JP3113776B2 - D−キロ−イノシトールの製造方法 - Google Patents

D−キロ−イノシトールの製造方法

Info

Publication number
JP3113776B2
JP3113776B2 JP06152181A JP15218194A JP3113776B2 JP 3113776 B2 JP3113776 B2 JP 3113776B2 JP 06152181 A JP06152181 A JP 06152181A JP 15218194 A JP15218194 A JP 15218194A JP 3113776 B2 JP3113776 B2 JP 3113776B2
Authority
JP
Japan
Prior art keywords
kasugamycin
dci
inositol
kilo
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06152181A
Other languages
English (en)
Other versions
JPH0820550A (ja
Inventor
聖 佐藤
信 吉田
健司 神辺
富雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microbial Chemistry Research Foundation
Hokko Chemical Industry Co Ltd
Original Assignee
Microbial Chemistry Research Foundation
Hokko Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP06152181A priority Critical patent/JP3113776B2/ja
Application filed by Microbial Chemistry Research Foundation, Hokko Chemical Industry Co Ltd filed Critical Microbial Chemistry Research Foundation
Priority to US08/596,131 priority patent/US5714643A/en
Priority to ES94923085T priority patent/ES2130440T3/es
Priority to DK94923085T priority patent/DK0712827T3/da
Priority to PCT/JP1994/001304 priority patent/WO1995004711A1/ja
Priority to AT94923085T priority patent/ATE176779T1/de
Priority to KR1019960700719A priority patent/KR100332144B1/ko
Priority to DE69416594T priority patent/DE69416594T2/de
Priority to CN94193030A priority patent/CN1072637C/zh
Priority to EP94923085A priority patent/EP0712827B1/en
Priority to CA002168953A priority patent/CA2168953A1/en
Priority to TW083108097A priority patent/TW350837B/zh
Priority to IL11137694A priority patent/IL111376A/xx
Publication of JPH0820550A publication Critical patent/JPH0820550A/ja
Application granted granted Critical
Publication of JP3113776B2 publication Critical patent/JP3113776B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、D−キロ−イノシトー
ル(D-chiro-inositol ;以下単に「DCI」と略すこと
もある)の改良製造方法に関する。DCIは最近になっ
て特にインシュリン非依存性糖尿病の治療薬または予防
薬として注目されている。
【0002】
【従来の技術】これまでDCIの製造法については、次
の方法が知られている。 ブーゲンビリア、サトウマツ(sugar pine)およびア
メリカ杉等の植物に含まれているピニトール(pinitol;
DCIのモノメチルエーテル体) を抽出し、ヨウ化水素
酸等で脱メチル化し、DCIを得る方法。
【0003】 1−クロロ−2,3−ジヒドロキシシ
クロヘキサ−4,6−ジエン(1- chlor-2,3-dihydroxyc
yclohexa-4,6-diene) を出発原料として数段階の反応を
経てDCIを得る方法〔J. Org. Chem. (ジャーナル
オブ オーガニック ケミストリー),第58巻,第23
31頁〜2333頁,1993年〕。
【0004】 ハロゲノベンゼンを出発原料として数
段階の反応を経てDCI を得る方法〔J. Chem. Soc. Perk
in Transactions 1(ジャーナル オブ ザ ケミカル
ソサイアティ パーキン トランザクションズ),第 741
頁〜 743頁,1993年〕。 高純度のカスガマイシンを原料として用い、これを
2Nのトリフルオロ酢酸または5Nの塩酸中で加熱する
ことにより、非常に強い酸性条件下で加水分解し、その
後、得られた反応溶液を中和及び不純物の除去の目的で
塩基性イオン交換樹脂のカラムと強酸性イオン交換樹脂
のカラムとに順次に、又はこれらの樹脂を混合したカラ
ムに通し、さらにカラム通過液からエタノールで再結晶
することによりDCIを得る方法(米国特許第 5,091,5
96号明細書参照)。
【0005】
【発明が解決しようとする課題】DCIの製造方法は前
述したように種々の方法が提案されているが、工業的規
模で有利にDCIを製造するにはさまざまな難点があ
る。すなわち、の方法による植物から抽出するDCI
の製法はDCIの分離と精製が繁雑であり、収率も低
い。またとの化学合成によるDCIの製造法は、立
体特異的な合成が必要とされるため、反応収率が低く、
製造コストも高い。
【0006】またの方法によるカスガマイシンの酸加
水分解反応には、非常に強い酸(5N塩酸または2Nト
リフルオロ酢酸水溶液等)を使うため、カスガマイシン
分子の解裂の際の副反応による不純物の生成が避けられ
ない。特に、カスガマイシンのもう一つの構成糖である
アミノ糖が分解する副反応にともない、不純物が生成し
DCIの収率もわるくなる。また、の方法では、加水
分解に用いた強酸を中和するために大量の強塩基性イオ
ン交換樹脂を使い、しかも、副生した塩基性化合物の除
去のためにも大量の強酸性イオン交換樹脂を使うために
(各樹脂とも、重量でカスガマイシンの約13倍量を使
用する)、使用後のこれらのイオン交換樹脂の再生等に
大量の試薬と大量の水が必要であり、大量の廃水の事後
処理も必要となるなど、問題点が多い。
【0007】したがって、これらの公知の製造法に代わ
る工業的に有利なDCIの製造方法の開発が望まれてい
る。このような現状にあって、本発明の目的は、簡便な
操作でDCIを高純度に且つ高収率で製造し得る方法を
提供することにある。
【0008】
【課題を解決するための手段】本発明者らは、上記の課
題を解決すべく鋭意検討を重ねた。その結果、カスガマ
イシンの塩酸塩、硫酸塩又は遊離塩基(以下、特にこと
わりのないかぎり、これら塩および遊離塩基を含めて単
に「カスガマイシン」という)の加水分解を行う際に、
バッチ式の反応容器内で、すなわち強酸性イオン交換樹
脂の粒状物とカスガマイシン水溶液を加熱条件下、混合
することによって反応させてカスガマイシンを加水分解
してDCIを生成し、生成されたDCIを含む反応溶液
を得て、これを強酸性イオン交換樹脂のカラムに通した
後、強塩基性イオン交換樹脂カラムに通してDCIを含
む中性の溶出液を得て、次いでDCIを結晶化する工程
を行うことにより、高純度のDCI結晶を取得できるこ
とを見いだした。これによって、第1の本発明をなすに
至った。
【0009】すなわち第1の本発明の要旨とするところ
は、次の第1工程から第4工程までを連続して行うこと
を特徴とする、D−キロ−イノシトールの製造方法にあ
る。
【0010】(第1工程):カスガマイシン塩又は遊離
塩基の水溶液を強酸性イオン交換樹脂(H+ 型)の粒状
物と混合してこの混合物を常圧下または加圧下で加熱し
てカスガマイシンの加水分解を行い、反応終了後に、生
成されたD−キロ−イノシトールを含む酸性の反応溶液
を該樹脂から分離して、D−キロ−イノシトールを含む
酸性の反応溶液を得る工程。 (第2工程):第1工程で得た酸性の反応溶液を強酸性
イオン交換樹脂(H+ 型)の充填カラムに通して、これ
により該反応溶液中に存在する塩基性の不純物を除去し
且つ場合により混在する未反応のカスガマイシンをも除
去して、DCIを含む酸性の水溶液を得る工程。 (第3工程):第2工程で得た酸性の水溶液を強塩基性
イオン交換樹脂(OH- 型)の充填カラムに通してDC
Iを含む中和された溶出液を得る工程。 (第4工程):第3工程で得た溶出液を濃縮し、その濃
縮液から高純度のDCIの結晶を析出させる工程。
【0011】また、カスガマイシンを原料として用い第
1の本発明の方法の第1工程と同様にして強酸性イオン
交換樹脂(H+ 型)と混合して加熱下にカスガマイシン
を加水分解し、DCIを含む酸性の反応溶液を得ると、
この反応溶液からDCIを中性糖の一般的に慣用の回収
法の応用により回収できることを見出した。
【0012】したがって、第2の本発明の要旨とすると
ころは、カスガマイシン塩又は遊離塩基の水溶液を強酸
性イオン交換樹脂(H+ 型)の粒状物と混合してこの混
合物を常圧下または加圧下で加熱してカスガマイシンの
加水分解を行い、反応終了後に、生成されたD−キロ−
イノシトールを含む酸性反応溶液を、使用した強酸性イ
オン交換樹脂から分離してD−キロ−イノシトールを含
む酸性の反応溶液を得て、さらにこの酸性の反応溶液か
らD−キロ−イノシトールを回収することを特徴とする
D−キロ−イノシトールの製造方法にある。
【0013】第1および第2の本発明の方法で出発原料
として使用するカスガマイシン遊離塩基、塩酸塩または
硫酸塩の水溶液は、通常次のように調製して使用され
る。すなわち、生産力価を高めるように改良されたカス
ガマイシン生産菌を通常の方法で培養し、得られた培養
液をろ過する。そしてその培養ろ液から通常の採取法で
カスガマイシン遊離塩基、塩酸塩または硫酸塩を分離す
る。
【0014】こうして得たカスガマイシン遊離塩基、塩
酸塩または硫酸塩は、高純度品を使用するにはいくつか
の精製工程であらかじめ処理したものを使用するのがよ
い。また、高純度なカスガマイシン塩酸塩または硫酸塩
を用いる場合、例えば、植物病害防除用農薬の製造用の
カスガマイシン原体として日本国内外で生産されている
カスガマイシン塩酸塩または硫酸塩の原体粉末を用いる
ときは、その純度の高いものはそのままイオン交換水等
に溶解して用いてもよい。しかし、純度が低いものは、
イオン交換水等に溶解し、一旦活性炭を入れたカラムを
通して予備精製して用いるのがよい。
【0015】第1及び第2の本発明に係る2つの製造方
法について概要を次に説明する。 I)第1の本発明の方法 第1の本発明の方法は、大きくみると、4つの工程から
構成される。以下に各工程について詳しく説明する。
【0016】(1)第1工程の実施方法 第1の本発明の方法の第1工程では、バッチ式の反応容
器を用い、この反応容器内でカスガマイシンを強酸性イ
オン交換樹脂(H+ 型)の粒状物と混合させ、該樹脂の
存在下に常圧または加圧下にその混合物を加熱するとカ
スガマイシンが加水分解し、DCIを生成する。反応中
に反応混合物を攪拌してもよく、また静置状態に置いて
もよい。
【0017】第1工程で使用される強酸性イオン交換樹
脂(H+ 型)としてはスルホン酸残基を有するイオン交
換樹脂が好ましく、その例として市販の強酸性イオン交
換樹脂、例えばダイヤイオン(登録商標)SK116、
ダイヤイオン(登録商標)PK228、アンバーライト
(登録商標)IR120B、アンバーライト(登録商
標)200C、アンバーライト(登録商標)201B、
デュオライト(登録商標)C−20、デュオライト(登
録商標)C−264、デュオライト(登録商標)XE−
636、ダウエックス(登録商標)50Wなどが挙げら
れる。
【0018】また、使用されるカスガマイシンの水溶液
のカスガマイシン濃度は 0.1〜30重量%であることが
でき、好ましくは10〜25%である。この場合、カス
ガマイシンは必要ならば60〜80℃程度に加温してで
きるだけ高濃度(10〜25重量%)の水溶液に調製し
た水溶液として用いると、加水分解工程後のDCIの精
製操作(特に水溶液の濃縮操作)を容易に行うことがで
きる。強酸性イオン交換樹脂(H+ 型)の量はカスガマ
イシン量に対して少なくともイオン交換容量の1倍以上
使用するのがよい。
【0019】カスガマイシンの加水分解率を高め、DC
Iを高収率で得るためには、反応温度が高く(例えば水
の沸点100℃近い温度)、反応時間が長いほどよい。
【0020】ただし、使用する強酸性イオン交換樹脂を
再生後に繰り返し使用するには、使用する強酸性イオン
交換樹脂の耐用温度(例えばダイヤイオン(登録商標)
SK116の耐用温度は120℃,デュオライト(登録
商標)CC−240Fの耐用温度は135℃)より低い
温度で使用する必要がある。
【0021】加水分解の反応温度と反応時間は使用する
強酸性イオン交換樹脂の種類によって異なるが、例えば
ダイヤイオン(登録商標)SK116を用いた場合、温
度は常圧下に50〜100℃、好ましくは90〜98℃
であり、反応時間は6〜60時間、好ましくは10〜4
8時間である。このような条件で反応混合物を静置し又
は攪拌下に反応させると、カスガマイシンは100%近
く加水分解を受け、DCIに変換される。
【0022】また、カスガマイシンの加水分解を、前述
と同様な強酸性イオン交換樹脂(H+ 型)を用い、かつ
反応混合物中の水の沸とうを抑止するのに足る加圧下
に、例えばゲージ圧で 0.1〜3kg/cm2 圧力、好ましく
は 0.5〜 1.2kg/cm2 の圧力下に110〜120℃の温
度で行なえば、例えば1〜12時間、好ましくは1〜6
時間で加水分解反応を完結させ、理論収率の100%に
近い収率でDCIを反応液中に生成させることができ
る。
【0023】カスガマイシンの加水分解反応を上記のよ
うな加圧下に行う場合には、反応容器を耐圧構造とする
か、オートクレーブ内に反応容器を設置して行うのがよ
い。また、加水分解反応を行う場合は、反応混合物を攪
拌することは必ずしも必要ではない。
【0024】カスガマイシンの加水分解反応を終了した
後は、必要ならば、樹脂と酸性の反応溶液との混合物を
50℃より低い温度、好ましくは室温に冷却する。強酸
性イオン交換樹脂から酸性の反応溶液をろ過して分離で
きる。このろ液として得られた酸性の反応溶液の酸性度
は、使用したカスガマイシンや強酸性イオン交換樹脂の
量及び種類、等により変動するが、約0.05〜 1.0Nに相
当する。またろ過残渣として得た樹脂は樹脂の 0.8〜1
倍量の水を樹脂に加えて洗浄すると、DCIが水に溶出
し、DCIを含む水洗液が得られる。そして、この水洗
液と上記でろ過して得た酸性の反応溶液を混合する。
【0025】(2)第2工程の実施方法 第1の本発明方法の第2工程では、第1工程で得たDC
Iを含む酸性の反応溶液を、強酸性イオン交換樹脂カラ
ムに精製目的で通過させる。そうすれば未反応のカスガ
マイシン、第1工程で樹脂に吸着できなかった塩基性物
質及び第1工程で副生した塩基性物質を除去することが
できる。
【0026】ここで使用する強酸性イオン交換樹脂は、
第1工程で用いたのと同種の、例えばダイヤイオン(登
録商標)SK116などを第1工程と同様に(H+ 型)
とし、カラムに充填して用いればよい。この場合、樹脂
のカラムへの充填量は、第1工程で得た酸性の反応溶液
に含まれる除去すべき塩基性成分の量により変動する
が、通常の場合、第1工程で使用した樹脂量とほぼ同量
の強酸性イオン交換樹脂を使用すればよい。
【0027】この第2工程で、カラムを通過させて得た
酸性の反応溶液は、これをそのまま第3工程へ使用でき
る。ただし、使用した強酸性イオン交換樹脂内の残存D
CIを溶出するために該樹脂を、それとほぼ同量のイオ
ン交換水をカラム上部に加えてそのまま、洗うか、又は
カラム上部にイオン交換水を加えた後樹脂を攪拌するこ
とにより水洗して、この水洗液を上記の酸性の反応溶液
と合せてもよい。合併した液を次の第3工程に用いると
DCIをより高収率で得ることができる。
【0028】(3)第3工程の実施方法 第1の本発明方法の第3工程は、第1工程の加水分解反
応で生じた酸を中和する目的で行われる。その中和方法
としては、第2工程で得たDCIを含む酸性の水溶液
を、強塩基性イオン交換樹脂の充填カラムに通過させ、
これによってDCIを含む中性の溶出液を得る。
【0029】ここで使用される強塩基性イオン交換樹脂
(OH- 型)としては、第4級アンモニウム基を官能基
として含むイオン交換樹脂、例えばデュオライト(登録
商標)A−113PLUSおよびアンバーライト(登録
商標)IRA 410などが挙げられる。この塩基性イ
オン交換樹脂のカラムへの充填量は、第2工程で処理す
べき反応溶液に含まれる、除去すべき酸性成分の量によ
り変動するが、通常の場合は第1工程で使用した樹脂量
と同等量から2倍量までの範囲の量の強塩基性イオン交
換樹脂を使用すれば、DCI水溶液中の酸性成分を吸着
し、該水溶液を中和することができる。
【0030】こうしてカラム溶出液として得た中和され
たDCI水溶液は、その溶出液そのまま第4工程に用い
てよい。しかし、第2工程と同様に、第3工程で使用し
た樹脂をイオン交換水で洗浄して、その水洗液をDCI
水溶液と合わせて第4工程にかけるとDCIをより高収
率で得ることができる。また、この第3工程により中和
されたDCI含有溶出液をさらに精製したいときは、活
性炭等の吸着剤の充填カラムに通液してもよい。
【0031】第1の本発明方法の第2および第3工程に
よって、原料として用いたカスガマイシンに含まれてい
た不純物、その不純物から第1工程の加水分解反応によ
って生成した副生成物、ならびにカスガマイシンの加水
分解で生じた副生成物を完全に除去することができる。
その結果、高純度のDCIを得ることができる。
【0032】(4)第4工程の実施の方法 第1の本発明方法の第4工程では、第3工程で得られた
DCIを含みかつ、不純物を実質的に含まない中性の溶
出液よりDCIを回収する。この回収のために、前記の
溶出液を濃縮し、DCIを結晶化させればよい。例えば
前記溶出液を濃縮するために減圧下にロータリーエバポ
レーター内で加温する。こうして得た濃縮液を60〜8
0℃程度に加熱する。この加熱された濃縮液に対して、
同温度に加温したエタノールを攪拌しながら添加する。
その後室温にもどすとDCIが徐々に結晶化する。結晶
の折出後、ガラスフィルターで結晶をろ別し乾燥すれ
ば、目的とするDCIの白色結晶が得られる。この場
合、結晶を減圧下に50〜120℃、好ましくは90〜
110℃で2〜5時間乾燥すると、短時間にDCIの白
色結晶が得られる。
【0033】本発明は、このような第1工程〜第4工程
を連続して行うことにより、ほぼ100%の純度に純化
されたDCIを得ることができる。
【0034】II)第2の本発明の方法 第2の本発明の方法は、カスガマイシン水溶液を強酸性
イオン交換樹脂(H+型)の粒状物と混合して、この混
合物を常圧下または加圧下で加熱してカスガマイシンの
加水分解を行い、反応終了後にDCIを含む前記の酸性
反応溶液を該樹脂から分離して酸性の反応溶液を得て、
さらにこの酸性の反応溶液からDCIを回収することを
特徴とするDCIの製造方法である。
【0035】この第2の本発明の方法では、カスガマイ
シン水溶液を強酸性イオン交換樹脂と混合して加水分解
を行い、そしてDCIを含む酸性の反応溶液を得るに至
る工程は第1の本発明の第1工程と同様な要領で操作で
きる。
【0036】なお、第1の本発明の第1工程および第2
の本発明のカスガマイシンの加水分解工程を行うにあた
り、槽型よりもカラム状の反応容器を用いバッチ式で行
うことにより、続く工程も樹脂カラムを使用することか
ら、個々の工程を継続または連続的に連結することが可
能となり、反応液を一度も使用装置の系外に取り出すこ
となく、高純度のDCIを製造することもできる。
【0037】加水分解反応に使用するカラム状反応容器
の大きさは、使用するカスガマイシン水溶液の濃度、使
用量により適宜変更してよいが、小規模で実施するとき
は例えば、内径5〜6cm、長さ4〜10cm程度のカラム
状の反応容器が使用される。
【0038】また、カスガマイシン水溶液と樹脂を攪拌
混合するために、内径が大きいカラム状反応容器を用い
てもよい。
【0039】次に本発明のDCIの製造方法について実
施例を示して説明するが、本発明の実施例はこれらに限
定されるものではない。
【0040】
【実施例】実施例−1 本例は本発明の方法でカスガマイシン塩酸塩の水溶液を
原料として使用、常圧下で加圧分解する工程を含む方法
を例示する。
【0041】(第1工程)(加水分解工程) カスガマイシン塩酸塩結晶(15.5g,純度97.1%)を5
00ml容量のナス型フラスコに秤とり、100mlの
イオン交換水を加えて溶解し、カスガマイシン塩酸性の
水溶液を得た。これに強酸性イオン交換樹脂ダイヤイオ
ン(登録商標)SK116(H+ 型)<イオン交換容量
2.1ミリ当量/ml>100mlを加え、混合した。この
混合物をマグネットスターラーで攪拌しながら95℃で
12時間加熱してカスガマイシンの加水分解を行った。
【0042】反応混合物を冷却して室温にした後、強酸
性イオン交換樹脂をろ別した。この酸性のろ液の一部を
0.1N水酸化ナトリウム溶液で滴定すると 0.7規定の酸
に相当した。更にこの樹脂を100mlのイオン交換水で
洗浄し、ろ液と洗浄液(水洗液)を合併させて酸性の反
応溶液230mlを得た(DCI収率98%)。
【0043】上記の酸性のろ液、すなわち加水分解で生
じたDCIを含む酸性の反応溶液の一部をとり、シリカ
ゲルTLC(メルク社製、Art 5715)(展開溶媒:n−
ブタノール−酢酸−水,2:1:1)にかけ、さらにシ
リカゲル層をニンヒドリン、バニリン−硫酸、過マンガ
ン酸カリウム又はヨウ素蒸気で夫々に発色試験して比較
した。これによると、過マンガン酸カリウム及びバニリ
ン−硫酸による発色でDCIのスポット(Rf=0.39附
近)が認められ、その他にニンヒドリン、バニリン−硫
酸又はヨウ素蒸気による発色で副生成物のスポット(R
f=0.58附近、)が認められた。このことは、前記の加
水分解反応でDCI以外に生じた副生成物が少量にすぎ
ないことを示す。
【0044】(第2工程)(塩基性物質の除去工程) 第1工程で得た酸性の反応溶液を、強酸性イオン交換樹
脂、デュオライト(登録商標)C−20(H+ 型,70
ml)を充填したカラム(内径2cm、長さ22cm)の上部
にのせて通過させた。反応溶液を通過させた後、更にこ
の樹脂を70mlのイオン交換水で洗浄し、先に得たカラ
ム通過液と洗浄液を混合して300mlの反応溶液を得
た。
【0045】(第3工程)(中和工程) 第2工程で得られた酸性の反応溶液約300mlを、強塩
基性イオン交換樹脂,デュオライト(登録商標)A−1
13PLUS(OH- 型,100ml)を充填したカラム
(内径2.4cm 、長さ22cm)の上部にのせて通過させ
た。この樹脂をイオン交換水で洗浄し、最初の100ml
溶出液を除去し、次の約200mlの溶出液を回収した。
さらに、この樹脂を100mlのイオン交換水で洗浄し、
この洗浄液約100mlと先に回収したカラム溶出液を混
合し、約300mlの中性水溶液を得た。
【0046】上記の操作で得られた水溶液は、中和され
高純度に精製されたDCI溶液であった。水溶液中のD
CI含量を高速液体クロマトグラフィーで測定すると、
5.9g(理論値 6.2g)(収率94%、換算された純度
約99%)であった。
【0047】(第4工程)(DCIの結晶化工程) 第3工程で得た水溶液約300mlをロータリーエバポレ
ーターを用いて約25mlに濃縮し、70℃に加温した。
この濃縮液に同温度に加温したエタノール225mlを攪
拌しながら加えて、室温で約12時間静置しDCIの結
晶化を行った。結晶析出後、ガラスフィルターで結晶を
ろ別し、減圧下105℃で4時間乾燥し、DCIの白色
結晶 5.8g(収率94%、純度約100%)を得た。
【0048】このようにして得られたDCIは、比旋光
度が[α]D +65°(c1.0 ,H2 O)、融点238
℃であり、これらの物理化学的性質より、本物質が純粋
であることが示された。
【0049】実施例−2 本例は本発明の方法でカスガマイシン遊離塩基を原料と
して使用、常圧下で加水分解する工程を含む方法を例示
する。
【0050】実施例−1の第1工程と同様に、カスガマ
イシン遊離塩基(15g、純度98%)の水溶液100
mlを500ml容量のナス型フラスコに秤とり、強酸性イ
オン交換樹脂ダイヤイオン(登録商標)SK116(H
+ 型)100mlを加え、攪拌しながら、95℃で12時
間加熱してカスガマイシンの加水分解を行った。反応混
合物の全体を冷却して室温にした後、強酸性イオン交換
樹脂をろ別し、更にこの樹脂を100mlのイオン交換水
で洗浄し、ろ液と洗浄液を合わせた酸性の反応溶液約2
30mlを得た。この酸性の反応溶液を、実施例1の第
2、第3及び第4工程の操作と同様に処理すると、高純
度のDCI 6.6gが(収率94%,純度100%)得ら
れた。
【0051】実施例−3〜11 本例はカスガマイシン塩酸塩を原料として使用して本発
明の方法で加水分解する工程を含む方法を示す。
【0052】カスガマイシン塩酸塩結晶10.0g(純度9
9%)を原料とし、加水分解工程(第1工程)で使用す
る樹脂の種類、量、反応温度、反応時間等の諸条件を後
記の表1に示す如く変えて、実施例1に準じてDCIを
製造する。
【0053】(1)第1工程(加水分解工程) カスガマイシン(KSM)塩酸塩結晶10.0gを500ml
容量の三角フラスコに秤とり、50mlのイオン交換水で
加温溶解し、更に後記の表1記載の強酸性イオン交換樹
脂(H+ 型に調製)を加えて混合した。その後、常圧
下、もしくはオートクレーブ内で加圧下、加水分解反応
をバッチ式で行った。反応中は反応混合物を攪拌せずに
静置した。次いで反応液を室温に冷却後、強酸性イオン
交換樹脂をろ別し、この樹脂を50mlのイオン交換水で
洗浄した。この洗浄液とろ液を混合した酸性の反応溶液
約140mlを得た。
【0054】(2)第2〜第4工程 加水分解後、反応溶液からDCIの精製と回収の工程
(第2〜第4工程)までは下記の〜の条件のもとで
実施例−1に準じて行った。
【0055】 第2工程での強酸性イオン交換樹脂
は、デュオライト(登録商標)C−20(H+ 型)の5
0mlを、カラム(2×16cm)に充填し、使用した。D
CI溶出画分と該樹脂の洗浄液50mlを合併して約17
5mlの酸性の反応溶液を得た。
【0056】 第3工程での強塩基性イオン交換樹脂
は、デュオライト(登録商標)A−113PLUS(O
- 型)の60ml容量を、カラム(2×19cm)に充填
し、使用した。DCI溶出画分と該樹脂の洗浄液60ml
を合併して約200mlの中和された溶出液を得た。
【0057】 第4工程では、第3工程で得た溶出液
を約200mlを約10mlに濃縮後、約70℃に熱し、同
温度に熱したエタノール70mlを加えて混和し、室温中
に約12時間静置してDCIの結晶を析出させた。析出
した結晶をろ取し乾燥した。そしてその純度及び収率を
調べた。
【0058】上記の実施例3〜11の実験結果を要約し
て次の表1に示す。この表1には、前記の実施例1〜
2、ならびに後記の比較例の実験結果も合わせて記載す
る。
【0059】
【表1】
【0060】なお、表1において * 印はKSM遊離塩基,その他はすべてKSM塩酸塩
の使用を示す ** AはダイヤイオンSK116を、Bはデュオライト
CC204Fを示す *** 高速液体クロマトグラフィーでの分析による測定
値を示す **** DCIの精製のための本発明方法第2および第3
工程に必要な、強酸性イオン交換樹脂と強塩基性イオン
交換樹脂の合計量を示す (P):従来の米国特許方法による比較例での反応液の
処理に要する樹脂合計量を示す。
【0061】なお、加水分解工程の反応混合物は実施例
1〜2では攪拌条件下で反応され、実施例3〜11及び
比較例では静置条件下で反応された。
【0062】比較例 米国特許第 5,091,596号明細書に記載の方法に準じて塩
酸でカスガマイシンの加水分解を行い、DCIの精製を
経てDCIの製造を行った。
【0063】即ち、カスガマイシン塩酸塩結晶10.0g
(純度99%)に5N塩酸31mlを加え、90℃で8時
間反応した(DCI収率89%)。この反応溶液を実施
例1と同様にしてシリカゲルTLCにかけ反応溶液中に
含まれる副生成物の存在を調べた。Rf=0.58附近に大
量の副生成物の存在を示すスポットと、ニンヒドリン及
びヨウ素蒸気による発色でRf=0.39附近にDCI以外
に大量の副生成物の存在を示すスポットが認められた。
【0064】反応後、反応液を蒸留水で2倍に希釈した
(液量約70ml)。この強酸性の反応液を強塩基性イオ
ン交換樹脂アンバーライト(登録商標)IRA410
(OH- 型)のカラム(250ml,3×35cm)に通塔
し、その後500mlの蒸留水で水洗した。DCI溶出画
分(液量440ml,濃黄色に着色)の水素イオン濃度を
TB試験紙で調べると、該試験紙の色調は濃青色を示し
て溶液が強アルカリ性であることが示された。次にこの
溶液を強酸性イオン交換樹脂アンバーライト(登録商
標)IRA120(H+ 型)のカラム(250ml,3×
35cm)に通塔し、その後500mlの蒸留水で水洗し
た。DCI画分(液量500ml,無色透明)を、TB試
験紙で調べるとその色調は無変化であり、溶液は弱酸性
であった。次に溶液を活性炭0.76gを加え、5℃で2時
間攪拌した。ろ紙でろ過し活性炭を除き活性炭をイオン
交換水で洗浄した。ろ液と活性炭の洗浄液の混合液52
0mlを濃縮乾固することによりDCIの粗結晶 3.9g
(純度約92%)を得た。
【0065】次いで上記で得た粗結晶 3.9gに蒸留水1
0mlを加え、約70℃に熱し、同温度に熱したエタノー
ル70mlを加えて混和し、室温中に約12時間静置して
DCI結晶を析出させた。DCI結晶をろ取し乾燥して
DCIの結晶 3.4g(収率82%,純度100%)を得
た。DCIの純度は液体クロマトグラフィーで分析し
た。
【0066】
【発明の効果】本発明の方法によれば、工業的規模でD
CIを製造する方法としては、従来のカスガマイシンを
強酸水溶液で加水分解する方法に比べて下記の点で非常
に有利である。
【0067】 本発明の方法は、温和な反応条件下で
かつ簡便な操作により、副反応を伴なうことなく高収率
かつ高純度のDCIが得られる。すなわち、本発明の方
法は、カスガマイシンの加水分解を従来の液体酸を用い
る方法によらず強酸性イオン交換樹脂を用いることによ
り、加水分解直後の反応液中でDCI収率が90%又は
それ以上と高くすることができ、これは従来法では80
%台であるのに対し、極めて有利である。このような高
水準のDCI収率が最終段階まで維持され、100%純
度のDCIが90%より有意に高い収率で得られる。し
かもカスガマイシンの加水分解を強酸性イオン交換樹脂
を用いて行うことにより、DCIの精製工程の樹脂量が
従来法に比べ約1/5〜2/5の容量と著しく少なくて
すむことから、DCIの濃縮溶液量も約2/5〜3/5
と少なくてもよく、濃縮装置が小さく、濃縮時間も少な
くてすむ。
【0068】 またカスガマイシンの加水分解反応を
高温、高圧下で行なうと常圧下の反応に比べて反応時間
を1/4に短縮できる。
【0069】 本発明の方法で用いた強酸性または塩
基性イオン交換樹脂は、アルカリまたは酸の水溶液で再
生処理することにより再使用できる。
【0070】 加水分解反応および使用した強酸性ま
たは強塩基性イオン交換樹脂の再生等に使用される酸及
びアルカリの量は、カスガマイシンを強酸で分解する従
来法に使う量の約3分の1程度に節約でき、また設備が
小さくてすみ、また廃水の処理などの労力が大幅に削減
される。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C07C 35/16 C07C 35/16 // C07B 61/00 300 C07B 61/00 300 (72)発明者 竹内 富雄 東京都品川区東五反田5丁目1番11号 ニューフジマンション701 (56)参考文献 特開 平7−118189(JP,A) 特開 平7−53425(JP,A) 特開 昭62−96439(JP,A) 特公 昭34−4815(JP,B1) (58)調査した分野(Int.Cl.7,DB名) C07C 29/09 C07C 29/76 C07C 35/16 C07C 35/14

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】 次の第1工程から第4工程までを連続し
    て行うことを特徴とする、D−キロ−イノシトールの製
    造方法。 (第1工程):カスガマイシン塩又は遊離塩基の水溶液
    を強酸性イオン交換樹脂(H+ 型)の粒状物と混合して
    この混合物を常圧下または加圧下で加熱してカスガマイ
    シンの加水分解を行い、反応終了後に、生成されたD−
    キロ−イノシトールを含む酸性の反応溶液を該樹脂から
    分離して、D−キロ−イノシトールを含む酸性の反応溶
    液を得る工程。 (第2工程):第1工程で得た酸性の反応溶液を強酸性
    イオン交換樹脂(H+ 型)の充填カラムに通して、これ
    により該反応溶液中に存在する塩基性の不純物を除去し
    且つ場合により混在する未反応のカスガマイシンをも除
    去して、D−キロ−イノシトールを含む酸性の水溶液を
    得る工程。 (第3工程):第2工程で得た酸性の水溶液を強塩基性
    イオン交換樹脂(OH- 型)の充填カラムに通してD−
    キロ−イノシトールを含む中和された溶出液を得る工
    程。 (第4工程):第3工程で得た溶出液を濃縮し、その濃
    縮液からD−キロ−イノシトールの結晶を析出させる工
    程。
  2. 【請求項2】 カスガマイシン塩又は遊離塩基の水溶液
    を強酸性イオン交換樹脂(H+ 型)の粒状物と混合して
    この混合物を常圧下または加圧下で加熱してカスガマイ
    シンの加水分解を行い、反応終了後に、生成されたD−
    キロ−イノシトールを含む酸性反応溶液を該樹脂から分
    離してD−キロ−イノシトールを含む酸性の反応溶液を
    得て、さらにこの酸性の反応溶液からD−キロ−イノシ
    トールを回収することを特徴とするD−キロ−イノシト
    ールの製造方法。
JP06152181A 1993-08-11 1994-07-04 D−キロ−イノシトールの製造方法 Expired - Fee Related JP3113776B2 (ja)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP06152181A JP3113776B2 (ja) 1994-07-04 1994-07-04 D−キロ−イノシトールの製造方法
CA002168953A CA2168953A1 (en) 1993-08-11 1994-08-08 Process for producing d-chiro-inositol
DK94923085T DK0712827T3 (da) 1993-08-11 1994-08-08 Fremgangsmåde til fremstilling af D-chiro-inositol
PCT/JP1994/001304 WO1995004711A1 (fr) 1993-08-11 1994-08-08 Procede de production de d-chiro-inositol
AT94923085T ATE176779T1 (de) 1993-08-11 1994-08-08 Verfahren zur herstellung von d-chiro inositol
KR1019960700719A KR100332144B1 (ko) 1993-08-11 1994-08-08 D-키로-이노시톨제조방법
US08/596,131 US5714643A (en) 1993-08-11 1994-08-08 Processes for the preparation of D-chiro-inositol
CN94193030A CN1072637C (zh) 1993-08-11 1994-08-08 D-手性肌醇的制造方法
EP94923085A EP0712827B1 (en) 1993-08-11 1994-08-08 Process for producing d-(chiro)-inositol
ES94923085T ES2130440T3 (es) 1993-08-11 1994-08-08 Proceso para producir d-(quiro)-inositol.
DE69416594T DE69416594T2 (de) 1993-08-11 1994-08-08 Verfahren zur herstellung von d-chiro inositol
TW083108097A TW350837B (en) 1993-08-11 1994-09-02 Process for preparing D-chiro-inositol
IL11137694A IL111376A (en) 1993-10-26 1994-10-24 Processes for the preparation of D-chiro-inositol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06152181A JP3113776B2 (ja) 1994-07-04 1994-07-04 D−キロ−イノシトールの製造方法

Publications (2)

Publication Number Publication Date
JPH0820550A JPH0820550A (ja) 1996-01-23
JP3113776B2 true JP3113776B2 (ja) 2000-12-04

Family

ID=15534830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06152181A Expired - Fee Related JP3113776B2 (ja) 1993-08-11 1994-07-04 D−キロ−イノシトールの製造方法

Country Status (1)

Country Link
JP (1) JP3113776B2 (ja)

Also Published As

Publication number Publication date
JPH0820550A (ja) 1996-01-23

Similar Documents

Publication Publication Date Title
KR100332144B1 (ko) D-키로-이노시톨제조방법
JP4143136B2 (ja) ヨウ素化造影剤の製造方法
JP3113776B2 (ja) D−キロ−イノシトールの製造方法
JP2897372B2 (ja) 高品質テトラブロモビスフェノールaの製法
US4345091A (en) Method of producing N-benzyloxycarbonyl-L-aspartic acid
JP3243891B2 (ja) ピルビン酸の精製方法
JP3053510B2 (ja) D−キロ−イノシトールの製造法
JPS63190862A (ja) N−ビニルホルムアミドの回収法
JP3008552B2 (ja) 高品質テトラブロモビスフェノ−ルaの製造方法
JPS63165395A (ja) スクロース誘導体の製造法
JP3173733B2 (ja) 高品位ビスフェノールaの製造方法
JP2887300B2 (ja) 高品位ビスフェノールaの製造方法
JP3924027B2 (ja) オルソヒドロキシマンデル酸ナトリウム/フエノール/水錯体、その製造法及びオルソヒドロキシマンデル酸ナトリウムの分離のための使用
JP3587473B2 (ja) バルプロ酸の精製方法
JP3478544B2 (ja) O−(5,6,7,8−テトラヒドロ−2−ナフチル)−クロロチオホルメイトの精製法
JP2811851B2 (ja) テトラブロムビスフェノールaの製造法
JPS59157039A (ja) キシリレングリコ−ルの製造法
CN117431276A (zh) 一种二腈的精制方法
JPS59227844A (ja) アミノマロンアミドの製造法
JPH0788337B2 (ja) 5−アミノ−2,4,6−トリヨ−ドイソフタル酸の製造方法
JPH02204474A (ja) Dl―セリンの分離精製法
JPH0775670B2 (ja) リン酸リチウム触媒の製造法
JPS6016944A (ja) 2,4−ジクロル−3−メチルフエノ−ルの製造方法
JPH107634A (ja) N−(1,1−ジメチル−3−オキソブチル)アクリルアミドの製造法
JPS5865255A (ja) γ−アミノ酪酸カルシウム塩の製法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees