JP3543896B2 - エンジンの吸入空気量制御装置 - Google Patents
エンジンの吸入空気量制御装置 Download PDFInfo
- Publication number
- JP3543896B2 JP3543896B2 JP16019896A JP16019896A JP3543896B2 JP 3543896 B2 JP3543896 B2 JP 3543896B2 JP 16019896 A JP16019896 A JP 16019896A JP 16019896 A JP16019896 A JP 16019896A JP 3543896 B2 JP3543896 B2 JP 3543896B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic pole
- pole position
- learning
- throttle valve
- rotor magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P6/00—Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
- H02P6/08—Arrangements for controlling the speed or torque of a single motor
- H02P6/085—Arrangements for controlling the speed or torque of a single motor in a bridge configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D11/00—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
- F02D11/06—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
- F02D11/10—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
- F02D2011/101—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
- F02D2011/102—Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being moved only by an electric actuator
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Description
【発明の属する技術分野】
本発明は、エンジンに供給する吸入空気量を、ブラシレスモータでスロットルバルブを回動して制御するようにした吸入空気量制御装置に関するものである。
【0002】
【従来の技術】
一般の自動車では、エンジンの吸入空気通路中にスロットルバルブが設けられ、このスロットルバルブが運転者によるアクセルペダルの操作と連動して開閉される。これによりエンジンの吸入空気量がアクセルペダルの操作量に応じて制御される。かかる吸入空気量制御は、スロットルバルブとアクセルペダルとを、リンクやワイヤ等の機械的連結手段により連動させることによって達成される。しかし、このような機械的連結手段を用いたものでは、アクセルペダルとスロットルバルブとの位置関係が制約されるために自動車への搭載位置の自由度が少なくなると言う問題点があった。
【0003】
さらに近年では、定速走行制御装置やトラクション制御装置などの制御では、運転者のアクセル操作とは無関係にスロットルバルブを制御することが必要であり、モータなどでスロットルバルブを電気的に連結して制御する試みが成されている。このような例として、特開平1−315641号公報に開示されているスロットルバルブの制御が知られている。ここでは、ブラシ整流子を有するモータを使用すると、ブラシ整流子の押圧によって、回転子の正転方向と逆転方向でヒステリシストルクが生じて位置制御が困難となるため、ブラシレスモータを使用してスロットルバルブを制御している。
さらに、特開平5−240070号公報に開示されているスロットルバルブの制御では、ブラシレスモータの回転子とスロットルバルブの回転軸とを減速機やギヤを介し連結することで、高精度なスロットルバルブの制御性が得られることが示されている。また、ブラシレスモータの固定子巻き線(以下相と称す)を切り換えるために、相で発生する逆起電圧を検出する逆起電圧検出器や電流切換検出器を設けることで高価・高精度の回転検出器を不要としている。
【0004】
【発明が解決しようとする課題】
しかしながら、かかる従来のスロットルバルブの制御を行うエンジンの吸入空気量制御では以下の問題点がある。
まず、ブラシレスモータの通電相を切り換えるために逆起電力検出器や電流切換検出器が必要であるためにスロットルアクチュエータの複雑化、大型化、またモータ制御装置の信号入力インタフェースの増加を必要とする。スロットル開度センサを基に通電相の切り換えを行うと減速機やスロットル開度の製作公差による通電相切り換え位置のずれが生じる。さらに、ブラシレスモータの駆動において、逆起電圧検出器や電流切換検出器の出力を基に、ある通電相から次の通電相へ切り換える際には、電流が急激に変化するために、前記検出器の信号が相に加わる磁束の変化に対してずれがあった場合には、モータの発生トルクが不連続となってスロットル開度が急変するという問題点があるため、A〜Cの各相への通電電流を独立して正弦波で供給する3相通電方式を採用することが考えられるが、この方式にはモータの回転子の回転角を精密に測定する検出器が必要になるという問題点がある。
【0005】
本発明は上述した従来の問題点を解決するために成されたもので、安価で制御性に優れたエンジンの吸入空気量制御装置を得ることを目的としている。
【0006】
【課題を解決するための手段】
本発明の請求項1に係るエンジンの吸入空気量制御装置は、エンジンの吸入空気通路に回転軸12で支持されたスロットルバルブ11と、上記回転軸12と減速機16を介して連結される回転子と固定子巻き線を有するブラシレスモータ15と、上記回転軸12の回転角を検出して上記スロットルバルブ11の開度を検出するスロットル開度センサ13と、各種車両情報から上記スロットルバルブ11の開度を設定する目標開度設定手段21と、上記スロットル開度センサ13から得られる実際のスロットルバルブ開度と上記目標開度設定手段21で設定された目標のスロットルバルブ開度との開度偏差に基づいて上記各固定子巻き線に通電される相電流値を演算し、この演算された相電流値に相当するPWMデューティ信号を出力するPWMデューティ信号出力手段22aと、上記スロットル開度センサ13の出力により回転子の磁極位置を検出し学習する回転子磁極位置学習手段22bと、上記スロットルバルブ開度と上記回転子磁極位置学習手段22bによる学習値から通電固定子巻き線を決定する通電固定子巻き線決定手段22cと、上記PWMデューティ信号出力手段からのPWMデューティ信号と上記通電固定子巻き線決定手段22cで決定された通電固定子巻き線に対応する通電相選択信号とに基づいて上記ブラシレスモータ15に電流を供給するモータ駆動手段23とを備えたものである。
【0008】
本発明の請求項2に係るエンジンの吸入空気量制御装置は、請求項1のエンジンの吸入空気量制御装置において、ブラシレスモータ15をステップ状に駆動することにより回転子磁極位置を学習する回転子磁極位置学習手段22bを備えたものである。
【0009】
本発明の請求項3に係るエンジンの吸入空気量制御装置は、請求項1のエンジンの吸入空気量制御装置において、スロットルバルブ全閉から全開方向での回転子磁極位置学習値とスロットルバルブ全開から全閉方向での回転子磁極位置学習値の平均値を回転子磁極位置として学習する回転子磁極位置学習手段22bを備えたものである。
【0011】
本発明の請求項4に係るエンジンの吸入空気量制御装置は、請求項1のエンジンの吸入空気量制御装置において、スロットルバルブの開方向での学習値と閉方向での学習値が所定値以上差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行う回転子磁極位置学習手段22bを備えたものである。
【0012】
本発明の請求項5に係るエンジンの吸入空気量制御装置は、請求項1のエンジンの吸入空気量制御装置において、回転子磁極位置学習値間隔が所定値以上あるいは所定値以内の差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行う回転子磁極位置学習手段22bを備えたものである。
【0013】
本発明の請求項6に係るエンジンの吸入空気量制御装置は、請求項1のエンジンの吸入空気量制御装置において、スロットルバルブ全閉から全開までの間の回転子磁極位置の数が設定値と合致しない場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行う回転子磁極位置学習手段22bを備えたものである。
【0014】
本発明の請求項7に係るエンジンの吸入空気量制御装置は、エンジンの吸入空気通路に回転軸12で支持されたスロットルバルブ11と、上記回転軸12と減速機16を介して連結される回転子と固定子巻き線を有するブラシレスモータ15と、上記回転軸12の回転角を検出して上記スロットルバルブ11の開度を検出するスロットル開度センサ13と、各種車両情報から上記スロットルバルブ11の開度を設定する目標開度設定手段21と、上記スロットル開度センサ13から得られる実際のスロットルバルブ開度と上記目標開度設定手段21で設定された目標のスロットルバルブ開度との開度偏差に基づいて上記各固定子巻き線に通電される相電流値を各巻き線毎に独立して演算し、各相電流値に相当するPWMデューティ信号を出力するPWMデューティ信号出力手段22aと、上記スロットル開度センサ13の出力により回転子の磁極位置を検出し学習する回転子磁極位置学習手段22bと、上記スロットルバルブ開度と上記回転子磁極位置学習手段22bによる学習値とに基づいて、上記回転子回転角を求める回転角検出手段22dと、上記PWMデューティ信号出力手段22aからのPWMデューティ信号と回転角検出手段22dからの回転子回転角とに基づいて上記ブラシレスモータ15に電流を供給するモータ駆動手段23とを備えたものである。
【0016】
本発明の請求項8に係るエンジンの吸入空気量制御装置は、請求項7のエンジンの吸入空気量制御装置において、ブラシレスモータ15をステップ状に駆動することにより回転子磁極位置を学習する回転子磁極位置学習手段22bを備えたものである。
【0018】
本発明の請求項9に係るエンジンの吸入空気量制御装置は、請求項7のエンジンの吸入空気量制御装置において、スロットルバルブ開度と回転子磁極位置学習手段22bによる学習値とに基づいて通電固定子巻き線を決定して回転子回転角を求める回転角検出手段22dを備えたものである。
【0019】
本発明の請求項10に係るエンジンの吸入空気量制御装置は、請求項7のエンジンの吸入空気量制御装置において、学習した回転子磁極位置から次の回転子磁極位置の間をスロットルバルブ開度センサの出力信号により補間して回転角を求める回転角検出手段22dを備えたものである。
【0020】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図に基づいて説明する。図1は本発明の実施の形態1〜5によるエンジンの吸入空気量制御装置の構成図である。図1においてエンジン(図示しない)への吸入空気量を調整するスロットルアクチュエータ10は、吸入空気通路の開口面積を可変するスロットルバルブ11、このスロットルバルブ11を支持する回転軸12、回転軸12の一方の軸端に設けられ、回転軸12の回転角(スロットル開度)を検出するスロットル開度センサ13、同じく回転軸12の他方の軸端にあるスロットルバルブ11を閉方向に付勢するリターンスプリング14、スロットルバルブ11を制御するブラシレスモータ15、および回転軸12とブラシレスモータ15を連結する減速機16で構成されている。
【0021】
ブラシレスモータ15を制御するモータ制御装置20は、運転者が操作するアクセルペダル(図示せず)の踏み込み量を表すアクセル開度、エンジン回転数、車速など、自動車の各種車両情報を入力として目標スロットル開度θoを演算する目標開度設定手段21、スロットル開度センサ13からの実開度θrと目標スロットル開度θoとの開度偏差ΔθからPWMデューティを演算するとともに、スロットル開度センサ13からモータの通電相を選択する手段等を有するモータ制御手段22、およびモータ制御手段22からのPWMデューティを受けてモータ各相に電流を供給するモータ駆動手段23で構成されている。
【0022】
図2は、図1中の制御装置20の回路構成図である。図2において、マイクロコンピュータ201は、各種車両情報からスロットルバルブ11(図1参照)の開度を設定する目標開度設定手段21と、モータ制御手段22とから構成されている。モータ制御手段22は、スロットル開度センサ13(図1参照)から得られる実際のスロットルバルブ開度と目標開度設定手段21で設定された目標のスロットルバルブ開度との開度偏差に基づいて、ブラシレスモータ15(図1参照)各固定子巻き線LA,LB,LCに通電される相電流値を演算し、この演算された相電流値に相当するPWM(パルス幅変調)デューティ信号を出力するPWMデューティ信号出力手段22aと、ブラシレスモータ15の回転子の磁極位置を検出し学習する回転子磁極位置学習手段22bと、スロットルバルブ開度と回転子磁極位置学習手段22bによる学習値とから通電固定子巻き線を決定する通電固定子巻き線決定手段22cとを備えている。モータ駆動手段23は、PWMデューティ信号出力手段22aからのPWMデューティ信号と通電固定子巻き線決定手段22cで決定された通電固定子巻き線に対応する通電相選択信号とに基づいて、ブラシレスモータ15に電流を供給するものであり、上流側駆動段をドライブする論理回路で構成されたドライバ23a、前段スイッチング素子群23c、最終段スイッチング素子群23d、そして下流側駆動段をドライブする論理回路で構成されたドライバ23b、および最終段スイッチング素子群23eを含み構成されている。ブラシレスモータ15の相であるA〜C相は、最終段スイッチング素子群23dと最終段スイッチング素子群23eを介してバッテリ24のプラス極とグランド間に接続されている。
【0023】
次に図1及び図2の構成要素の動作について説明する。モータ制御手段22は、PWMデューティ信号出力手段22aにより例えば50%のPWMデューティ信号をモータ駆動手段23に渡し、通電相をスロットルバルブ11が開く方向に順次切り換える指示を出す。この操作によりブラシレスモータ15の回転子はステップ的に各通電相切り換え位置で停止する。この通電相切り換え位置はブラシレスモータ15の回転子磁極位置に相当するので、以下の説明では回転子磁極位置学習手段22bにより学習される回転子磁極位置を通電相切り換え位置と称することにする。
【0024】
図3は通電相切り換え位置学習を説明するための図である。3相4極のブラシレスモータ15を例にしており、電流を流す通電相をN(上流側)、S(下流側)で示している。
通電相切り換え位置未学習時は、最初に通電する相が不明のため、スロットルバルブ全閉位置(リターンスプリング14によりブラシレスモータ15の回転子がスロットルバルブ11の閉方向へ回転しない状態)の状態から順次スロットルバルブ11が開く方向に通電相を切り換えて(位置301〜303)、最初にスロットルバルブが開方向に動いて(位置306)、スロットル開度が安定した位置307を基準とする。(なお、この安定した位置307は、マイクロコンピュータ201により知ることができる。即ちマイクロコンピュータ201は、例えば相を切り換えてからスロットル開度が安定する時間を予め調査することにより、所定時間経過後のスロットル開度センサ13の信号を読む方法や、相を切り換えてからスロットル開度信号の変位が所定値以内に収まった時のスロットル開度センサの信号を読む方法などにより、位置307を知ることができる。)このときの通電相パターンを基準にスロットルバルブ11が開く方向に順次通電相のパターンを切り換える(位置303〜305)。全部で6パターンの通電相を310に示す。通電相を切り換えて一定時間309経過後スロットルバルブ開度が安定した位置307,308を通電相切り換え位置としてスロットル開度に置き換えて学習する。次に、スロットルバルブ全閉位置から全開位置までを全開方向の通電相切り換え位置として記憶し、スロットルバルブ全開位置から全閉方向に同様に通電相を切り換えて全閉方向の通電相切り換え位置を記憶する。ここで全開方向の通電相切り換え位置と全閉方向の通電相切り換え位置に所定値以上の差があれば学習は失敗と判定し、再度、通電相切り換え位置学習を行う。全開方向の通電相切り換え位置と全閉方向の通電相切り換え位置が所定値以内の差であれば、全開方向の通電相切り換え位置と全閉方向の通電相切り換え位置の平均値を通電相切り換え位置として学習する。
【0025】
以上述べた通電相切り換え位置学習の過程を図4,図5,図6に示すフローチャートを用いて説明する。まず、スロットルバルブ全閉状態で一定のPWMデューティ信号と通電相のあるパターン信号を出力する(ステップ401)。通電相のパターン信号をスロットル開度が変化するまでスロットルバルブが開く方向に切り換える(ステップ402,403)。スロットルバルブ開度が変化したら全開方向通電相切り換え位置を記憶する(ステップ404)。一定時間経過後(ステップ501)、安定したスロットルバルブ開度を全開方向通電相切り換え位置として記憶する(ステップ502)。この処理をスロットルバルブの全開位置まで通電相を切り換えて行う(ステップ405,406)。全開位置まで通電相切り換え位置を記憶した後、スロットルバルブ全閉方向の通電相の切り換え位置記憶処理を行う(ステップ407)。次に学習失敗判定を行う(ステップ408)。全開方向の通電相切り換え位置と全閉方向の通電相切り換え位置を比較する(ステップ601)。比較した結果が所定値以上の差がある場合(ステップ602)、通電相切り換え位置学習は失敗と判定する(ステップ603)。この処理をスロットルバルブ全閉位置まで行う(ステップ411)。学習失敗と判定した場合(ステップ412)、スロットルバルブ全閉方向に通電相を切り換え、スロットルバルブを全閉位置に戻してから再度、通電相切り換え位置学習を行う。そして、最後に記憶した全開方向と全閉方向の通電相切り換え位置の平均値を通電相切り換え位置として学習する(ステップ415)。
【0026】
通電相切り換え位置学習が終了すると、図1に示すように自動車の各種情報(アクセル開度、エンジン回転数、車速など)に適応した目標スロットル開度θoと、スロットル開度センサ13から得られる実開度θrとの差をとった開度偏差Δθ(=θo−θr)がモータ制御手段22に入力される。モータ制御手段22は、開度偏差Δθが正の場合は目標開度に対する実際のスロットルバルブ開度が不足しているため、ブラシレスモータ15の相電流を増加させ、開度偏差Δθが負の場合は目標開度に対して実際のスロットルバルブ開度が過剰としてブラシレスモータ15の相電流を減少させる制御を行う。開度偏差ΔθからPWMデューティ信号(相電流)を求める演算としてはPID制御器がよく用いられる。PID制御器は下記演算式で表せられ、開度偏差Δθがゼロになるように相電流を制御するように働く。
duty=Kp・Δθ+Kl・ΣΔθdt+Kd・Δθ/dt
dutyはPID演算されたPWMデューティ信号、Kpは比例ゲイン、Klは積分ゲイン、Kdは微分ゲインを示す。以上で求められたPWMデューティ信号がマイクロコンピュータ201からモータ駆動手段23に出力される。また、マイクロコンピュータ201はスロットルバルブ開度信号の出力と通電相切り換え位置学習値を基に通電相のパターンを判定しモータ駆動手段23に出力する。モータ駆動手段23は、通電相切り換え信号を受けたドライバ23aとドライバ23bが当該信号に該当するスイッチング素子を駆動し、上流側スイッチング素子群をPWMデューティ信号を用いて駆動することにより所望の相に電流を供給する。
【0027】
以上説明した実施の形態1によれば、スロットル開度センサの出力によりブラシレスモータの回転子の磁極位置(通電相切り換え位置)を検出し学習する回転子磁極位置学習手段により、ブラシレスモータの固定子巻き線を切り換えるために必要な回転子位置検出器が不要となる。また、ブラシレスモータをステップ状に駆動させ、回転子磁極位置学習手段により、ブラシレスモータの回転子の磁極位置を検出し学習するようにしたので、ブラシレスモータの固定子巻き線を切り換えるために必要な回転子位置検出器が不要となる。また、スロットルバルブ全閉から全開方向での回転子磁極位置(通電相切り換え位置)学習値とスロットルバルブ全開から全閉方向での回転子磁極位置学習値の平均値とを回転子磁極位置として学習する回転子磁極位置学習手段により、回転子磁極位置学習の精度を上げることができる。また、学習失敗と判定した場合、再度、回転子磁極位置(通電相切り換え位置)学習処理を行う回転子磁極位置学習手段により、回転子磁極位置学習の精度を上げることができる。また、スロットルバルブの開方向での学習値と閉方向での学習値が所定値以上差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行う回転子磁極位置学習手段により、回転子磁極位置学習の精度を上げることができる。したがって、安価で制御性に優れたエンジンの吸入空気量制御装置を得ることができる。
【0028】
実施の形態2.
本実施の形態2に係るエンジンの吸入空気量制御装置の構成は図1と同様である。本実施の形態2における通電相切り換え位置学習手段(回転子磁極位置学習手段)での学習失敗判定方法について図7,図8に示すフローチャートを用いて説明する。まず、スロットルバルブ全閉状態で一定のPWMデューティ信号と通電相のあるパターン信号を出力する(ステップ701)。通電相のパターン信号をスロットル開度が変化するまでスロットルバルブが開く方向に切り換える(ステップ702,703)。スロットルバルブ開度が変化したら通電相切り換え位置を学習し、それを終えると(ステップ704)、学習失敗の判定を行う(ステップ705)。学習失敗と判定されると、前回の通電相切り換え位置と今回の通電相切り換え位置との比較を行う(ステップ801)。その比較の結果、前回の通電相切り換え位置との差が設定値Aと設定値Bとの間の範囲に入っていれば学習は成功と判定し、範囲外であれば学習は失敗と判定する(ステップ803)。上記設定値A,Bについてはブラシレスモータの仕様により、3相4極では通電相切り換えの間隔が30°毎にくるので、例えばA=10°,B=50°と設定する。学習失敗判定処理は、スロットルバルブ全開位置まで行う(ステップ706)。そして学習失敗と判定した場合(ステップ708)、スロットルバルブ全閉方向に通電相を切り換え、スロットルバルブを全閉位置まで戻してから再度、通電相切り換え位置学習を行う。学習が成功すると(ステップ709)、この処理は終了する。
【0029】
以上説明したように実施の形態2によれば、回転子磁極位置学習値間隔(通電相切り換え間隔)が所定値以上あるいは所定値以内の差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行う回転子磁極位置学習手段を備えることにより、回転子磁極位置学習の精度を上げることができる。したがって、安価で制御性に優れたエンジンの吸入空気量制御装置を得ることができる。
【0030】
実施の形態3.
本実施の形態3に係るエンジンの吸入空気量制御装置の構成は図1と同様である。本実施の形態3における通電相切り換え位置学習手段(回転子磁極位置学習手段)での学習失敗判定方法について図9に示すフローチャートを用いて説明する。まず、スロットルバルブ全閉状態で一定のPWMデューティ信号と通電相のあるパターン信号を出力する(ステップ901)。通電相のパターン信号をスロットル開度が変化するまでスロットルバルブが開く方向に切り換える(ステップ902,903)。スロットルバルブ開度が変化したら通電相切り換え位置を学習し、それを終えると(ステップ904)、通電相切り換え位置の数をカウントアップする(ステップ905)。ステップ904,905の処理を全開位置になるまで通電パターン信号を切り換えて行う(ステップ906,907)。全開位置に達したら、通電相切り換え位置のカウント数と設定値とを比較する(ステップ908)。通電相切り換え位置のカウント数が設定値と同数でなければ学習失敗と判定する(ステップ909)。同数であれば、スロットルバルブを全閉位置まで戻すためにカウントをクリアする(ステップ910,911)。学習が成功すると(ステップ912)、この処理は終了する。なお、ステップ908における設定値については、ブラシレスモータ、減速機、スロットルアクチュエータの仕様により、スロットルバルブ全閉位置から全開位置まで通電相切り換えの数を設定値とする。
【0031】
以上説明したように実施の形態3によれば、スロットルバルブ全閉から全開までの間の学習した回転子磁極位置(通電相切り換え位置)の数が設定値と合致しない場合は学習失敗と判定し、再度、回転子磁極位置学習処理(通電相切り換え位置学習処理)を行う回転子磁極位置学習手段を備えたので、回転子磁極位置学習の精度を上げることができる。したがって、安価で制御性に優れたエンジンの吸入空気量制御装置を得ることができる。
【0032】
実施の形態4.
まず、本実施の形態4に関係する3相通電方式について図10に示すタイミングチャートを用いて説明する。図10において、ブラシレスモータの固定子巻き線が励磁され、その回転子が回転することによって回転子が各固定子巻き線による正弦波の磁束密度Φと交差するときに、各相(各固定子巻き線)に磁束密度Φと同位相で相似な正弦波電流Isを供給すると、このときの通電による各相の発生トルクTsは、次式で表せる。
Ts=k・Φ・Is(kは定数)
ブラシレスモータの回転子トルクは、各相A〜Cの発生トルクTsの合成トルクで表せられ、理論上は回転子回転角に対してトルクリップルのない出力トルクが得られる。このような通電方式を3相通電方式と呼ぶが、一般に、各相への通電電流を回転子回転角に対して正弦波で変化させる必要があるために回転子回転角を精密に検出しなければならない。通電相切り換え位置学習とスロットルバルブ開度センサの信号を用いて3相通電方式を現実にしたのが本実施の形態4であり、以下に図10,図11を用いて説明する。ここでは前述の実施の形態1で説明した部分との相違点のみ説明する。
【0033】
モータ制御手段22Aからは、偏差Δθおよびスロットル開度センサから演算されたPWMデューティ信号および通電相選択信号が出力されて、モータ駆動手段23Aへ伝達される。モータ制御手段22A中には、回転角検出手段22dが備えられている。モータ駆動手段23Aには、上流側駆動段をドライブするAND論理群23h、下流側駆動段をドライブするAND論理群23i、およびAND論理群23hおよび23iの通電相選択信号1〜3に並列に反転論理群23jが備えられている。PWMデューティ信号は、AND論理群23hに独立して入力される。また、PWMデューティおよび回転子回転角の関係は下式で表せる。
PWMデューティ1=PWMデューティ×sin2γ
PWMデューティ2=PWMデューティ×sin2(γ−60°)
PWMデューティ3=PWMデューティ×sin2(γ+60°)
γは回転子回転角を示す。
また、通電相選択信号もγの関数で表せる。
通電相選択信号(1、2、3)=f(γ)
【0034】
次に動作を説明する。まず、通電相切り換え位置学習を行う。実施の形態1での説明とはほぼ同様であるが、図11で示すような回路構成では、電流を流す相のPWMデューティ信号のみ出力し、通電相の切り換えパターンは上流側駆動段をONする場合と未通電の相にはlow、下流側駆動段をONする場合はhighと出力することにより2相通電を行う。学習方式は実施の形態1での説明と同様である。実施の形態1で説明したように、モータ制御手段22Aは、回転子磁極位置学習手段(通電相切り換え位置学習手段)22bにより学習された通電相切り換え位置と、スロットル開度センサからの信号とにより通電相を選択し、モータ駆動手段23Aへ出力する。また、上記PWMデューティ1〜3を演算しモータ駆動手段23Aへ出力する。例えば、図10の▲1▼点では、A相とC相からB相に電流を流し、▲2▼点ではA相からB相とC相に電流を流すように通電相選択信号を出力する。しかし、PWMデューティを計算するために必要な回転子回転角が通電相切り換え位置学習値以外では分からないため、通電相切り換え位置学習値間をスロットル開度センサからの実開度θrと減速機16のギヤ比εから求めたモータ回転角γを用いて制御する。
γ=ε×θr
εは減速機16のギヤ比を示す。
上式より、通電相切り換え位置からスロットル開度の変化量でモータ回転角を求めることができ、実際の通電相切り換え点での通電相切り換えを行うことができ、電流を正弦波状に流すためのPWMデューティ1〜3を求めることができる。
【0035】
以上説明したように実施の形態4によれば、ブラシレスモータの回転子の回転角を求める回転角検出手段を備えたので、高精度な位置検出器を必要とせず、通電を行う固定子巻き線を切り換えるときに生じるブラシレスモータの急激なトルク変動を防止することができる。したがって、安価で制御性に優れたエンジンの吸入空気量制御装置を得ることができる。
【0036】
実施の形態5.
図12は、実施の形態5に係るマイクロコンピュータとモータ駆動手段の回路構成図である。図12の回路構成のように2相通電が行えない場合には3相通電により通電相切り換え位置学習を行う方法もある。実施の形態1で説明した方法とほぼ同じであるが、図13で示すように通電相パターンが2相から3相通に変わる。通電相切り換え位置学習の動作については、実施の形態1で説明したとおりである。ただし、図14で示すように通電相切り換え位置学習値1401と実際の通電相切り換え位置1402では回転子回転角で15°ずれている。例えば、図10の▲1▼点では、A相とC相からB相に電流を流し、▲2▼点ではA相からB相とC相に電流を流すように通電相選択信号を出力する。しかし、実際の通電相切り換え位置や、PWMデューティを計算するために必要な回転子回転角が通電相切り換え位置学習値以外では分からないため、通電相切り換え位置学習値間をスロットル開度センサからの実開度θrと減速機16のギヤ比εから求めたモータ回転角γを用いて制御する。
γ=ε×θr
εは減速機のギヤ比を示す。
上式より、通電相切り換え位置からスロットル開度の変化量でモータ回転角を求めることができ、実際の通電相切り換え点での通電相切り換えを行うことができ、電流を正弦波状に流すためのPWMデューティ1〜3を求めることができる。
【0037】
以上説明したように実施の形態5によれば、学習した通電相切り換え位置から次の通電相切り換え位置の間をスロットルバルブ開度センサの出力信号により補間して回転角を求めることにより、安価なシステムで、通電を行う固定子巻き線を切り換えるときに生じるブラシレスモータの急激なトルク変動を防止することができる。
【0038】
【発明の効果】
以上のように請求項1の発明によれば、回転子磁極位置学習手段を備えたことにより、固定子巻き線を切り換えるために必要な回転子位置検出器を不要とし、安価で制御性の優れたエンジンの吸入空気量制御装置が得られるという効果がある。
【0040】
請求項2の発明によれば、請求項1の発明のブラシレスモータをステップ状に駆動することにより回転子磁極位置を学習する回転子磁極位置学習手段を備えたことにより、固定子巻き線を切り換えるために必要な回転子位置検出器を不要とし安価なエンジンの吸入空気量制御装置が得られるという効果がある。
【0041】
請求項3の発明によれば、請求項1の発明の回転子磁極位置学習手段は、スロットルバルブ全閉から全開方向での回転子磁極位置学習値とスロットルバルブ全開から全閉方向での回転子磁極位置学習値の平均値を回転子磁極位置として学習することにより、回転子磁極位置学習の精度を上げることができ、制御性を向上させることができるという効果がある。
【0043】
請求項4の発明によれば、請求項1の発明の回転子磁極位置学習手段は、スロットルバルブの開方向での学習値と閉方向での学習値が所定値以上差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行うことにより、回転子磁極位置学習の精度を上げることができ、制御性を向上させることができるという効果がある。
【0044】
請求項5の発明によれば、請求項1の発明の回転子磁極位置学習手段は、回転子磁極位置学習値間隔が所定値以上あるいは所定値以内の差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行うことにより、回転子磁極位置学習の精度を上げることができ、制御性を向上させることができるという効果がある。
【0045】
請求項6の発明によれば、請求項1の発明の回転子磁極位置学習手段は、スロットルバルブ全閉から全開までの間の回転子磁極位置の数が設定値と合致しない場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行うことにより、回転子磁極位置学習の精度を上げることができ、制御性を向上させることができるという効果がある。
【0046】
請求項7の発明によれば、スロットル開度センサから得られる実際のスロットルバルブ開度と目標開度設定手段で設定された目標のスロットルバルブ開度との開度偏差に基づいて上記各固定子巻き線に通電される相電流値を各巻き線毎に独立して演算し、各相電流値に相当するPWMデューティ信号を出力するPWMデューティ信号出力手段と、上記スロットル開度センサの出力により回転子の磁極位置を検出し学習する回転子磁極位置学習手段と、上記スロットルバルブ開度と上記回転子磁極位置学習手段による学習値から通電固定子巻き線を決定し、上記回転子回転角を求める回転角検出手段と、上記PWMデューティ信号出力手段からのPWMデューティ信号と回転角検出手段からの回転子回転角とに基づいて上記ブラシレスモータに電流を供給するモータ駆動手段とを備えたことにより、安価なシステムで通電を行う固定子巻き線を切り換えるときに生じるブラシレスモータの急激なトルク変動を防止することができるという効果がある。
【0048】
請求項8の発明によれば、請求項7の発明において、ブラシレスモータをステップ状に駆動させ、回転子磁極位置学習手段で回転子磁極位置を学習することで固定子巻き線を切り換えるために必要な回転子位置検出器を不要とし、安価なエンジンの吸入空気量制御装置が得られるという効果がある。
【0050】
請求項9の発明によれば、請求項7の発明の回転角検出手段は、スロットルバルブ開度と回転子磁極位置学習手段による学習値とに基づいて通電固定子巻き線を決定して回転子回転角を求めるようにしたので、請求項7の発明の効果を達成できる。
【0051】
請求項10の発明によれば、請求項7の発明において、学習した回転子磁極位置から次の回転子磁極位置の間を上記スロットルバルブ開度センサの出力信号により補間して回転角を求めることにより、安価なシステムで通電を行う固定子巻き線を切り換えるときに生じるブラシレスモータの急激なトルク変動を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1〜5に係るエンジンの吸入空気量制御装置の全体構成を示す図である。
【図2】実施の形態1における制御装置の回路構成図である。
【図3】実施の形態1における通電相切り換え位置学習の説明図である。
【図4】実施の形態1における通電相切り換え位置学習の処理を示すフローチャートである。
【図5】実施の形態1における通電相切り換え位置学習の処理を示すフローチャートである。
【図6】実施の形態1における通電相切り換え位置学習失敗判定の処理を示すフローチャートである。
【図7】実施の形態2における通電相切り換え位置学習失敗判定の処理を示すフローチャートである。
【図8】実施の形態2における通電相切り換え位置学習失敗判定の処理を示すフローチャートである。
【図9】実施の形態3における通電相切り換え位置学習失敗判定の処理を示すフローチャートである。
【図10】実施の形態4における通電方式の動作原理図である。
【図11】実施の形態4における制御装置の回路構成図である。
【図12】実施の形態5における制御装置の回路構成図である。
【図13】実施の形態5における通電相切り換え位置学習の説明図である。
【図14】実施の形態5における通電方式の動作原理図である。
【符号の説明】
10 スロットルアクチュエータ、11 スロットルバルブ、12 回転軸、
13 スロットル開度センサ、14 リターンスプリング、
15 ブラシレスモータ、16 減速機、20 モータ制御装置、
21 目標開度設定手段、22 モータ制御手段、 22a PWMデューティ信号出力手段、22b 回転子磁極位置学習手段、22c 通電固定子巻き線決定手段、22d 回転角検出手段、23,23A,23B モータ駆動手段、
23a,23b ドライバ、23c 前段スイッチング素子群、
23d,23e 最終段スイッチング素子群、23h,23i AND論理群、
23j 反転論理群、201,201A,202A マイクロコンピュータ。
Claims (10)
- エンジンの吸入空気通路に回転軸で支持されたスロットルバルブと、上記回転軸と減速機を介して連結される回転子と固定子巻き線を有するブラシレスモータと、上記回転軸の回転角を検出して上記スロットルバルブの開度を検出するスロットル開度センサと、各種車両情報から上記スロットルバルブの開度を設定する目標開度設定手段と、上記スロットル開度センサから得られる実際のスロットルバルブ開度と上記目標開度設定手段で設定された目標のスロットルバルブ開度との開度偏差に基づいて上記各固定子巻き線に通電される相電流値を演算し、この演算された相電流値に相当するPWMデューティ信号を出力するPWMデューティ信号出力手段と、上記スロットル開度センサの出力により回転子の磁極位置を検出し学習する回転子磁極位置学習手段と、上記スロットルバルブ開度と上記回転子磁極位置学習手段による学習値とから通電固定子巻き線を決定する通電固定子巻き線決定手段と、上記PWMデューティ信号出力手段からのPWMデューティ信号と上記通電固定子巻き線決定手段で決定された通電固定子巻き線に対応する通電相選択信号とに基づいて上記ブラシレスモータに電流を供給するモータ駆動手段とを備えたことを特徴とするエンジンの吸入空気量制御装置。
- 上記ブラシレスモータをステップ的に駆動させ、上記回転子磁極位置学習手段は、上記ブラシレスモータのステップ駆動位置により、上記回転子の磁極位置を検出し学習することを特徴とする請求項第1項記載のエンジンの吸入空気量制御装置。
- 上記回転子磁極位置学習手段は、スロットルバルブ全閉から全開方向での回転子磁極位置学習値とスロットルバルブ全開から全閉方向での回転子磁極位置学習値の平均値を回転子磁極位置として学習することを特徴とする請求項第1項記載のエンジンの吸入空気量制御装置。
- 上記回転子磁極位置学習手段は、スロットルバルブの開方向での学習値と閉方向での学習値が所定値以上差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行うことを特徴とする請求項第1項記載のエンジンの吸入空気量制御装置。
- 上記回転子磁極位置学習手段は、回転子磁極位置学習値間隔が所定値以上あるいは所定値以内の差がある場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行うことを特徴とする請求項第1項記載のエンジンの吸入空気量制御装置。
- 上記回転子磁極位置学習手段は、スロットルバルブ全閉から全開までの間で学習した回転子磁極位置の数が設定値と合致しない場合は学習失敗と判定し、再度、回転子磁極位置学習処理を行うことを特徴とする請求項第1項記載のエンジンの吸入空気量制御装置。
- エンジンの吸入空気通路に回転軸で支持されたスロットルバルブと、上記回転軸と減速機を介して連結される回転子と固定子巻き線を有するブラシレスモータと、上記回転軸の回転角を検出して上記スロットルバルブの開度を検出するスロットル開度センサと、各種車両情報から上記スロットルバルブの開度を設定する目標開度設定手段と、上記スロットル開度センサから得られる実際のスロットルバルブ開度と上記目標開度設定手段で設定された目標のスロットルバルブ開度との開度偏差に基づいて上記各固定子巻き線に通電される相電流値を各巻き線毎に独立して演算し、各相電流値に相当するPWMデューティ信号を出力するPWMデューティ信号出力手段と、上記スロットル開度センサの出力により回転子の磁極位置を検出し学習する回転子磁極位置学習手段と、上記スロットルバルブ開度と上記回転子磁極位置学習手段による学習値とに基づいて、上記回転子回転角を求める回転角検出手段と、上記PWMデューティ信号出力手段からのPWMデューティ信号と回転角検出手段からの回転子回転角とに基づいて上記ブラシレスモータに電流を供給するモータ駆動手段とを備えたことを特徴とするエンジンの吸入空気量制御装置。
- 上記ブラシレスモータをステップ的に駆動させ、上記回転子磁極位置学習手段は、上記ブラシレスモータのステップ駆動位置により、上記回転子の磁極位置を検出し学習することを特徴とする請求項第7項記載のエンジンの吸入空気量制御装置。
- 上記回転角検出手段は、上記スロットルバルブ開度と上記回転子磁極位置学習手段による学習値とに基づいて通電固定子巻き線を決定して上記回転子回転角を求めることを特徴とする請求項第7項記載のエンジンの吸入空気量制御装置。
- 上記回転角検出手段は、上記回転子磁極位置学習手段により学習した回転子磁極位置から次の回転子磁極位置の間を上記スロットルバルブ開度センサの出力信号により補間して回転角を求めることを特徴とする請求項第7項記載のエンジンの吸入空気量制御装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16019896A JP3543896B2 (ja) | 1996-06-20 | 1996-06-20 | エンジンの吸入空気量制御装置 |
US08/796,554 US5828193A (en) | 1996-06-20 | 1997-02-07 | Intake air amount control unit for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16019896A JP3543896B2 (ja) | 1996-06-20 | 1996-06-20 | エンジンの吸入空気量制御装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH109026A JPH109026A (ja) | 1998-01-13 |
JP3543896B2 true JP3543896B2 (ja) | 2004-07-21 |
Family
ID=15709933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16019896A Expired - Lifetime JP3543896B2 (ja) | 1996-06-20 | 1996-06-20 | エンジンの吸入空気量制御装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US5828193A (ja) |
JP (1) | JP3543896B2 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19848594C2 (de) * | 1997-10-21 | 2002-11-14 | Hitachi Ltd | Elektrisch gesteuerte Drosselklappenvorrichtung |
US6543416B2 (en) | 1997-10-21 | 2003-04-08 | Hitachi, Ltd. | Electric-control-type throttle apparatus |
US6401690B1 (en) | 1997-10-21 | 2002-06-11 | Hitachi, Ltd. | Electric-control-type throttle apparatus |
JP3628855B2 (ja) * | 1997-11-18 | 2005-03-16 | 三菱電機株式会社 | エンジンの吸入空気量の制御方法及びその制御装置 |
US6401689B1 (en) * | 1999-06-30 | 2002-06-11 | Hitachi, Ltd. | Electric throttle-control apparatus and motor used for the apparatus |
JP3929665B2 (ja) | 1999-12-28 | 2007-06-13 | 三菱電機株式会社 | エンジンの吸入空気量制御装置 |
FR2815189B1 (fr) * | 2000-10-06 | 2003-01-03 | Moving Magnet Tech | Moto-reducteur electrique sans balai autocommute sur un signal de position absolu |
JP4084982B2 (ja) * | 2002-09-12 | 2008-04-30 | 株式会社ケーヒン | ブラシレスモータの駆動装置及び駆動方法 |
JP4196345B2 (ja) * | 2004-02-18 | 2008-12-17 | 株式会社デンソー | バルブ開閉制御装置 |
US6918373B1 (en) | 2004-03-17 | 2005-07-19 | Visteon Global Technologies, Inc. | Single wire control method for electronic throttle systems |
JP4279212B2 (ja) * | 2004-06-28 | 2009-06-17 | ヤマハ発動機株式会社 | 船舶のエンジン制御装置 |
JP2006257923A (ja) * | 2005-03-16 | 2006-09-28 | Denso Corp | 内燃機関の電子スロットル制御装置 |
ES2373959T3 (es) * | 2005-05-27 | 2012-02-10 | Siemens Aktiengesellschaft | Procedimiento y dispositivo para la activación de un servo elemento. |
US8786242B2 (en) * | 2008-02-27 | 2014-07-22 | Enfield Technologies, Llc | Method and device for controlling load and voltage in voice coils |
CN101813209B (zh) * | 2009-02-20 | 2013-09-04 | 德昌电机(深圳)有限公司 | 采用无刷直流电机的执行阀控制模组及执行阀控制方法 |
DE102011005566A1 (de) * | 2011-03-15 | 2012-09-20 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Kalibrieren eines Stellgebersystems mit einem elektronisch kommutierten Stellantrieb |
DE202014003887U1 (de) * | 2014-05-09 | 2015-08-11 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | Computerprogramm zur Steuerung eines hysteresebehafteten Stellglieds |
DE102017116108A1 (de) * | 2017-07-18 | 2019-01-24 | Samson Aktiengesellschaft | Stellgerät mit Sicherheitsstellfunktion |
CN111953253B (zh) * | 2020-08-11 | 2023-09-22 | 贵州航天林泉电机有限公司 | 一种电机极对数辨识系统和矢量控制电机极对数辨识方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05240070A (ja) * | 1992-02-27 | 1993-09-17 | Hitachi Ltd | 内燃機関のスロットルアクチュエータ及び内燃機関の吸入空気量制御装置 |
JP3084929B2 (ja) * | 1992-06-01 | 2000-09-04 | 株式会社デンソー | スロットル基準開度検出装置 |
JP3546469B2 (ja) * | 1994-06-03 | 2004-07-28 | 三菱電機株式会社 | 流量弁制御装置 |
JP3194675B2 (ja) * | 1994-10-27 | 2001-07-30 | 三菱電機株式会社 | エンジンの吸入空気量制御装置 |
JP3489251B2 (ja) * | 1995-03-28 | 2004-01-19 | 株式会社デンソー | 内燃機関のスロットル制御装置 |
-
1996
- 1996-06-20 JP JP16019896A patent/JP3543896B2/ja not_active Expired - Lifetime
-
1997
- 1997-02-07 US US08/796,554 patent/US5828193A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US5828193A (en) | 1998-10-27 |
JPH109026A (ja) | 1998-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3543896B2 (ja) | エンジンの吸入空気量制御装置 | |
JP3194675B2 (ja) | エンジンの吸入空気量制御装置 | |
US7746023B2 (en) | Position detecting device and synchronous motor driving device using the same | |
US7161314B2 (en) | Motor control apparatus having current supply phase correction | |
US7304450B2 (en) | Motor-reduction unit switched on an absolute position signal | |
US6067960A (en) | Method and device for controlling the volume of intake air for an engine | |
KR100396797B1 (ko) | 엔진의 흡입공기량 제어장치 | |
JPS62291449A (ja) | 自動車エンジンスロツトル操作者用適応制御装置 | |
JP2004015925A (ja) | ブラシレスモータ制御方法 | |
JP3600418B2 (ja) | アクチュエータ制御装置 | |
US6803739B2 (en) | Method and apparatus for controlling synchronous motor | |
JP2833973B2 (ja) | 排気ガス還流制御装置 | |
JP4084982B2 (ja) | ブラシレスモータの駆動装置及び駆動方法 | |
JP4271032B2 (ja) | ブラシレスサーボモータのトルク安定化装置 | |
GB2307063A (en) | Method and system for engine throttle positioning | |
JPH05240070A (ja) | 内燃機関のスロットルアクチュエータ及び内燃機関の吸入空気量制御装置 | |
JP3077443B2 (ja) | バルブ開閉制御装置 | |
JPH0947088A (ja) | ステッピングモータのマイクロステップ駆動方法及びその駆動装置 | |
JP2870205B2 (ja) | 排気ガス還流弁制御装置 | |
JPH0693888A (ja) | バルブ開閉制御装置 | |
JP2004003498A (ja) | 内燃機関のスロットルアクチュエータ | |
JPH02149744A (ja) | 副スロットル弁駆動方法 | |
JPH07308096A (ja) | マイクロステップ駆動方式のステップモータの学習補正装置 | |
JPH02149743A (ja) | スロットル弁開度制御方法 | |
JPH03230788A (ja) | ブラシレスモータの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040330 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080416 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090416 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100416 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110416 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120416 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130416 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140416 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |