JP2781399B2 - 光フアイバ及びそれを用いた光学装置 - Google Patents

光フアイバ及びそれを用いた光学装置

Info

Publication number
JP2781399B2
JP2781399B2 JP63318331A JP31833188A JP2781399B2 JP 2781399 B2 JP2781399 B2 JP 2781399B2 JP 63318331 A JP63318331 A JP 63318331A JP 31833188 A JP31833188 A JP 31833188A JP 2781399 B2 JP2781399 B2 JP 2781399B2
Authority
JP
Japan
Prior art keywords
cladding
fiber
mode
ions
clad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63318331A
Other languages
English (en)
Other versions
JPH01260405A (ja
Inventor
スニッツア エリアス
ポ ホング
ピー.タミネリ リチャード
ハキミ ファーハッド
Original Assignee
ポラロイド コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ポラロイド コーポレーション filed Critical ポラロイド コーポレーション
Publication of JPH01260405A publication Critical patent/JPH01260405A/ja
Application granted granted Critical
Publication of JP2781399B2 publication Critical patent/JP2781399B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はC光を光フアイバのコアに結合するための装
置に関するものである。もつと詳細にいえば、本発明は
ポンピング光を、レーザ発振器光フアイバまたはレーザ
増幅器光フアイバのコアの中へ結合させるための装置に
関するものである。
[従来の技術] 近年、活性フアイバを使用した光学レーザ発振器およ
び光学レーザ増幅器が、ますます注目を集めている。こ
のことは、このような活性フアイバの使用した装置は、
優れた性質の標準的レーザ材料を有することと、光フア
イバで得られる大きなエネルギ閉じ込め効果を有するこ
とを、組み合わせてそなえているからである。特に単一
モード・フアイバを丸い形状にできることは、フアイバ
装置の応用を広いものとしている。このようなフアイバ
は大きなエネルギ変換効率を有し、そして単一モード光
通信用フアイバへの結合特性において優れたものを有し
ている。したがつて、このようなフアイバは、フアイバ
通信装置およびフアイバ通信網に応用する時、大きな効
果がえられる。
活性導波器、すなわち非線形導波器、としてのフアイ
バ・レーザ装置の特性は、0ポンピング光が活性材料に
よつて吸収される効率、特に、フアイバ・コアの中のコ
ア材料によつて吸収される効率と、密接に関係してい
る。具体的にいえば、1973年4月24日公告の米国特許第
3,729,690号は、その第11図において、1つのフアイバ
構造体を開示している。このフアイバ構造体は光を活性
コアの中へ結合させる効率を大きくすることを目的とし
た構造体である。
このフアイバ構造体は前記特許のコラム17、1.59から
コラム18、1.8までにおいて次のように開示されてい
る。
第6図に示されたものと全く同じ形状のレーザ部品ま
たはレーザ棒は、第11図に示されているように、クラツ
ド・ガラス132の中心からずれた位置に、小さな直径の
単一レーザ・フアイバ130を配置することによつて得る
ことができる。第11図に示された形状と第6図に示され
た形状とのいずれも、ポンピング光が事実上あらゆる方
向からこの棒の端部を通してこの棒に入つてくるポンピ
ング方式の場合に、重要な働きをする。これらの形状の
場合の主要な利点は、端部ポンピング光を使用するさ
い、もし活性レーザ・ガラス棒の中心にあるとした特に
生ずる吸収よりも、レーザ棒内を伝播するスキユ光線
が、レーザ作用元素によつてより容易に吸収されること
である。クラツド棒の軸に対する活性レーザ・フアイバ
の精密な位置は、どのような端部結果が必要であるかに
よる、設計の端部にわたる問題である。
開示されたこのフアイバ構造体は、明細にいえば、こ
の特許が出願された1969年11月17日の時点で当業者に周
知であつた、比較的短いガラス・フアイバに関するもの
である。
その理由により、このフアイバ構造体の表面上の塵や
湿気まらはその他の異物により、光が散乱されてクラツ
ドの外へ出て行くことによる、大きな光の損失は重要で
はなかつた。けれども、この構造体は、その大きな光の
損失により、今日用いられている比較的長いフアイバの
場合に使用するには不適当である。今日用いられている
長いフアイバは、遠距離通信に用いられているような低
損失のフアイバが入手できるようになつて可能になつ
た。
光と活性コアの結合効率を大きくすることを目的とし
たまた別のフアイバ構造体は、1985年10月8日公布の米
国特許第4,546,476号に開示されている。この特許に開
示されているフアイバ構造体は一対の光フアイバを並べ
て配置した構成につながつており、その第1フアイバは
ポンピング光を受け取るための装置であり、そしてその
第2フアイバは活性なレーザ作用材料でドープされてい
る。第1フアイバと第2フアイバの屈折率は、光が第2
フアイバすなわち活性フアイバの中を伝播するが、一
方、第1フアイバの中のポンピング光は伝播しないよう
に、選定される。これらの屈折率は、第1フアイバか
ら、第2フアイバすなわち活性フアイバへ、ポンピング
光の転送が大きくなるように選定された。この特許の第
2図に示されるように、第2の活性フアイバ14の横断面
積は近接して並べられた構造体の横断面積のかなりの部
分を構成する。明細にいえば、この特許は、第3欄、31
〜38行において、次のように開示している。「もしジヤ
ケツトの直径がフアイバの直径よりもわずかに大きいだ
けならば、ポンピング・フアイバから屈折されるポンピ
ング光のかなりの部分が、Nd;YAG結晶フアイバの中で吸
収され、その結果、Nd:YAG結晶フアイバの中で高エネル
ギ密度と大きな変換比がえられて、送信された光信号の
増幅が行なわれる。」さらに、この特許は、第5欄、45
〜49行において、薄いクラツドの使用を次のように開示
している。「この理由により、ジヤケツト22による吸収
を小さくしかつNd:YAGフアイバ14の吸収を大きくするに
は、ジヤケツト22の外被寸法をできるだけ小さく保つと
好都合である。」したがつて、第1コアと第2コアとジ
ヤケツトの屈折率が同程度である場合、第1フアイバと
ジヤケツトの組み合わせ体が受け取る光のモードの総数
は、この数は第1フアイバとジヤケツトの横断面積に比
例しているが、活性コアに直接に結合しうるモード尾の
総数にほぼ等しい。その理由は、これらの横断面積がほ
ぼ同じであるからである。その結果、このフアイバ構造
体において、第1フアイバとジヤケツトの組み合わせ体
の面積と第2フアイバの面積との比からは利点はえられ
ない。
このこと以外には、前記特許は光を活性単一モード・
コアに結合させることを目的としていない。すなわち、
前記特許はその第4欄、50〜51行において、第2活性フ
アイバ14は直径100ミクロンのコアを有する、と開示し
ている。さらに、それぞれのフアイバのクラツドはまた
コアが研磨されて事実上平面である表面が作られ、そし
てこれらの平面を有するフアイバを近接して配置して大
きな結合を得ようとする実施例は、前記問題点を解決す
ることはでない。
したがつて、レーザ・ダイオードのようなポンピング
光源からの光の大部分を効率よく受け取り、かつ、この
光を受け取つた後、この光を単一モード・コアに効率よ
く結合する、単一モード・コアを有するフアイバ構造体
が当業者に要望されていた。
[発明の要約] 本発明の実施例により、(1) 単一モード・コアを
有し、(2) 入射ポンピング光の大部分を効率よく受
け取り、(3) この受け取られた光の全部に近い部分
が単一モード・コアに結合する。フアイバ構造体がえら
れ、この技術分野に存在していた前記問題点が、本発明
により好ましい方向に解決される。
本発明の実施例を説明する前に、従来技術の光フアイ
バについて第1図を参照して説明する。第1図の例で
は、活性コアである単一モード・コアが第1層すなち、
他モード・クラツド層の中に配置される。この活性コア
は、例えば、Ndをドープした溶融石英で作成され、そし
て第1他モード・クラツド層は溶融石英で作成され、そ
の横断面は事実上円形である。この第1他モード・クラ
ツドの直径と単一モード・コアの直径との比は、事実上
200から1の範囲内にある。さらに、この他モード・ク
ラツドは、フツ素またはホウ素がドープされた石英の薄
い層で被覆され、そしてさらに、このフツ素またはホウ
素がドープされた石英の比較的薄い層が、必要に応じ、
また別の石英の層で被覆される。なおさらに、単一モー
ド・コアは、第1多モード・クラツド層の中心からずれ
た位置に配置される。このずれの大きさは、第1多モー
ド・クラツドの中を伝播している光の大部分が単一モー
ド・コアに結合するという条件によつて決定される。こ
の結合は、多モード・クラツド層の中を伝播する光が偏
心した位置に配置された単一モード・コアのところを通
過する時には常に起こり、そして光は単一モード・コア
の中に吸収される。
本発明の第1実施例は、光を単一モード・コアの中へ
効率よく結合させるために、細長いスラブ乗構造体を有
する。この実施例において、活性単一モード・コアが細
長い多モード溶融石英スラブ・クラツドの事実上中心に
配置される。この石英のスラブ・クラツドの横断面は長
方形であることが好ましい。この長方形スラブの寸法は
その幅と高さのいずれも、ポンピング光を発生するのに
用いられるポンピング用レーザ・ダイオードの接合の寸
法より、大きいことが好ましい。この多モードで長方形
のスラブ・クラツドは、ポンピング光源から効率よく光
を受け取り、そして次に、この受け取つた光を単一モー
ド・コアに効率よく結合する。このスラブ・クラツド
は、小さな屈折率の材料、例えば1.39程度の屈折率を有
する例えば透明な硬質プラスチツクのような材料で、さ
らに被覆される。プラスチツクは十分な可撓性を有して
おり、フアイバが湾曲しても破壊することがないので、
スラブ・クラツドをプラスチツクで被覆すると好都合で
ある。この構造体の屈折率の関係は次の通りである。単
一モード・コアの屈折率n1は多モード・スラブ・クラツ
ドの屈折率n2より大きく、かつ、多モード・スラブ・ク
ラツドの屈折率n2はそれを被覆している材料の屈折率n3
より大きい。第1クラツドが溶融石英で作成される場
合、小さな屈折率のプラスチツクで作成された第2クラ
ツドに対する、多モードの第1クラツドのNAは、0.4程
度に高いことができる。
この好ましい第1実施例は、例えばレーザ・ダイオー
ドによつて、端部ポンピングを行なうことができる。こ
の構造体の場合、ポンピング光は、高精度で焦点合わせ
をしなくても、クラツドの中へ好都合に結合される。ポ
ンピング光をコアの中へ直接に結合させる場合に比べ
て、輝度の小さな多モード・ポンピングが行なえるの
で、このことは好都合である。さらに、NAが0.4のよう
に高い場合、そして長方形の第1クラツドの寸法が十分
に大きい場合、レーザ・ダイオードからの光の事実上全
部が、界面でのフレネル反射損失を無視したとして、レ
ンズを使わなくても、すなわち、このフアイバの端部を
レーザ・ダイオードの発光面に向けて接近させて配置す
るだけて、吸収される。例えば、有効発光領域が縦2ミ
クロン、横100ミクロンで、数100ミリワツトの多モード
出力を有するレーザ・ダイオードが市販されている。こ
のレーザ・ダイオードから放射される光ビームの広がり
の全幅の典型的な値は、発光領域の長い辺を含む面内と
それに直交する面内とで、それぞれ、15゜および30゜で
ある。NAが0.4、長方形の寸法が40ミクロンと120ミクロ
ンで、レーザ・ダイオードの発光領域から5ミクロンの
位置に配置されたフアイバの場合、レーザ・ダイオード
から放射された光の事実上全部が、レーザ・ダイオード
の発光表面に対してフアイバの位置を吉備氏くない横方
向公差をもつて定めることにより、第1クラツドによつ
て容易に集められた。
本発明の第2実施例では、前記のスラブ構造体が、光
を側面で結合させてスラブ・クラツドの中へ導入するた
めに、いくつかの異つた方式で構成される。例えば、側
面結合の第1の方法は、スラブ・クラツドを被覆してい
るプラスチツク材料の一部分を例えば溶解またはその他
の方法で除去し、2つのフアイバのスラブ・クラツドを
露出させる。これらの2つのフアイバのうち1つのフア
イバはその中に単一モード・レーザ・コアが配置されて
おり、そしてもう一方のフアイバの中にはコアが配置さ
れていない。このもう一方のフアイバは、レーザ・フア
イバの第1クラツドと似ているが、その面積は同じかも
またはより小さいことが好ましい。次に、スラブ・クラ
ツドの両方の露出した部分が相互に接合される。
この実施例の場合、活性コアを有していないフアイバ
に対し、端部ポンピングが行なわれる。その結果、端部
ポンピングされた光が2つの露出したスラブが相互に接
合されている位置に到達した時、光は1つのスラブから
他のスラブへ結合するであろう。当業者には周知である
ように、もし2つのスラブを接合するのに接合剤が用い
られるならば、光が第1のスラブから第2のスラブへよ
りよく結合するように、この接合剤はいずれのスラブよ
りも大きな屈折率をもつべきである。その後フアイバ表
面に散乱体が付着しないように、この結合領域が小さな
屈折率のプラスチツク材料で再び被覆される。
この構造のまた別の実施例では、活性単一モード・コ
アを有するフアイバの長さ方向に沿つて、種々の位置に
複数個のスラブとスラブが対向している構造体が配置さ
れる。このような実施例では、複数個のポンピング光源
からの光が、活性コアを有するスラブ・クラツドの側面
から内部へ、かつ、レーザ・フアイバに沿つて両方向か
ら、結合することができる。
側面結合を行なう第2の方法は、フアイバに沿つて種
々の位置において、スラブ・クラツドを被覆している例
えばプラスチツク材料の一部分を除去することにより、
フアイバのスラブ・クラツドを露出させ、次に、ステッ
プのこの露出された部分に、プリズムを屈折率整合材料
でもつて接合することである。入射平行光線を正しい方
向から当てれば、このプリズムの1つの表面に入射した
光はそこからスラブ・クラツドの中に結合するであろ
う。さらに、スラブ・クラツドに結合したこの光は、次
に、前記のように、単一モード活性コアの中へ結合する
であろう。このことにより、複数個のポンピング光源か
らの光でもつて、活性単一モード・コアを側面ポンピン
グする、本発明のまた別の実施例がえられる。
側面結合を行なう第3の方法では、レーザ・フアイバ
の第1クラツドと同じような長方形フアイバを用いる
が、その中にはレーザ・コアがなく、またこの長方形フ
アイバは屈折率の小さな透明なプラスチツクで被覆され
るう。このフアイバの1つの端部が研磨されて、例えば
5゜から20゜の範囲内のかなり鋭い角度のテーパ付端部
表面が作成され、そしてこのテーパ付端部表面が、前記
方法と同様の方法で、スラブに接合される。このポンピ
ング光供給フアイバの他の端部に、前記のようにポンピ
ング光が送り込まれる。
本発明の前記実施例の利点は、ポンピング光の多モー
ド・クラツドへの焦点合わせがそれ程精密でなくてよい
ことであり、そしてポンピング光が複数回の反射を行つ
て単一モード・コアを何回も往復して通過し、それによ
りポンピング光の全部がコアによつて吸収されることで
ある。多くの場合に対する評価によれば、ポンピング光
をコアの中に効果的に吸収する適切なフアイバの長さ
は、1メートルまたは数メートルである。さらに、これ
らの実施例において、もし1メートル以上の長さが必要
でありかつ小形化が要求されているならば、このフアイ
バをコイルの形に巻くことができる。
[実施例] 本発明の原理は、添付図面を参照しての下記説明によ
り、明確に理解することができる。下記説明の理解を容
易にするために、添付図面において、同じ素子には同じ
番号が用いられる。
最初に本発明の原理のより良き理解のため、従来技術の
場合について説明する。第1図は、従来の光フアイバ10
の横断面図である。単一モード・コア100の屈折率はn1
である。このコア100は、例えば、Nd3+イオンがドープ
された溶融石英のコアとして製造される。第1クラツド
層110の屈折率はn2であり、そしてこの層は、例えば、
溶融石英で製造された多モード・クラツド層である。コ
ア100は、第1クラツド層110の中心よりずれた位置に配
置される。第1クラツド層110を第2クラツド層120が取
り囲んでいる。第2クラツド層120の屈折率はn3であ
る。第2クラツド層120の屈折率n3は第1クラツド層110
の屈折率n2より小さい。第2クラツド層120の屈折率
は、例えば、フツ素またはB2O3またはこれら両者が存在
する環境の下で、製造途中の製品の上に、二酸化シリコ
ンを沈着するというよく知れた従来の技術によつて、第
1クラツド層110の屈折率をより小さくすることができ
る。第2クラツド層120は、クラツド層130によつて被覆
される。クラツド層130は、例えば、溶融石英によつて
作成される。
第1図に示されたフアイバ構造体の好ましい実施例に
おいて、Nd3+イオンをドープしかつアルミニウム、ゲル
マニウム、またはリンのような不純物を付加して含有す
る単一モード・コアの場合、多モード・クラツド層110
の直径は事実上40ミクロンから80ミクロンの範囲内にあ
り、そして単一モード・コア直径は事実上3ミクロンか
ら8ミクロンの範囲内にある。
事実上円形の横断面を有する多モード導波器の中を伝
播しうるモードの数はV2/2に等しい。ここで、Vは V=πd〔n2 導波管−n2 クラツド1/21/lポンプ(1) で与えられる。ここで、dは導波器の直径、n導波管
導波器の屈折率、nクラツドはクラツド層の屈折率、l
ポンプはこの導波器に結合される光の波長である。
(1)式を用いて、第1図の光フアイバの多モードク
ラツド層110の中を伝播するモードの数は によつて与えられる。ここで、Aはクラツド110の横断
面積、n3はクラツド120の屈折率である。
(2)式は結合している光の偏光の2つの状態に対し
て適用される。したがつて、単一モード・コアの場合、
単一伝播モードに対し2つの偏光状態がある。したがつ
て、ポンプ光源から多モード・クラツド110の中へ結合
しうるモードの数は、ポンプ光源からコア100の中へ直
接に結合しうるモードの数に比べて、 によつて与えられる。
多モード・クラツド110に結合される光は最終的には
単一モード・コアに吸収されるから、(3)式は第1図
の構造体をポンピングすることにより、単一モード・コ
アを直接に光でポンピングすることによつてえられるも
のに比べて、大幅な改良のえられることを示している。
この改良は、多モード・ポンピング光源からの出力光が
多モード・クラツド110に結合し、そしてこのクラツド1
10に結合した光が次に単一モード・コア100に結合する
ことによるものである。
例えば、細長い接合を有するレーザ・ダイオード・ポ
ンピング光源を使用する時、第1図のフアイバ10はその
NAが事実上0.10から0.30の範囲内にあるように製造しな
くてはならない。ここで、NAはクラツド層120とクラツ
ド層110の屈折率によつて決定される。これはある程度
大きなNAであつて、レーザ・ダイオードから放射された
光の大部分が適切に捕獲される。さらに、このNAの値
は、高いNA値を得るため、大きく異なつた屈折率をもつ
た材料を用いてフアイバを製造するときの応力に関連す
る各種の製造上の問題を惹起する程大きな値でない。
1つの好ましい実施例において、コア100とクラツド1
10との間のNAはできるだけ小さくするべきである、すな
わち、事実上0.02から0.15の範囲内にあるべきである。
さらに、例えばNd3+イオンのような活性材料を含有して
いる単一モード・コア100の直径はできるだけ大きくす
べきであつて、それにより、クラツド110の中を伝播し
ている光がコアに結合するための標的面積が大きくな
る。したがつて、単一モード・コア100は、典型的なレ
ーザ光波長において、事実上2.0から2.2の範囲内のV値
を有するべきである。この値は2.405、すなわち、単一
モード・カツトオフに対する値、以下に保たれるべきで
ある。その理由は、単一モード・カツトオフ値に近づき
過ぎない方がよいこと、直径の制御を精密にできないこ
とによつて生ずる誤動作の危険を避けたいからである。
さらに、クラツド110の直径は、光をコア100に直接に結
合させるのに比べて、光をクラツド110に高い効率で結
合させるために、コア100の直径よりも約10倍から20倍
位大きくなければならない。前記のように、結合効率は
面積の比に正比例する。
Nd2O3が1.0重量パーセント含有される場合、すなわ
ち、1020Ndン/ccの場合、コア100の直径とクラツド110
の直径との比が事実上1と10の範囲内にあり、そして長
さが8メートルの時、クラツド110に結合された光の90
%の程度が単一モード・コア100に吸収されることがわ
かつた。直径の比がこのようであることは、コア100の
面積に対するクラツド110の面積の比が1対100であるこ
とを意味する。例えば、円形の横断面を有する第1クラ
ツド110に対し、0.15のNAを有する直径5ミクロンのコ
ア100をそなえた、ニオジムでドープされたフアイバ・
コアが製造された。第1クラツド110は第2クラツド120
に対し0.1のNAを有する。
クラツド110の中心の位置からずれた位置にコア100を
配置することにより利点は次の通りである。もし第1ク
ラツド110の中心の位置にコア100が配置されるならば、
第1クラツド110を通してコア100を側面からポンピング
する時の効率は、比較的低いであろう。それは軸光線の
みが中程度に曲つたフアイバに対して吸収されるからで
あり、けれども、コア100を第1クラツド110の縁部の例
えば5ミクロン以内にまでずらすことにより、スキユ光
線がより容易に吸収される。例えば、長さ8メートル
で、ネオジム濃度が1.0重量パーセントである偏心した
フアイバを作成したところ、0.806マイクロメートルに
おいて、フアイバに送り込まれたポンプ光のうち、この
フアイバを透過したものは10A−セント以下であること
がわかつた。
なおさらに、第1図に示された実施例により、もしク
ラツド110の中にモードを乱すなんらかの機構が存在す
るならば、多モード・クラツド110と単一モード・コア1
00とを伝播する光の間の結合の増大がえられる。フアイ
バを曲げることによつてもたらされる乱れは、クラツド
110のモードの間の結合の原因となる。その結果、クラ
ツド110の中を伝播する、より多くのモードからの、よ
り多くの光が、単一モード・コア100の中へ結合するこ
とになる。けれども、フアイバの湾曲はまたフアイバの
外へ光を散乱させる原因ともなるから、結合を大きくす
るために行なう湾曲は少しの湾曲に留めなければならな
い。
前記で説明した光フアイバは改良されたMCVD(Modefi
ed chemical vapor deposition)のような当業者によく
知られている方法によつて、製造することができる。こ
の製造法では、大きなクラツドの内側に小さなコアが作
られ、そしてそれから、コアの直径とクラツドの直径と
の比が20ないし40である製造途中の中間製品が作成され
る。次に、このMCVD法によつて作られた中間製品が研磨
されて、クラツド110の中で偏心した位置にコア100が配
置される。また別途に、溶融石英管の内側表面に、MCVD
法によつて、部分的にフツ化物化されたSiO2の層を有す
る石英管が作られる。次に、この石英管の中に、偏心し
たコア・クラツド中間製品が挿入され、そしてこの石英
管が挿入されたコア・クラツド中間製品に融着されて、
最終的な中間製品が作成される。この外側石英管の内側
表面はフツ素を含有しているから、このようにしてでき
た薄い層120の屈折率は、クラツド層110の屈折率よりも
小さく、したがつて、層120により、多モード・クラツ
ド110の中を伝播する光に対する閉じ込め層がえられ
る。
最後に、この最終中間製品から、当業者には周知の方法
により、引き伸し工程を行なうことにより、第1図の光
フアイバが作成される。ある変形例では、多モード・ク
ラツド110を取り囲む層として、フツ化石英層120を用い
代りに、ホウ素をドープした石英層120を用いて、光フ
アイバを製造することができる。
単一モード・コア100の屈折率をn1とし、多モード・
クラツド110の屈折率をn2、フツ化シリカ層120の屈折率
をn3、第2シリカ層の屈折率をn4とするならば、これら
の屈折率の間に次の関係がある。
n1>n2>n3およびn4=n2 (4) 第2図は本発明による光フアイバ20の横断面図であ
る。単一モード・コア200は屈折率n1を有し、そしてこ
のコア200は、例えば、Nd3+イオンでドープされた溶融
石英コアとして作成することができる。スラブ・クラツ
ド層210は屈折率n2を有し、そしてこの層は溶融石英で
作成された多モード・クラツドであり、そしてその横断
面の形が事実上長方形であることが好ましい。第2クラ
ツド層220がクラツド層210を取り囲んでおり、そしてこ
の第2クラツド層220の屈折率n3は石英クラツド層210の
屈折率n2より小さい。クラツド層220は、多モード・ク
ラツド210の中を伝播する光が失われることを防止する
役割を果たす。クラツド220は、例えば、フツ化重合体
のような硬質プラスチツクで製造することが好ましい。
フツ化重合体は小さな屈折率を有する硬くて透明なプラ
スチツクである。例えば、n3はほぼ1.39である。クラツ
ド220をプラスチツクで製造すると利点がえられる。そ
れは、プラスチツクは可撓性を有し、そして光フアイバ
20を曲げた時、クラツド210に応力を加えないからであ
る。さらに、屈折率n3はフツ化SiO2またはホウ素をドー
プしたSiO2よりも、プラスチツクの場合には小さくする
ことができるので、ポンピング光に対する許容角度を大
きくすることができる。
従来技術10のところで説明したのと同じように、多モ
ード・クラツド210に捕えられるモードの数と単一モー
ド・コア200に捕えられるモードの数との比は、クラツ
ド210の横断面積とコア200の横断面積との比と、領域21
0と領域220との間に作られる多モード・フアイバに対す
るNAの2乗によつて決定される。前記のように、この面
積比は事実上50−400対の1の範囲内にあることが好ま
しい。面積比がこれ以外の値であてつも十分に動作する
が、効率が少し小さくなる。したがつて、コア100の直
径をdとし、そして第2図に示されているように、クラ
ツド220の高さをXdとしおよびクラツド220の幅をydとす
るならば、xyが事実上50から400の範囲内にあることが
望ましい。したがつて、本発明の好ましい実施例では2
<xd<5およいび5<yd<100の寸法を有する。
この第1実施例に従つて製造されるフアイバは、光で
端部ポンピングを行なうことができる。特に、このよう
な実施例は、典型的な長方形の接合を有するレーザ・ダ
イオードで、端部ポンピングを行なうと利点がえられ
る。
当業者にはすぐわかるように、クラツド210の形は必
ずしも長方形である必要はなく、また、幅と高さが大幅
に異なる種々の形のものが本発明の範囲内で可能であ
る。
レーザと共に用いられる本発明の実施例を製造するさ
い、単位長さのコアの中に含有されている吸光性のレー
ザ・イオンの濃度が高ければ高い程、吸収はますます強
くなり、したがつて、より短いフアイバでポンピング光
をほぼ完全に吸収すことができる。したがつて、2.405
より小さなV値をなお与えるようにそれが十分に小さな
NAを有している限り、コアの直径が大きいと利点がえら
れる。
さらに、ネオジム・コアへ直径に端部ポンピングを行
なう先行技術によるう実施例を使用する時、Nd3+イオン
濃度が1017イオン/ccから1020イオン/ccの範囲のものを
用いる。これは、より高い濃度は、濃度クンエンチング
を生ずる傾向があるからである。けれども、第1クラツ
ドを通して側面ポンピングを行なう本発明による実施例
を使用する場合、ある程度の濃度クエンチングを許容す
ることができ、したがって、5×1020イオン/ccまでのN
d3+イオン濃度値を用いることができるであろう。その
結果、ポンピングの光の大部分を吸収するのに必要なフ
アイバの長さは、それに対応して小さくなる。または、
第1クラツドの面積は単位長さ辺りの吸収が同じである
ために、それに対応して大きくなるであろう。コアの中
の光吸収が第1のイオンで起きていて、その後、レーザ
作用を行なう第2のイオンにこのエネルギが転送される
場合には、第1クラツドを通してポンピングを行なうと
いう本発明の方法は、特に有効である。例えば、エルビ
ウム(Er3+)は、イツトリウム(Yb3+)と一緒にドープ
することによって、全く容易に1.54ミクロンでレーザを
行なうことができる。このようなフアイバの場合、典型
的な濃度比は15×1020Yb3+イオン/ccと0.3×1020Er3+
オン/ccである。このように、Yb3+イオンが高濃度の場
合、0.92ミクロンから0.98ミクロンの波長領域におい
て、強い吸収がある。同様に、Nd3+とYb3+を一緒にドー
プすることにより、Nd3+による強い吸収と、この吸収さ
れたエネルギのYb3+への効率的な転送とがえられ、そし
てYb3+は1.02ミクロンまたは1.06ミクロンにおいてレー
ザ発振を行なう。
第2図に示されている実施例は、MCVDのような先行技
術においてよく知られている方法で製造することができ
る。このような製造方法では、製造の途中において、大
きな屈折率を有するレーザ作用コアがクラツドの内側に
作成される。この製造途中の中間製品が研磨されて、第
2図に示されてたスラブ・クラツド210の形状を有する
最終の中間製品がえられる。最後に、この最終中間製品
から、先行技術においてよく知られている方法に従つ
て、本発明の光フアイバが引き伸し工程によつてえられ
る。この引き伸し工程において、フアイバが引き伸し炉
を出た直後に透明なプラスチツクがバツフア被覆体とし
て表面に付けられる。
例えば、1立方センチメートル当り1020個の3価のネ
オジム・イオン(Nd3+)を含有している直径8ミクロン
のコアが長方形の第1クラツドの中に配置されている場
合、この第1クラツドの寸法が横115ミクロン、縦40ミ
クロンであつて、コアは長い寸法の辺の中央に配置され
ているが、短い寸法の辺の中央からずれた位置に配置さ
れて、そのコアの縁が長方形の辺から8ミクロンの位置
にある場合、そして第2クラツドとして透明なプラスチ
ツクが用いられてその屈折率が1.39である場合、0.806
ミクロンの波長における吸収が4dB/メートルであること
がわかつた。したがつて、このフアイバの場合、ポンピ
ング光の90パーセントが2.5メートルの長さで吸収され
る。この吸収の大きさは、もしコアの中のネオジムが第
1クラツドの中に均一に分散している場合の吸収の大き
さの約75パーセントである。前記と同じ濃度と同じ直径
を有する単一モード・コアをそなえ、かつ、この単一モ
ード・コアの直径の10倍の直径を有する円形の第1クラ
ツドをそなえ、かつまた、コアな縁が第1クラツドの辺
から6ミクロンの位置に配置されている場合、吸収の大
きさはもしイオンが第1クラツドの中に均一に分散して
いる場合の吸収の大きさの27パーセントであつた。
側面ポンピングを用いた本発明の第1の実施例が第3
図に示されている。この実施例は第2図に示されたフア
イバを使用している。第3図に示された実施例は、第2
図に示された第1フアイバ20をまず作成することによつ
て製造される。次に、第2フアイバ25が作成される。フ
アイバ25はフアイバ20と同じであるが、しかしコアを有
していない。すなわち、フアイバ25のクラツド300とク
ラツド310は、フアイバ30のクラツド210とクラツド220
と同じである。次に、フアイバ20からクラツド220の一
部分を例えば溶解により除去することにより、クラツド
210が長さl結合にわたつて露出させられ、およびフア
イバ25からクラツド310の一部分を例えば溶解により除
去することにより、クラツド300が長さl結合にわたつ
て露出させられる。最後に、フアイバ20とフアイバ25を
相互に接触させ、クラツド220の露出部分とクラツド300
の露出部分とを長さl結合の事実上全長にわたつて接合
剤320によつて接合する。クラツド210の屈折率をn1、ク
ラツド300の屈折率をn2、第2クラツド220の屈折率を
n3、接着剤320の屈折率をnCとするならば、クラツド300
からクラツド210の中へ光が結合するためには n1>n3,n1>n2>n3,nC>n1 (5) でなければならない。
第3図からすぐにわかるように、この実施例により、
クラツド210の中への、光の側面ポンピングがえられて
いる。このポンピングは、クラツド300の中へポンピン
グ光にされた光である。クラツド300の中を伝播する光
の大部分がクラツド300から繰210の中へ結合するよう
に、長さl結合は十分に長く選定される。または、短い
結合が用いられる場合もあるが、その場合には、クラ
ツド300の横断面積がクラツド210の横断面積よりも大幅
に小さくなければならない。次に、この結合装置の結合
領域が、塵や湿気の小水滴などの異物によつて散乱を生
じないように、保護のために表面と屈折率の小さなプラ
スチツクで被覆することができる。
第3図において、もしクラツド300の屈折率n2がクラ
ツド210の屈折率n1に等しい場合には、コア200による単
位長さ当りの吸収率は、フアイバ25がなくて端部ポンピ
ング・コア210だけの場合の吸収率に比べて、A1/(A1+
A2)の比だけ小さくなる。ここで、A1はクラツド210の
横断面積、そしてA2はクラツド300の横断面積である。
結合長l結合の端部に到達した光は、一部分はクラツド
300の中にありそして一部分はクラツド210の中へ結合す
るであろう。結合長がスラブ幅の10倍程度以上ある場合
には、結合長l結合の端部に到達した光のうちクラツド
210の中へ結合する光の割合は、A1/(A1+A2)によつて
与えられる。この理由により、面積A2を面積A1より小さ
くすることが望ましいが、しかし、レーザ・ダイオード
からの光をクラツド300の入射端部に効率よく入射する
ことができる程度には、A1は大きくなければならない。
さらに、もし表面330が劈開または研磨によつて作ら
れ、その表面に蒸着または他の手段によつて高い効率の
反射器が作成されるならば、光が結合長を1回通過した
後、クラツド210の中へ結合しなかつた部分A2/(A1+A
2)はこの結合領域を逆方向に伝播し、そこでコア200へ
の結合が起こり、結合長の出発位置に再び到達する光の
割合はA1/(A1+A2)である。ここで、クラツド210の中
へ結合した光は逆方向に伝播する。Cを結合領域に入り
コア200によつて吸収される光の割合とし、Rを端部表
面330にある反射器の反射率であるとするならば、入射
するポンピング光のうちフアイバ25からフアイバ20へ結
合する部分の合計は によつて与えられる。
この式では散乱による損失が無視されている。この散
乱による損失は、もしフアイバが適切に取り扱われるな
らば、小さいであろう。
もし結合長l結合が小さいように作成されていて、C
はゼロに近く、かつ、反射率Rが1に等しくとれるなら
ば、そして散乱による損失を無視するならば、ポンピン
グ光のうちフアイバ20の中へ結合する割合は によつて与えられる。
もし面積1と面積A2が等しいならば、結合効率は75パ
ーセントである。もし面積A2が面積A1の半分、A2−A1/2
ならば、結合効率は98パーセントまで大きくなる。
第4図は、側面ポンピングを用いた本発明の第2の実
施例の図面である。この実施例は第2図に示されたフア
イバ20を示している。第4図に示された実施例は、第2
図に示されたフアイバ20によつてまず作成される。次
に、フアイバ20からクラツド220の一部分が例えば溶解
によつて除去されて、クラツド210の一部分が露出され
る。最後に、プリズムまたはテーパ付楔形体360が、ク
ラツド210のこの露出部分に、例えば屈折率整合油のよ
うな適切な屈折率整合材料350を使つて、接合される。
動作のさいには、プリズム360の表面に入射した光がク
ラツド210の中に結合し、それにより側面ポンピングが
えられる。プリズム360はガラスまたは透明なプラスチ
ツクで作成することができるが、ポンピング光380がク
ラツド210の中へ容易に結合するように、屈折率の大き
な材料で作成されることが好ましい。次に、この結合装
置の結合領域が塵や湿気の小水滴による散乱を防ぐため
に、屈折率の小さなプラスチツクで被覆されて、表面が
保護される 第5図は本発明のまた別の実施例の図面である。第3
図の場合と同様にし、レーザ・ダイオードによつて端部
ポンピングされたフアイバ35が、側面に接合される。け
れども、フアイバ35の端部にはテーパがついていて楔形
になつており、この楔形体部分390の角度は、事実上5
゜から20゜の範囲内にある。側面結合フアイバ35は、屈
折率nC>n1を有する材料395によつて接合される。屈折
率の小さい材料400がこの結合領域を取り囲んで配置さ
れる。
さらに、第3図から第5図までの図面は単一フアイバ
側面結合装置または単一楔形体側面結合装置の図面であ
つたが、このようなフアイバおよびまたは楔形体を複数
個そなえるこおにより、複数個の側面結合を行なう結合
装置をうることができる。
本発明の特定の実施例を開示したが、当業者にとつて
は本発明の範囲内において、多くの偏光実施例をうるこ
とは容易にできるであろう。
【図面の簡単な説明】
第1図は従来技術の光フアイバの横断面図、第2図は本
発明による光フアイバの横断面図、第3図は側面ポンピ
ングを行なう本発明の第1実施例の長さ方向を含む横断
面図、第4図は側面ポンピングを行なう本発明の第2実
施例の長さ方向を含む横断面図、第5図は側面ポンピン
グを行なう本発明の第3実施例の長さ方向を含む横断面
図。 [符号の説明] 100,200……単一モード・コア 110,210……多モード・クラツド 120,220……また別のクラツド 20……第1フアイバ 25……第2フアイバ 330……反射器 360……楔形体、プリズム。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 リチャード ピー.タミネリ アメリカ合衆国 マサチューセッツ州 アッシュランド,プロスペクト ストリ ート 79 (72)発明者 ファーハッド ハキミ アメリカ合衆国 マサチューセッツ州 ウォータータウン,アパートメント 627,クーリッジ アベニュー 131 (56)参考文献 特開 昭60−200208(JP,A) 特開 昭62−262835(JP,A) 特開 昭62−89006(JP,A) 特開 昭59−86023(JP,A) 米国特許3729690(US,A) (58)調査した分野(Int.Cl.6,DB名) G02B 6/10 G02B 6/22 H01S 3/06 H01S 3/17

Claims (18)

    (57)【特許請求の範囲】
  1. 【請求項1】レーザ材料を含み、多モード・クラツドの
    中に配置された実質的に単一モードのコアと、 前記多モード・クラツドを囲む別のクラツドと、を有
    し、前記多モード・クラツドが前記コアよりも小さな屈
    折率を有し、前記多モード・クラツドを囲む前記別のク
    ラツドが前記多モード・クラツドよりも小さな屈折率を
    有し、前記多モードの横断面の一辺の長さがその幅と実
    質的に異なる、光フアイバ。
  2. 【請求項2】請求項1において、前記前記多モード・ク
    ラツドの横断面が実質的に長方形である、光フアイバ。
  3. 【請求項3】請求項1において、前記単一モード・コア
    が前記多モード・クラツドの幾何学的中心に配置されて
    いる、光フアイバ。
  4. 【請求項4】請求項1において、前記光フアイバがその
    長さに沿って湾曲部をもつている、光フアイバ。
  5. 【請求項5】請求項4において、前記多モード・クラツ
    ドの横断面積が前記単一モード・コアの横断面積より実
    質的に大きい、前記光フアイバ。
  6. 【請求項6】請求項5において、前記多モード・クラツ
    ドの横断面積が前記単一モード・コアの横断面積の実質
    的に50倍から400倍の範囲である、光フアイバ。
  7. 【請求項7】請求項1において、前記レーザ材料が実質
    的に0.5×1020イオン/cm3から5×1020イオン/cm3の範
    囲の濃度をもつたNd3+イオンである光フアイバ。
  8. 【請求項8】請求項1において、前記レーザ材料が実質
    的に0.5×1020イオン/cm3から5×1020イオン/cm3の範
    囲の濃度をもつたNd3+イオンと、実質的に1×1020イオ
    ン/cm3から10×1020イオン/cm3の範囲の濃度をもつたYb
    3+イオンとである、光フアイバ。
  9. 【請求項9】請求項1において、前記レーザ材料が実質
    的に3×1020イオン/cm3から20×1020イオン/cm3の範囲
    の濃度をもつたYb3+イオンと、実質的に1×1020イオン
    /cm3から10×1020イオン/cm3の範囲の濃度をもつたEr3+
    イオンとである、光フアイバ。
  10. 【請求項10】レーザ材料を含み、多モード・クラツド
    の中に配置された実質的に単一モードのコアと、前記多
    モード・クラツドを囲む別のクラツドとをもつた第1の
    フアイバと、 多モード導波管と、前記多モード導波管を囲む別のクラ
    ツドとをもつた第2のフアイバとを備えた光学装置にお
    いて、 前記第1のフアイバの、前記多モード・クラツドが前記
    コアよりも小さな屈折率を有し、前記多モード・クラツ
    ドを囲む前記別のクラツドが前記多モード・クラツドよ
    りも小さな屈折率を有し、 前記第1のフアイバの多モード・クラツドの横断面の1
    辺の長さがその幅と実質的に異なり、かつ該多モード・
    クラツドは少なくとも1つの露出部分をもつており、 前記第2のフアイバの前記多モードの導波管の横断面の
    1辺の長さがその幅と実質的に異なり、かつ該多モード
    導波管は少なくとも1つの露出部分をもつており、 前記多モード・クラツドの露出部分の少なくとも1つ
    が、前記多モード導波管の露出部分の少なくとも1つに
    接合されている、前記光学装置。
  11. 【請求項11】請求項10において、前記導波管の端部に
    反射器が配置されている前記光学装置。
  12. 【請求項12】レーザ材料を含み、多モード・クラツド
    の中に配置された実質的に単一モードのコアと、前記多
    モード・クラツドを囲む別のクラツドをもつたフアイバ
    と、少なくとも1つき結合手段を備えた光学装置におい
    て、 前記フアイバの、前記多モード・クラツドが前記コアよ
    りも小さな屈折率を有し、前記多モード・クラツドを囲
    む前記別のクラツドが前記多モード・クラツドよりも小
    さな屈折率を有し、 前記フアイバの多モード・クラツドの横断面の1辺の長
    さがその幅と実質的に異なり、かつ該多モード・クラツ
    ドは少なくとも1つの露出部分をもち、放射を前記多モ
    ード・クラツドに結合するため、前記結合手段が該モー
    ド・クラツドの露出部分の少なくとも1つに接合されて
    いる、前記光学装置。
  13. 【請求項13】請求項12において、前記結合手段がプリ
    ズムである光学装置。
  14. 【請求項14】請求項12において、前記結合手段が楔形
    体である光学装置。
  15. 【請求項15】レーザ材料を含み、多モード・クラツド
    の中に配置された実質的に単一モードのコアと、前記多
    モード・クラツドを囲む別のクラツドとをもつた第1の
    フアイバと、 多モード・クラツド導波管と、前記多モード導波管を囲
    む別のクラツドとをもつた第2のフアイバとを備えた光
    学装置において、 前記第1のフアイバの、前記多モード・クラツドが前記
    コアよりも小さな屈折率を有し、前記多モード・クラツ
    ドを囲む前記別のクラツドが前記多モード・クラツドよ
    りも小さな屈折率を有し、 前記第1のフアイバの多モード・クラツドの横断面の1
    辺の長さがその幅と実質的には異なり、かつ該多モード
    ・クラツドは少なくとも1つの露出部分をもつており、 前記第2のフアイバの前記多モード導波管の横断面の1
    辺の長さがその幅と髄質的に異なり、かつ該多モード導
    波管の一端が楔形体に形成されており、 前記多モード・クラツドの露出部分の少なくとも1つ
    が、前記多モード導波管の一端の前記楔形体に接合され
    ている、前記光学装置。
  16. 【請求項16】請求項10または12または15において、前
    記レーザ材料が実質的に0.5×1020イオン/cm3から5×1
    020イオン/cm3の範囲の濃度をもつたNd3+イオンである
    光フアイバ。
  17. 【請求項17】請求項10または12または15において、前
    記レーザ材料が実質的に0.5×1020イオン/cm3から5×1
    020イオン/cm3の範囲の濃度をもつたNd3+イオンと、実
    質的に1×1020イオン/cm3から10×1020イオン/cm3の範
    囲の濃度をもつたYb3+イオンとである、光フアイバ。
  18. 【請求項18】請求項10または12または15において、前
    記レーザ材料が実質的に3×1020イオン/cm3から20×10
    20イオン/cm3の範囲の濃度をもつたYb3+イオンと、実質
    的に1×1020イオン/cm3から10×1020イオン/cm3の範囲
    の濃度をもつたEr3+イオンとである、光フアイバ。
JP63318331A 1987-12-17 1988-12-16 光フアイバ及びそれを用いた光学装置 Expired - Lifetime JP2781399B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/134,357 US4815079A (en) 1987-12-17 1987-12-17 Optical fiber lasers and amplifiers
US134357 1987-12-17

Publications (2)

Publication Number Publication Date
JPH01260405A JPH01260405A (ja) 1989-10-17
JP2781399B2 true JP2781399B2 (ja) 1998-07-30

Family

ID=22462998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63318331A Expired - Lifetime JP2781399B2 (ja) 1987-12-17 1988-12-16 光フアイバ及びそれを用いた光学装置

Country Status (5)

Country Link
US (1) US4815079A (ja)
EP (1) EP0320990B1 (ja)
JP (1) JP2781399B2 (ja)
CA (1) CA1324517C (ja)
DE (2) DE320990T1 (ja)

Families Citing this family (223)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820654B2 (ja) * 1987-11-02 1996-03-04 富士写真フイルム株式会社 光波長変換素子
JP2525879B2 (ja) * 1988-10-14 1996-08-21 パイオニア株式会社 ファイバ―型光波長変換素子
US4955685A (en) * 1989-02-21 1990-09-11 Sun Microsystems, Inc. Active fiber for optical signal transmission
KR940001043B1 (ko) * 1989-07-20 1994-02-08 스미도모덴기고오교오 가부시기가이샤 파이버형 광증폭기
US5108183A (en) * 1989-08-31 1992-04-28 The Board Of Trustees Of The Leland Stanford Junior University Interferometer utilizing superfluorescent optical source
GB2239983A (en) * 1989-12-22 1991-07-17 Univ Southampton Optical fibre laser
IT1237980B (it) * 1990-02-12 1993-06-19 Pirelli Cavi Spa Amplificatore ottico a fibra attiva monomodale incurvata
WO1991013038A1 (en) * 1990-02-28 1991-09-05 Otc Limited A rare-earth doped fibre
JP3292729B2 (ja) * 1990-11-26 2002-06-17 三菱電機株式会社 光ファイバ形光増幅装置
IT1245019B (it) * 1991-01-30 1994-09-13 Cselt Centro Studi Lab Telecom Sistema di pompaggio di laser o amplifiatori a guida d'onda
US5121460A (en) * 1991-01-31 1992-06-09 The Charles Stark Draper Lab., Inc. High-power mode-selective optical fiber laser
DE4113354A1 (de) * 1991-04-24 1992-10-29 Siemens Ag Optisch gepumpter wellenleiter
US5484822A (en) * 1991-06-24 1996-01-16 Polaroid Corporation Process and composition for cladding optic fibers
US5187759A (en) * 1991-11-07 1993-02-16 At&T Bell Laboratories High gain multi-mode optical amplifier
WO1993015536A1 (en) * 1992-01-31 1993-08-05 Amoco Corporation Laser-diode pumped lasing fibre scalable to high powers
US5309452B1 (en) 1992-01-31 1998-01-20 Univ Rutgers Praseodymium laser system
GB9217705D0 (en) * 1992-08-20 1992-09-30 Ici Plc Data-recordal using laser beams
JPH06104515A (ja) * 1992-09-21 1994-04-15 Kokusai Denshin Denwa Co Ltd <Kdd> 固体レーザ
JP3119751B2 (ja) * 1992-12-02 2000-12-25 住友電気工業株式会社 光フィルタ
US5268978A (en) * 1992-12-18 1993-12-07 Polaroid Corporation Optical fiber laser and geometric coupler
US5373576A (en) * 1993-05-04 1994-12-13 Polaroid Corporation High power optical fiber
US5754570A (en) * 1993-05-19 1998-05-19 Telstra Corporation Limited Co-doped optical material emitting visible/IR light
WO1995010868A1 (en) * 1993-10-13 1995-04-20 Italtel Società Italiana Telecomunicazioni S.P.A. A high power optical fiber amplifier pumped by a multi-mode laser source
DE69320657T2 (de) * 1993-10-13 1999-05-06 Italtel Spa EIN DIODENGEPUMPTER,KONTINUIERLICH ARBEITENDER OPTISCHER EINZELMODEN-FASERLASER, der bei 976 nm emittiert
US5554145A (en) 1994-02-28 1996-09-10 The Procter & Gamble Company Absorbent article with multiple zone structural elastic-like film web extensible waist feature
US5488506A (en) * 1994-06-09 1996-01-30 Ceramoptec Industries, Inc. Enhanced power fiber laser with controllable output beam
US5533163A (en) * 1994-07-29 1996-07-02 Polaroid Corporation Optical fiber structure for efficient use of pump power
US5418880A (en) * 1994-07-29 1995-05-23 Polaroid Corporation High-power optical fiber amplifier or laser device
US5473622A (en) * 1994-12-29 1995-12-05 At&T Corp. Cladding-pumped MOPA structure
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier
US5696782A (en) * 1995-05-19 1997-12-09 Imra America, Inc. High power fiber chirped pulse amplification systems based on cladding pumped rare-earth doped fibers
WO1997008791A1 (en) * 1995-08-31 1997-03-06 Sdl, Inc. Optical fibre for improved power coupling
US5627848A (en) * 1995-09-05 1997-05-06 Imra America, Inc. Apparatus for producing femtosecond and picosecond pulses from modelocked fiber lasers cladding pumped with broad area diode laser arrays
DE19535526C1 (de) * 1995-09-25 1997-04-03 Hannover Laser Zentrum Doppelkern-Faserlaser
JP3298799B2 (ja) 1995-11-22 2002-07-08 ルーセント テクノロジーズ インコーポレイテッド クラッディングポンプファイバとその製造方法
US5854865A (en) * 1995-12-07 1998-12-29 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for side pumping an optical fiber
US5812308A (en) * 1995-12-20 1998-09-22 Spectra Physics Lasers, Inc. Mode locked laser and amplifier
CO4750748A1 (es) * 1996-02-21 1999-03-31 I S K Biosciences Corp Metodo y composicion para controlar y recudir el olor de compuestos organicos que contienen azufre
DE19606555A1 (de) * 1996-02-22 1997-08-28 Laser Medizin Zentrum Ggmbh Oszillator-Lichtleiter-Verstärker Anordnung für Laserstrahlen
DE19620159C2 (de) * 1996-05-07 2002-08-08 Inst Physikalische Hochtech Ev Faserlaser oder Faserverstärker mit neuartiger Brechzahlstruktur
FR2750539B1 (fr) * 1996-06-28 1998-07-24 Commissariat Energie Atomique Materiaux laser et microlasers a fortes concentrations en ions actifs, et procedes de fabrication
US5933437A (en) * 1996-09-26 1999-08-03 Lucent Technologies Inc. Optical fiber laser
US5920582A (en) * 1996-12-19 1999-07-06 Northern Telecom Limited Cladding mode pumped amplifier
JP3622816B2 (ja) 1996-12-27 2005-02-23 富士通株式会社 光増幅用ファイバ及びその製造方法
US6477295B1 (en) 1997-01-16 2002-11-05 Jds Uniphase Corporation Pump coupling of double clad fibers
US5974059A (en) * 1997-03-04 1999-10-26 3M Innovative Properties Company Frequency doubled fiber laser
US7576909B2 (en) * 1998-07-16 2009-08-18 Imra America, Inc. Multimode amplifier for amplifying single mode light
WO2005022705A2 (en) 1997-03-21 2005-03-10 Imra America, Inc. High energy optical fiber amplifier for picosecond-nanosecond pulses for advanced material processing applications
US5966490A (en) * 1997-03-21 1999-10-12 Sdl, Inc. Clad optic fiber, and process for production thereof
US7656578B2 (en) * 1997-03-21 2010-02-02 Imra America, Inc. Microchip-Yb fiber hybrid optical amplifier for micro-machining and marking
US6198568B1 (en) 1997-04-25 2001-03-06 Imra America, Inc. Use of Chirped Quasi-phase-matched materials in chirped pulse amplification systems
US6477301B1 (en) 1997-06-26 2002-11-05 Scientific-Atlanta, Inc. Micro-optic coupler incorporating a tapered fiber
US5923694A (en) * 1997-07-02 1999-07-13 Opteleacom, Inc. Wedge side pumping for fiber laser at plurality of turns
RU2115743C1 (ru) * 1997-11-13 1998-07-20 Акционерное общество "Кузнецкий металлургический комбинат" Способ прямого получения стали из железосодержащих материалов в конвертере
US6031849A (en) * 1997-11-14 2000-02-29 Jds Uniphase Corporation High power three level fiber laser and method of making same
US5953353A (en) * 1997-11-20 1999-09-14 Lucent Technologies Inc. Article comprising an improved rare earth-doped optical fiber laser
US6020986A (en) * 1997-11-21 2000-02-01 Jds Uniphase Corporation Programmable add-drop module for use in an optical circuit
US6278816B1 (en) 1997-12-09 2001-08-21 Scientific-Atlanta, Inc. Noise reduction technique for cladding pumped optical amplifiers
US6411762B1 (en) 1997-12-09 2002-06-25 Scientific-Atlanta, Inc. Optical fiber with irregularities at cladding boundary
US6154598A (en) * 1997-12-22 2000-11-28 Polaroid Corporation Laser composition for preventing photo-induced damage
US6379509B2 (en) 1998-01-20 2002-04-30 3M Innovative Properties Company Process for forming electrodes
US6157763A (en) 1998-01-28 2000-12-05 Sdl, Inc. Double-clad optical fiber with improved inner cladding geometry
US6434302B1 (en) 1998-03-04 2002-08-13 Jds Uniphase Corporation Optical couplers for multimode fibers
EP1076247B1 (en) * 1998-04-27 2004-11-03 Hamamatsu Photonics K.K. Bundle of optical fibres for image transmission
US6192713B1 (en) 1998-06-30 2001-02-27 Sdl, Inc. Apparatus for the manufacture of glass preforms
JP2002519285A (ja) * 1998-06-30 2002-07-02 エスディーエル, インコーポレイテッド 希土類金属をドープした光ファイバープレフォームを製造する方法および装置
US6144677A (en) * 1998-08-11 2000-11-07 Trw Inc. High average power fiber laser system with phase conjugation
FR2784809B1 (fr) * 1998-10-16 2001-04-20 Commissariat Energie Atomique Amplificateur optique de puissance a guide d'onde planaire pompe optiquement et laser de puissance utilisant cet amplificateur
US6275512B1 (en) * 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
US6621957B1 (en) 2000-03-16 2003-09-16 Cidra Corporation Temperature compensated optical device
US6982996B1 (en) * 1999-12-06 2006-01-03 Weatherford/Lamb, Inc. Large diameter optical waveguide, grating, and laser
US6810178B2 (en) 1998-12-04 2004-10-26 Cidra Corporation Large diameter optical waveguide having blazed grating therein
US6101199A (en) * 1999-01-05 2000-08-08 Apollo Instruments, Inc. High power high efficiency cladding pumping fiber laser
US6751388B2 (en) * 1999-01-13 2004-06-15 The Board Of Trustees Of The Leland Stanford Junior University Fiber lasers having a complex-valued Vc-parameter for gain-guiding
EP1166405A1 (en) * 1999-03-08 2002-01-02 Optigain, Inc. Side-pumped fiber laser
US6370297B1 (en) * 1999-03-31 2002-04-09 Massachusetts Institute Of Technology Side pumped optical amplifiers and lasers
US6366356B1 (en) 1999-04-01 2002-04-02 Trw Inc. High average power fiber laser system with high-speed, parallel wavefront sensor
EP1175714B1 (en) * 1999-04-30 2009-01-07 SPI Lasers UK Limited Method of producing an amplifying optical fibre device
KR100755810B1 (ko) 1999-05-14 2007-09-07 쓰리엠 이노베이티브 프로퍼티즈 캄파니 애블레이션 보강층
US6243515B1 (en) * 1999-06-18 2001-06-05 Trw Inc. Apparatus for optically pumping an optical fiber from the side
JP4229536B2 (ja) * 1999-07-26 2009-02-25 浜松ホトニクス株式会社 光学媒体の製造方法、レーザ装置の製造方法、光増幅器の製造方法
WO2001042819A2 (en) * 1999-12-08 2001-06-14 Optigain, Inc. Multi-clad optical fiber and amplifier
US7068900B2 (en) * 1999-12-24 2006-06-27 Croteau Andre Multi-clad doped optical fiber
CA2293132C (en) 1999-12-24 2007-03-06 Jocelyn Lauzon Triple-clad rare-earth doped optical fiber and applications
US6438294B1 (en) * 2000-01-18 2002-08-20 Institut National D'optique Optical fiber pumping apparatus and method for use in pumped optical fiber amplifier and laser systems
US6363087B1 (en) * 2000-01-20 2002-03-26 The Boeing Company Multimode raman fiber amplifier and method
FR2805899B1 (fr) * 2000-03-03 2003-01-31 Cit Alcatel Amplification optique a fibre a gaine multimode en bande c
US6603905B1 (en) * 2000-03-03 2003-08-05 Hrl Laboratories, Llc Launch port for pumping fiber lasers and amplifiers
JP2001267665A (ja) 2000-03-16 2001-09-28 Sumitomo Electric Ind Ltd 光増幅用光ファイバ、光ファイバ増幅器および光ファイバレーザ発振器
US6650663B1 (en) * 2000-05-19 2003-11-18 Ceramoptec Industries, Inc. Power-scaling of erbium 3/μ m-laser
US6611372B1 (en) 2000-06-09 2003-08-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Erbium and ytterbium co-doped phosphate glass optical fiber amplifiers using short active fiber length
US6594420B1 (en) * 2000-07-28 2003-07-15 Harris Corporation Multi-fiber ribbon form factor-compliant, integrated multi-channel optical amplifier
US6480327B1 (en) * 2000-09-11 2002-11-12 Hrl Laboratories, Llc High power laser system with fiber amplifiers and loop PCM
FR2814549B1 (fr) * 2000-09-26 2003-02-21 Highwave Optical Tech Dispositif d'injection pour fibre optique et procede de preparation
US6477307B1 (en) * 2000-10-23 2002-11-05 Nufern Cladding-pumped optical fiber and methods for fabricating
US6608951B1 (en) 2000-11-28 2003-08-19 Lew Goldberg Optical fiber amplifiers and lasers and optical pumping device therefor
DE10059314B4 (de) * 2000-11-29 2018-08-02 Tesat-Spacecom Gmbh & Co.Kg Lichtleitende Faser und Verfahren zum Herstellen einer lichtleitenden Faser
US6603791B2 (en) 2000-12-12 2003-08-05 Keopsys, Inc. High power fiber amplifiers with passive pump module alignment
US6625354B2 (en) 2000-12-19 2003-09-23 The Boeing Company Fiber amplifier having a prism for efficient coupling of pump energy
US6529657B2 (en) 2001-02-23 2003-03-04 Keopsys, Inc. Angle selective side-pumping of fiber amplifiers and lasers
US6516124B2 (en) * 2001-03-02 2003-02-04 Optical Power Systems Incorporated Fiber for enhanced energy absorption
US6608956B2 (en) 2001-03-12 2003-08-19 Verrillon Inc. Dual-clad polarization-preserving optical fiber
US6636675B2 (en) 2001-03-12 2003-10-21 Verrillon, Inc. Optical fiber with reduced cladding-mode loss
US6836607B2 (en) * 2001-03-14 2004-12-28 Corning Incorporated Cladding-pumped 3-level fiber laser/amplifier
US6954575B2 (en) 2001-03-16 2005-10-11 Imra America, Inc. Single-polarization high power fiber lasers and amplifiers
WO2002079829A1 (en) * 2001-03-30 2002-10-10 Optical Power Systems Ring core fiber
US6766075B1 (en) * 2001-05-11 2004-07-20 Pc Photonics Corporation Side pumping of optical fiber systems via multiple delivery fibers
US6831934B2 (en) 2001-05-29 2004-12-14 Apollo Instruments, Inc. Cladding pumped fiber laser
US6625363B2 (en) 2001-06-06 2003-09-23 Nufern Cladding-pumped optical fiber
US6687445B2 (en) 2001-06-25 2004-02-03 Nufern Double-clad optical fiber for lasers and amplifiers
ATE373249T1 (de) * 2001-07-12 2007-09-15 Ocg Technology Licensing Llc Optische faser
US6785304B2 (en) * 2001-07-24 2004-08-31 Gsi Lumonics, Inc. Waveguide device with mode control and pump light confinement and method of using same
US6704479B2 (en) * 2001-07-24 2004-03-09 The United States Of America As Represented By The Secretary Of The Navy Method for coupling light into cladding-pumped fiber sources using an embedded mirror
US6480659B1 (en) * 2001-11-14 2002-11-12 Rayteq Photonic Solutions Ltd. Optic fiber structure for efficient use of optical pump energy in three-level rare-earth doped fiber laser
US7362939B2 (en) 2001-12-13 2008-04-22 The Furukawa Electric Co., Ltd. Optical fiber for long period grating, long period grating component and manufacturing method of the same
US6904198B2 (en) * 2002-01-22 2005-06-07 Douglas Raymond Dykaar Device for coupling light into the fiber
US6882664B2 (en) * 2002-02-28 2005-04-19 Lucent Technologies Inc. Laser with internally coupled pump source
US6879435B2 (en) * 2002-03-04 2005-04-12 The Boeing Company Fiber amplifier having an anisotropic numerical aperture for efficient coupling of pump energy
ATE437378T1 (de) * 2002-03-15 2009-08-15 Crystal Fibre As Mikrostrukturierte optische faser mit mantelungsaussparung, verfahren zu ihrer herstellung und vorrichtung damit
US7116887B2 (en) * 2002-03-19 2006-10-03 Nufern Optical fiber
US6975791B2 (en) * 2002-07-25 2005-12-13 Ceramoptec Industries, Inc. Fiber laser pumping device
US6904219B1 (en) 2002-07-26 2005-06-07 Boston Laser, Inc. Ultra high-power continuous wave planar waveguide amplifiers and lasers
US20040060867A1 (en) * 2002-09-27 2004-04-01 Bmc Industries, Inc. Membrane support devices and methods of manufacturing
WO2004066457A1 (en) * 2003-01-24 2004-08-05 Trumpf, Inc. Side-pumped fiber laser
EP1586144B1 (en) 2003-01-24 2016-05-11 Trumpf, Inc. Fiber laser
CA2418143C (en) * 2003-01-29 2009-02-03 Institut National D'optique Light coupling between a light source and an optical waveguide
US7295580B2 (en) * 2003-05-15 2007-11-13 Hrl Laboratories, Llc Numerical aperture optimization using doped cladding layers
US7361171B2 (en) * 2003-05-20 2008-04-22 Raydiance, Inc. Man-portable optical ablation system
US7414780B2 (en) 2003-06-30 2008-08-19 Imra America, Inc. All-fiber chirped pulse amplification systems
US7257302B2 (en) 2003-06-03 2007-08-14 Imra America, Inc. In-line, high energy fiber chirped pulse amplification system
WO2004112206A2 (en) * 2003-06-16 2004-12-23 Soreq Nuclear Research Center Optical apparatus
US6917728B2 (en) * 2003-06-27 2005-07-12 International Business Machines Corporation Fiber optic attachment method, structure, and system
US8173929B1 (en) 2003-08-11 2012-05-08 Raydiance, Inc. Methods and systems for trimming circuits
US9022037B2 (en) * 2003-08-11 2015-05-05 Raydiance, Inc. Laser ablation method and apparatus having a feedback loop and control unit
US7143769B2 (en) * 2003-08-11 2006-12-05 Richard Stoltz Controlling pulse energy of an optical amplifier by controlling pump diode current
US7115514B2 (en) * 2003-10-02 2006-10-03 Raydiance, Inc. Semiconductor manufacturing using optical ablation
US8921733B2 (en) 2003-08-11 2014-12-30 Raydiance, Inc. Methods and systems for trimming circuits
US7367969B2 (en) * 2003-08-11 2008-05-06 Raydiance, Inc. Ablative material removal with a preset removal rate or volume or depth
US20050038487A1 (en) * 2003-08-11 2005-02-17 Richard Stoltz Controlling pulse energy of an optical amplifier by controlling pump diode current
US7400812B2 (en) * 2003-09-25 2008-07-15 Nufern Apparatus and methods for accommodating loops of optical fiber
US7046875B2 (en) 2003-10-29 2006-05-16 Itf Technologies Optiques Inc. Optical coupler comprising multimode fibers and method of making the same
US7016573B2 (en) * 2003-11-13 2006-03-21 Imra America, Inc. Optical fiber pump multiplexer
JP3941063B2 (ja) * 2003-12-03 2007-07-04 株式会社ジェイテクト ファイバレーザ発振装置
US7413847B2 (en) * 2004-02-09 2008-08-19 Raydiance, Inc. Semiconductor-type processing for solid-state lasers
US20050226580A1 (en) * 2004-04-08 2005-10-13 Samson Bryce N Optical fiber for handling higher powers
US7483610B2 (en) * 2004-05-03 2009-01-27 Nufern Optical fiber having reduced defect density
US7317857B2 (en) * 2004-05-03 2008-01-08 Nufem Optical fiber for delivering optical energy to or from a work object
CA2466970A1 (en) * 2004-05-12 2005-11-12 Coractive High-Tech Inc. Double-clad optical fibers
KR100609451B1 (ko) * 2004-06-30 2006-08-03 배재대학교 산학협력단 광섬유 레이저의 클래딩 구조
JP2006019490A (ja) * 2004-07-01 2006-01-19 Toyoda Mach Works Ltd ファイバレーザ発振装置
US7519251B2 (en) * 2004-07-09 2009-04-14 Valtion Teknillinen Tutkimus Keskus Optical fiber with mode sink
US7349452B2 (en) * 2004-12-13 2008-03-25 Raydiance, Inc. Bragg fibers in systems for the generation of high peak power light
US7412135B2 (en) * 2005-01-21 2008-08-12 Nufern Fiber optic coupler, optical fiber useful with the coupler and/or a pump light source, and methods of coupling light
FR2881845B1 (fr) 2005-02-04 2007-06-01 Centre Nat Rech Scient Fibre optique composite pour laser a confinement d'ondes de pompe et de laser, applications aux lasers
FI120471B (fi) * 2005-02-23 2009-10-30 Liekki Oy Optisen kuidun käsittelymenetelmä
FI125571B (en) 2005-02-23 2015-11-30 Liekki Oy A bundle of optical fibers and a process for making it
CN100379102C (zh) * 2005-05-23 2008-04-02 中国科学院上海光学精密机械研究所 板条状双包层光纤激光器
US8135050B1 (en) 2005-07-19 2012-03-13 Raydiance, Inc. Automated polarization correction
US7245419B2 (en) * 2005-09-22 2007-07-17 Raydiance, Inc. Wavelength-stabilized pump diodes for pumping gain media in an ultrashort pulsed laser system
GB0520853D0 (en) * 2005-10-14 2005-11-23 Gsi Lumonics Ltd Optical fibre laser
FR2896315B1 (fr) * 2005-11-08 2010-09-17 Cit Alcatel Fibre optique amplificatrice
US7308171B2 (en) * 2005-11-16 2007-12-11 Raydiance, Inc. Method and apparatus for optical isolation in high power fiber-optic systems
US7436866B2 (en) 2005-11-30 2008-10-14 Raydiance, Inc. Combination optical isolator and pulse compressor
JP2007158015A (ja) * 2005-12-05 2007-06-21 Hamamatsu Photonics Kk 励起光導入部材、光ファイバ構造体および光学装置
JP2007158012A (ja) * 2005-12-05 2007-06-21 Hamamatsu Photonics Kk 励起光導入部材、光ファイバ構造体および光学装置
US8232687B2 (en) * 2006-04-26 2012-07-31 Raydiance, Inc. Intelligent laser interlock system
US9130344B2 (en) 2006-01-23 2015-09-08 Raydiance, Inc. Automated laser tuning
US7444049B1 (en) * 2006-01-23 2008-10-28 Raydiance, Inc. Pulse stretcher and compressor including a multi-pass Bragg grating
US8189971B1 (en) 2006-01-23 2012-05-29 Raydiance, Inc. Dispersion compensation in a chirped pulse amplification system
JP2007214431A (ja) * 2006-02-10 2007-08-23 Hitachi Cable Ltd 光ファイバレーザ
US7559706B2 (en) * 2006-02-22 2009-07-14 Liekki Oy Light amplifying fiber arrangement
WO2007106075A2 (en) * 2006-03-03 2007-09-20 University Of Washington Multi-cladding optical fiber scanner
US8498046B2 (en) * 2008-12-04 2013-07-30 Imra America, Inc. Highly rare-earth-doped optical fibers for fiber lasers and amplifiers
US20090103874A1 (en) * 2006-03-17 2009-04-23 Crystal Fibre A/S Optical fiber, a fiber laser, a fiber amplifier and articles comprising such elements
US7835608B2 (en) * 2006-03-21 2010-11-16 Lockheed Martin Corporation Method and apparatus for optical delivery fiber having cladding with absorbing regions
US7822347B1 (en) 2006-03-28 2010-10-26 Raydiance, Inc. Active tuning of temporal dispersion in an ultrashort pulse laser system
CA2652006C (en) 2006-05-11 2017-05-30 Spi Lasers Uk Limited Apparatus for providing optical radiation
US7768700B1 (en) 2006-11-30 2010-08-03 Lockheed Martin Corporation Method and apparatus for optical gain fiber having segments of differing core sizes
GB2439345A (en) * 2006-06-23 2007-12-27 Gsi Group Ltd Annular tapered fibre coupler for cladding pumping of an optical fibre
GB2444091A (en) * 2006-11-24 2008-05-28 Gsi Group Ltd A Laser Amplifier
US7450813B2 (en) * 2006-09-20 2008-11-11 Imra America, Inc. Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
US7283714B1 (en) 2006-12-15 2007-10-16 Ipg Photonics Corporation Large mode area fiber for low-loss transmission and amplification of single mode lasers
US20080144673A1 (en) * 2006-12-15 2008-06-19 Ipg Photonics Corporation Fiber laser with large mode area fiber
US7437046B2 (en) * 2007-02-12 2008-10-14 Furukawa Electric North America, Inc. Optical fiber configuration for dissipating stray light
US8755658B2 (en) * 2007-02-15 2014-06-17 Institut National D'optique Archimedean-lattice microstructured optical fiber
US20080298746A1 (en) * 2007-06-04 2008-12-04 Nigel Holehouse Optical Fiber Side Coupler for Coupling Light Between a Multimode Optical Fiber and a Cladding Pumping Optical Fiber
US8055115B2 (en) * 2007-07-05 2011-11-08 Coractive High-Tech Inc. Optically active glass and optical fiber with reduced photodarkening and method for reducing photodarkening
US8270445B2 (en) * 2007-07-16 2012-09-18 Coractive High-Tech Inc Light emitting devices with phosphosilicate glass
US7983312B2 (en) * 2007-08-09 2011-07-19 Raytheon Company Method and apparatus for generation and amplification of light in a semi-guiding high aspect ratio core fiber
JPWO2009028614A1 (ja) 2007-08-28 2010-12-02 株式会社フジクラ 希土類添加コアマルチクラッドファイバ、ファイバ増幅器及びファイバレーザ
US8970947B2 (en) * 2007-09-26 2015-03-03 Imra America, Inc. Auto-cladded multi-core optical fibers
JP2009129940A (ja) * 2007-11-20 2009-06-11 Toyota Central R&D Labs Inc 光ファイバ装置及びその製造方法並びに光ファイバレーザ装置
US7848014B2 (en) * 2008-04-09 2010-12-07 Cisco Technology, Inc. Erbium and Erbium/Ytterbium cladding pumped hybrid optical amplifier
US8213077B2 (en) * 2008-04-22 2012-07-03 Imra America, Inc. Multi-clad optical fibers
US20090289382A1 (en) * 2008-05-22 2009-11-26 Raydiance, Inc. System and method for modifying characteristics of a contact lens utilizing an ultra-short pulsed laser
US8125704B2 (en) * 2008-08-18 2012-02-28 Raydiance, Inc. Systems and methods for controlling a pulsed laser by combining laser signals
DK2451031T3 (da) * 2008-11-17 2019-07-29 Raytheon Co Fremgangsmåde og indretning til generering og forstærkning af lys i en halvledende højt aspektforhold kernefiber
US7978943B2 (en) * 2009-01-22 2011-07-12 Raytheon Company Monolithic pump coupler for high-aspect ratio solid-state gain media
US7860360B2 (en) * 2009-01-23 2010-12-28 Raytheon Company Monolithic signal coupler for high-aspect ratio solid-state gain media
DE102009035375A1 (de) 2009-03-10 2010-09-30 J-Fiber Gmbh Verfahren zur Herstellung einer optischen Faser
JP2010272827A (ja) 2009-05-25 2010-12-02 Fujikura Ltd 光ファイバカプラ及び光ファイバ増幅器
EP2460036B1 (en) 2009-05-27 2017-06-28 biolitec Unternehmensbeteiligungs II AG Precisely-shaped core fibers and method of manufacture
GB0919902D0 (en) * 2009-11-13 2009-12-30 Qinetiq Ltd Improvements in fibre optic cables for distributed sensing
US8363310B2 (en) 2010-05-04 2013-01-29 The United States Of America As Represented By The Secretary Of The Army High power and high gain fiber amplifier
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
US8730456B2 (en) * 2010-11-09 2014-05-20 The United States Of America As Represented By The Secretary Of The Army Compact monostatic optical receiver and transmitter
US8908263B2 (en) 2011-06-17 2014-12-09 Jds Uniphase Corporation Large mode area optical waveguide devices
US9270080B1 (en) * 2011-06-26 2016-02-23 Fianium Ltd Methods and apparatus pertaining to the use and generation of broadband light
US10239160B2 (en) 2011-09-21 2019-03-26 Coherent, Inc. Systems and processes that singulate materials
JP2013235969A (ja) * 2012-05-09 2013-11-21 Furukawa Electric Co Ltd:The 光ファイバ接続構造、光増幅器の励起光制御方法
TWI477833B (zh) 2012-09-14 2015-03-21 Univ Nat Taiwan Double fiber crystal fiber and its making method
US9147992B2 (en) * 2012-11-09 2015-09-29 Coherent, Inc. High efficiency amplification of pulsed laser output for high energy ultrafast laser systems
US8824519B1 (en) 2013-03-01 2014-09-02 Princeton Optronics Inc. VCSEL pumped fiber optic gain systems
DE102013014277A1 (de) * 2013-08-27 2015-03-05 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Vorrichtung zum Einkoppeln von Pumplicht in eine Faser und Verfahren zum Herstellen einer solchen Vorrichtung
JP6126562B2 (ja) 2014-08-27 2017-05-10 三星ダイヤモンド工業株式会社 光ファイバ装置
EP3251184B1 (en) * 2015-01-29 2020-07-01 University of Rochester Method and apparatus for spectral narrowing and wavelength stabilization of broad-area lasers
WO2017027849A1 (en) * 2015-08-12 2017-02-16 Hong Po Bi-directional pump light fiber for energy transfer to a cladding pumped fiber
CN106324759A (zh) * 2016-10-20 2017-01-11 北京工业大学 一种基于三包层光纤的(n+1)×1型侧面泵浦光纤耦合器
JP6998754B2 (ja) * 2017-12-15 2022-01-18 古河電気工業株式会社 光結合器及び光増幅器
US11323105B2 (en) 2018-06-15 2022-05-03 Fermi Research Alliance, Llc Method and system for arbitrary optical pulse generation
US11175449B2 (en) 2019-01-02 2021-11-16 Lumentum Operations Llc Optical fiber with variable absorption
US11808970B2 (en) 2019-01-02 2023-11-07 Lumentum Operations Llc Optical fiber with variable absorption
JP2022549766A (ja) * 2019-08-21 2022-11-29 ユニバーシテ ラバル 光ファイバーを結合する方法および光学カプラー

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729690A (en) 1961-10-27 1973-04-24 American Optical Corp Means for producing and amplifying optical energy

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125768A (en) * 1974-12-18 1978-11-14 Post Office Apparatus for launching or detecting waves of selected modes in an optical dielectric waveguide
US4515431A (en) * 1982-08-11 1985-05-07 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic amplifier
US4546476A (en) * 1982-12-10 1985-10-08 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic amplifier
US4630889A (en) * 1983-11-09 1986-12-23 Polaroid Corporation Polarization locked optical fiber and method
JPS60200208A (ja) * 1984-03-23 1985-10-09 Fujitsu Ltd 光フアイバ
US4709986A (en) * 1984-06-18 1987-12-01 Polaroid Corporation Ensheathed optical fiber and coupling method
JPS6289006A (ja) * 1985-10-15 1987-04-23 Nippon Telegr & Teleph Corp <Ntt> サブミクロンコアフアイバ
JPS62262835A (ja) * 1986-05-09 1987-11-14 Furukawa Electric Co Ltd:The 光導波路形波長変換素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3729690A (en) 1961-10-27 1973-04-24 American Optical Corp Means for producing and amplifying optical energy

Also Published As

Publication number Publication date
JPH01260405A (ja) 1989-10-17
DE3874701D1 (de) 1992-10-22
EP0320990A3 (en) 1990-03-14
US4815079A (en) 1989-03-21
DE320990T1 (de) 1989-10-26
DE3874701T2 (de) 1993-02-11
EP0320990A2 (en) 1989-06-21
EP0320990B1 (en) 1992-09-16
CA1324517C (en) 1993-11-23

Similar Documents

Publication Publication Date Title
JP2781399B2 (ja) 光フアイバ及びそれを用いた光学装置
US6816652B1 (en) Pump fiber bundle coupler for double-clad fiber devices
RU2138892C1 (ru) Оптическое волокно с двумя сердцевинами, способ его изготовления, волоконный лазер с двумя сердцевинами и волоконный усилитель с двумя сердцевинами
US7306376B2 (en) Monolithic mode stripping fiber ferrule/collimator and method of making same
US6370297B1 (en) Side pumped optical amplifiers and lasers
US7760978B2 (en) Optical fiber configuration for dissipating stray light
US5923694A (en) Wedge side pumping for fiber laser at plurality of turns
US6516124B2 (en) Fiber for enhanced energy absorption
US6278816B1 (en) Noise reduction technique for cladding pumped optical amplifiers
US6529318B1 (en) Total internal reflection (TIR) coupler and method for side-coupling pump light into a fiber
US8094370B2 (en) Cladding pumped fibre laser with a high degree of pump isolation
US6546169B1 (en) Pump couplers for double-clad fiber devices
JP3266194B2 (ja) 光導波路並びにその光導波路を用いたレーザ発振器およびレーザ増幅器
JP2000349369A (ja) 高出力ファイバリボンレーザー及び増幅器
US7983313B2 (en) System and method for coupling multiple beams to an active fiber
US20080062508A1 (en) Light amplifying fiber arrangement
US6975792B1 (en) Method and apparatus for coupling light into a waveguide using a slit
US20020172459A1 (en) Method and apparatus for coupling light into an optical waveguide
JP2002270928A (ja) 光励起方法、光増幅装置及びファイバレーザ装置、並びに光ファイバ
JP2001230476A (ja) 光増幅器
US7065279B2 (en) Method for exciting light for optical amplification medium fiber, structure for emitting excited light into optical amplification medium fiber optical fiber amplifier, and optical fiber laser
US6512867B2 (en) Parallel side-pumping of dual-clad fiber array using fused, layered structure
JP2001013346A (ja) ダブルクラッドファイバとそれを用いた光増幅器及びファイバレーザー
JP2004519840A (ja) 光ファイバを励起することに関する方法および装置
CN109407440B (zh) 一种基于大模场光纤的单模高功率放大装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080515

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11