JP3254316B2 - チタン酸バリウム系半導体磁器組成物 - Google Patents

チタン酸バリウム系半導体磁器組成物

Info

Publication number
JP3254316B2
JP3254316B2 JP26659193A JP26659193A JP3254316B2 JP 3254316 B2 JP3254316 B2 JP 3254316B2 JP 26659193 A JP26659193 A JP 26659193A JP 26659193 A JP26659193 A JP 26659193A JP 3254316 B2 JP3254316 B2 JP 3254316B2
Authority
JP
Japan
Prior art keywords
mol
composition
barium titanate
breakdown voltage
based semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26659193A
Other languages
English (en)
Other versions
JPH07118061A (ja
Inventor
哲也 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17432941&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3254316(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sekisui Kasei Co Ltd filed Critical Sekisui Kasei Co Ltd
Priority to JP26659193A priority Critical patent/JP3254316B2/ja
Publication of JPH07118061A publication Critical patent/JPH07118061A/ja
Application granted granted Critical
Publication of JP3254316B2 publication Critical patent/JP3254316B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、電気抵抗の温度係数が
正の特性を示し、室温における比抵抗が小さく、かつ、
絶縁破壊電圧の大きなチタン酸バリウム系半導体磁器組
成物に関するものである。
【0002】
【従来の技術】従来より、チタン酸バリウムに、半導体
化剤、例えばBi、Nb、 W、Ta、Sbあるいは希土類金属を
微量添加することにより、室温付近では比抵抗が小さ
く、かつ、キュリー点の温度を越えると急峻な正の抵抗
温度特性を有するチタン酸バリウム系半導体磁器組成物
(以下、PTC組成物という)が得られることは知られ
ている。
【0003】同様にして、希土類金属、Nb、TaまたはSb
を含有するPTC組成物に、さらにSiO2を添加し、酸素
の存在下で焼成することによって、PTC組成物として
の電気特性を向上、例えば室温時の低い抵抗値を有する
PTC組成物を安定して製造することも提案されている
(特開昭59-59888号公報参照)。
【0004】その上、PTC組成物では、そのBaサイト
を、SrやPbで置換することによって比較的大きな正の抵
抗温度特性を有したまま、キュリー点を、所望する低温
側や高温側に移動させることが可能である。
【0005】上記のような温度特性や、この特性を制御
する技術によって、上記PTC組成物は、定温発熱体や
カラーテレビの自動消磁用素子あるいは電流制限素子な
どに好適に用いられている。
【0006】さらに、上記のPTC組成物の用途を拡大
するために、より絶縁破壊電圧が高く、耐突入電流特性
に優れたPTC組成物が、特開昭57−157502号公報に開
示されている。しかしながら、上記PTC組成物の比抵
抗は、最も低いものでも35Ω・cm以上で、用途の拡大、
性能向上などの点において未だ十分ではなく、さらに、
室温時に低抵抗を有し、かつ、高い絶縁破壊電圧を有す
るPTC組成物の開発が求められている。
【0007】そこで、上記特性をある程度満足するもの
として、特開平5-51254号公報に開示されたPTC組成
物が知られている。上記PTC組成物は、BaTiO3を基体
組成物として、Srを4〜15 mol%、Caを13〜18 mol%、
Pbを3〜12 mol%置換し、Y等の希土類元素、Nb、Bi等
の半導体化剤0.15〜0.5mol%、Mnを 0.002〜0.025mol
%、SiO2を 0.2〜0.7mol%となるように添加したもので
ある。
【0008】また、前記特性を満足するものとして、特
開平5-70223号公報に開示されたPTC組成物が知られ
ている。上記PTC組成物は、BaTiO3を基体組成物とし
て、Caを15〜20 mol%、Pbを1 mol%置換し、半導体化
剤としてNb2O5 を 0.1〜0.18mol %、Mnを 0.07 〜0.10
mol%、SiO2を 2.5〜5.0mol%となるように添加したも
のである。
【0009】しかしながら、上記各PTC組成物では、
毒性を有するPbを含有することで、産業上の環境に対
する問題、つまり廃棄物処理の問題、および生産に従事
する作業員の健康管理の面で問題を生じている。
【0010】そこで、上記問題を回避するために、特開
平5-70223号公報に記載された試料No.2および試料No.6
について、それらの組成から鉛(Pb)を除いて各試料N
o.2'および試料No.6' を調製した。
【0011】ところが、成形性を高めるために酸化ジル
コニウム(ZrO2)からなる敷き粉を敷く必要があり、上
記試料No.2' および試料No.6' の焼成温度を1340℃とす
ると、上記敷き粉と反応して高抵抗化するという不具合
を生じた。さらに、上記焼成温度を1300℃として調製し
たが同様に反応が見られ不具合を生じた。
【0012】そこで、上記焼成温度を1280℃にて調製し
たところ以下のような結果となった。試料No.2' では、
比抵抗(Ω・cm)が4.31、絶縁破壊電圧(V/mm)が32.1
1 となり、絶縁破壊電圧と比抵抗との比であるVB.D
ρが7.52であり、試料No.6'では比抵抗(Ω・cm)が5.5
1、絶縁破壊電圧(V/mm)が43.52 となり、VB.D /ρ
が7.90であった。
【0013】
【発明が解決しようとする課題】しかしながら、上記の
ように鉛を省いた各試料No.2' ・No.6' では、比抵抗は
比較的低抵抗であるが、絶縁破壊電圧低くなり、上記
各試料を小型化するための指標となるVB.D /ρが小さ
なった。このため、上記各試料No.2' ・No.6'は、前
述したように定温発熱体やカラーテレビの自動消磁用素
子あるいは電流制限素子等に用いると、高い絶縁破壊電
圧と、低い抵抗値を確保するために大型化を招来すると
いう問題を生じている。
【0014】
【課題を解決するための手段】本発明のチタン酸バリウ
ム系半導体磁器組成物は、以上の課題を解決するため
に、正の抵抗温度特性を有するチタン酸バリウム系半導
体磁器組成物において、上記Ba原子を、1〜10 mol%
のSr原子および13〜18 mol%のCa原子にて置換し、
さらに、半導体化剤としてBi、Nb、W、Ta、Sb
あるいは希土類元素のうち少なくとも1種の元素を0.22
〜0.35 mol%、Mnを0.05〜0.10 mol%を含む基体組成
物に対し、SiO2 と過剰分のTiO2 とからなる液相生
成成分を 1.5〜3.2mol%の範囲内で含有し、かつ、上記
SiO2の含有量は 0.3〜2.3mol%の範囲内であり、鉛
を含まないことを特徴としている。
【0015】上記Ba原子の位置をCa原子に置換する
量は、13 mol%未満となると、絶縁破壊電圧を高く維持
できなくなり、18 mol%を越えると得られた組成物の組
織を構成する粒子が微小化して比抵抗が大きくなる。さ
らに、上記Ba原子の位置をSr原子に置換する量を1
〜10 mol%の範囲内に設定することにより、例えば電流
制限素子として用いる場合のキュリー点温度に設定でき
るものとなる。また、上記Sr原子の置換量によって、
得られた組成物の融点を高めることができる。
【0016】また、半導体化剤の添加量は、0.22 mol%
未満では徐々に比抵抗が大きくなり、0.35 mol%を越え
ると比抵抗が急激に大きくなる。
【0017】前記の液相生成成分は 1.5〜3.2mol%の範
囲を越えると得られた組成物の比抵抗が大きくなり、特
に3.2mol%を越えると過焼結になって焼成の際に用いる
酸化ジルコニウム(ZrO2)等の敷き粉と反応したりす
る。また、上記液相生成成分中のSiO2 の添加量は、
0.3mol %未満となると液相生成成分としての効果、つ
まり焼成時の粒子の再配列を促進し、極端な異常粒子成
長を抑制して絶縁破壊電圧の低下を軽減するという効果
が低くなり、一方、2.3mol%を越えると室温時の比抵抗
に対して絶縁破壊電圧が低くなる。
【0018】さらに、Mnは、その添加量が0.05 mol%
未満となると、正の温度抵抗変化率が小さくなり、一
方、Mnの添加量が0.10 mol%を越えると極端に比抵抗
が大きくなることより、得られた組成物を例えば電流制
限素子として用いる際に不適となる。
【0019】
【実施例】本発明の一実施例を説明すれば、以下の通り
である。チタン酸バリウム系半導体磁器組成物では、バ
リウムサイトを置換することにより、キュリー点移動物
質であるストロンチウムを含むチタン酸バリウム系基体
組成物に、半導体化剤と、カルシウム、鉱化剤さらに液
相生成物質を添加して焼成したものである。
【0020】上記半導体化剤として酸化ネオジウム(Nd
2O3)、鉱化剤として炭酸マンガン(MnCO3)を用い、上記
液相生成物質として、二酸化ケイ素(SiO2) と過剰分の
酸化チタン(TiO2) を用いた。上記の過剰分の酸化チタ
ンの添加とは、一般に、チタンはバリウムに対して等モ
ルとなるように配合されるが、チタンのモル配合量が、
バリウムの配合モル数より多く、つまり過剰に配合され
ることをいう。ただし、本発明では、チタンのモル配合
量が、バリウム、ストロンチウムおよびカルシウムの合
計モル量に対して過剰となるように設定される。
【0021】次に、上記チタン酸バリウム系半導体磁器
組成物の製造方法について説明すると、チタン酸バリウ
ム系基体組成物の粉体を通常のセラミックスの固相反応
により、1000〜1200℃で仮焼し、微粉砕により平均粒径
3μm以下の仮焼粉体を得た。続いて、上記仮焼粉体を
所定形状に成形して、酸化雰囲気中、1300〜1380℃で本
焼成することにより、チタン酸バリウム系半導体磁器組
成物を得た。
【0022】さらに、詳細には以下に示す通りである。
すなわち、粉体原料として高純度の炭酸バリウム(BaCO
3)(平均粒径 1.0〜2.0 μm)、酸化チタン(TiO2)
(平均粒径 1.0〜2.0 μm)、炭酸ストロンチウム(Sr
CO3)(平均粒径 0.7〜1.2 μm)、炭酸カルシウム(Ca
CO3)(平均粒径 1.0〜5.0 μm)、酸化ネオジウム(Nd
2O3)(平均粒径 1.0〜4.0 μm)と、炭酸マンガン(Mn
CO3)(平均粒径 1.0〜8.0 μm)、二酸化ケイ素(Si
O2) (平均粒径 1.0〜5.0 μm)を表1および表2に記
載した組成比となるようにそれぞれ配合し、イオン交換
水とナイロンコーティングした鉄球とともにボールミル
中に投入して24時間湿式混合した。
【0023】
【表1】
【0024】
【表2】
【0025】その後、ろ過乾燥し、1000〜1200℃の温度
で1〜5時間仮焼した。仮焼後の試料を、平均粒径3μ
m以下となるように微粉砕した後、その微粉体を、ポリ
ビニルアルコール(PVA)を2重量%含むバインダーと混
練してスラリーとし、そのスラリーをスプレードライヤ
ーにて造粒乾燥して造粒体を得た。
【0026】上記造粒体を、 1.0トン/cm2の圧力で、例
えば直径12.5mm、厚さ 1.2mmの円盤状に成形して成形品
を得た。その成形品を焼成鞘に詰め、電気炉で3℃/min
の昇温速度で昇温し、1300〜1380℃にて 0.1〜3時間焼
成した後、3〜0.5 ℃/minで降温して、試料(No.1〜5
6)をそれぞれ作製した。なお、上記成形品を焼成鞘に
詰めるとき、焼成後の離型性を高めるための敷き粉とし
て酸化ジルコニウム(ZrO2)の粉末を介在させて用い
た。
【0027】以上のようにして得られた試料は、直径1
0.3mm、厚さ 1.0mmの円盤状であり、その両面にオーミ
ック性の銀ペーストおよびカバー用銀ペーストを焼き付
けて電極を形成し、室温比抵抗、キュリー点、絶縁破壊
電圧をそれぞれ測定した。それらの結果を表3および表
4に示した。
【0028】
【表3】
【0029】
【表4】
【0030】ただし、上記の表1ないし表4中の*印の
試料は、本発明の範囲外を示す参考例であり、他の全て
の試料は本発明の範囲内を示す実施例である。なお、上
記実施例としての試料は、室温時の比抵抗が9Ω・cm以
下、かつ、絶縁破壊電圧(VB.D )と室温時の比抵抗
(ρ)との指標比(VBD/ρ)が7以上のものを選択し
た。表3および表4から明らかなように、各実施例の試
料は、参考例の試料と比べて、3〜9Ω・cmと低抵抗化
していると同時に、絶縁破壊電圧も35〜80V/mmと大幅
に増加している。
【0031】その上、上記指標比(VBD/ρ)も7〜
程度と大きくなっていて、低抵抗であり、かつ、高い
絶縁破壊電圧を有するという従来では相反していた特性
を同時に有するものとなっている。
【0032】このように、本発明者らは、高絶縁破壊電
圧を有し、かつ低抵抗素子を得るべく鋭意検討し、毒性
を有する鉛の添加を省いて、半導体化剤を0.22〜0.35 m
ol%の範囲内で添加し、かつ、炭酸マンガン、二酸化ケ
イ素、酸化チタンを表1および表2に記述したように配
合すること、および、バリウムを、ストロンチウムとカ
ルウシムとで同時に置換することにより、得られた組成
物の融点を高めて、敷き粉との反応や融着を回避できる
と共に、高い絶縁破壊電圧および低抵抗化が可能とな
り、従来知られている組成から鉛を省いたものと同等か
それ以上のものが得られることを見出した。
【0033】すなわち、炭酸マンガンを0.05〜0.10 mol
%、二酸化ケイ素および過剰な酸化チタンの合計量を
1.5〜3.2mol%、かつ、上記二酸化ケイ素の添加量を0.3
〜2.3mol%となるように配合し、さらにバリウムを、
1〜10 mol%のストロンチウムおよび13〜18 mol%のカ
ルシウムによって同時に置換することにより、低抵抗で
しかも絶縁破壊電圧が実用上必要な35V/mm以上で、か
つ、前記の指標比も7以上のPTC素子を得ることが可
能となった。
【0034】この結果、上記実施例の構成は、同一定格
電圧に対して、室温時に低抵抗で高絶縁破壊電圧を有す
る素子を作製できて、大きな負荷に対する制御が可能で
あるため、低電圧駆動を中心とした回路における電流制
限素子、つまり過電流保護用回路素子に好適に用いるこ
とができる。さらに、同様に、モータ起動用回路素子、
定温発熱素子、消磁回路用素子にも好適に用いることが
できる。
【0035】また、同一抵抗値を有するPTC素子と比
較した場合、高絶縁破壊電圧を有することによって従来
より小型、薄型化できるため、焼成時の加熱コストや金
型コストを軽減でき、さらに安価な製造コストを実現で
きる。
【0036】その上、上記構成は、毒性を有する鉛を含
まない構成であるため、鉛による製造環境の劣化を回避
できると共に廃棄物処理が簡便となる等、産業上の利用
価値が極めて高く、有用なものである。なお、上記実施
例の構成では、出発原料として炭酸塩および酸化物を用
いた例を挙げたが、上記に特に限定されることはなく、
焼成時に熱分解等により所定の成分比を与える原料を用
いればよい。
【0037】次に、上記の各試料の諸物性の測定方法に
ついて説明する。 (1)抵抗温度特性の測定 試料を測定用の試料ホルダーに取り付け、測定槽(タバ
イエスペック社製、商品名:MINI-SUBZERO MC-810P )内
に装着して、−50〜180 ℃までの温度変化に対する試料
の電気抵抗の変化を直流抵抗計(YHP製、商品名:マ
ルチメーター3878A)を用いて測定した。さらに、180
℃以上の温度での電気抵抗の変化は、別の測定槽(ヤマ
ト科学製、商品名:DX-30 )に試料ホルダーごと入れ替
え、上記測定槽からの端子を同上の直流抵抗計にて測定
した。試料のキュリー点(Tc)は、上記各測定槽からの
測定値をプロットし、その最低比抵抗の2倍の比抵抗を
示した温度として算出された。
【0038】(2)室温比抵抗 試料を25℃の測定槽において上記直流抵抗計を用いて電
気抵抗を測定した。上記試料の調製において、電極形成
前に試料の大きさ(径および厚さ)を測定しておき、次
式により比抵抗(ρ)を算出し、これを比抵抗とした。
【0039】ρ=R・S/t ρ:比抵抗 〔Ω・cm〕 R:電気抵抗の測定値 〔Ω〕 S:電極の面積 〔cm2 〕 t:試料の厚さ 〔cm〕 (3)絶縁破壊電圧 試料を測定用ホルダーに取り付け、直流安定化電源(TA
KASAGO LTD製、商品名:GPO25-5 およびGPO350−2 )と
直流電圧計(HEWLETT PACKARD 製、商品名:3457A)、マ
ルチメーター(ADVANTEST 製)とを接続した。上記試料
に印加する電圧を100mVから徐々に上昇させたときに、
電流値が急増して熱暴走を始める電圧を、上記試料の絶
縁破壊電圧とした。
【0040】
【発明の効果】本発明のチタン酸バリウム系半導体磁器
組成物は、以上のように、チタン酸バリウム系半導体磁
器組成物におけるBa原子を、1〜10 mol%のSr原子
および13〜18 mol%のCa原子にて置換し、さらに、半
導体化剤としてBi、Nb、W、Ta、Sbあるいは希
土類元素のうち少なくとも1種の元素を0.22〜0.35 mol
%、Mnを0.05〜0.10 mol%を含む基体組成物に対し、
SiO2 と過剰分のTiO2 とからなる液相生成成分を
1.5〜3.2mol%の範囲内で含有し、かつ、上記SiO2
含有量は 0.3〜2.3mol%の範囲内であり、鉛を含まない
構成である。
【0041】それゆえ、上記構成は、毒性を有する鉛を
含まなくとも、室温時に低抵抗でしかも絶縁破壊電圧が
実用上必要な35V/mm以上、かつ、絶縁破壊電圧
(VBD)と室温時の比抵抗(ρ)との比である指標比
(VBD/ρ)も7以上のPTC素子を得ることが可能と
なった。
【0042】この結果、上記構成は、同一定格電圧に対
して、低抵抗で高絶縁破壊電圧を有する素子を作製でき
て、大きな負荷に対する制御が可能であるため低電圧駆
動を中心とした回路における電流制限素子や定温発熱体
等に好適に用いることができる。
【0043】また、同一抵抗値を有するPTC素子と比
較した場合、高絶縁破壊電圧を有することによって従来
より小型、薄型化できるため、焼成時の加熱コストや金
型コストを軽減でき、さらに安価な製造コストを実現で
きる。
【0044】その上、上記構成は、毒性を有する鉛を含
まない構成であるため、鉛による製造環境の劣化を回避
できると共に廃棄物処理が簡便となる等、産業上の利用
価値が極めて高く、有用なものであるという効果を奏す
る。
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/50 CA(STN) REGISTRY(STN)

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】正の抵抗温度特性を有するチタン酸バリウ
    ム系半導体磁器組成物において、 上記Ba原子を、1〜10 mol%のSr原子および13〜18
    mol%のCa原子にて置換し、さらに、半導体化剤とし
    てBi、Nb、W、Ta、Sbあるいは希土類元素のう
    ち少なくとも1種の元素を0.22〜0.35 mol%、Mnを0.
    05〜0.10 mol%を含む基体組成物に対し、SiO2 と過
    剰分のTiO2 とからなる液相生成成分を1.5〜3.2mol%
    の範囲内で含有し、かつ、上記SiO2の含有量は 0.3
    〜2.3mol%の範囲内であり、 鉛を含まない ことを特徴とするチタン酸バリウム系半導
    体磁器組成物。
  2. 【請求項2】室温時の比抵抗が4.0Ω・cm未満であ
    り、かつ、絶縁破壊電圧と室温時の比抵抗との比(絶縁
    破壊電圧/室温時の比抵抗)が10.0以上であること
    を特徴とする請求項1記載のチタン酸バリウム系半導体
    磁器組成物。
JP26659193A 1993-10-25 1993-10-25 チタン酸バリウム系半導体磁器組成物 Expired - Fee Related JP3254316B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26659193A JP3254316B2 (ja) 1993-10-25 1993-10-25 チタン酸バリウム系半導体磁器組成物

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26659193A JP3254316B2 (ja) 1993-10-25 1993-10-25 チタン酸バリウム系半導体磁器組成物

Publications (2)

Publication Number Publication Date
JPH07118061A JPH07118061A (ja) 1995-05-09
JP3254316B2 true JP3254316B2 (ja) 2002-02-04

Family

ID=17432941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26659193A Expired - Fee Related JP3254316B2 (ja) 1993-10-25 1993-10-25 チタン酸バリウム系半導体磁器組成物

Country Status (1)

Country Link
JP (1) JP3254316B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817546A (zh) * 2010-03-23 2010-09-01 大连理工大学 一种球形碱土金属含氧化合物均相混合粉体的合成方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3613140B2 (ja) * 1999-08-26 2005-01-26 株式会社村田製作所 圧電磁器組成物およびそれを用いた圧電セラミック素子
CN106554201A (zh) * 2016-10-26 2017-04-05 安徽飞达电气科技有限公司 一种无铅高压陶瓷电容器材料
CN112266012B (zh) * 2020-10-28 2021-10-22 潮州三环(集团)股份有限公司 一种钛酸钡粉体及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101817546A (zh) * 2010-03-23 2010-09-01 大连理工大学 一种球形碱土金属含氧化合物均相混合粉体的合成方法

Also Published As

Publication number Publication date
JPH07118061A (ja) 1995-05-09

Similar Documents

Publication Publication Date Title
US4483933A (en) Semiconductor ceramic composition
JP3319314B2 (ja) チタン酸バリウム系半導体磁器組成物
JPH1187108A (ja) 正特性半導体磁器の製造方法
JP3254316B2 (ja) チタン酸バリウム系半導体磁器組成物
JPH075363B2 (ja) Ptc磁器組成物及びその製造方法
US6071842A (en) Barium titanate-based semiconductor ceramic
JP2017178658A (ja) 半導体磁器組成物およびその製造方法
JP4058140B2 (ja) チタン酸バリウム系半導体磁器
JP2014034505A (ja) 半導体磁器組成物およびその製造方法
JP3039511B2 (ja) 半導体セラミックおよび半導体セラミック素子
JP2000264726A (ja) 半導体磁器
JPS6243522B2 (ja)
WO2004110952A1 (ja) チタン酸バリウム系半導体磁器組成物
JP6075877B2 (ja) 半導体磁器組成物およびその製造方法
JPH07220902A (ja) チタン酸バリウム系半導体磁器
JP3555395B2 (ja) チタン酸バリウム鉛系半導体磁器組成物
JPH07118063A (ja) チタン酸バリウム系半導体磁器組成物
JPH07297009A (ja) 正特性サーミスタ及びその製造方法
JPH07118062A (ja) チタン酸バリウム系半導体磁器組成物およびその製造方法
JP4800956B2 (ja) チタン酸バリウム系半導体磁器組成物
JP3598177B2 (ja) 電圧非直線性抵抗体磁器
JP2990679B2 (ja) チタン酸バリウム系半導体磁器組成物
JPH11139870A (ja) チタン酸バリウム系半導体磁器
JP3178083B2 (ja) チタン酸バリウム系セラミックス半導体およびその製造方法
JPH07187770A (ja) チタン酸バリウム系半導体磁器およびその製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees