される半導体電力増幅素子で発生する、ターンオン、ターンオフ時の遅延時間の影響を回避できるため、上記フィードバック制御が十分に行え、所望の周波数帯域やダイナミックレンジが得られる。
【0054】
【発明の効果】
本発明に係る発明のスイッチング増幅器は、上記課題を解決するために、入力信号をデルタシグマ変調するデルタシグマ変調回路と、上記デルタシグマ変調回路の出力に基づいて、所定の直流電圧を電力増幅素子によりスイッチングして定電圧パルス信号を出力する定電圧スイッチング回路と、該定電圧パルス信号をアナログ信号に復調して出力する復調回路とを備えたスイッチング増幅器において、次の措置を講じたことを特徴としている。
【0055】
すなわち、上記スイッチング増幅器は、上記デルタシグマ変調回路が、上記の電力増幅素子のスイッチングの際に生じる遅延時間を相殺する遅延補償回路を備えたことを特徴としている。
【0056】
上記電力増幅素子においては、スイッチングの際(ターンオン及びターンオフ時)に遅延時間が生じる。このようにして生じた遅延時間のために、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持できなくなる。この結果、スイッチング増幅器は、所望の周波数帯域やダイナミックレンジが得られなくなってしまう。
【0057】
そこで、上記スイッチング増幅器によれば、デルタシグマ変調回路に遅延補償回路が設けられている。これにより、電力増幅素子のスイッチングの際に生じる上記の遅延時間が遅延補償回路によって相殺されるので、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持できることになる。この結果、スイッチング増幅器は、所望の周波数帯域やダイナミックレンジを得ることが可能となるという効果を奏する。
【0058】
上記のスイッチング増幅器において、上記デルタシグマ変調回路は、上記の定電圧パルス信号を負帰還するフィードバックループを備え、上記の遅延補償回路は、該フィードバックループ内に設けられ、上記電力増幅素子のスイッチングの際に遅延時間に略等しい遅延時間を生ずるものであることが好ましい。
【0059】
この場合、上記の遅延補償回路を上記フィードバックループ内に設けることによって、上記フィードバックループ内で生じた遅延時間が該ループを介して負帰還される。これにより、電力増幅素子のスイッチングの際に生じる上記の遅延時間が、負帰還されてきたフィードバックループ内の遅延時間によって略相殺されるので、上記電力増幅素子に係る遅延時間による悪影響が回避され、デルタシグマ変調回路は、アルゴリズムどおりの伝達特性を維持することが可能となる。この結果、上記定電圧スイッチング回路からの定電圧パルス信号のデルタシグマ変調回路へのネガティブフィードバック制御が十分に行われるので、スイッチング増幅器は所望の周波数帯域やダイナミックレンジを有することが可能となるという効果を奏する。
【0060】
上記の遅延補償回路は、第1の遅延器と、第2の遅延器と第3の遅延器をシリーズに接続した遅延器群とが並列接続されたものであることが好ましい。この場合、簡単な構成で、遅延補償回路を実現できるという効果を奏する。
【0061】
また、上記の第1の遅延器に更に第1の乗算器が直列に接続されていると共に、上記遅延器群に更に第2の乗算器が直列に接続されていることが好ましい。この場合、第1及び第2の乗算器を設けることによって、フィードバック量の精度が向上するので、遅延補償の精度が向上するという効果を奏する。
【0062】
更に、上記の第1の乗算器の乗算係数と上記の第2の乗算器の乗算係数との和が1であることが好ましい。この場合、遅延補償の精度が著しく向上するという効果を奏する。
【0063】
また、上記フィードバックループは、上記デルタシグマ変調回路の出力を減衰させる減衰器と、この減衰器の出力を遅延させる遅延器と、遅延器の出力を加算して上記デルタシグマ変調回路の入力側に送る加算器とを備えることが好ましい。この場合、上記フィードバックループは簡単な構成で実現できるという効果を奏する。
【図面の簡単な説明】
【図1】本発明に係るデルタシグマ変調回路の一例を示すブロック図である。
【図2】本発明のデルタシグマ変調回路のアルゴリズムでシミュレーションした場合の量子化ノイズ分布図である。
【図3】従来の典型的なデルタシグマ変調を用いるスイッチング増幅器の構成を示すブロック図である。
【図4】従来のデルタシグマ変調回路の一例を示すブロック図である。
【図5】従来のデルタシグマ変調回路のアルゴリズムでシミュレーションした場合の量子化ノイズ分布図である。
【符号の説明】
1 スイッチング増幅器
2 入力信号源
3 デルタシグマ変調回路
9 定電圧スイッチング回路
10 ローパスフィルタ(復調器)
17 加算器
21 乗算器(第1の乗算器、減衰器、遅延補償回路)
23 乗算器(第2の乗算器、減衰器、遅延補償回路)
22 遅延器(第1の遅延器、遅延補償回路)
24 遅延器(第2の遅延器、遅延補償回路)
25 遅延器(第3の遅延器、遅延補償回路)

Claims (5)

  1. 入力信号をデルタシグマ変調するデルタシグマ変調回路と、
    上記デルタシグマ変調回路の出力に基づいて、所定の直流電圧を電力増幅素子によりスイッチングして定電圧パルス信号を出力する定電圧スイッチング回路と、
    上記の定電圧パルス信号をアナログ信号に復調して出力する復調回路とを備えたスイッチング増幅器において、
    上記デルタシグマ変調回路は、上記の電力増幅素子のスイッチングの際に生じる遅延時間を相殺する遅延補償回路を備え
    上記デルタシグマ変調回路は、上記の定電圧パルス信号を負帰還するフィードバックループを備え、上記の遅延補償回路は、該フィードバックループ内に設けられ、上記電力増幅素子のスイッチングの際に遅延時間に略等しい遅延時間を生ずるものであることを特徴とするスイッチング増幅器。
  2. 上記の遅延補償回路は、第1の遅延器と、第2の遅延器と第3の遅延器をシリーズに接続した遅延器群とが並列接続されたものであることを特徴とする請求項1に記載のスイッチング増幅器。
  3. 上記の遅延補償回路は、上記の第1の遅延器に更に第1の乗算器が直列に接続されていると共に、上記遅延器群に更に第2の乗算器が直列に接続されていることを特徴とする請求項2に記載のスイッチング増幅器。
  4. 上記の第1の乗算器の乗算係数と上記の第2の乗算器の乗算係数との和が1であることを特徴とする請求項3に記載のスイッチング増幅器。
  5. 上記フィードバックループは、上記デルタシグマ変調回路の出力を減衰させる減衰器と、この減衰器の出力を遅延させる遅延器と、遅延器の出力を加算して上記デルタシグマ変調回路の入力側に送る加算器とを備えたことを特徴とする請求項1に記載のスイッチング増幅器。
JP33344399A 1999-11-24 1999-11-24 スイッチング増幅器 Expired - Lifetime JP3549045B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33344399A JP3549045B2 (ja) 1999-11-24 1999-11-24 スイッチング増幅器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33344399A JP3549045B2 (ja) 1999-11-24 1999-11-24 スイッチング増幅器

Publications (2)

Publication Number Publication Date
JP2001156557A JP2001156557A (ja) 2001-06-08
JP3549045B2 true JP3549045B2 (ja) 2004-08-04

Family

ID=18266170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33344399A Expired - Lifetime JP3549045B2 (ja) 1999-11-24 1999-11-24 スイッチング増幅器

Country Status (1)

Country Link
JP (1) JP3549045B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675138B2 (ja) * 2005-04-14 2011-04-20 シャープ株式会社 スイッチング増幅器
JP4713435B2 (ja) * 2006-10-04 2011-06-29 シャープ株式会社 デルタシグマ変調装置
JP2010263483A (ja) * 2009-05-08 2010-11-18 Sony Corp Δς変調器

Also Published As

Publication number Publication date
JP2001156557A (ja) 2001-06-08

Similar Documents

Publication Publication Date Title
US7058464B2 (en) Device and method for signal processing
US7592941B2 (en) Signal processing apparatus and signal processing method
US7825726B2 (en) Digital pulse width modulation for half bridge amplifiers
WO2005114838A1 (en) Method and apparatus having a digital pwm signal generator with integral noise shaping
US6961385B2 (en) Signal processing system with baseband noise modulation chopper circuit timing to reduce noise
US8228222B2 (en) D-class digital amplifier configured for shaping non-idealities of an output signal
US8346542B2 (en) Apparatus and method for widening audio signal band
JP3549042B2 (ja) Δς変調を用いるスイッチング増幅器
KR100497702B1 (ko) 디지털데이터변환장치
US20040165661A1 (en) Device and method for digital pulse with modulation
JP3549045B2 (ja) スイッチング増幅器
JP3527133B2 (ja) 1ビット信号再生装置
JP3842049B2 (ja) スイッチング増幅回路
JPH09214259A (ja) D級電力増幅器
US7034726B2 (en) Data converter
US11088662B2 (en) Digital amplifier and output device
JP3741962B2 (ja) スイッチングアンプ
JP3445177B2 (ja) Δς変調を用いるスイッチング増幅器
JP3763402B2 (ja) スイッチング増幅器
Kulka Application of pulse modulation techniques for class-D audio power amplifiers
JP6129858B2 (ja) オーディオ信号出力オーディオ信号処理装置
Yu et al. An FPGA-based digital class-D amplifier with power supply error correction
JP6129858B6 (ja) オーディオ信号出力オーディオ信号処理装置
JP2005184337A (ja) スイッチング増幅器
Dąbrowski et al. MULTIWAY SPEAKER SYSTEM WITH WAVE DIGITAL BRANCHING FILTER BANK AND DIGITAL AUDIO AMPLIFIER

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040413

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040414

R150 Certificate of patent or registration of utility model

Ref document number: 3549045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080430

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120430

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130430

Year of fee payment: 9

EXPY Cancellation because of completion of term