JP3342467B2 - クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法 - Google Patents

クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法

Info

Publication number
JP3342467B2
JP3342467B2 JP2000094853A JP2000094853A JP3342467B2 JP 3342467 B2 JP3342467 B2 JP 3342467B2 JP 2000094853 A JP2000094853 A JP 2000094853A JP 2000094853 A JP2000094853 A JP 2000094853A JP 3342467 B2 JP3342467 B2 JP 3342467B2
Authority
JP
Japan
Prior art keywords
crack
longitudinal direction
slit
substrate
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000094853A
Other languages
English (en)
Other versions
JP2001281120A (ja
Inventor
寛太 仁瓶
朋平 小林
英夫 尾野
茂樹 公江
彰男 村上
五郎 西山
良徳 嵩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2000094853A priority Critical patent/JP3342467B2/ja
Priority to KR10-2001-0016038A priority patent/KR100390528B1/ko
Priority to AT01302969T priority patent/ATE403140T1/de
Priority to DE60135054T priority patent/DE60135054D1/de
Priority to EP01302969A priority patent/EP1139088B1/en
Priority to CNB011192658A priority patent/CN1195197C/zh
Priority to US09/822,371 priority patent/US6520024B2/en
Publication of JP2001281120A publication Critical patent/JP2001281120A/ja
Application granted granted Critical
Publication of JP3342467B2 publication Critical patent/JP3342467B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0083Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by measuring variation of impedance, e.g. resistance, capacitance, induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/20Investigating the presence of flaws
    • G01N27/205Investigating the presence of flaws in insulating materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/006Crack, flaws, fracture or rupture
    • G01N2203/0062Crack or flaws

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】
【0001】
【発明の属する技術分野】本発明は、橋梁などの構造
物、機械、車両、航空機などの各種の部材の疲労による
損傷度を測定するために好適に実施することができるク
ラック形疲労検出素子およびその製造方法ならびにクラ
ック形疲労検出素子を用いた損傷度推定方法に関する。
【0002】
【従来の技術】典型的な従来の技術は、特開昭62−2
65558号公報に示されている。この従来の技術で
は、板状の基板の一表面に、疲労損傷を生じるスリット
を有する破断片が固着されるクラック形疲労検出素子が
記載され、またスリットを有する破断片の長手方向両端
部を板状の基板の一表面に接着剤によって接着して固着
するクラック形疲労検出素子の製造方法が記載され、さ
らにき裂進展特性の異なる2つのクラック形疲労検出素
子を被検出部材に固定し、同一の期間内に進展した各き
裂進展長をそれぞれ測定して、これらのき裂進展長に対
応した前記期間内の被検出部材の疲労による損傷量を推
定するクラック形疲労検出素子を用いた損傷度推定方法
が記載されている。
【0003】他の従来の技術は、特開平9−30424
0号公報に示されている。この従来の技術では、疲労損
傷を予知しようとする構造物と同一材料から成り、長さ
方向中央部にスリットを有する薄板状の破断片を、2枚
の合成樹脂製薄板の間に挟み、これらを前記スリットを
含む破断片の中央部を除く残余の領域で接着したクラッ
ク形疲労検出素子が記載されている。前記試験片は、前
記被検出部材と同一材料から成り、長手方向中央部に円
形の孔と、この孔から幅方向両側に延びるスリットとが
形成された部材を、前記破断片の厚みに相当する厚さに
スライスして切断し、こうして形成された破断片を合成
樹脂製の2枚の薄板によって挟み、破断片の長手方向両
端部で接着して前記クラック形疲労検出素子を製造して
いる。さらにこの従来の技術では、前記疲労検出素子を
溶接止端部などのホットスポットと呼ばれる応力集中箇
所から離れた位置に固定して、事前に作成した被検出部
材のS/N(=応力/荷重繰返し数)線図に基づいて被
検出部材の寿命を推定するクラック形疲労検出素子を用
いた損傷度推定方法が記載されている。
【0004】さらに他の従来の技術は、特開平10−1
85854号公報に示されている。この従来の技術で
は、被検出部材に発生する疲労損傷のき裂方向に垂直な
方向に所定間隔をあけて並列状態および直列状態のうち
少なくともいずれか一方の状態で配置された複数の歪み
ゲージを有する疲労検出素子を、前記被検出部材に取付
けて、破断片に発生したき裂進展長を前記歪みゲージに
よって電気的に検出し、この検出値に基づいて、被検出
部材の疲労による損傷度を推定することが記載されてい
る。
【0005】さらに他の従来の技術は、特許第2952
594号公報に示されている。この従来の技術では、ス
リットを有する破断片に、前記スリットの先端から発生
するき裂の進行方向に対して直角な方向に歪みゲージま
たは複数の電気抵抗線を並列に配置して実現されるクラ
ックゲージを設け、これによって破断片に発生するき裂
進展長を検出しやすくして、疲労による損傷度を推定す
ることが記載されている。
【0006】
【発明が解決しようとする課題】上記の特開昭62−2
65558号公報の従来の技術では、破断片は引張り応
力が残留しない状態で基板に固定されるので、被検出部
材で発生した歪みは、基板を介して破断片に伝達され、
この破断片のスリットの先端にき裂を発生させて、前記
被検出部材の疲労による損傷度を検出している。したが
って破断片には、前記スリットの先端にき裂を発生させ
得る程度の大きな引張り応力が発生しなければならず、
き裂が発生するまでの被検出部材の微少な歪みは検出す
ることができず、感度が低いという問題がある。
【0007】また特開昭9−304240号公報の従来
の技術では、破断片を2枚の合成樹脂から成る薄板間に
挟んで破断片の長手方向両端部を接合しており、一方の
薄板を被検出部材に固定している。したがって被検出部
材で生じた歪みは、各薄板を介して破断片に伝達され、
このとき歪みの一部は薄板によって吸収され、被検出部
材で発生した歪みが破断片に確実に伝達されず、感度が
低いという問題がある。またこの従来の技術の疲労検出
素子のサイズは、長さ70mm、幅20mm、厚さ約
1.5mmであり、外観形状が大きい。そのため被検出
部材のたとえば溶接ビードの縁端に近接して取付けるこ
とができず、疲労損傷度の測定対象位置はおのずと制限
されてしまい、目的が果たせない可能性が高くなるとい
う問題がある。
【0008】さらに特開平10−185854号公報の
従来の技術では、本発明でいう基板に相当する構成は存
在せず、直接破断片を被検出部材に取付けて、前記破断
片に発生したき裂進展長を歪みゲージまたは電気抵抗線
などの電気的手段によって電気的に検出してモニタしよ
うとするものであるが、前記破断片の厚みは一定であっ
て、長さ170mm、幅50mm、厚さ0.5mmと外
観形状が大きく、被検出部材に対する疲労損傷度の測定
位置がきわめて制限されてしまうという問題がある。
【0009】さらに特許第2952594号公報の従来
の技術では、部材に貼付けたセンサのスリットから発生
するき裂のひずみ感度を向上させるため、以下の2つの
工夫をこらしているが、コストおよび実用上の大きな問
題がある。まず、薄板に溝加工しただけではき裂が発生
しにくいので、予め別途繰返し荷重をかけ、疲労き裂を
発生させて先端を鋭い形状にしておくが、それだけでは
き裂先端部に残留する圧縮応力の影響でまだき裂が発生
しにくいので、残留応力を低減させるため熱処理(残留
応力除去焼鈍)をしている。このため、製作に極めて労
力がかかりコストが高くつくという問題がある。また部
材に直接、センサを貼付ける際に、センサに引張残留応
力を与えるという工夫があるが、現場作業では実現でき
ない場合もあり、その管理は極めて困難であるという問
題がある。
【0010】本発明の目的は、構成を小形化して測定位
置の選択上の自由度を向上し、高感度および高精度で信
頼性の高い測定を行うことができるクラック形疲労検出
素子およびその製造方法ならびにクラック形疲労検出素
子を用いた損傷度推定方法を提供することである。
【0011】
【課題を解決するための手段】請求項1記載の本発明
は、箔状の基板の一表面上に、長手方向両端部間の中央
部で、前記長手方向に垂直な幅方向一側部から幅方向他
側部に向って延びるスリットが形成される箔状の破断片
の前記長手方向両端部が固着され、前記基板の他表面を
被検出部材に固定して、前記スリットから進展したき裂
進展長によって被検出部材の疲労損傷度を検出するクラ
ック形疲労検出素子において、前記破断片のスリットが
形成される中央部を含む中間部は、幅方向全長にわたっ
て長手方向両端部よりも薄く形成されることを特徴とす
るクラック形疲労検出素子である。
【0012】本発明に従えば、箔状の基板の一表面に
は、長手方向両端部間の中間部にスリットが形成される
箔状の破断片の長手方向両端部が固着される。前記スリ
ットは、破断片の中央部において、前記長手方向に垂直
な幅方向一側部から幅方向他側部に向って延びる。破断
片が固着された基板は、その他表面が被検出部材に固定
され、被検出部材の歪みが前記基板を介して破断片に伝
達され、スリットから進展したき裂の進展長によって被
検出部材の疲労による損傷度を検出することができる。
【0013】このようなクラック形疲労検出素子の破断
片には、前記スリットが形成され中央部を含む中間部が
その両側の長手方向両端部よりも薄く形成され、この薄
く形成される領域は破断片の幅方向全長とされる。した
がって被検出部材から基板を経て破断片の長手方向両端
部に伝達された歪みは、スリットの周辺に大きな応力を
発生させ、この大きな応力がスリットの先端において応
力集中する。このようにして被検出部材の歪みによって
破断片のスリットの先端に大きな集中応力を発生させる
ことができるので、被検出部材に発生する歪みが小さい
ものであっても、スリットの先端には大きな集中応力が
発生し、これによって被検出部材の微少な歪みによる疲
労損傷量を、破断片に発生したき裂進展長によって高感
度および高精度で検出し、信頼性の高い測定を行うこと
ができる。
【0014】請求項2記載の本発明は、前記破断片は、
引張応力を残留させた状態で、前記基板の一表面に長手
方向両端部が固着されることを特徴とする。
【0015】本発明に従えば、前記破断片には引張応力
が残留しているので、被検出部材の微少な歪みによって
前記スリットからき裂を進展させることができ、より一
層感度を向上することができる。また前記破断片の引張
残留応力を所定の値以上にすることによって、精度を向
上することができる。
【0016】請求項3記載の本発明は、前記破断片は、
前記基板の一表面に長手方向両端部が直接、または接着
層を介して間接的に接合されることを特徴とする。
【0017】本発明に従えば、前記破断片の長手方向両
端部が基板の一表面に直接、または接着層を介して間接
的に接合されるので、確実に基板から破断片の長手方向
両端部へ歪みを伝達し、その破断片の中央部に引張応力
を集中的に発生させることができ、引張応力の分散を防
いでき裂を発生し易くすることができることができる。
【0018】請求項4記載の本発明は、前記破断片は、
スリットの先端から幅方向他端部にわたるき裂発生領域
に、き裂進展量を電気的に検出するき裂進展量検出手段
が設けられることを特徴とする。
【0019】本発明に従えば、破断片のき裂進展量をき
裂進展量検出手段によって電気的に検出することができ
るので、き裂進展に伴うデータの取出しおよび管理が容
易となり、疲労検出素子を被検出部材に設置して、長期
にわたって損傷度を連続して、または定期的に断続して
測定することができ、被検出部材の疲労による損傷度測
定作業の容易化を図ることができる。
【0020】請求項5記載の本発明は、前記破断片に設
けられるスリットは、その先端が幅方向一側部から幅方
向他側部に向って先細状に形成されることを特徴とす
る。
【0021】本発明に従えば、前記スリットの先端は破
断片の幅方向一側部から他側部に向って先細状に尖らせ
て形成されるので、前記スリットの先端のより狭い領域
に応力を集中させることができ、これによってより一層
き裂を発生し易くして感度を向上することができる。
【0022】請求項6記載の本発明は、前記破断片の中
間部の一表面と長手方向両端部の一表面との間には、前
記スリットの両側で立上がる段差面が形成され、各段差
面と中間部の一表面との交差部は、破断片の他表面に向
って凸の湾曲面によって連なることを特徴とする。
【0023】本発明に従えば、破断片の中間部の一表面
と長手方向両端部の一表面との間に段差面が形成されて
この段差面と中間部の前記一表面との交差部には、破断
片の他表面に向って凸に弯曲した湾曲面が形成されるの
で、被検出部材に基板の他表面が固定された状態で、そ
の被検出部材で生じた歪みは、基板を介して破断片の長
手方向両端部に伝達され、この長手方向両端部から中間
部のスリット周辺に伝達されてスリット先端からき裂を
発生させる。このとき上記のように交差部を湾曲面とす
ることによって、前記長手方向両端部から中間部に伝わ
る応力が前記段差面と中間部の一表面との交差部に集中
することを可及的に少なくなるように緩和し、スリット
よりも先に交差部にき裂が発生することを防ぎ、かつス
リットの先端への応力集中が減衰することを防いで、交
差部への応力の分散によるスリット先端での応力の減衰
をできるだけ少なくして、スリットの先端にできるだけ
応力を集中させてき裂を発生しやすくし、感度をより一
層向上することができる。
【0024】請求項7記載の本発明は、前記破断片の中
間部の長手方向の長さL3と破断片の長手方向両端部間
の未接合領域の長さL4との比L3/L4によって、こ
の比L3/L4が小さくなるにつれて、感度を高くなる
方向に調整可能であることを特徴とする。
【0025】本発明に従えば、破断片の中間部の長手方
向の長さL3を長手方向両端部間の未接合領域の長さL
4に対して適宜調整することによって、比L3/L4を
下げると感度を高くする方向に、また比L3/L4を上
げると感度を低くする方向に変化させて感度を任意に設
定することができ、高精度で要求される感度を有する疲
労検出素子を実現することが可能となる。このような破
断片の中間部の長さL3の調整は、特殊な加工を必要と
せず、容易に希望する感度の疲労検出素子を製造するこ
とができる。
【0026】請求項8記載の本発明は、電鋳めっきによ
って、長手方向両端部間の中央部に、幅方向一側部から
幅方向他側部に向って延びるスリットを有する箔膜を形
成し、前記スリットを有する箔膜の一表面の前記中央部
を含む中間部が露出するようにして、前記一表面の残余
の領域および他表面をレジスト膜によって被覆した後、
エッチング処理によって、前記中間部が所定の厚みに減
厚された破断片を形成し、前記破断片の長手方向両端部
を、基板に接合することを特徴とするクラック形疲労検
出素子の製造方法である。
【0027】本発明に従えば、長手方向両端部間の中央
部にスリットを有する箔膜が電鋳めっきによって形成さ
れるので、厚みの均一な金属箔を容易に形成することが
できる。このような箔膜は、レジスト膜によって前記中
間部への一表面を除く残余の領域の全てが被覆され、こ
の状態でエッチング処理され、中間部が所定の厚みに減
厚された破断片が形成される。このように中間部を減厚
するにあたってエッチング処理によるので、中間部を等
方的に減厚し、中間部の厚みを一定とすることができス
リットに関して左右均等に引張応力を発生させて、確実
にき裂が進展する信頼性の高い疲労検出素子を実現する
ことができる。
【0028】請求項9記載の本発明は、長手方向両端部
間の中央部に、幅方向一側部から幅方向他側部に向って
延びるスリットを有する箔膜を形成し、前記スリットを
有する箔膜の一表面の前記中央部を含む中間部が露出す
るようにして、前記一表面の残余の領域および他表面を
レジスト膜によって被覆した後、エッチング処理によっ
て、前記中間部が所定の厚みに減厚された破断片を形成
し、前記破断片の長手方向両端部を、常温よりも高い予
め定める温度に昇温した状態で、破断片よりも線膨張率
の小さい材料から成る基板に接合することを特徴とする
クラック形疲労検出素子の製造方法である。
【0029】本発明に従えば中央部にスリットを有し、
中間部が減厚された破断片は、常温よりも高い予め定め
る温度に昇温された状態で、この破断片よりも線膨張率
の小さい金属材料から成る基板に長手方向両端部が接合
される。これによって破断片および基板が常温程度に冷
却されたとき、破断片に引張応力を残留させることがで
きる。こうして破断片に引張応力が残留することによっ
て、被検出部材に発生したわずかな歪みであっても、前
記スリットの先端からき裂を発生させて、高い感度で疲
労による損傷度を検出することが可能である。しかも、
金属箔は電鋳めっきによって形成され、また破断片はエ
ッチングによって中間部が減厚されるので、製造が容易
であり、安価な製造コストで量産が可能であり、優れた
産業上の利用性を有する。
【0030】請求項10記載の本発明は、請求項9の製
造方法において、前記破断片の長手方向両端部は、電気
抵抗溶接によって基板へ直接または接着層を介して間接
的に接合されることを特徴とする。
【0031】本発明に従えば、前記破断片の長手方向両
端部が基板の一表面に直接、または接着層を介して間接
的に接合されるので、確実に基板から破断片の長手方向
両端部へ歪みを伝達し、その破断片の中央部に引張応力
を集中的に発生させることができ、引張応力の分散を防
いでき裂を発生し易くすることができることができる。
【0032】請求項11記載の本発明は、前記破断片の
中間部の長手方向の長さL3と破断片の長手方向両端部
間の未接合領域の長さL4との比L3/L4によって、
この比L3/L4が小さくなるにつれて、感度を高くな
る方向に調整可能であることを特徴とする。
【0033】本発明に従えば、破断片の中間部の長手方
向の長さL3を長手方向両端部間の未接合領域の長さL
4に対して適宜調整することによって、比L3/L4を
下げると感度を高くする方向に、また比L3/L4を上
げる感度を低くする方向に変化させて感度を任意に設定
することができ、高精度で要求される感度を有する疲労
検出素子を実現することが可能となる。このような破断
片の中間部の長さL3の調整は、特殊な加工を必要とせ
ず、容易に希望する感度の疲労検出素子を製造すること
ができる。
【0034】請求項12記載の本発明は、上述のクラッ
ク形疲労検出素子を、被検出部材に固定し、所定期間内
に進展したき裂進展長を測定し、このき裂進展長に基づ
いて、被検出部材の損傷度を推定することを特徴とする
クラック形疲労検出素子を用いた損傷度推定方法であ
る。
【0035】本発明に従えば、前述したように感度およ
び精度の高いクラック形疲労検出器によってき裂進展長
を検出し、このき裂進展長に基づいて被検出部材の疲労
による損傷度を推定するので、極初期のわずかな歪みに
よって生じた疲労をも検出することが可能となり、高感
度および高精度で信頼性の高いき裂進展長に基づいて、
部材の疲労損傷度を推定することができる。
【0036】
【発明の実施の形態】図1は、本発明の実施の一形態の
クラック形疲労検出素子を示す断面図であり、図2は図
1に示されるクラック形疲労検出素子1の平面図であ
る。なお、以下の説明では、クラック形疲労検出素子の
製造方法およびそれを用いた疲労損傷度推定方法をも併
せて述べる。稼動中の機械および構造物などの余寿命を
予測し、製品の延命化を図るだけでなく、耐久試験期間
の短縮および費用の削減をも図るために、被検出部材の
疲労損傷に対する非破壊的検出による余寿命の正確な予
測が重要であり、このような余寿命、換言すれば疲労損
傷度を検出するために、本実施の形態のクラック形疲労
検出素子(以下、疲労検出素子と略記する)1が用いら
れる。
【0037】この疲労検出素子1は、箔状の基板2の一
表面3上に長手方向(図1および図2の左右方向)両端
部4,5間の中央部6に、前記長手方向に垂直な幅方向
一側部7から幅方向他側部8に向って延びるスリット9
が形成される箔状の破断片10が前記長手方向両端部
4,5で固着され、前記基板2の他表面11を被検出部
材12に固定して、前記スリット9から進展したき裂進
展長aによって被検出部材12の疲労損傷度を検出する
ことができる。
【0038】このような疲労検出素子1において、前記
破断片10のスリット9が形成される中央部6を含む中
間部13は、幅方向全長にわたって長手方向両端部4,
5よりも薄く形成され、これによって長手方向両端部
4,5に被検出部材12から基板2を介して伝達される
歪みによって中間部13に大きな応力を発生させ、後述
する歪み感度および応力感度を向上している。
【0039】基板2は、長さL1、幅B1、厚さT1を
有し、本実施の形態において、長さL1は13.0m
m、幅B1は6.0mm、厚さT1は0.05mmに選
ばれる。また破断片10は、長さL2、幅B2、厚さT
2を有し、本実施の形態において長さL2は12.0m
m、幅B2は5.0mm、厚さT2は0.1mmに選ば
れる。またこの破断片10の前記中間部13の長さL3
は2.0mmに選ばれ、厚さT3は0.02mmに選ば
れる。基板2は、不変鋼またはNi−Fe系合金から成
り、好ましくはインバー(Invar)から成る。また破断
片10はめっき可能な金属から成り、好ましくは純Ni
から成る。
【0040】前記破断片10の長手方向両端部4,5
は、長手方向に対して内側に複数(本実施の形態では各
5)の接合部14,15と、各接合部14,15よりも
長手方向外側の複数(本実施の形態では各3)の接合部
16,17において、前記抵抗溶接によって基板2の一
表面3上に直接、接合される。前記破断片10の中間部
13の長手方向の長さL3は、長手方向両端部4,5間
の未接合領域の長さL4に対して、要求される感度に応
じて決定される。前記未接合領域の長さL4に対して中
間部13の長さL3を大きくする。すなわちL3/L4
を大きくすると、スリット9の先端9aに生じる引張応
力が小さくなって感度が低下し、L3/L4を小さくす
ると前記先端9aの引張応力が大きくなって感度が上昇
するため、先端9aからき裂の進展する度合いに対し
て、前記L3/L4を予め実験で、または理論的に決定
しておくことによって、中間部13の長さL3に応じた
所望の感度に容易に調整することができる。
【0041】この前記抵抗溶接は、図3に簡略化して示
されるように、相互に間隔ΔL1をあけて平行に配置さ
れる一対の電極21,22と、各電極21,22間に高
電圧を印加する図示しない電源装置とを有する抵抗溶接
機によって、各電極21,22の先端部23,24を、
基板2上に積重された破断片10の長手方向両端部4,
5上に、各接合部14〜17毎に各接合部14〜17を
挟むようにして載置し、前記電源装置から各電極21,
22間に電圧が印加されることによって、基板2の一表
面3と破断片10の前記一表面3に対向する下面25と
の間における各電極21,22間の中間部に電流が流れ
て発熱し、メカニカル接合によって溶融結合部26が生
成され、このような溶融結合部26によって各接合部1
4〜17を形成し、基板2と破断片10とが連結され
る。
【0042】各電極21,22間に前記電源装置によっ
て印加される電圧は、たとえば0.62Vのパルス電圧
であり、この印加時間はたとえば8〜40msecの範
囲で、基板2および破断片10の厚みおよび材質などに
応じた最適な時間が選ばれる。このような前記抵抗溶接
は、パラレルギャップ式抵抗溶接(Parallel GapResist
ance Microjoining;略称PGRM)とも呼ばれ、積重
された薄板状の部材間を微小領域で溶接することができ
る。
【0043】本実施の形態では、内側接合部14,15
のように断続的に接合することによって、破断片10の
局部熱変性による弛みを防ぐようにしている。
【0044】本発明の実施の他の形態では、基板2の一
表面3に長手方向両端部4,5が固着された破断片10
には、スリット9の先端9aから幅方向他側部8にわた
るき裂発生領域31に、き裂進展量aを電気的に検出す
るき裂進展量検出手段32が設けられる。
【0045】このき裂進展量検出手段32は、き裂の進
展方向、すなわち横方向に直角な長手方向に沿って延び
る複数の電気抵抗線33を有し、各電気抵抗線33は幅
方向に等間隔をあけて平行に配置され、両端部が電気的
に並列に接続され、電気絶縁性合成樹脂であるたとえば
エポキシ樹脂によってシート状に被覆され、前記き裂発
生領域31に接着剤によって接着される。
【0046】スリット9の先端9aからき裂が進展する
と、電気抵抗線33は順次的に破断し、このような破断
による抵抗値の経時的変化を図示しない計測装置によっ
て計測することによって、き裂の進展状態を定量的に検
出することができる。
【0047】本発明の実施のさらに他の形態では、前記
き裂進展量検出手段32は、前記電気抵抗線33に代え
て、歪みゲージによって実現されてもよい。
【0048】図4は、図2のスリット9付近の拡大平面
図である。前記破断片10に設けられるスリット9は、
その先端9aが幅方向一側部7から幅方向他側部8に向
かって先細状に形成される。スリット9の幅方向の長さ
L5は、1.0mmに選ばれ、長手方向に平行な幅ΔB
は、0.125mmに選ばれる。先端9aは、幅方向に
長さL6を有し、この長さL6は0.125mmに選ば
れ、平面形状で略正三角形とされる。このようなスリッ
ト9の先端9aにおいて、幅方向一側部7から幅方向他
側部8に向かうにつれて相互に近接する一対の対向面3
4a,34bは、交点35において鋭角で交差し、この
交点35からき裂が発生する。
【0049】このようにしてスリット9の先端9aを先
細状に形成することによって、交点35に応力集中が生
じ、これによってき裂が進展しやすくなり、破断片10
にわずかな歪みが伝達されても交点35から容易にき裂
を発生させることができ、疲労検出素子1の感度が向上
される。
【0050】図5は、図1のセクションVの拡大断面図
である。図1および図2をも参照して、前記破断片10
の中間部13の一表面36と長手方向両端部4,5の一
表面37,38との間には、スリット9の両側で平行に
延びる段差面39,40がそれぞれ形成される。各段差
面39,40と中間部13の一表面36との交差部4
1,42は、破断片10の他表面である下面25に向か
って凸の湾曲面44,45によって連なる。中間部13
は、厚さT3を有し、この厚さT3は0.02mmに選
ばれる。
【0051】このようにして破断片10の長手方向両端
部4,5と中間部13とは、各段差面39,40および
各湾曲面44,45を介して中間部13の一表面36に
連続面によって連なり、中間部13の厚さT3を長手方
向両端部4,5の厚さT2よりも薄く(T2>T3)に
形成されるので、各交差部41,42に応力が集中せ
ず、あるいは緩和され、中間部13に大きな応力を発生
させることができる。
【0052】上記の疲労検出素子1を製造するにあたっ
ては、電鋳めっきによって、長手方向両端部4,5間の
中央部6に、幅方向一側部7から幅方向他側部8に向か
って延びるスリット9を有する純Niから成る金属箔を
形成し、このスリット9を有する金属箔の一表面の前記
中央部6を含む中間部13に相当する部分(図1の仮想
線36a)が露出するようにして前記一表面の残余の領
域(長手方向両端部4,5の一表面37,38に相当)
および他表面43をレジスト膜によって被覆した後、湿
式エッチング処理によって、前記中間部13が所定の厚
みT3に減厚して、前記破断片10を形成する。
【0053】こうして形成された破断片10の長手方向
両端部4,5を、常温よりも高い予め定める温度、たと
えば70℃に昇温した状態で、破断片10よりも線膨張
率の小さい金属材料であるインバーから成る基板2の一
表面3に接合し、疲労検出素子1が完成する。前記純N
iの線膨張率αNiは、13.3×10-6/℃であり、イ
ンバーの線膨張率αInは、1.5×10-6/℃である。
【0054】このような基板2と破断片10とを前述し
たように、電気抵抗溶接によって接合点14〜17にお
いて接合し、徐々に放熱して降温することによって、破
断片10には引張応力が残留し、これによって破断片1
0の緩みおよび座屈を防止することができるとともに、
疲労損傷度の測定時においても、微小な歪みによってき
裂を発生させることができ、感度が向上される。
【0055】また破断片10に減厚した中間部13を形
成するにあたって、エッチング処理が用いられるため、
前記交差部41,42には湾曲面44,45がいわば自
然に形成され、結果的にアール形状となる。前記エッチ
ングは、湿式エッチングであって、レジスト膜によって
被覆された金属箔をエッチング液に浸漬し、このエッチ
ング液に接触する中間部13は、ほぼエッチング時間に
比例して等方的にエッチングされ、またこのエッチング
が厚さ方向だけでなく、平面方向にも進行して、上記の
ような段差面39,40、湾曲面44,45および一表
面36が、いわば自然に滑らかに連続して形成される。
【0056】次に,インバーから成る基板2と純Niか
ら成る破断片10との接合時における温度と破断片10
の中間部13における引張り残留応力との関係について
説明する。まず、接合時における昇温状態から常温(室
温)まで温度低下させたときの低下温度ΔTによる基板
2および破断片10の収縮量の差Δδは、次式で表され
る。 Δδ = (αNi−αIn)・Δt・L4 = δNi+δIn …(1)
【0057】一方、基板2および破断片10の力の釣合
いによって次式が成り立つ。 (δIn/L4)・EIn・T2・B1 = (δNi/L’)・ENi・T3・B2 …(2) ただし、L’ = L3+(T3/T1)・L7
【0058】ここに、Δt:基板2および破断片10の
接合時温度と使用温度(具体的には室温)との差 Δδ:Δtにおける基板2と破断片10の接合スパンS
に対する収縮量の差 αIn:基板2の線膨張率(=1.50×10
-6[℃-1]) αNi:破断片10の線膨張率(=1.33×10-5[℃
-1]) L3:破断片10の中間部13の長さ L7:破断片10においてスパンL4から中間部13の
長さL3を差引いた長さ L4:破断片10の基板2への接合スパン(=L3+L
7) δIn:接合後Δt温度低下時における基板2のスパン変
化量 δNi:接合後Δt温度低下時における破断片10のスパ
ン変化量 EIn:基板2のヤング率(=14,490[kgf/m
2]) ENi:破断片10のヤング率(=19,600[kgf
/mm2]) T1:長手方向両端部4,5における破断片10の厚さ T2:基板2の厚さ(一定) T3:中間部13における破断片10の厚さ B1:基板2の幅(一定) B2:破断片10の幅(一定)
【0059】式1および式2より以下が得られる。 δNi = {(αNi−αIn)・Δt・L4}/[1+(L4/L’) ・{(ENi・T3・B2)/(EIn・T2・B1)}] …(3) δIn = (αNi−αIn)・Δt・L4−δNi …(4)
【0060】これによって破断片10の中間部13の引
張り残留応力σNi,1は、次式によって求められる。 σNi,1 = εNi,1・ENi = (δNi/L’)・ENi …(5)
【0061】また、破断片10の長手方向両端部4,5
の引張り残留応力σNi,2および基板2の圧縮残留応力σ
Inは、次式によって求められる。 σNi,2 = εNi,2・ENi = (T3/T1)・εNi,1・ENi …(6) σIn = εIn・EIn = (δIn/L4)・EIn …(7)
【0062】前述の疲労検出素子1における破断片10
に付与される引張り残留応力は、上記の式5および式6
によって求められ、中間部13では約14〜15kgf
/mm2、長手方向両端部4,5では約3kgf/mm2
である。
【0063】このような疲労検出素子1は、たとえば溶
接構造の疲労損傷度を測定するために用いることがで
き、図6は疲労検出素子1が被検出部材12の溶接ビー
ド48付近に取付けられた状態を示す。一般に溶接構造
の疲労寿命が尽きるのは、被検出部材12のすみ肉溶接
継手47の溶接ビード48の止端部49から疲労き裂5
0が発生・進展した状態をいう。このような溶接構造の
疲労寿命を統一的に評価できるのは、構造局部のホット
スポット応力と呼ばれるパラメータであり、簡単な十字
すみ肉溶接継手のS−N線図を用いることによって、疲
労寿命を評価することができる。ここで、ホットスポッ
ト応力とは、構造不連続による応力集中を含むが、溶接
ビード48の形状による応力集中は含まない溶接ビード
48の止端部49での応力であり、評価するビード止端
部49から部材厚T0の0.3倍(0.3・T0)離れた
位置で代表される。
【0064】このようにホットスポット応力を代表する
位置は明確に定められており、上記の疲労検出素子1は
可能な限りその止端部49またはその付近に貼着して計
測する。一例として述べると、船体構造において部材厚
0が20〜30mmであれば、計測すべき位置はビー
ド止端部49から6〜10mm離れた配置となる。前記
従来の技術のように、疲労検出素子の長手方向の長さが
70mm以上である場合、上記のようなホットスポット
応力の発生位置での計測は不可能であり、何らかの方法
によってホットスポット応力発生位置のデータを推定す
る必要が生じるが、その推定したデータには当然、誤差
が含まれる。これに対して本実施の形態の疲労検出素子
1の長手方向の長さL1は13mmであり、したがって
ビード止端部49から6.5mm以上離れた位置に取付
けてホットスポット応力発生位置での計測が可能であ
る。このときの被検出部材12の部材厚は22mmであ
り、ホットスポット応力発生位置での直接的な計測が可
能であり、上記のような推定誤差を含まない。
【0065】図7は、本発明の実施の他の形態のクラッ
ク形疲労検出素子1aを示す断面図であり、図8は図7
に示されるクラック形疲労検出素子1aの平面図であ
る。なお、前述の実施の形態と対応する部分には、同一
の参照府を付し、重複を避けて説明は省略する。本実施
の形態のクラック形疲労検出素子1aは、後述の表1〜
表3の実施例3,4に相当し、インバーから成る基板2
の一表面3に接着層18,19を介して、純Niから成
る前記破断片10が接合される。このような構成によっ
てもまた、前述の実施の形態のクラック形疲労検出素子
1と同様な効果を達成することができるとともに、基板
2と破断片10との接合に手間がかからず、製造が容易
である。前記接合層18,19は、表2に示されるよう
に、ボンディングシートによって実現されてもよく(試
料9〜11に相当)、フェノール系接着剤によって実現
されてもよい(試料12,13に相当)。なお、前記フ
ェノール系接着剤を用いる場合には、非接着領域に付着
させないために、ポリイミドフィルムによって破断片1
0の非接着領域を覆った状態で接着剤が塗布される。
【0066】次に、本件発明者は疲労検出素子1の感度
を確認するため、比較例1,2および実施例1〜5にお
いて、試料1〜15を表1に示されるように、基板2お
よび破断片10の寸法、形状および材質を変えて作成し
た。
【0067】
【表1】
【0068】上記の表1において、比較例1の試料1
は、前述の特開平10−185854号公報(特許第2
5−2576号)の従来の技術に相当し、試料2は前記
特許第25−2594号公報の従来の技術に相当してい
る。また比較例2は、歪み感度を向上するための方法と
して、(a)破断片10の中間部13の厚さT3を薄く
する方法と、(b)破断片10の幅B2を狭くする方法
とがあり、これらの方法(a),(b)は試料3,4に
それぞれ相当している。
【0069】また実施例1,2では、比較例1の従来の
疲労検出素子に対して歪み感度を2〜3倍にすることを
目標として設計したもの(試料5〜試料8)であり、そ
の中で破断片10を基板2に対して中間部13の一表面
36が基板2に臨んで接合されたものが試料5,7であ
り、図1に示されるように、前記一表面36が基板2と
反対側に臨んで接合されたものが試料6,8である。ま
たこれらの試料5〜8のうち、試料5,7では、破断片
10と基板2との接着に用いた接着剤を長手方向両端部
4,5間への付着を防止するために、接着剤の表面を覆
う離型フィルムを付着したままとし、実施例1と実施例
2とでは、次の表2に示されるように、破断片10と基
板2との接合時のプレス条件およびプレス後の温度管理
条件を異ならせている。
【0070】
【表2】
【0071】実施例3では、前述の実施例1,2に対し
て基板2をポリイミドからインバーに変更し、破断片1
0と基板2との接合方法もエポキシ系接着剤からボンデ
ィングシートに変更し、破断片10に引張り残留応力が
発生するように接合時の温度Tjを決定し、さらに実施
例4では、破断片10と基板2との接合剤を実施例3の
ボンディングシートからフェノール系接着剤およびポリ
イミドフィルムに変更し、接合溶接条件を変更した。こ
のような実施例3,4は、前述の図7および図8の実施
の形態に相当している。
【0072】さらに第5実施例では、接合方式において
前述の電気抵抗溶接を採用し、接合時の温度は70℃に
設定して破断片10と基板2とを接合し、この実施例5
の試料14が図1〜図6の疲労検出素子1に相当してい
る。
【0073】以上のような条件で、試料1〜15につい
て特性評価したところ、次の表3に示されるような結果
が得られた。
【0074】
【表3】
【0075】この表3には、疲労検出素子の感度を評価
するための特性として歪み範囲Δεおよび応力範囲Δσ
によって判断することができ、たとえば歪み範囲Δεに
関しては、実施例1の試料5についてみたとき、比較例
1の試料1に対して約2倍の歪み感度を有していること
が確認された。また応力範囲Δσに関しては、実施例1
の試料5についてみたとき、約2.5倍に向上されてい
ることが確認された。
【0076】図9は、被検出部材のひずみ範囲を一例と
してΔε=500×10-6としたときの試料14,15
の荷重繰返し数Nとき裂進展長aとの関係を示すグラフ
であり、図10は図9における試料14の各計測点P1
〜P7に対応するき裂進展状態を示す平面図であり、図
11は図9における試料15の各計測点Q1〜Q5に対
応するき裂進展状態を示す平面図である。前述した図1
〜図6に示される実施の形態の疲労検出素子1に相当す
る試料14において、計測点P1では、前述の図10
(1)に示されるように、き裂が進展せず、荷重繰返し
数N=0、き裂進展長a=0.00mmであり、計測点
P2では、図10(2)に示されるように、き裂が進展
し、荷重繰返し数N=0.3×105、き裂進展長a=
0.40mmであり、計測点P3では、図10(3)に
示されるようにき裂が進展し、荷重繰返し数N=0.9
×105、き裂進展長a=1.25mmであり、計測点
P5では、図10(4)に示されるようにき裂が進展
し、荷重繰返し数N=1.5×105、き裂進展長a=
2.10mmであり、計測点P5では、図10(5)に
示されるようにき裂が進展し、荷重繰返し数N=2.1
×105、き裂進展長a=2.90mmであり、計測点
P6では、図10(6)に示されるようにき裂が進展
し、荷重繰返し数N=2.7×105、き裂進展長a=
3.75mmであり、計測点P7では、図10(7)に
示されるようにき裂が進展し、荷重繰返し数N=3.0
×105、き裂進展長aは3.95mmであった。
【0077】このような試料14に対して、約2倍の長
さを有する試料15においては、計測点Q1では、図1
1(1)に示されるようにき裂が進展し、荷重繰返し数
N=0、き裂進展長a=0.45mmであり、計測点Q
2では、図11(2)に示されるようにき裂が進展し、
荷重繰返し数N=0.3×105、き裂進展長a=1.
55mmであり、計測点Q3では、図11(3)に示さ
れるようにき裂が進展し、荷重繰返し数N=0.9×1
5、き裂進展長a=3.70mmであり、計測点Q4
では、11(4)に示されるようにき裂が進展し、荷重
繰返し数N=1.5×105、き裂進展長a=5.10
mmであり、計測点Q5では、図11(5)に示される
ようにき裂が進展し、荷重繰返し数N=2.1×1
5、き裂進展長a=6.45mmであった。
【0078】図12は、疲労検出素子1を用いた1ゲー
ジ法による疲労損傷度の推定方法の手順を説明するため
のフローチャートである。一般には、被検出部材の疲労
損傷度を予測するための手法として、2枚の疲労検出素
子を用いる2ゲージ法と、1枚の疲労検出素子を用いる
1ゲージ法とが知られている。2ゲージ法では、き裂進
展速度da/dnと応力拡大係数ΔKとの関係を示す特
性曲線の勾配が全く異なる材料を選ぶ必要があり、より
簡便には、損傷を評価する部材のS−N線図と勾配が等
しく、かつ部材よりも小さい疲労強度の疲労検出素子で
あれば、1ゲージ法によって疲労損傷度を検出すること
が可能であり、その手順について説明する。
【0079】まず、ステップs1で疲労検出素子1を被
検出部材12に前述した図6に示されるように取付け、
ステップs2で疲労検出素子1によってき裂進展長aを
計測する。このき裂進展長aは、前述したき裂進展長検
出手段32によって電気的に検出されてもよく、またフ
ァイバースコープなどを用いてき裂進展領域31を撮像
し、画像処理装置によって画像処理された画像データか
ら求めるようにしてもよい。
【0080】ステップs3で、疲労検出素子1に発生し
たき裂のき裂進展長aiに対応する疲労損傷度DSを図
13のき裂進展長aと疲労損傷度Dsとの関係における
特性を示すラインL10によって疲労検出素子1の疲労
損傷度Dsiを算出し、図14に示すように、疲労検出
素子1とS−N線図で傾きが等しい被検出部材12の特
性を示すラインL10に平行な疲労検出素子1の特性を
示すラインL12を予め求めておき、ステップs4で、
図15に示される疲労検出素子1の損傷度と被検出部材
12の損傷度との関係を示すラインL13によって、前
記疲労検出素子1のき裂進展長をaiに基づいて算出さ
れた疲労損傷度Dsiに対応する被検出部材12の疲労
損傷度DIを算出して推定することができる。なお、上
記の図14の応力振幅σを示す縦軸および荷重繰返し数
Nを示す横軸は、対数(常用対数)尺である。
【0081】本発明の実施の他の形態では、本発明に従
う疲労検出素子1によって2ゲージ法によって疲労損傷
度を推定するようにしてもよい。
【0082】
【発明の効果】請求項1記載の本発明によれば、破断片
のスリットが形成される中間部がその両側の長手方向両
端部よりも薄く形成され、この薄く形成される領域は破
断片の幅方向全長とされるので、被検出部材から基板を
経て破断片の長手方向両端部に伝達された歪みは、スリ
ットの周辺に大きな応力を発生させ、この大きな応力が
スリットの先端において応力集中する。このようにして
被検出部材の歪みによって破断片のスリットの先端に大
きな集中応力を発生させることができるので、被検出部
材に発生する歪みが小さいものであっても、スリットの
先端には大きな集中応力が発生し、これによって被検出
部材の微少な疲労による損傷量を破断片に発生したき裂
進展長によって高感度および高精度で検出し、信頼性の
高い測定を行うことができる。
【0083】請求項2記載の本発明によれば、前記破断
片には引張応力が残留しているので、被検出部材の微少
な歪みによって前記スリットからき裂を進展させること
ができ、より一層感度および精度を向上することができ
る。
【0084】請求項3記載の本発明によれば、前記検出
片は基板の一表面に直接または接着層を介して間接的に
接合されるので、確実に基板から破断片の中間部へ歪み
を伝達し、引張応力を集中的に発生させてき裂を進展さ
せることができる。
【0085】請求項4記載の本発明によれば、破断片の
き裂進展量をき裂進展量検出手段によって電気的に検出
することができるので、き裂進展に伴うデータの取出し
および管理が容易となり、疲労検出素子を被検出部材に
設置して上記にわたって損傷度を連続してまたは定期的
に断続して測定することができ、被検出部材の疲労によ
る損傷度測定作業を容易化することができる。
【0086】請求項5記載の本発明によれば、前記スリ
ットの先端は破断片の幅方向一側部から他側部に向って
先細状に形成されるので、前記スリットの先端より狭い
領域に応力を集中させることができ、これによってより
一層感度を向上することができる。
【0087】請求項6記載の本発明によれば、破断片の
中間部の一表面と長手方向両端部の一表面との間の交差
部には、破断片の他表面に向って凸に弯曲した湾曲面が
形成されるので、前記段差面と中間部の一表面との交差
部に応力集中することを可及的に少なくして、スリット
の先端への応力集中が減衰することを防ぎ、破断片の中
間部の減厚によって生じた交差部への応力集中によるス
リット先端への応力の減衰をできるだけ少なくして、基
板から破断の長手方向両端部に伝達された歪みによって
生じた応力をスリットの先端に集中させ、感度をより一
層向上することができる。
【0088】請求項7記載の本発明によれば、破断片の
中間部の長手方向の長さL3を長手方向両端部間の未接
合領域の長さL4に対して適宜調整することによって、
感度を変化させることができ、高精度で要求される感度
を有する疲労検出素子を実現することが可能となる。こ
のような破断片の中間部の長さL3の調整は、特殊な加
工を必要とせず、容易に希望する感度の疲労検出素子を
製造することができる。
【0089】請求項8記載の本発明によれば、長手方向
両端部間の中央部にスリットを有する箔膜が電鋳めっき
によって形成されるので、均一な厚みの箔膜を形成する
ことができる。このような箔膜は、レジスト膜によって
前記中間部への一表面を除く残余の領域の全てが被覆さ
れ、この状態でエッチング処理され、中間部が所定の厚
みに減厚された破断片が形成される。このように中間部
を減厚するにあたってエッチング処理によるので、中間
部を等方的に減厚し、中間部を一定の厚みに形成して、
確実にき裂が発生・進展する疲労検出素子を容易に実現
することができる。
【0090】請求項9記載の本発明によれば、中央部に
スリットを有し、中間部が減厚された破断片は、常温よ
りも高い予め定める温度に昇温された状態で、この破断
片よりも線膨張率の小さい金属材料から成る基板に長手
方向両端部が接合される。これによって破断片および基
板が常温程度に冷却されたとき、破断片に引張応力を残
留させることができる。こうして破断片に引張応力が残
留することによって、被検出部材に発生したわずかな歪
みであっても、前記スリットの先端からき裂を発生させ
て、高い感度で疲労による損傷度を検出することが可能
である。しかも、金属箔は電鋳めっきによって形成さ
れ、また破断片はエッチングによって中間部が減厚され
るので、製造が容易であり、安価な製造コストで量産が
可能であり、優れた産業上の利用性を有する。
【0091】請求項10記載の本発明によれば、前記破
断片の長手方向両端部が基板の一表面に直接、または接
着層を介して間接的に接合されるので、確実に基板から
破断片の長手方向両端部へ歪みを伝達し、その破断片の
中央部に引張応力を集中的に発生させることができ、引
張応力の分散を防いでき裂を発生し易くすることができ
ることができる。
【0092】請求項11記載の本発明によれば、破断片
の中間部の長手方向の長さL3を長手方向両端部間の未
接合領域の長さL4に対して適宜調整することによっ
て、感度を変化させることができ、高精度で要求される
感度を有する疲労検出素子を実現することが可能とな
る。このような破断片の中間部の長さL3の調整は、特
殊な加工を必要とせず、容易に希望する感度の疲労検出
素子を製造することができる。
【0093】請求項12記載の本発明によれば、前述し
たように感度および精度の高いクラック形疲労検出器に
よってき裂進展長を検出し、このき裂進展長に基づいて
被検出部材の疲労による損傷度を推定するので、極初期
のわずかな歪みによって生じた疲労をも検出することが
可能となり、高感度および高精度で信頼性の高いき裂進
展長に基づいて、部材の疲労損傷度を推定することがで
きる。
【図面の簡単な説明】
【図1】本発明の実施の一形態のクラック形疲労検出素
子1を示す断面図である。
【図2】図1に示されるクラック形疲労検出素子1の平
面図である。
【図3】電気抵抗線による基板2と破断片10との接続
状態を模式的に示す図である。
【図4】図2のスリット9付近の拡大平面図である。
【図5】図1のセクションVの拡大断面図である。
【図6】疲労検出素子1が被検出部材12の溶接ビード
48付近に取付けられた状態を示す図である。
【図7】本発明の実施の他の形態のクラック形疲労検出
素子1aを示す断面図である。
【図8】図7に示されるクラック形疲労検出素子1aの
平面図である。
【図9】被検出部材のひずみ範囲を一例としてΔε=5
00×10-6としたときの試料14,15の荷重繰返し
数Nとき裂進展長aとの関係を示すグラフである。
【図10】図9における試料14の各計測点P1〜P7
に対応するき裂進展状態を示す平面図である。
【図11】図9における試料15の各計測点Q1〜Q5
に対応するき裂進展状態を示す平面図である。
【図12】疲労検出素子1を用いた1ゲージ法による疲
労損傷度の推定方法の手順を説明するためのフローチャ
ートである。
【図13】疲労検出素子1によって計測されたき裂進展
長aに対応する疲労損傷度DSの関係を示す図である。
【図14】被検出部材12のS−N特性に対応する疲労
検出素子1のS−N特性を示す図である。
【図15】疲労検出素子1によるき裂進展長aに基づい
て算出された疲労損傷度DSに対応する被検出部材12
の疲労損傷度を推定するための図である。
【符号の説明】
1,1a クラック形疲労検出素子 2 基板 3 基板2の一表面 4 長手方向一端部 5 長手方向他端部 6 中央部 7 幅方向一側部 8 幅方向他側部 9 スリット 9a スリット9の先端 10 破断片 11 基板2の他表面 12 被検出部材 13 中間部 14〜17 接合点 18,19 接着層 21,22 電極 31 き裂発生領域 32 き裂進展量検出手段 33 電気抵抗線 34a,34b 対向面 35 交点 36 中間部13の一表面 37 長手方向一端部4の一表面 38 長手方向他端部5の一表面 39,40 段差面 41,42 交差部 44,45 湾曲面 48 溶接ビード 49 止端部
───────────────────────────────────────────────────── フロントページの続き (72)発明者 公江 茂樹 兵庫県明石市川崎町1番1号 川崎重工 業株式会社 明石工場内 (72)発明者 村上 彰男 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 (72)発明者 西山 五郎 兵庫県神戸市中央区東川崎町3丁目1番 1号 川崎重工業株式会社 神戸工場内 (72)発明者 嵩 良徳 千葉県野田市二ツ塚118番地 川崎重工 業株式会社 野田工場内 (56)参考文献 特開 昭62−265558(JP,A) 特開 平9−304240(JP,A) 特開 平10−185854(JP,A) 特許2952594(JP,B1) (58)調査した分野(Int.Cl.7,DB名) G01N 3/32 G01M 19/00 JICSTファイル(JOIS)

Claims (12)

    (57)【特許請求の範囲】
  1. 【請求項1】 箔状の基板の一表面上に、長手方向両端
    部間の中央部で、前記長手方向に垂直な幅方向一側部か
    ら幅方向他側部に向って延びるスリットが形成される箔
    状の破断片の前記長手方向両端部が固着され、前記基板
    の他表面を被検出部材に固定して、前記スリットから進
    展したき裂進展長によって被検出部材の疲労損傷度を検
    出するクラック形疲労検出素子において、 前記破断片のスリットが形成される中央部を含む中間部
    は、幅方向全長にわたって長手方向両端部よりも薄く形
    成されることを特徴とするクラック形疲労検出素子。
  2. 【請求項2】 前記破断片は、引張応力を残留させた状
    態で、前記基板の一表面に長手方向両端部が固着される
    ことを特徴とする請求項1記載のクラック形疲労検出素
    子。
  3. 【請求項3】 前記破断片は、前記基板の一表面に長手
    方向両端部が直接、または接着層を介して間接的に接合
    されることを特徴とする請求項1または2記載のクラッ
    ク形疲労検出素子。
  4. 【請求項4】 前記破断片は、スリットの先端から幅方
    向他端部にわたるき裂発生領域に、き裂進展量を電気的
    に検出するき裂進展量検出手段が設けられることを特徴
    とする請求項1〜3のいずれか1つに記載のクラック形
    疲労検出素子。
  5. 【請求項5】 前記破断片に設けられるスリットは、そ
    の先端が幅方向一側部から幅方向他側部に向って先細状
    に形成されることを特徴とする請求項1〜4のいずれか
    1つに記載のクラック形疲労検出素子。
  6. 【請求項6】 前記破断片の中間部の一表面と長手方向
    両端部の一表面との間には、前記スリットの両側で立上
    がる段差面が形成され、各段差面と中間部の一表面との
    交差部は、破断片の他表面に向って凸の湾曲面によって
    連なることを特徴とする請求項1〜5のいずれか1つに
    記載のクラック形疲労検出素子。
  7. 【請求項7】 前記破断片の中間部の長手方向の長さL
    3と破断片の長手方向両端部間の未接合領域の長さL4
    との比L3/L4によって、この比L3/L4が小さく
    なるにつれて、感度を高くなる方向に調整可能であるこ
    とを特徴とする請求項1〜6のいずれか1つに記載のク
    ラック形疲労検出素子。
  8. 【請求項8】 電鋳めっきによって、長手方向両端部間
    の中央部に、幅方向一側部から幅方向他側部に向って延
    びるスリットを有する箔膜を形成し、 前記スリットを有する箔膜の一表面の前記中央部を含む
    中間部が露出するようにして、前記一表面の残余の領域
    および他表面をレジスト膜によって被覆した後、エッチ
    ング処理によって、前記中間部が所定の厚みに減厚され
    た破断片を形成し、 前記破断片の長手方向両端部を、基板に接合することを
    特徴とするクラック形疲労検出素子の製造方法。
  9. 【請求項9】 長手方向両端部間の中央部に、幅方向一
    側部から幅方向他側部に向って延びるスリットを有する
    箔膜を形成し、 前記スリットを有する箔膜の一表面の前記中央部を含む
    中間部が露出するようにして、前記一表面の残余の領域
    および他表面をレジスト膜によって被覆した後、エッチ
    ング処理によって、前記中間部が所定の厚みに減厚され
    た破断片を形成し、 前記破断片の長手方向両端部を、常温よりも高い予め定
    める温度に昇温した状態で、破断片よりも線膨張率の小
    さい材料から成る基板に接合することを特徴とするクラ
    ック形疲労検出素子の製造方法。
  10. 【請求項10】 前記破断片の長手方向両端部は、電気
    抵抗溶接によって基板へ直接、接着層を介して間接的に
    接合されることを特徴とする請求項8または9記載のク
    ラック形疲労検出素子の製造方法。
  11. 【請求項11】 前記破断片の中間部の長手方向の長さ
    L3と破断片の長手方向両端部間の未接合領域の長さL
    4との比L3/L4によって、この比L3/L4が小さ
    くなるにつれて、感度を高くなる方向に調整可能である
    ことを特徴とする請求項9または10記載のクラック形
    疲労検出素子の製造方法。
  12. 【請求項12】 請求項1〜7のいずれか1つに記載の
    クラック形疲労検出素子を、被検出部材に固定し、所定
    期間内に進展したき裂進展長を測定し、このき裂進展長
    に基づいて、被検出部材の損傷度を推定することを特徴
    とするクラック形疲労検出素子を用いた損傷度推定方
    法。
JP2000094853A 2000-03-30 2000-03-30 クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法 Expired - Lifetime JP3342467B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000094853A JP3342467B2 (ja) 2000-03-30 2000-03-30 クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法
KR10-2001-0016038A KR100390528B1 (ko) 2000-03-30 2001-03-27 균열형 피로 탐지 센서, 균열형 피로 탐지 센서의조립방법 및 균열형 피로 탐지 센서를 이용한 손상측정방법
DE60135054T DE60135054D1 (de) 2000-03-30 2001-03-29 Sensor für Ermüdungsrisse, Methode zu seiner Herstellung und Methode zur Abschätzung eines Schadens unter Verwendung des Sensors
EP01302969A EP1139088B1 (en) 2000-03-30 2001-03-29 Crack-type fatigue detecting sensor, method for fabricating crack-type fatigue detecting sensor, and method for estimating damage using crack-type fatique detecting sensor
AT01302969T ATE403140T1 (de) 2000-03-30 2001-03-29 Sensor für ermüdungsrisse, methode zu seiner herstellung und methode zur abschätzung eines schadens unter verwendung des sensors
CNB011192658A CN1195197C (zh) 2000-03-30 2001-03-30 裂缝类型疲劳检测传感器及其制造方法和用其评估损坏的方法
US09/822,371 US6520024B2 (en) 2000-03-30 2001-03-30 Crack-type fatigue detecting sensor, method for fabricating crack-type fatigue detecting sensor, and method for estimating damage using crack-type fatigue detecting sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000094853A JP3342467B2 (ja) 2000-03-30 2000-03-30 クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法

Publications (2)

Publication Number Publication Date
JP2001281120A JP2001281120A (ja) 2001-10-10
JP3342467B2 true JP3342467B2 (ja) 2002-11-11

Family

ID=18609828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000094853A Expired - Lifetime JP3342467B2 (ja) 2000-03-30 2000-03-30 クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法

Country Status (7)

Country Link
US (1) US6520024B2 (ja)
EP (1) EP1139088B1 (ja)
JP (1) JP3342467B2 (ja)
KR (1) KR100390528B1 (ja)
CN (1) CN1195197C (ja)
AT (1) ATE403140T1 (ja)
DE (1) DE60135054D1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6973838B2 (en) * 2004-04-12 2005-12-13 Xenotrancorp. Non-contacting crack sensor
US8752348B2 (en) * 2005-02-25 2014-06-17 Syntheon Inc. Composite pre-formed construction articles
JP2007078364A (ja) * 2005-09-09 2007-03-29 Kawasaki Heavy Ind Ltd ひずみ感知センサ
US7572360B2 (en) * 2005-09-30 2009-08-11 Fatigue Solutions Corp. Electrochemical fatigue sensor systems and methods
JP4799267B2 (ja) * 2006-05-18 2011-10-26 川崎重工業株式会社 疲労センサおよび疲労損傷度推定方法
JP4814802B2 (ja) * 2007-01-10 2011-11-16 富士通株式会社 解析モデル作成プログラム、解析モデル作成装置、解析モデル作成方法、および該解析モデル作成方法を含む装置の製造方法
US7516674B1 (en) 2008-08-26 2009-04-14 International Business Machines Corporation Method and apparatus for thermally induced testing of materials under transient temperature
CN102252899A (zh) * 2011-07-05 2011-11-23 芜湖杰锋汽车动力系统有限公司 焊缝疲劳试验装置
JP2013117459A (ja) * 2011-12-05 2013-06-13 Ihi Corp 配管の損傷検知方法
JP5192095B2 (ja) * 2012-10-22 2013-05-08 川崎重工業株式会社 ひずみ感知センサ
JP5994685B2 (ja) * 2013-03-07 2016-09-21 新日鐵住金株式会社 歪み式腐食センサの製造方法および歪み式腐食センサを用いた腐食測定方法
WO2016135994A1 (ja) * 2015-02-25 2016-09-01 東日本旅客鉄道株式会社 歪検出用構造体
JP6224643B2 (ja) * 2015-03-26 2017-11-01 日本碍子株式会社 棚板割れ検知方法、ハニカム構造体の搬送方法、棚板割れ検知装置、及び棚板搬送装置
KR101708317B1 (ko) * 2015-06-17 2017-02-20 엘지전자 주식회사 스트레인 검사 소자 및 그 부착 방법
RU2624794C1 (ru) * 2016-08-15 2017-07-06 федеральное государственное бюджетное образовательное учреждение высшего образования "Хакасский государственный университет им. Н.Ф. Катанова" (ФГБОУ ВО ХГУ им. Н.Ф. Катанова) Универсальный стержень хегая
CN107219168B (zh) * 2017-08-02 2024-03-29 贵州工程应用技术学院 一种预损伤智能损伤探测器
CN108036906B (zh) * 2017-12-08 2019-08-30 合肥工业大学 一种裂纹转子刚度系数测量方法
CN108362561B (zh) * 2018-02-02 2020-06-09 上海理工大学 一种焊缝及焊接热影响区的材料力学性能确定方法
JP2019138843A (ja) * 2018-02-14 2019-08-22 リンテック株式会社 歪み検出デバイス
JP7208622B2 (ja) * 2019-02-28 2023-01-19 学校法人 関西大学 金属構造物の歪測定装置、及び金属構造物の劣化損傷検知方法
CN110118524B (zh) * 2019-05-15 2022-02-25 胡天旭 一种附着式电阻应变传感器总成及其安装工艺
JP7353867B2 (ja) * 2019-08-23 2023-10-02 株式会社プロテリアル 鋳造材の疲労試験方法
WO2021188708A1 (en) * 2020-03-17 2021-09-23 Arris Enterprises Llc Ceramic based strain detector
US11592377B2 (en) * 2020-04-20 2023-02-28 Vishay Measurements Group, Inc. Fatigue life sensor for measuring repetitive loads applied to a structure based upon cracks propagating from crack initiation features of the sensor
CN111929146B (zh) * 2020-06-18 2023-06-13 广东石油化工学院 一种用于金属材料疲劳裂纹扩展的观测装置
CN111795978B (zh) * 2020-09-08 2020-12-04 湖南大学 一种钢桥结构健康状态评估方法、装置、设备及存储介质
CN112254905B (zh) * 2020-10-15 2022-03-01 哈尔滨工业大学 一种力矩回转刚度高低温测试装置
CN113189146B (zh) * 2021-04-16 2024-05-28 国网甘肃省电力公司经济技术研究院 一种导电混凝土接地网监测大地裂隙滑坡的装置及方法
CN114112130B (zh) * 2021-09-30 2023-04-21 河海大学 可重复测量裂纹尖端应力强度因子的装置及其方法
CN113916406A (zh) * 2021-11-03 2022-01-11 贵州贵飞飞机设计研究院有限公司 一种反映结构应力范围的方法
CN115266831B (zh) * 2022-06-23 2025-08-12 中国铁道科学研究院集团有限公司金属及化学研究所 一种疲劳裂纹检测片可靠性的评价方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952594B1 (ja) 1998-09-28 1999-09-27 株式会社ビーエムシー 構造材料の疲労損傷検知センサーおよびその取付け方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3979949A (en) * 1975-06-30 1976-09-14 The Boeing Company Fatigue damage indicator
JPS59128441A (ja) * 1983-01-14 1984-07-24 Nippon Telegr & Teleph Corp <Ntt> 絶縁性ぜい性材料のき裂成長測定法
JPS61167835A (ja) * 1985-01-18 1986-07-29 Mitsubishi Heavy Ind Ltd 構造物の亀裂成長監視装置
JPS62265558A (ja) 1986-05-12 1987-11-18 Kawasaki Heavy Ind Ltd 損傷度の測定方法およびき裂測定素子
JP2799431B2 (ja) 1996-05-15 1998-09-17 広島大学長 構造物の疲労損傷予知モニタリングのための犠牲試験片
JP2952576B2 (ja) 1996-12-25 1999-09-27 株式会社ビーエムシー 構造材料の疲労損傷検知方法およびその検知装置
JP3020162B1 (ja) * 1998-12-17 2000-03-15 広島大学長 構造物の長期応力度モニタリングのための犠牲試験片及びその使用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952594B1 (ja) 1998-09-28 1999-09-27 株式会社ビーエムシー 構造材料の疲労損傷検知センサーおよびその取付け方法

Also Published As

Publication number Publication date
EP1139088B1 (en) 2008-07-30
ATE403140T1 (de) 2008-08-15
JP2001281120A (ja) 2001-10-10
CN1195197C (zh) 2005-03-30
EP1139088A3 (en) 2002-10-30
KR100390528B1 (ko) 2003-07-04
KR20010100854A (ko) 2001-11-14
EP1139088A2 (en) 2001-10-04
US20010037686A1 (en) 2001-11-08
DE60135054D1 (de) 2008-09-11
US6520024B2 (en) 2003-02-18
CN1318747A (zh) 2001-10-24

Similar Documents

Publication Publication Date Title
JP3342467B2 (ja) クラック形疲労検出素子およびその製造方法ならびにクラック形疲労検出素子を用いた損傷度推定方法
US6532825B1 (en) Fatigue damage detection sensor for structural materials and mounting method thereof
JP7133162B2 (ja) プレストレス導入用のcfrp緊張材を備えた構造物の損傷・変形を検知する方法およびcfrp緊張材
KR20090089806A (ko) 응력 변환기를 패스너에 장착하는 방법 및 장치
CN102778385A (zh) 一种焊接残余应力测量方法
US12345686B2 (en) Fracture toughness testing machine and fracture toughness test method
JP4799267B2 (ja) 疲労センサおよび疲労損傷度推定方法
JP4868593B2 (ja) 光ファイバセンサ
CN113740161B (zh) 先张预应力混凝土空心板钢绞线有效预应力检测方法
JP5192095B2 (ja) ひずみ感知センサ
US11592377B2 (en) Fatigue life sensor for measuring repetitive loads applied to a structure based upon cracks propagating from crack initiation features of the sensor
KR100404659B1 (ko) 계면접합강도 평가시편 및 그 계면접합강도 평가방법
JP6648836B2 (ja) Ctod試験片の作製方法および塑性歪調整用治具
WO2019101977A1 (en) Test specimen
JP2003302321A (ja) 疲労センサー
JP2007078364A (ja) ひずみ感知センサ
JP2007315810A (ja) 繰返し応力センサ
JP2005180926A (ja) 疲労センサ
JP3920689B2 (ja) 測定用ゲージおよびその使用方法
KR100798100B1 (ko) 피로하중 레벨 측정용 게이지
JP4519578B2 (ja) 実鋼構造物における亀裂進展のモニタリング方法および実鋼構造物の余寿命推定方法
JP4252431B2 (ja) 疲労センサおよびその製造方法並びに疲労センサの破断片およびその製造方法
EP3657148B1 (en) A sensor for determining fatigue lifetime of a welded joint of a structure
JP2002122526A (ja) 犠牲試験片およびそれを用いた疲労損傷予知および応力情報取得方法
CN118225291A (zh) 一种基于微磁信号分量解耦的焊接残余应力检测方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3342467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080823

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090823

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100823

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110823

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120823

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130823

Year of fee payment: 11

EXPY Cancellation because of completion of term