JP3541014B2 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
JP3541014B2
JP3541014B2 JP2001044410A JP2001044410A JP3541014B2 JP 3541014 B2 JP3541014 B2 JP 3541014B2 JP 2001044410 A JP2001044410 A JP 2001044410A JP 2001044410 A JP2001044410 A JP 2001044410A JP 3541014 B2 JP3541014 B2 JP 3541014B2
Authority
JP
Japan
Prior art keywords
electrode
insulating film
liquid crystal
interlayer insulating
pixel electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001044410A
Other languages
English (en)
Other versions
JP2001296558A (ja
Inventor
尚幸 島田
優 梶谷
昌也 岡本
直文 近藤
幹雄 片山
由和 咲花
明弘 山本
幸伸 中田
博彦 錦
吉祐 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001044410A priority Critical patent/JP3541014B2/ja
Publication of JP2001296558A publication Critical patent/JP2001296558A/ja
Application granted granted Critical
Publication of JP3541014B2 publication Critical patent/JP3541014B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)

Description

【0001】
【発明の属する技術分野】本発明は、例えばコンピュータやテレビジョン装置などのディスプレイに利用され、アドレス素子として薄膜トランジスタ(以下TFTという)などのスイッチング素子を備えた液晶表示装置およびアクティブマトリクス基板に関する。
【0002】
【従来の技術】
図16は、アクティブマトリクス基板を備えた従来の液晶表示装置の構成を示す回路図である。
【0003】
図16において、このアクティブマトリクス基板には、複数の画素電極1がマトリクス状に形成されており、この画素電極1には、スイッチング素子であるTFT2が接続されて設けられている。このTFT2のゲート電極には走査信号を供給するためのゲート配線3が接続され、ゲート電極に入力されるゲート信号によってTFT2が駆動制御される。また、TFT2のソース電極には表示信号(データ信号)を供給するためソース配線4が接続され、TFT2の駆動時に、TFT2を介してデータ(表示)信号が画素電極1に入力される。各ゲート配線3とソース配線4とは、マトリクス状に配列された画素電極1の周囲を通り、互いに直交差するように設けられている。さらに、TFT2のドレイン電極は画素電極1および付加容量5に接続されており、この付加容量5の対向電極はそれぞれ共通配線6に接続されている。付加容量5は液晶層に印加される電圧を保持するために用いられる。付加容量は、アクティブマトリクス基板に形成された画素電極と対向基板に形成された対向電極とに挟持された液晶層を含む液晶容量と、並列に設けられる。
【0004】
図17は従来の液晶表示装置におけるアクティブマトリクス基板のTFT部分の断面図である。
【0005】
図17において、透明絶縁性基板11上に、図16のゲート配線3に接続されたゲート電極12が形成され、その上を覆ってゲート絶縁膜13が形成されている。さらにその上にはゲート電極12と重畳するように半導体層14が形成され、その中央部上にチャネル保護層15が形成されている。このチャネル保護層15の両端部および半導体層14の一部を覆い、チャネル保護層15上で分断された状態で、ソース電極16aおよびドレイン電極16bとなるn+Si層が形成されている。一方のn+Si層であるソース電極16a上には、図16のソース配線4となる金属層17aが形成され、他方のn+Si層であるドレイン電極16b上には、ドレイン電極16bと画素電極1とを接続する金属層17bが形成されている。さらに、これらのTFT2、ゲート配線3およびソース配線4上部を覆って層間絶縁膜18が形成されている。
【0006】
この層間絶縁膜18の上には、画素電極1となる透明導電膜が形成され、この透明導電膜は、層間絶縁膜18を貫くコンタクトホール19を介して、TFT2のドレイン電極16bと接続した金属層17bと接続されている。
【0007】
このように、ゲート配線3およびソース配線4と、画素電極1となる透明導電膜との間に層間絶縁膜18が形成されているので、各配線3,4に対して画素電極1をオーバーラップさせることができる。このような構造は、例えば特開昭58−172685号公報に開示されており、これによって液晶表示装置の開口率を向上させることができると共に、各配線3,4に起因する電界をシールドしてディスクリネーションを抑制することができる。
【0008】
上記層間絶縁膜18としては、従来、窒化シリコン(SiN)などの無機膜をCVD法を用いて膜厚500nm程度に形成していた。
【0009】
【発明が解決しようとする課題】
しかしながら、この層間絶縁膜18上に透明絶縁膜であるSiNX,SiO2、TaOXなどをCVD法またはスパッタ法により成膜した場合、その下地膜の膜厚による凹凸を反映するので、画素電極1をこの上に形成したときに下地膜の段差により段差が形成されて液晶分子の配向不良を引き起こすという問題があった。
【0010】
また、画素部を平坦化するためにポリイミドなどの有機膜の塗布により成膜した場合、画素電極とドレイン電極を電気的に接続させるためのコンタクトホールを形成するために、マスク材を用いてフォトパターニングを行い、エッチングにより、コンタクトホールの加工を行って、最後に不要となったフォトレジストを剥離する工程を必要としていた。また、このエッチングおよび剥離工程を短縮化するために感光性ポリイミド膜を使用する方法も考えられるが、この場合、層間絶縁膜を形成した後の樹脂が着色して見えるために、高い光透過性および透明性が要求される液晶表示装置の層間絶縁膜には適さないという問題があった。
【0011】
また、上記従来の液晶表示装置のように、ゲート配線3およびソース配線4と、画素電極1との間に層間絶縁膜18を形成すると、各配線3,4に対して画素電極1をオーバーラップさせることができ、液晶表示装置の開口率向上させることができる。ところが、このように、各配線3,4と画素電極1とをオーバーラップさせる構造とした場合、各配線3,4と画素電極1との間の容量が増加するという問題を有していた。特に、窒化シリコン膜などの無機膜は比誘電率が8と高く、CVD法を用いて成膜しており、500nm程度の膜厚となる。この程度の膜厚では各配線3,4と画素電極1との間の容量の増加が大きくなり、以下の(1),(2)に示すような問題があった。なお、窒化シリコン膜などの無機膜をそれ以上の膜厚に成膜しようとすると、製造プロセス上、時間がかかりすぎるという問題を有していた。
【0012】
(1)ソース配線4と画素電極1とをオーバーラップさせる構造とした場合、ソース配線4と画素電極1との間の容量が大きくなって信号透過率が大きくなり、保持期間の間に画素電極1に保持されているデータ信号は、データ信号の電位によって揺動を受けることになる。このため、その画素の液晶に印加される実効電圧が変動し、実際の表示において特に縦方向の隣の画素に対して縦クロストークが観察されるという問題があった。
【0013】
このようなソース配線4と画素電極1との間の容量が表示に与える影響を減らす方法の1つとして、例えば特開平6−230422号公報には、1ソースライン毎に対応する画素に与えるデータ信号の極性を反転させる駆動方法が提案されている。この駆動方法では、隣接する画素の表示に相関が高い白黒表示のパネルに対しては有効であったが、通常のノートブック型パーソナルコンピューターなどのように、画素電極を縦ストライプ状に配列した場合(カラー表示の場合、画素電極の形状は、例えば正方形の画素をR,G,Bで3等分した縦長の長方形状である縦ストライプ状をしている)には、ソース配線4に対する隣接画素は、表示色がそれぞれ異なっている。このため、上記1ソースライン毎の極性反転駆動方法は、白黒表示の場合には縦クロストーク低減に効果があったものの、一般的なカラー表示の場合にはクロストーク低減に効果が不十分であった。
【0014】
(2)画素電極1と、その画素を駆動するゲート配線3とをオーバーラップさせる構造とした場合、ゲート配線3と画素電極1との間の容量が大きくなって、TFT2を制御するスイッチング信号に起因して、画素への書き込み電圧のフィードスルーが大きくなるという問題があった。
【0015】
本発明は、上記従来の問題を解決するもので、平坦な画素電極と各配線をオーバーラップさせて液晶表示装置の開口率の向上および液晶の配向不良の抑制を図りながら、各配線と画素電極との間の容量成分が表示に与えるクロストークなどの影響をより低減して良好な表示を得ることができる液晶表示装置およびアクティブマトリクス基板を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明の液晶表示装置は、ゲート配線と、ソース配線と、ゲート配線とソース配線との交差部の近傍に設けられたスイッチング素子とを有し、該スイッチング素子は前記ゲート配線に接続されたゲート電極と、前記ソース配線に接続されたソース電極と、液晶層に電圧を印加するための画素電極に接続されたドレイン電極とを有する液晶表示装置であって、前記スイッチング素子、前記ゲート配線および前記ソース配線の上部に、層間絶縁膜が設けられ、該層間絶縁膜上に前記画素電極が設けられ、前記ゲート配線または付加容量配線上部に、前記ドレイン電極に接続した接続電極と前記画素電極とを接続するコンタクトホールが設けられ、前記ソース配線及び前記ゲート配線は、前記画素電極の外周部と重なりあっていることを特徴とする。
【0017】
また、前記コンタクトホールと前記接続電極との間に金属窒化物が形成されていることが好ましい。
【0018】
以下に、本発明の作用を説明する。層間絶縁膜を貫くコンタクトホールが、遮光性の付加容量配線またはゲート配線の上部に設けられていると、液晶の配向乱れによる光漏れが開口部以外の遮光部で発生することになり、コントラストの低下が生じない。
【0019】
さらに、画素電極と各配線とを1μm以上オーバーラップさせると、開口率を最大限にすることができると共に、画素電極の各配線に対する加工精度が粗くても良い。つまり、加工精度が粗くても画素電極と各配線が重なっていれば、重なった各配線によって光漏れは遮断される。
【0020】
また、層間絶縁膜を構成する樹脂との密着性が良好な金属窒化物を形成することにより、樹脂の膜剥がれなどに関する問題を生じない。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
(実施形態1)
図1は、本発明の実施形態1の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【0022】
図1において、アクティブマトリクス基板には、複数の画素電極21がマトリクス状に設けられており、これらの画素電極21の周囲を通り、互いに直交差するように、走査信号を供給するための各ゲート配線22と表示信号を供給するためのソース配線23が設けられている。これらのゲート配線22とソース配線23はその一部が画素電極21の外周部分とオーバーラップしている。また、これらのゲート配線22とソース配線23の交差部分において、画素電極21に接続されるスイッチング素子としてのTFT24が設けられている。このTFT24のゲート電極にはゲート配線22が接続され、ゲート電極に入力される信号によってTFT24が駆動制御される。また、TFT24のソース電極にはソース配線23が接続され、TFT24のソース電極にデータ信号が入力される。さらに、TFT24のドレイン電極は、接続電極25さらにコンタクトホール26を介して画素電極21と接続されるとともに、接続電極25を介して付加容量の一方の電極である付加容量電極25aと接続されている。この付加容量の他方の電極である付加容量対向電極27は共通配線(図16の6)に接続されている。
【0023】
図2は、図1の透過型液晶表示装置におけるアクティブマトリクス基板のA−A’断面図である。
【0024】
図2において、透明絶縁性基板31上に、図1のゲート配線22に接続されたゲート電極32が設けられ、その上を覆ってゲート絶縁膜33が設けられている。その上にはゲート電極32と重畳するように半導体層34が設けられ、その中央部上にチャネル保護層35が設けられている。このチャネル保護層35の両端部および半導体層34の一部を覆い、チャネル保護層35上で分断された状態で、ソース電極36aおよびドレイン電極36bとなるn+Si層が設けられている。一方のn+Si層であるソース電極36aの端部上には、透明導電膜37cと金属層37bとが設けられて2層構造のソース配線23となっている。また、他方のn+Si層であるドレイン電極36bの端部上には、透明導電膜37a’と金属層37b’とが設けられ、透明導電膜37a’は延長されて、ドレイン電極36bと画素電極21とを接続するとともに付加容量の一方の電極である付加容量電極25aに接続される接続電極25となっている。さらに、TFT24、ゲート配線22およびソース配線23、接続電極25の上部を覆って層間絶縁膜38が設けられている。
【0025】
この層間絶縁膜38上には、画素電極21となる透明導電膜が設けられ、層間絶縁膜38を貫くコンタクトホール26を介して、接続電極25である透明導電膜37a’によりTFT24のドレイン電極36bと接続されている。
【0026】
以上のように本実施形態1のアクティブマトリクス基板が構成され、以下のようにして製造することができる。
【0027】
まず、ガラス基板などの透明絶縁性基板31上に、ゲート電極32、ゲート絶縁膜33、半導体層34、チャネル保護層35、ソース電極36aおよびドレイン電極36bとなるn+Si層を順次成膜して形成する。ここまでの作製プロセスは、従来のアクティブマトリクス基板の製造方法と同様にして行うことができる。
【0028】
次に、ソース配線23および接続電極25を構成する透明導電膜37a,37a’および金属層37b,37b’を、スパッタ法により順次成膜して所定形状にパターニングする。
【0029】
さらに、その上に、層間絶縁膜38として感光性のアクリル樹脂をスピン塗布法により例えば3μmの膜厚で形成する。この樹脂に対して、所望のパターンに従って露光し、アルカリ性の溶液によって現像処理する。これにより露光された部分のみがアルカリ性の溶液によってエッチングされ、層間絶縁膜38を貫通するコンタクトホール26が形成されることになる。
【0030】
その後、画素電極21となる透明導電膜をスパッタ法により形成し、パターニングする。これにより画素電極21は、層間絶縁膜38を貫くコンタクトホール26を介して、TFT24のドレイン電極36bと接続されている透明導電膜37a’と接続されることになる。このようにして、本実施形態1のアクティブマトリクス基板を製造することができる。
【0031】
したがって、このようにして得られたアクティブマトリクス基板は、ゲート配線22、ソース配線23およびTFT24と、画素電極21との間に厚い膜厚の層間絶縁膜38が形成されているので、各配線22,23およびTFT24に対して画素電極21をオーバーラップさせることができるとともにその表面を平坦化させることができる。このため、アクティブマトリクス基板と対向基板の間に液晶を介在させた透過型液晶表示装置の構成とした時に、開口率を向上させることができると共に、各配線22,23に起因する電界を画素電極21でシールドしてディスクリネーションを抑制することができる。
【0032】
また、層間絶縁膜38を構成するアクリル系樹脂は、比誘電率が3.4から3.8と無機膜(窒化シリコンの比誘電率8)に比べて低く、また、その透明度も高くスピン塗布法により容易に3μmという厚い膜厚にすることができるので、ゲート配線22と画素電極21との間の容量および、ソース配線23と画素電極21との間の容量を低くすることができて時定数が低くなり、各配線22,23と画素電極21との間の容量成分が表示に与えるクロストークなどの影響をより低減することができて良好で明るい表示を得ることができる。また、露光およびアルカリ現像によってパターニングを行うことにより、コンタクトホール26のテーパ形状を良好にすることができ、画素電極21と接続電極37a’との接続を良好にすることができる。さらに、感光性のアクリル樹脂を用いることにより、スピン塗布法を用いて薄膜が形成できるので、数μmという膜厚の薄膜を容易に形成でき、しかも、パターニングにフォトレジスト工程も不要であるので、生産性の点で有利である。ここで、層間絶縁膜38として用いたアクリル系樹脂は、塗布前に着色しているものであるが、パターニング後に全面露光処理を施して、より透明化することができる。このように、樹脂の透明化処理は、光学的に行うことができるだけではなくて、化学的にも行うことが可能である。
【0033】
実施形態で層間絶縁膜38として用いた感光性樹脂の露光には、i線(波長365nm)、h線(波長405nm)及びg線(波長436nm)の輝線を含む水銀灯の光線を用いるのが一般的である。感光性樹脂としては、これらの輝線のなかで最もエネルギーの高い(波長の最も短い)i線に感光性(吸収ピーク)を有する感光性樹脂を用いることが好ましい。コンタクトホールの加工精度を高くするとともに、感光剤に起因する着色を最小限に抑制することができる。
【0034】
また、エキシマーレーザからの短波長の紫外線を用いてもよい。
【0035】
このようにして、着色のない層間絶縁膜を用いることによって、透過型液晶表示装置の透過率を高めることができる。従って、液晶表示装置の高輝度化やバックライトからの光量を押さえることによって低消費電力化を図ることができる。
【0036】
また、層間絶縁膜38を、従来の層間絶縁膜と比べて厚く、数μmの厚さに形成するので、層間絶縁膜の透過率はできるだけ高い方が好ましい。但し、人間の目の視感度は、緑や赤に比べて青に対しては若干低いので、層間絶縁膜の分光透過率は青色光に対する透過率が若干低くても、表示品位の低下は少ない。なお、本実施例では、層間絶縁膜38の膜厚を3μmとしたが、これに限られる訳ではなく、光透過率や誘電率を考慮し適宜設定することができる。なお、容量を十分に小さくするためには、層間絶縁膜の膜厚は約1.5μm以上が好ましく、約2.0μm以上が更に好ましい。
【0037】
さらに、TFT24のドレイン電極36bと画素電極21とを接続する接続電極25として透明導電膜37a’を形成することにより、以下のような利点を有する。即ち、従来のアクティブマトリクス基板においては、この接続電極を金属層によって形成していたため、接続電極が開口部に存在すると開口率の低下の原因となっていた。これを防ぐため、従来は、TFTまたはTFTのドレイン電極上に接続電極を形成し、その上に層間絶縁膜のコンタクトホールを形成してTFTのドレイン電極と画素電極とを接続するという方法が用いられてきた。しかし、この従来の方法では、特に、開口率を向上させるためにTFTを小型化した場合に、コンタクトホールを完全にTFTの上に設けることができず、開口率の低下を招いていた。また、層間絶縁膜を数μmという厚い膜厚に形成した場合、画素電極が下層の接続電極とコンタクトするためには、コンタクトホールをテーパ形状にする必要があり、さらにTFT上の接続電極領域を大きく取ることが必要であった。例えば、そのコンタクトホールの径を5μmとした場合、コンタクトホールのテーパ領域およびアラインメント精度を考慮すると、接続電極の大きさとしては14μm程度が必要であり、従来のアクティブマトリクス基板では、これよりも小さいサイズのTFTを形成すると接続電極に起因する開口率の低下を招いていた。これに対して、本実施形態1のアクティブマトリクス基板では、接続電極25が透明導電膜37a’により形成されているので、開口率の低下が生じない。また、この接続電極25は延長されて、TFTのドレイン電極36bと、透明導電膜37a’により形成された付加容量の一方の電極である付加容量電極25aとを接続する役割も担っており、この延長部分も透明導電膜37a’により形成されているので、この配線による開口率の低下も生じない。
【0038】
さらには、ソース配線23を2層構造とすることにより、ソース配線23を構成する金属層37bの一部に膜の欠損があったとしても、ITOなどの透明導電膜37aにより電気的に接続されるので、ソース配線23の断線を少なくできるという利点がある。
【0039】
(実施形態2)
本実施形態2では、層間絶縁膜38の作製プロセスについて、他の方法を説明する。
【0040】
まず、感光性でない有機薄膜をスピン塗布法により形成する。その上にフォトレジストを形成してパターニングした後、エッチング処理を施して層間絶縁膜38を貫通するコンタクトホール26を形成すると共に層間絶縁膜38のパターニングを行う。
【0041】
または、感光性でない有機薄膜を積層し、その上にフォトレジストを形成してパターニングした後、エッチング処理を施して層間絶縁膜38のパターニングを行ってもよい。
【0042】
感光性を有さない有機薄膜の材料としては、例えば、熱硬化性アクリル系樹脂を用いることができる。具体的には、日本合成ゴム社製のJSS-924(2液タイプ)やJSS-925(1液タイプ)を用いることができる。これらの樹脂も概ね280℃以上の耐熱性を有している。また、感光性を有さない樹脂を用いて層間絶縁膜を形成することによって、樹脂の設計の自由度が上がり、例えば、ポリイミド樹脂を用いることもできる。無色透明なポリイミド樹脂としては、2,2−ビス(ジカルボキシフェニル)ヘキサフルオロプロピレン酸二無水物、オキシジフタル酸無水物、及びビフェニルテトラカルボン酸無水物などの酸二無水物と、スルホン基及び/またはエーテル基を有するメタ位置換芳香族ジアミン、ヘキサフルオロプロピレン基を有するジアミンとも組み合わせから得られるポリイミドを挙げることができる。これらのポリイミド樹脂については、例えば、藤田ら、日東技報、第29巻、第1号、第20〜28頁(1991)に開示されている。また、これらの無色透明ポリイミド樹脂のなかでも、酸二無水物及びジアミンの両方がヘキサフルオロプロピレン基を有する樹脂の透明性が高い。これらフッ素系のポリイミド以外のフッ素系の樹脂を用いることもできる。フッ素系の材料は無色透明性に優れるとともに、低誘電率および高耐熱性という特徴を有している。
【0043】
また、感光性を有さない有機材料からなる層間絶縁膜をパターニングするために用いるフォトレジストの材料としては、シリコン元素を含有するフォトレジストを用いることが好ましい。上記有機薄膜のエッチングは、CF4、CF3HやSF6等を含有するエッチングガスを用いたドライエッチング法で行うのが一般的である。エッチングされる層間絶縁膜もエッチングレジストとして機能するフォトレジストもともに有機材料からなるので、上記方法でエッチングを行うと選択比を大きくすることが困難である。特に、本実施形態のように、1.5μm以上の膜厚の層間絶縁膜をエッチングする場合、層間絶縁膜の厚さとレジスト層の膜厚とがほぼ同程度なので、材料自身のエッチング速度に十分な差(選択比)があることが好ましい。例えば、本実施形態の感光性アクリル系樹脂と通常のフォトレジスト(例えば、東京応化工業社製OFPR−800)との選択比は、約1.5である。これに対し、本実施形態で用いたシリコン元素含有のフォトレジストと感光性アクリル系樹脂との選択比は、約2.0以上であり、高精度のパターニングが可能である。
【0044】
さらに、他の方法として、シリコン元素を含有しない通常のフォトレジスト層を形成した後、フォトレジスト層の表面にシランカップリング剤(例えば、ヘキサメチルジシラザン)を塗布し、このシランカップリング剤層を酸素プラズマ処理することによって、フォトレジスト層のエッチング速度を小さくすることができる。これは、シランカップリング剤層が酸素プラズマ処理によって、酸化シリコン層となり、フォトレジスト層の保護層として機能するからである。この方法は、シリコン元素を含むフォトレジスト材料と組み合わせて用いることもできる。
【0045】
上述したシリコン元素を利用して選択比を向上する方法は、CF4、CF3HまたはSF6を含有するエッチングガスを用いたドライエッチング法において特に顕著な効果が得られる。
【0046】
このようにして層間絶縁膜38を形成したアクティブマトリクス基板においても、上記実施形態1のアクティブマトリクス基板と同様に、開口率の高い透過型液晶表示装置を実現することができる。
【0047】
また、層間絶縁膜38として感光性でない有機薄膜を用いても、その比誘電率が低く、また、透明度も高いので3μmという厚い膜厚にすることができる。よって、ゲート配線22と画素電極21との間の容量およびソース配線23と画素電極21との間の容量を、その低い比誘電率と容量の電極間距離が離れる分、低くすることができる。
【0048】
(実施形態3)
図3は、本発明の実施形態3の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図であり、図4は図3の透過型液晶表示装置におけるアクティブマトリクス基板のB−B’断面図である。なお、図1および図2と同様の作用効果を奏する部材には同一の符号を付けてその説明を省略する。
【0049】
本実施形態3のアクティブマトリクス基板では、TFT24のドレイン電極36bに接続される接続電極25の先端部である、画素の付加容量の一方の電極である付加容量電極25aに対向する付加容量対向電極27が、図16の付加容量共通配線6を通じて対向基板上に形成された対向電極に接続される構成となっているが、層間絶縁膜38を貫くコンタクトホール26aの形成位置を、この付加容量共通配線6の一端である付加容量対向電極27および付加容量電極25aの上部に形成している。つまり、このコンタクトホール26aは、遮光性の金属膜で構成されている付加容量配線上部に設けられている。
【0050】
これにより、以下のような利点を有する。例えば、層間絶縁膜38の膜厚を3μmにすると、液晶セルの厚みである4.5μmと比較しても無視できない厚みであるので、コンタクトホール26aの周辺に液晶の配向乱れによる光漏れが発生する。したがって、透過型液晶表示装置の開口部にこのようなコンタクトホール26aを形成した場合には、この光漏れによるコントラストの低下が生じる。これに対して、本実施形態3のアクティブマトリクス基板では、付加容量共通配線6の一端である付加容量対向電極27および付加容量電極25aの遮光性の金属膜上部にコンタクトホール26aが形成されているので、このような問題は生じない。つまり、このコンタクトホール26aが、遮光性の金属膜である付加容量配線上部に設けられていると、液晶の配向乱れによる光漏れが発生しても、開口部以外の遮光部であってコントラストの低下は生じない。これは、隣接するゲート配線22の一部を付加容量電極として付加容量を形成する場合にも同様であり、この場合には、隣接するゲート配線22上にコンタクトホール26aを形成することにより、ゲート配線22で遮光してコントラストの低下を防ぐことができる。
【0051】
また、このアクティブマトリクス基板は、TFT24のドレイン電極36bと、コンタクトホール26aとを接続する接続電極25として透明導電膜37a’を形成しているので、コンタクトホール26aを付加容量上に形成しても開口率の低下は生じない。
【0052】
したがって、ホール下部においては付加容量対向電極27で遮光しているのでその部分で液晶の配向が乱れたとしても表示には影響無く、コンタクトホール26aの形成には、その寸法精度を重視する必要がなく、大きくしかも滑らかに形成することができて、層間絶縁膜38上に形成される画素電極21がコンタクトホール26aで切れることなく、よりうまくつながって、歩留まりも向上する。
【0053】
(実施形態4)
図5は、本発明の実施形態4の透過型液晶表示装置におけるアクティブマトリクス基板の構成を示す一部断面図である。
【0054】
本実施形態4のアクティブマトリクス基板では、層間絶縁膜38を貫くコンタクトホール26bが付加容量共通配線6の上部に形成されており、このコンタクトホール26bの下部に形成された透明導電膜37a’の上に金属窒化物層41が形成されている。
【0055】
これにより、以下のような利点を有する。層間絶縁膜38を構成する樹脂と、透明導電膜であるITOなど、または金属であるTa、Alなどとの密着性には問題がある。例えば、コンタクトホール26bの開口後の洗浄工程において、コンタクトホール26bの開口部から、その樹脂と下地との間の界面に洗浄液が侵入し、樹脂の膜剥がれが生じるという問題があった。これに対して、本実施形態4のアクティブマトリクス基板では、その樹脂との密着性が良好なTaNやAlNなどの金属窒化物層41を形成するので、膜剥がれなどの密着性に関する問題は生じない。
【0056】
この金属窒化物層41は、層間絶縁膜38を構成する樹脂や、透明導電膜である接続電極37a’およびTa、Alなどの金属などと密着性のよいものであればいずれを用いてもよいが、接続電極37a’と画素電極21とを電気的に接続する必要があるので、良好な導電性を有している必要がある。
【0057】
(実施形態5)
本実施形態5では、透過型液晶表示装置の駆動方法について説明する。
【0058】
本発明の透過型液晶表示装置においては、層間絶縁膜を形成することにより各配線と画素電極とをオーバーラップさせている。画素電極と各配線とがオーバーラップせずに、その間に間隔が開いていると液晶に電界の印加されない領域が発生するが、このように画素電極を各配線にオーバーラップさせることにより、この領域をなくすことができる。また、隣接する画素電極の間の液晶にも電界が印加されないが、それによる光漏れを各配線により遮断することができる。このため、対向基板上に、両基板の貼り合わせずれを見込んだ形でブラックマスクを形成する必要がなくなり、開口率を向上させることができる。また、各配線に起因する電界をシールドすることもできるので、液晶の配向不良の抑制を図ることができるという利点もある。
【0059】
但し、このオーバーラップ幅は、実際の製造工程でのばらつきを見込んで設定する必要があり、例えば1.0μm程度以上に設定されることが望ましい。
【0060】
上述のように、ソース配線と画素電極とをオーバーラップさせる構造とした場合には、ソース配線と画素電極との間の容量に起因してクロストークが発生し、表示品位を低下させるという問題があった。特に、ノートブック型パーソナルコンピューターに用いられる液晶パネルにおいては、一般的に画素を縦ストライプに配列するため、ソース配線と画素電極との間の容量の表示に対する影響が大きい。この理由として、この配列では画素電極の形状がソース信号と隣接する部分を長辺とする長方形となるので、画素電極とソース配線との間の容量が相対的に大きくなること、また、隣接するソース配線の表示の色が異なっているため、信号の相関性が少なく、容量の影響をキャンセルさせることができないことなどが考えられる。
【0061】
本発明の透過型液晶表示装置においては、層間絶縁膜が有機薄膜からなるので比誘電率が小さく、また、膜厚を容易に厚くできるので、画素電極と各配線との間の容量を小さくすることができる。さらにこれに加えて、ソース配線と画素電極との間の容量の影響を小さくして、ノートブック型パーソナルコンピューターにおいても縦クロストークを十分低減させるためには、以下のような駆動方法を用いることができる。
【0062】
本実施形態5の透過型液晶表示装置の駆動方法は、ソース配線と画素電極との間の容量の表示に対する影響を低減させるために、データ信号の極性を1水平期間毎に反転させる駆動方法(以下1H反転という)を用いて駆動する。
【0063】
図6に、1H反転の場合(図7a)と、データ信号の極性をフィールド毎に反転させる駆動方法(以下フィールド反転という)の場合(図7b)とについて、ソース配線と画素電極との間の容量が画素の充電率に与える影響を示している。
【0064】
図6において、縦軸の充電率差とは、中間調の一様表示の場合と、中間調表示の中に縦方向の占有率が33%である黒のウィンドーパターンを表示させた場合とにおいて、中間調表示部の液晶に印加される電圧の実効値差の割合を示している。また、横軸の容量比とは、ソース配線と画素電極との間の容量に起因する画素電極の電圧変動に比例し、下記式(1)で定義される。
【0065】
容量比=Csd/(Csd+Cls+Cs) ・・・(1)
但し、Csdは画素電極とソース配線との間の容量値を示し、Clsは各画素を構成する液晶の中間調表示における容量値を示し、Csは各画素を構成する付加容量の容量値を示している。なお、中間調表示とは、透過率が50%の場合を示している。
【0066】
図6から明かなように、本実施形態5による1H反転の駆動方法は、フィールド反転による駆動方法に比べて、ソース配線と画素電極との間の容量が同じであっても、実際の液晶に印加される実効電圧への影響を1/5〜1/10に低減することができることが解る。この理由は、1H反転駆動の場合には、1フィールドの間に1フィールドの時間に対して十分に短い周期で、データ信号の極性が反転されるので、+極性の信号と−極性の信号とが表示に与える影響がキャンセルされるためである。
【0067】
ところで、対角26cmのVGAパネルで表示実験を行ったところ、中間調において充電率差が0.6%以上になるとクロストークが顕著になって、表示品位に問題が生じることが解った。このスペックを図6の図中に点線で示している。図6によれば、充電率差を0.6%以下にするためには、容量比を10%以下にすればよいことが解る。
【0068】
図8に、対角26cmのVGAパネルにおいて、層間絶縁膜の膜厚をパラメーターとして計算した場合の、画素電極とソース配線とのオーバーラップ量と、画素電極とソース配線との間の容量との関係を示している。ここで、層間絶縁膜は、上記実施態様1で用いたアクリル系感光性樹脂(比誘電率3.4)とした。また、このとき、加工精度を考慮すると、画素電極とソース配線との間のオーバーラップ幅は少なくとも1μmは必要である。図6および図8によれば、オーバーラップ幅を1μmとして充電率差を0.6%以下とするためには、層間絶縁膜の膜厚が2.0μm以上であればよいことが解る。
【0069】
このように、画素電極をソース配線に対してオーバーラップさせた場合、1水平期間毎に信号の極性を反転させる1H反転駆動を行うことにより、隣接するソース配線の信号の極性を反転させるソースライン反転駆動を行わななくても縦クロストークが認められない良好な表示を得ることができ、ノートブック型パーソナルコンピュータにも十分対応することができる。
【0070】
また、1H反転駆動において横方向に隣接する画素電極に入力する信号の極性を反転する、ドット反転駆動を用いても、上記1H反転駆動と同様な効果が得られる。また、ソースライン反転駆動においても、画素電極とソース配線との間の容量が十分小さい場合には、効果的である。さらに、本願発明によると画素電極とソース配線との間の容量が十分小さいので、隣接する画素電極に供給される信号に相関が低いカラー表示を行う場合においても、クロストークの発生を抑制することができる。
【0071】
(実施形態6)
本実施形態6では、液晶に印加される電圧の極性を1ゲート配線毎に反転させると共に、対向電極に印加される信号をソース信号の極性の反転と同期させて、交流駆動する駆動方法について説明する。
【0072】
このように対向電極を駆動することにより、ソース信号の振幅を小さく抑えることができる。
【0073】
上記図6に、対向電極を振幅5Vで交流駆動した場合について、同時に示している。図6によれば、対向電極を交流駆動することにより約1割程度、充電率差が大きくなるものの、1H反転駆動を行っているためにフィールド反転駆動に比べて十分充電率差を小さくできる。したがって、この駆動方法でも、縦クロストークが見られない良好な表示を実現することができる。
【0074】
(実施形態7)
本実施形態7は、平坦な画素電極と各配線をオーバーラップさせて液晶表示の開口率の向上および液晶の配向不良の抑制を図ることができるとともに製造工程が簡略化でき、かつ各配線と画素電極との間の容量成分が表示に与えるクロストークなどの影響をより低減して良好な表示を得る場合であり、これに加えて、層間絶縁膜の露光および現像後、前記感光性透明アクリル樹脂に使用する感光剤に対して、基板全面に露光を行い、不要な感光剤を完全に反応させることで、透明度の高い層間絶縁膜とする場合である。
【0075】
図9は、本発明の実施形態7の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【0076】
図9において、アクティブマトリクス基板には、複数の画素電極51がマトリクス状に設けられており、これらの画素電極51の周囲を通り、互いに直交差するように、各ゲート配線52とソース配線53が設けられている。これらのゲート配線52とソース配線53はその一部が画素電極51の外周部分とオーバーラップしている。また、これらのゲート配線52とソース配線53の交差部分において、画素電極51に接続されるスイッチング素子としてのTFT54が設けられている。このTFT54のゲート電極にはゲート配線52が接続され、ゲート電極に入力される信号によってTFT54が駆動制御される。また、TFT54のソース電極にはソース配線53が接続され、TFT54のソース電極にデータ信号が入力される。さらに、TFT54のドレイン電極は、接続電極55さらにコンタクトホール56を介して画素電極51と接続されるとともに、接続電極55を介して付加容量の一方の電極である付加容量電極55aと接続されている。この付加容量の他方の電極である付加容量対向電極57は共通配線に接続されている。
【0077】
図10は、図9の透過型液晶表示装置におけるアクティブマトリクス基板のC−C’断面図である。
【0078】
図10において、透明絶縁性基板61上に、図9のゲート配線52に接続されたゲート電極62が設けられ、その上を覆ってゲート絶縁膜63が設けられている。その上にはゲート電極62と重畳するように半導体層64が設けられ、その中央部上にチャネル保護層65が設けられている。このチャネル保護層65の両端部および半導体層64の一部を覆い、チャネル保護層65上で分断された状態で、ソース電極66aおよびドレイン電極66bとなるn+Si層が設けられている。一方のn+Si層であるソース電極66aの端部上には、透明導電膜67aと金属層67bとが設けられて2層構造のソース配線53となっている。また、他方のn+Si層であるドレイン電極66bの端部上には、透明導電膜67a’と金属層67b’とが設けられ、透明導電膜67a’は延長されて、ドレイン電極66bと画素電極51とを接続するとともに付加容量の一方の電極である付加容量電極55aに接続される接続電極55となっている。さらに、TFT54、ゲート配線52およびソース配線53、接続電極55の上部を覆って、感光部分が現像液に溶解する透明度の高い透明アクリル樹脂(感光性透明アクリル樹脂)からなる層間絶縁膜68が設けられている。
【0079】
この層間絶縁膜68上には、画素電極51となる透明導電膜が設けられ、層間絶縁膜68を貫くコンタクトホール66を介して、接続電極55である透明導電膜67a’によりTFT54のドレイン電極66bと接続されている。
【0080】
以上のように本実施形態7のアクティブマトリクス基板が構成され、以下のようにして製造することができる。
【0081】
まず、ガラス基板などの透明絶縁性基板61上に、Ta,Al,Mo,W,Crなどよりなるゲート電極62、SiNX,SiO2,Ta25などよりなるゲート絶縁膜63、半導体膜(i−Si)64、SiNX,Ta25などよりなるチャネル保護膜65、ソース電極66aおよびドレイン電極66bとなるn+Si層を順次成膜して形成する。さらに、ソース配線53および接続電極55を構成する透明導電膜67a,67a’ および、Ta,Al,MoW,Crなどよりなる金属膜67b,67b’を、スパッタ法により順次成膜して所定形状にパターニングする。本実施形態7においても、ソース配線53を構成する金属膜67b,67b’と透明導電膜67a,67a’であるITO膜の2層構造とした。この構成には、仮にソース配線53を構成する金属膜67b,67b’に欠損があったとしても、ITO膜によって電気的に接続されるためにソース配線53の断線を少なくすることができるという利点がある。
【0082】
さらに、その上に、層間絶縁膜68として感光性のアクリル樹脂をスピン塗布法により例えば2μmの膜厚で形成する。この感光性のアクリル樹脂に対して、所望のパターンに従って露光し、アルカリ性の溶液によって現像処理する。これにより露光された部分のみがアルカリ性の溶液によってエッチングされ、層間絶縁膜68を貫通するコンタクトホール56などが形成される。
【0083】
その後、これら層間絶縁膜68およびコンタクトホール56上に、画素電極51となる透明導電膜をスパッタ法により形成し、これをパターニングする。これにより、画素電極51は、層間絶縁膜68を貫くコンタクトホール56を介して、TFT54のドレイン電極66bと接続されている透明導電膜67a’と接続されることになる。このようにして、本実施形態7のアクティブマトリクス基板を製造することができる。
【0084】
本実施形態7では、層間絶縁膜68を形成する材料として、感光部分が現像液に溶解する透明度の高い感光性透明アクリル樹脂(ポジ型感光性アクリル系樹脂)を用いる。
【0085】
ポジ型感光性アクリル系樹脂としては、例えば、メタクリル酸とグリシジルメタクリレートとの共重合体からなるベースポリマーに、ナフトキノンジアジド系ポジ型感光剤を混合した材料が好ましい。この樹脂はグリシジル基を含むので、加熱によって架橋(硬化)することができる。硬化後の物性として、誘電率:約3.4程度、400nm〜800nmの波長範囲の光に対する透過率:90%以上が得られる。また、i線(365nm)の紫外線を照射することより、短時間で脱色することができる。また、パターニングには、i線以外の紫外線を用いることができる。本実施形態で使用した、感光性アクリル系樹脂の耐熱温度は概ね280℃なので、約250℃〜280℃以下の温度条件で、層間絶縁膜形成後の画素電極の形成等のプロセスを行うことによって、層間絶縁膜の劣化は抑制できる。
【0086】
上述の透明度の高い感光性透明アクリル樹脂による層間絶縁膜68の形成工程を、以下にさらに詳しく説明する。
【0087】
この層間絶縁膜68の形成工程は、まず、感光性透明アクリル樹脂材料を含んだ溶液を基板上にスピン塗布し、プリベーキング、パターン露光、アルカリ現像、純水洗浄の順に一連の通常のフォトパターニング工程と同様に行う。
【0088】
即ち、層間絶縁膜68を感光性透明アクリル樹脂を含んだ溶液をスピン塗布法により、3μmの膜厚に形成する。この場合、粘度29.0cpのアクリル樹脂をスピン回転数900〜1100rpmで塗布する。そうすることにより、画素電極が平坦化されて従来のような段差が無くなって液晶の配向不良が抑制され、表示品位が向上する。続いて、基板を約100℃に加熱して感光性透明アクリル樹脂の溶媒(乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなど)の乾燥を行った。続いて、この感光性透明アクリル樹脂に対して所望のパターンに従って露光を行い、アルカリ性の溶液(テトラメチルアンモニウムヒドロオキサイド;以下TMAHという)などにより現像処理を行った。このアルカリ性の溶液により、露光された部分がエッチングされ、層間絶縁膜68を貫通するコンタクトホール56を形成することができた。現像液(TMAHの場合)の濃度は0.1〜1.0mol%が好ましい。その濃度が1.0mol%以上であると、露光しない部分の感光性透明アクリル樹脂の膜厚の減少量が大きく、膜厚の制御が難しくなる。現像液の濃度が2.4mol%と高濃度で使用すると、現像のヌキの部分にアクリル樹脂の変質物が残さとして残り、コンタクト不良が生じる。また、濃度が0.1mol%より低いと、現像液を循環して繰り返し使用する方式の現像装置では濃度の変動が大きいために濃度制御が難しくなる。
【0089】
さらに、純水により基板表面に残った現像液を洗浄する。このように感光性透明アクリル樹脂はスピン塗布法により形成できるので、数μmの膜厚であってもスピンコーターの回転速度と感光性透明アクリル樹脂の粘度を適度に選ぶことにより容易に膜厚を均一に形成することが可能である。また、コンタクトホール部のテーパ形状は、パターン露光時の露光量と現像液濃度、現像時間を適度に選ぶことにより緩やかな形状を得ることができる。
【0090】
現像後、感光性透明アクリル樹脂に使用する感光剤の種類(例えばナフトキノンジアジト系感光剤、ナフトキノンジアジド系ポジ型感光剤)や量によっては、樹脂が着色して見えることがある。そのため、基板全面に露光を行い、樹脂に含まれる着色している不要な感光剤を完全に反応させて、可視領域での光吸収をなくし、アクリル樹脂の透明化を図る。感光剤としてナフトキシジアジド系ポジ型感光剤または/およびナフトキノンジアジド系感光剤などを含む。ここで、アクリル樹脂の膜厚を3μm塗布した後、透過光の波長(nm)に対する、表面を露光した場合の露光前後の透過率の変化を図11に示している。図11からも解るように、例えば透過光の波長400nmにおいて、紫外光などの光を照射しなかった場合、その透過率が65パーセントであったものが、光照射後にはその透過率が90パーセント以上に改善されている。この場合、露光は基板の前面から行うが、裏面からの露光を併用することにより短時間でこの処理を完了することができ、装置スループットの向上に寄与することができる。
【0091】
最後に、基板の加熱を行い、架橋反応により樹脂を硬化させる。つまり、樹脂を硬化させるために基板をホットプレート上またはクリーンオーブン内に設置し、約200℃で加熱を行う。
【0092】
このように、透明感光性樹脂を用いることにより、従来のようなエッチング、レジスト剥離工程を経ずにフォト工程のみで、層間絶縁膜68および、この層間絶縁膜68上に形成された画素電極とスイッチング素子のドレイン電極とを接続するための層間絶縁膜68を貫くコンタクトホール56を形成することができて製造工程が簡略化される。このときの感光性透明アクリル樹脂の膜厚は、樹脂溶液の粘度とスピン塗布時のスピンコーターの回転速度を適当に選ぶことにより、0.05μmから10μmまでの必要とされる膜厚(本実施形態7の場合には3μm、膜厚が厚くなればその分だけ光透過率が低下して着色してくる)に均一に形成することができる。
【0093】
さらに、ITOをスパッタリングによりこの感光性透明アクリル樹脂上に50〜150nmの膜厚に成膜し、パターニングを行い画素電極51を形成する。この画素電極51であるITO膜の膜厚が50nm以上であれば、このITO膜の表面隙間からの薬液の侵入を防ぐことができ、剥離液に使用する薬液(ジメチルスルホキシド等)によって生ずる樹脂の膨潤を抑制するのに効果が得られた。以上の製造方法により、本実施形態7のアクティブマトリクス基板を作製することができる。
【0094】
したがって、本実施形態7においても、層間絶縁膜68の存在により、ソース配線およびゲート配線部分以外は画素開口部分となる高光透過率の高開口率の明るい液晶表示装置を実現することができる。
【0095】
また、層間絶縁膜68の存在により平坦化が可能になり、下層の配線およびスイッチング素子による段差の影響をなくすることができ、従来、段差部で起こっていた画素電極のドレイン側の断線をなくすることができ、欠陥画素を減少させることができる。また、この段差による液晶の配向不良をも防止することができる。さらに、ソース配線53と画素電極51の間は層間絶縁膜68を間に挟んで絶縁されているために、従来生じていたソース配線53と画素電極51の間の電気的リークによる欠陥絵素も減少することになる。
【0096】
さらに、従来、層間絶縁膜68を形成するのに必要であった成膜、フォトレジストによるパターン形成工程、エッチング工程、レジスト剥離工程、洗浄工程が、本実施形態7においては樹脂形成工程のみで形成することができ、製造工程が簡略化される。
【0097】
(実施形態8)
本実施形態8は、上記実施形態7における層間絶縁膜68とその下地膜との間の密着性を向上させる場合である。
【0098】
下地膜の材料によっては、層間絶縁膜68として用いる感光性透明アクリル樹脂との密着性が良くない場合があるが、この場合に、図9の上記実施形態7における感光性透明アクリル樹脂の塗布前の基板表面の下地膜として、ゲート絶縁膜63、チャネル保護膜65、ソース電極66a、ドレイン電極66b、透明導電膜67a,67a’および金属膜67b,67b’の表面に、M型水銀ランプ(860W)を使用して酸素雰囲気中で紫外光の照射を行ってその表面を荒らし、その後、その荒れた表面上に感光性透明アクリル樹脂による層間絶縁膜68を形成する。その他の形成工程は上記実施形態7と同様な方法によりアクティブマトリクス基板を作製する。この形成方法により、表面が荒れた下地膜と感光性透明アクリル樹脂との間の密着性が向上するために、下地膜と感光性透明アクリル樹脂による層間絶縁膜68との界面に、例えばある種の薬品、例えばITOをエッチングする塩酸と塩化鉄との混合液などが侵入することによってこれらの膜間で膜剥がれが起こるという従来の問題はなくなる。
【0099】
このように、層間絶縁膜68を形成する前の基板表面に紫外光を照射することにより、層間絶縁膜68とその下地膜との間の密着性が向上し、プロセス中の処理に対して安定なデバイスを実現することができる。
【0100】
また、本発明において、層間絶縁膜68とその下地膜との間の密着性を向上する方法として、層間絶縁膜68を形成するための樹脂を塗布する前に、下地膜の表面をシランカップリング剤で表面処理を行う方法がある。シランカップリング剤のなかでも、ヘキサメチルジシラザン、ジメチルジエトキシシラン、n−ブチルトリメトキシシラン等が、特に密着性の改善効果が著しい。例えば、下地膜として、窒化シリコン膜を用いた場合、シランカップリング剤処理を行うことによって、無処理の場合と比較して、約10%密着強度が向上した。また、樹脂と下地膜との密着性が低い場合に起こる、樹脂の架橋反応に伴う内部応力によって樹脂のパターンがずれるという現象が、シランカップリング剤処理を行うことによって完全に防止することができた。
【0101】
なお、シランカップリング剤は、上述のように下地膜に塗布してもよいし、層間絶縁膜を形成する樹脂材料中にブレンドしてもよいし、これらを併用してもよい。例えば、感光性アクリル系樹脂にジメチルエトキシシランを1wt%添加することによって、シリコン窒化膜との密着強度が70%向上した。
【0102】
(実施形態9)
本実施形態9は、上記実施形態7における層間絶縁膜68とその上に成膜される画素電極材料との間の密着性を向上させる場合である。
【0103】
図9の上記実施形態7において、感光性透明アクリル樹脂による層間絶縁膜68を形成した後、ドライエッチング装置を用いて酸素プラズマにより、層間絶縁膜68の表面から100〜500nmの膜厚まで灰化処理を行った。この灰化処理においては、平行平板型プラズマエッチング装置が使用され、RFパワー1.2KW、圧力800mTorr、酸素流量300sccm、温度70℃、RF印加時間120secの条件で、アクリル樹脂の表面を灰化させる。このとき、酸素プラズマ中で行ってその表面は有機物の酸化分解で水と二酸化炭素が抜けて出て行き、荒れた状態となる。
【0104】
その後、画素電極51となるITO膜をスパッタリングにより、この灰化処理を行って表面が荒れた感光性透明アクリル樹脂上に50〜150nmの膜厚に成膜し、パターニングを行って画素電極51を形成することで、アクティブマトリクス基板を作製する。この灰化処理を行うことにより、画素電極51と、その下層膜として表面が荒れた感光性透明アクリル樹脂による層間絶縁膜68との密着性が大きく向上し、基板洗浄時に超音波を印加してもこれらの膜の間で膜剥がれが無くなった。上記灰化処理膜厚であるが、100nmより薄い場合には効果が得られず、また、500nmよりも厚い場合には、感光性透明アクリル樹脂の膜減りが大きすぎるために、基板内での感光性透明アクリル樹脂の膜厚にばらつきが大きくなりすぎて、表示上問題となる。上記のドライエッチング装置はバレル方式、RIE方式などその方式によらず密着性改善効果が得られた。
【0105】
このように、層間絶縁膜68上に画素電極材料を成膜する前に酸素プラズマによりその表面を灰化することにより、この層間絶縁膜68とその上に成膜される画素電極材料との間の密着性が向上し、プロセス中の処理に対してより安定なデバイスを実現することができる。さらに、この灰化処理を行うことにより、コンタクトホール部の残留物を除去することができるので、コンタクトホール部における接続不良の発生を抑制する効果もある。
【0106】
本実施形態において、層間絶縁膜を形成する樹脂の架橋処理の後で灰化処理を行った。樹脂の架橋反応はガスの発生を伴うので、樹脂の架橋処理を行う前に灰化処理を行うよりも、架橋処理後に灰化処理を行うことによって、灰化処理が安定するという効果がある。
【0107】
(実施形態10)
本発明の実施形態10による透過型液晶表示装置のアクティブマトリクス基板の1画素部分の構成を図14に示す。また、図14のアクティブマトリクス基板のD−D’に沿った断面図を図15に示す。なお、図1及び図2と同様の機能を有する部材には同じ参照符号を付し、説明を省略する。
【0108】
本実施形態のアクティブマトリクス基板では、TFT24と画素電極21とのコンタクトと、付加容量電極25aと画素電極21とのコンタクトとを、それぞれコンタクトホール26aと26bを介して取っている。また、ソース配線23を金属からなる単層で形成した。勿論、2層以上の多層構造としてもよい。付加容量電極25aは、これまでの実施形態と同様に、ソース配線23と同じ材料を用い、同一の工程で形成した。層間絶縁膜38を貫くコンタクトホール26a及び26bの形成位置は、それぞれ、ドレイン電極36bに一部が重なるように形成された金属電極23b上部および付加容量電極25a上とした。すなわち、コンタクトホール26a及び26bは、何れも遮光性を有する金属電極上に形成されている。
【0109】
本実施形態による透過型液晶表示装置は、以下の利点を有する。本発明で用いられる層間絶縁膜38の膜厚は従来に比べて非常に厚く、例えば、3μmである。この厚さは、典型的な液晶層の厚さ(セルギャップ)4.5μmと同等であるので、コンタクトホール26aおよび26bの周辺に液晶分子の配向乱れによる光漏れが生じる。従って、コンタクトホール26aおよび26bを透過型液晶表示装置の開口部に形成すると、光漏れによってコントラストの低下が生じる。これに対し、本実施形態のアクティブマトリクス基板では、付加容量を形成する一方の電極である付加容量電極25aでコンタクトホール26bの近傍を遮光するとともに、金属電極23bでコンタクトホール26aの近傍を遮光しているので、コンタクトホール25a及び25bによるコントラストの低下の問題を防止できる。また、付加容量対向電極27を付加容量電極25aからはみ出さないように形成することによって、更に開口率を向上することができる。
【0110】
なお、本実施形態ではCs−Common方式について説明したが、Cs−on−Gate方式でも同様の効果が得られる。
【0111】
以上の各実施形態1〜10においては、画素電極と各配線をオーバーラップさせて液晶表示の開口率の向上および液晶の配向不良の抑制を図ることができるとともに製造工程が簡略化でき、かつ各配線と画素電極との間の容量成分が表示に与えるクロストークなどの影響をより低減して良好な表示を得ることができる。また、これに加えて、広視野角化を図ることができる。
【0112】
この広視野角化が図られる理由としては、画素電極の表面が平坦なために液晶の配向乱れが無くなったこと、また、配線電界によるディスクリネーションラインがなくなったこと、また、隣接する開口部の間隔が約数μmから十数μmであるのに対し、層間絶縁膜を数μmの厚膜に形成することによって、バックライトからの斜め光を有効に利用できること、さらには、コントラストが大きくなったこと(10.4インチのSVGAで1:300以上)などが挙げられる。そのために、液晶の屈折率異方性(△n)×セル厚(d)であるリタデーションの値を小さくすることが可能になった。ここでは主にセル厚dを変えている。一般に、△n×dを小さくすると視野角が広くなるが、コントラストが悪くなってしまう。ところが、本発明においては、画素電極と各配線との間に従来設けていたマージンを無くすことで、画素電極が大きくなり、例えば、10.4インチVGAでは、開口率が65パーセントから85パーセントとなって20ポイント(約30%)増え、その明るさも1.5倍以上となった。また、12.1インチXGAでは、開口率が55%から80%に大幅に改善される。これは、例えば、従来の構成において、ソース配線幅が6μm、ソース配線と絵素電極との間隔が3μm、貼り合わせ精度が5μmとすると、隣接する開口部の間隔として22μm以上必要であったのに対し、ソース配線に絵素電極を重ねる構成を用いれば、隣接する開口部の間隔はソース配線の幅6μmとすることがで、表示に寄与しない領域の面積を大幅に減少できるので、開口率を大幅に向上できる。
【0113】
なお、上記実施形態3,4では、付加容量の一方の電極(付加容量電極)が付加容量共通配線を通じて対向電極に接続される構造の透過型液晶表示装置について説明したが、付加容量電極が、隣接する画素のゲート配線22である構造としても同様の効果が得られる。この場合を図12および図13のCs−on−Gate方式の液晶表示装置に示している。このCs−on−Gate方式とは、直前または次のゲート配線22と画素電極21とを重ねて付加容量Csを形成する方式である。このとき、画素電極21は自段ゲートには少ししかのせず、直前または次のゲートに大きくのせるのが望ましい。
【0114】
また、上記各実施形態1〜10では、スピン塗布法により透明度の高い感光性透明アクリル樹脂を塗布した後、これをパターニングして層間絶縁膜を形成すると共に、この層間絶縁膜を貫いて該接続電極に達するコンタクトホールを形成したものを用いているが、スピン塗布法に限らず他の塗布法、例えばロールコート法(凹凸の付いたロールとベルトの間に、塗布面をロール側にして基板部を通す。この凹凸の程度で塗布する厚さが決定される。)およびスロットコート法(吐出口の下に基板部を通す。この吐出口の幅で塗布する厚さが決定される。)であっても本発明の効果を奏することができる。
【0115】
さらに、上記各実施形態7,8では、一般に露光プロセスで用いられる紫外線の輝線であるi線(波長365nm)、h線(波長405nm)、g線(波長436nm)のうちで、最も波長の短いi線(波長365nm)を用いる。これにより、光照射時間を短くすることができ、実施形態7の脱色効率も高く、また、実施形態8の表面を荒らす効率も高い。
【0116】
【発明の効果】
以上のように、本発明によれば、層間絶縁膜を貫くコンタクトホールは、付 加容量配線またはゲート配線の上部に形成することにより、光漏れが付加容量部分で遮光されてコントラスト比を向上できる。また、画素電極と各配線とをオーバーラップさせると、光漏れは遮断され、開口率を向上できる。
【0117】
また、層間絶縁膜を構成する樹脂との密着性が良好な金属窒化物を形成することにより、樹脂の膜剥がれなどに関する問題を生じなくす る。
【図面の簡単な説明】
【図1】本発明の実施形態1の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【図2】図1の透過型液晶表示装置におけるアクティブマトリクス基板のA−A’断面図である。
【図3】本発明の実施形態3の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【図4】図3の透過型液晶表示装置におけるアクティブマトリクス基板のB−B’断面図である。
【図5】本発明の実施態様4の透過型液晶表示装置におけるアクティブマトリクス基板の一部断面図である。
【図6】本発明の実施態様5,6の透過型液晶表示装置と従来の液晶表示装置とにおける液晶の充電率差と容量比との関係を示す図である。
【図7】(a)は本発明の実施態様5,6の1H反転の場合のデータ信号の波形図、(b)は従来のフィールド反転の場合のデータ信号の波形図である。
【図8】本発明の実施態様5の透過型液晶表示装置における液晶の容量比とオーバーラップ幅との関係を示す図である。
【図9】本発明の実施形態7の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【図10】図9の透過型液晶表示装置におけるアクティブマトリクス基板のC−C’断面図である。
【図11】本発明の実施形態7の透過型液晶表示装置において、アクリル樹脂の透過光の波長(nm)に対する露光前後の透過率の変化を示す図である。
【図12】Cs−on−Gate方式の液晶表示装置の構成を示す回路図である。
【図13】本発明の実施形態3の構成を図12の液晶表示装置に適用した場合のアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【図14】本発明の実施形態10の透過型液晶表示装置におけるアクティブマトリクス基板の1画素部分の構成を示す平面図である。
【図15】図14の透過型液晶表示装置におけるアクティブマトリクス基板のD−D’断面図である。
【図16】アクティブマトリクス基板を備えた従来の液晶表示装置の構成を示す回路図である。
【図17】従来の液晶表示装置におけるアクティブマトリクス基板のTFT部分の断面図である。
【符号の説明】
6 付加容量用共通配線
21,51 画素電極
22,52 ゲート配線
23,53 ソース配線
24,54 TFT
25,55 接続電極
26,26a,26b,56 コンタクトホール
31,61 透明絶縁性基板
32,62 ゲート電極
36a,66a ソース電極
36b,66b ドレイン電極
37a,37a’,67a,67a’ 透明導電膜
37b,37b’,67b,67b’ 金属層
38,68 層間絶縁膜
41 窒化チタン層

Claims (2)

  1. ゲート配線と、ソース配線と、ゲート配線とソース配線との交差部の近傍に設けられたスイッチング素子とを有し、該スイッチング素子は前記ゲート配線に接続されたゲート電極と、前記ソース配線に接続されたソース電極と、液晶層に電圧を印加するための画素電極に接続されたドレイン電極とを有する液晶表示装置であって、
    前記スイッチング素子、前記ゲート配線および前記ソース配線の上部に、層間絶縁膜が設けられ、該層間絶縁膜上に前記画素電極が設けられ、
    前記ゲート配線または付加容量配線上部に、前記ドレイン電極に接続した接続電極と前記画素電極とを接続するコンタクトホールが設けられ、
    前記ソース配線及び前記ゲート配線は、前記画素電極の外周部と重なりあっていることを特徴とする液晶表示装置。
  2. 前記コンタクトホールと前記接続電極との間に金属窒化物が形成されていることを特徴とする請求項1記載の液晶表示装置。
JP2001044410A 1995-08-11 2001-02-21 液晶表示装置 Expired - Fee Related JP3541014B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001044410A JP3541014B2 (ja) 1995-08-11 2001-02-21 液晶表示装置

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP20636795 1995-08-11
JP25404395 1995-09-29
JP7-254043 1995-09-29
JP7-206367 1995-09-29
JP2001044410A JP3541014B2 (ja) 1995-08-11 2001-02-21 液晶表示装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP22022098A Division JP3253589B2 (ja) 1995-08-11 1998-08-04 液晶表示装置

Publications (2)

Publication Number Publication Date
JP2001296558A JP2001296558A (ja) 2001-10-26
JP3541014B2 true JP3541014B2 (ja) 2004-07-07

Family

ID=27328629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001044410A Expired - Fee Related JP3541014B2 (ja) 1995-08-11 2001-02-21 液晶表示装置

Country Status (1)

Country Link
JP (1) JP3541014B2 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2836246B2 (ja) * 1990-11-29 1998-12-14 富士ゼロックス株式会社 薄膜トランジスタ及び多層配線の製造方法
JP2814752B2 (ja) * 1991-01-21 1998-10-27 松下電器産業株式会社 液晶表示装置およびそれを用いた投写型表示装置
JP2667304B2 (ja) * 1991-05-13 1997-10-27 シャープ株式会社 アクティブマトリクス基板
JPH05142570A (ja) * 1991-11-20 1993-06-11 Sharp Corp アクテイブマトリクス基板
JP3127619B2 (ja) * 1992-10-21 2001-01-29 セイコーエプソン株式会社 アクティブマトリクス基板
JPH0720496A (ja) * 1993-06-30 1995-01-24 Sony Corp アクティブマトリクス型液晶表示装置
JP3239504B2 (ja) * 1993-01-13 2001-12-17 富士通株式会社 薄膜トランジスタマトリクスの製造方法
JPH06230522A (ja) * 1993-02-05 1994-08-19 Fuji Photo Film Co Ltd レンズ付きフイルムユニット
JP3410754B2 (ja) * 1993-03-01 2003-05-26 セイコーエプソン株式会社 液晶表示装置
JPH0784284A (ja) * 1993-06-30 1995-03-31 Toshiba Corp 液晶表示装置
JP3214202B2 (ja) * 1993-11-24 2001-10-02 ソニー株式会社 表示素子基板用半導体装置
JP3221206B2 (ja) * 1994-01-24 2001-10-22 ソニー株式会社 表示パネル用半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP2001296558A (ja) 2001-10-26

Similar Documents

Publication Publication Date Title
JP3247870B2 (ja) 液晶表示装置の製造方法
JP2933879B2 (ja) 透過型液晶表示装置およびその製造方法
JP3209317B2 (ja) 透過型液晶表示装置およびその製造方法
KR100292129B1 (ko) 투과형 액정 표시 장치 및 그 제조 방법
US20060077324A1 (en) In-plane switching mode liquid crystal display device
KR100266151B1 (ko) 투과형 액정 표시 장치 및 그 제조 방법
JP2002040485A (ja) カラー液晶パネル及びカラー液晶表示装置
JP3541026B2 (ja) 液晶表示装置、およびアクティブマトリクス基板
JP2002055359A (ja) 液晶表示パネルの製造方法
JP3253589B2 (ja) 液晶表示装置
JP3541014B2 (ja) 液晶表示装置
JP2001296559A (ja) 液晶表示装置、およびアクティブマトリクス基板
CN1904707B (zh) 透射型液晶显示器件及其制造方法
JP2001290172A (ja) 液晶表示装置
JP3371853B2 (ja) アクティブマトリクス型液晶表示装置とその製造方法
JPH07175088A (ja) 液晶パネル用基板とその製造方法
JP3481510B2 (ja) アクティブマトリクス型液晶表示装置
KR100269017B1 (ko) 액정표시장치및액티브매트릭스기판
JP2004004529A (ja) 液晶表示素子およびその製造方法
JPH09105951A (ja) 液晶表示装置およびその製造方法
JPH06235936A (ja) 液晶表示素子の製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees