JP2725773B2 - Semiconductor integrated circuit and manufacturing method thereof - Google Patents

Semiconductor integrated circuit and manufacturing method thereof

Info

Publication number
JP2725773B2
JP2725773B2 JP62292418A JP29241887A JP2725773B2 JP 2725773 B2 JP2725773 B2 JP 2725773B2 JP 62292418 A JP62292418 A JP 62292418A JP 29241887 A JP29241887 A JP 29241887A JP 2725773 B2 JP2725773 B2 JP 2725773B2
Authority
JP
Japan
Prior art keywords
lower electrode
region
forming
conductivity type
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62292418A
Other languages
Japanese (ja)
Other versions
JPH01133354A (en
Inventor
芳明 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP62292418A priority Critical patent/JP2725773B2/en
Publication of JPH01133354A publication Critical patent/JPH01133354A/en
Application granted granted Critical
Publication of JP2725773B2 publication Critical patent/JP2725773B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はイオン注入法による抵抗素子を組み込んだ半
導体集積回路の、NPNトランジスタのhFE制御を容易なら
しめた製造方法に関する。 (ロ)従来の技術 バイポーラ型ICは、コレクタとなる半導体層表面にベ
ース・エミッタを2重拡散して形成した縦型のNPNトラ
ンジスタを主体として構成されている。その為、前記NP
Nトランジスタを製造するベース及びエミッタ拡散工程
は必要不可欠の工程であり、コレクタ直列抵抗を低減す
る為の高濃度埋込層形成工程やエピタキシャル層成長工
程、各素子を接合分離する為の分離領域形成工程や電気
的接続の為の電極形成工程等と並んでバイポーラ型ICを
製造するのに欠かせない工程(基本工程)である。 一方、回路的な要求から他の素子、例えばPNPトラン
ジスタ、抵抗、容量、ツェナーダイオード等を同一基板
上に組み込みたい要求がある。この場合、工程の簡素化
という点から可能な限り前記基本工程を流用した方が好
ましいことは言うまでもない。しかしながら、前記ベー
ス及びエミッタ拡散工程はNPNトランジスタの特性を最
重要視して諸条件が設定される為、前記基本工程だけで
は集積化が困難な場合が多い。そこで、基本的なNPNト
ランジスタの形成を目的とせず、他の素子を組み込む為
もしくは他素子の特性を向上することを目的として新規
な工程を追加することがある。例えば前記エミッタ拡散
によるカソード領域とでツェナーダイオードのツェナー
電圧を制御するアノード領域を形成する為のP+拡散工
程、ベース領域とは比抵抗が異る抵抗領域を形成する為
のR拡散工程やインプラ抵抗形成工程、MOS型よりも大
きな容量が得られる窒化膜容量を形成する為の窒化膜形
成工程、NPNトランジスタのコレクタ直列抵抗を更に低
減する為のコレクタ低抵抗領域形成工程等がそれであ
り、全てバイポーラICの用途や目的及びコスト的な面か
ら検討して追加するか否かが決定される工程(オプショ
ン工程)である。 上記オプション工程を利用して形成したMIS型容量を
第3図に示す。同図において、(1)はP型半導体基
板、(2)はN型エピタキシャル層、(3)はN+型埋込
層、(4)はP+型分離領域、(5)はアイランド、
(6)はエミッタ拡散によるN+型の下部電極領域、
(7)は高誘電率絶縁体としてのシリコン窒化膜(Si3N
4)、(8)はアルミニウム材料から成る上部電極、
(9)は酸化膜、(10)は電極である。尚、窒化膜を利
用したMIS型容量としては、例えば特開昭60−244056号
公報に記載されている。 (ハ)発明が解決しようとする問題点 しかしながら、従来のMIS型容量は下部電極としてNPN
トランジスタのエミッタ拡散工程を利用している為、エ
ミッタ領域形成用のN型不純物をデポした後に窒化膜を
形成し、その後でN型不純物のドライブインを行わなけ
ればならない。すると、窒化膜のデポ時に使用する800
℃前後の熱処理がエミッタ領域を再拡散させる為、NPN
トランジスタのhFE(電流増幅率)のばらつきが大き
く、hFEのコントロールが難しい欠点があった。 また、窒化膜の形成に必要なオプション工程を追加し
たか否かでエミッタ領域の熱処理条件を変更する必要が
ある為、機種別の工程管理が必要であり、管理の共通化
ができない欠点があった。 (ニ)問題点を解決するための手段 本発明は斯上した欠点に鑑みてなされ、MIS型容量を
組み込んだ半導体集積回路の製造方法において、アイラ
ンド表面にNPNトランジスタのエミッタ拡散に先立ってM
IS型容量の下部電極領域(26)と誘電体薄膜(28)を形
成し、その後NPNトランジスタのエミッタ拡散を行うと
共に、下部電極領域(26)にオーミックコンタクトする
下部電極(30)を櫛歯状に配設したことを特徴とする。 (ホ)作用 本発明によれば、下部電極としてエミッタ拡散を利用
せずエミッタ領域(30)形成前に形成した領域を使用
し、窒化膜をデポした後にエミッタ拡散を行うので、エ
ミッタ領域(30)形成以後のNPNトランジスタのhFEに影
響する熱処理工程を排除することができる。 また、下部電極領域(26)の形成をプロセスの前半に
配置した為、下部電極領域(26)表面の不純物濃度が低
下し、誘電体薄膜(28)の下部から下部電極(30)がコ
ンタクトする部分までの下部電極領域(26)の拡散抵抗
が増大することにより、下部電極(30)の取出し抵抗が
増大するものの、本願によれば下部電極(30)を櫛歯状
に配設したので下部電極(30)の取出し抵抗を減じるこ
とができる。 (ヘ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に
説明する。 第1図A及び第1図Bは本発明の半導体集積回路を示
し、(21)はP型シリコン基板、(22)は基板(21)表
面に設けたN+型の埋込層、(23)は基板(21)全面の上
に積層して形成したN型エピタキシャル層、(24)はエ
ピタキシャル層(23)を貫通するP+型の分離領域、(2
5)は分離領域(24)によってエピタキシャル層(23)
を島状に形成したアイランド、(26)はアイランド(2
5)表面に形成したP型又はN型のMIS型容量の下部電極
領域、(27)はエピタキシャル層(23)表面を覆うシリ
コン酸化膜(SiO2)、(28)は露出させた下部電極領域
(26)の表面に堆積して形成したシリコン窒化膜(Si3N
4)から成る誘電体薄膜、(29)は下部電極領域(26)
の表面に設けたアルミニウム層から成る上部電極、(3
0)は下部電極領域(26)とコンタクトホール(31)を
介してオーミックコンタクトする下部電極である。 下部電極領域(26)は一例として分離領域(24)形成
工程を利用したものを示してある。分離領域(24)は高
不純物濃度拡散によって形成するものの、かなり深く拡
散する為とプロセスの前半に形成する為に表面濃度が低
下してしまう。すると、従来例の様にエミッタ拡散を使
用したものよりは下部電極の取出し抵抗が増大し、MIS
型容量の電圧依存性、周波数依存性、ヒステリシス特性
共に劣化してしまう。その為、本願の特徴とする如く下
部電極(30)を櫛歯状に配設することで下部電極(30)
の取出し抵抗を減少させ、諸特性の劣化を防止する。 そして本願の構造によれば、分離領域(24)を利用し
てMIS型容量の下部電極領域(26)を形成することによ
ってエミッタ拡散の前に誘電体薄膜(28)のデポジット
を行うことが可能になる。 以下、本願の製造方法を第2図A乃至第2図Fを用い
て説明する。 先ず第2図Aに示す如く、P型のシリコン半導体基板
(21)の表面にアンチモン(Sb)又はヒ素(As)等のN
型不純物を選択的にドープしてN+型埋込層(22)を形成
し、基板(21)全面に厚さ5〜10μのN型のエピタキシ
ャル層(23)を積層する。 次に第2図Bに示す如く、基板(21)表面からボロン
(B)を選択的に拡散することによって、埋込層(22)
を夫々取囲むようにエピタキシャル層(23)を貫通する
P+型の分離領域(24)を形成する。分離領域(24)で囲
まれたエピタキシャル層(23)が夫々の回路素子を形成
する為のアイランド(25)となる。と同時に、分離領域
(24)拡散工程のボロン(B)をアイランド(25)表面
の埋込層(22)に対応する領域にも拡散し、エピタキシ
ャル層(23)表面から埋込層(22)に到達する下部電極
領域(26)を形成する。下部電極領域(26)の底部は全
て埋込層(22)と接する様に形成し、埋込層(22)によ
って下部電極領域(26)を基板(21)の接地電位から電
気的に絶縁する。その為、MIS型容量は電気的に独立す
るので、回路構成上の制約が無い。分離領域(24)の拡
散は飽和拡散で行うが、エピタキシャル層(23)を貫通
させるので下部電極領域(26)の表面濃度は1018atoms
・cm-2前後となる。 次に第2図Cに示す如く、下部電極領域(26)を形成
したアイランド(25)とは別のアイランド(25)の表面
にボロン(B)を選択的にイオン注入又は拡散すること
によってNPNトランジスタのベースとなるベース領域(3
2)を形成する。この時下部電極領域(26)表面にもボ
ロン(B)を拡散すれば、下部電極領域(26)の表面濃
度を向上することができる。 次に第2図Dに示す如く、エピタキシャル層(23)表
面に形成した熱酸化又はCVD酸化膜(27)を選択的にエ
ッチング除去して下部電極領域(26)表面の一部を露出
させ、エピタキシャル層(23)全面に常圧CVD法等の技
術を用いて膜厚数百〜千数百Åのシリコン窒化膜(Si3N
4)を堆積させる。シリコン窒化膜はシリコン酸化膜よ
りも高い誘電率を示すので、大容量を形成することが可
能である。そして、前記シリコン窒化膜表面に周知のレ
ジストパターンを形成し、RIE等のドライエッチ技術を
利用して前記露出した下部電極領域(26)の表面を覆う
誘電体薄膜(28)を形成する。その後、誘電体薄膜(2
8)を覆う様にCVD法による酸化膜(27)を堆積させる。 次に第2図Eに示す如く、今度はNPNトランジスタの
ベース領域(32)表面とアイランド(25)表面の酸化膜
(27)を開孔し、この酸化膜(27)をマスクとしてリン
(P)を選択拡散することによりN+型のエミッタ領域
(33)とコレクタコンタクト領域(34)を形成する。 次に第2図Fに示す如く、酸化膜(27)上にネガ又は
ポジ型のフォトレジストによるレジストパターンを形成
し、ウェット又はドライエッチングによって誘電体薄膜
(28)上の酸化膜(27)を除去し、さらに酸化膜(27)
の所望の部分に電気的接続の為のコンタクトホール(3
1)を開孔する。そして、エピタキシャル層(23)全面
に周知の蒸着又はスパッタ技術によりアルミニウム層を
形成し、このアルミニウム層を再度パターニングするこ
とによって所望形状の電極(35)と誘電体薄膜(28)上
の上部電極(29)及び下部電極(30)を形成する。 斯上した本願の製造方法によれば、MIS型容量の下部
電極領域(26)として分離領域(24)の拡散工程によっ
て形成した拡散領域を使用したので、誘電体薄膜(28)
の製造工程をエミッタ拡散工程の前に配置することがで
きる。すると、エミッタ領域(33)形成用のリン(P)
のデポジットからリン(P)のドライブインの前にMIS
型容量形成の為の熱処理を配置する必要が無く、デポジ
ットによってリン(P)が初期拡散された状態から即NP
NトランジスタのhFE(電流増幅率)コントロールの為の
熱処理(ドライブイン)工程を行うことができる。その
為、NPNトランジスタのhFEのばらつきが少く、MIS型容
量を組み込んだことによるhFEコントロールの難しさを
解消できる。また、MIS型容量を組み込む組み込まない
にかかわらずエミッタ領域(33)の熱処理条件を一本化
することができるので、機種別の工程管理が極めて容易
になる。 本願の下部電極領域(26)は様々な実施態様をとる。
例えば上下分離技術を使用したもの、上下分離技術の上
側の拡散領域だけを使用したもの、ベース領域(32)よ
り深く高不純物濃度でツェナーダイオードのアノード形
成用のP+型拡散領域を使用したもの、エピタキシャル層
(23)表面から埋込層(22)まで達するNPNトランジス
タのコレクタ抵抗低減を目的としたN型のコレクタ低抵
抗領域を使用したもの等である。いずれもエミッタ拡散
の前に行うので、その表面濃度はエミッタ領域(33)よ
りも低下してしまう。 (ト)発明の効果 以上説明した如く、本発明によればMIS型容量をオプ
ションデバイスとして追加したことによるNPNトランジ
スタのhFEのばらつきが僅ど無い、NPNトランジスタのh
FEのコントロールが極めて容易な半導体集積回路の製造
方法を提供できる利点を有する。また、MIS型容量を組
み込んだ機種とそうでない機種とでエミッタ領域(33)
の処理条件を一本化できるので、機種別の工程管理を簡
略化でき、さらには異なる機種のウェハーを同一拡散炉
内で熱処理するといった多機種少量生産が可能となる利
点をも有する。 そして本願によれば、下部電極(30)を櫛歯状とする
ことにより下部電極(30)の取出し抵抗を低減したの
で、下部電極領域(26)として表面濃度がエミッタ領域
(33)より低い拡散領域を使用したにもかかわらず、MI
S型容量の特性劣化を防止できる利点をも有する。
The present invention relates to a method of manufacturing a semiconductor integrated circuit incorporating a resistance element by an ion implantation method in which hFE control of an NPN transistor is facilitated. (B) Conventional technology A bipolar IC is mainly composed of a vertical NPN transistor in which a base and an emitter are double-diffused on the surface of a semiconductor layer serving as a collector. Therefore, the NP
The base and emitter diffusion processes for manufacturing N-transistors are indispensable processes.The process of forming a high-concentration buried layer to reduce the series resistance of the collector, the process of growing an epitaxial layer, and the formation of isolation regions for junction isolation of each element. This is a step (basic step) that is indispensable for manufacturing a bipolar IC along with a step and an electrode forming step for electrical connection. On the other hand, there is a demand for incorporating other elements, for example, a PNP transistor, a resistor, a capacitor, a Zener diode, etc. on the same substrate due to circuit requirements. In this case, it is needless to say that it is preferable to divert the basic steps as much as possible from the viewpoint of simplifying the steps. However, in the base and emitter diffusion steps, various conditions are set with the characteristics of the NPN transistor being regarded as the most important. Therefore, in many cases, integration is difficult only by the basic steps. Therefore, a new process may be added for the purpose of incorporating another element or improving the characteristics of the other element, without the purpose of forming a basic NPN transistor. For example, a P + diffusion process for forming an anode region for controlling a Zener voltage of a Zener diode with a cathode region formed by the emitter diffusion, an R diffusion process for forming a resistance region having a specific resistance different from that of a base region, or an implantation process. These include a resistor formation process, a nitride film formation process to form a nitride film capacitance that can provide a larger capacitance than the MOS type, and a collector low resistance region formation process to further reduce the collector series resistance of the NPN transistor. This is a step (optional step) in which it is determined whether or not to add a bipolar IC in consideration of its use, purpose, and cost. FIG. 3 shows the MIS type capacitor formed by using the above optional process. In the figure, (1) is a P-type semiconductor substrate, (2) is an N-type epitaxial layer, (3) is an N + -type buried layer, (4) is a P + -type isolation region, (5) is an island,
(6) is an N + type lower electrode region by emitter diffusion,
(7) is a silicon nitride film (Si 3 N) as a high dielectric constant insulator
4 ) and (8) are upper electrodes made of aluminum material,
(9) is an oxide film, and (10) is an electrode. The MIS capacitor using a nitride film is described in, for example, Japanese Patent Application Laid-Open No. 60-244056. (C) Problems to be Solved by the Invention However, the conventional MIS type capacitor uses NPN as the lower electrode.
Since the emitter diffusion step of the transistor is used, a nitride film must be formed after depositing an N-type impurity for forming an emitter region, and then drive-in of the N-type impurity must be performed. Then, 800 used for depositing nitride film
Heat treatment around ℃ causes redistribution of the emitter region.
Transistors have a large variation in hFE (current amplification factor), which makes it difficult to control hFE . Further, since it is necessary to change the heat treatment conditions for the emitter region depending on whether or not an optional process required for forming a nitride film is added, process control for each model is required, and there is a disadvantage that the management cannot be shared. Was. (D) Means for Solving the Problems The present invention has been made in view of the above-mentioned drawbacks, and in a method of manufacturing a semiconductor integrated circuit in which an MIS type capacitor is incorporated, an MN is formed on the island surface prior to the emitter diffusion of the NPN transistor.
A lower electrode region (26) of the IS type capacitor and a dielectric thin film (28) are formed, and then the emitter of the NPN transistor is diffused, and the lower electrode (30) that makes ohmic contact with the lower electrode region (26) is comb-shaped. It is characterized by being arranged in. (E) Function According to the present invention, the region formed before the formation of the emitter region (30) is used as the lower electrode without using the emitter diffusion, and the emitter diffusion is performed after the nitride film is deposited. ) heat treatment step affect the h FE after formation of the NPN transistor can be eliminated. Also, since the formation of the lower electrode region (26) is arranged in the first half of the process, the impurity concentration on the surface of the lower electrode region (26) decreases, and the lower electrode (30) contacts from the lower part of the dielectric thin film (28). Although the take-out resistance of the lower electrode (30) increases due to an increase in the diffusion resistance of the lower electrode region (26) up to the portion, according to the present application, the lower electrode (30) is arranged in a comb-teeth shape. The extraction resistance of the electrode (30) can be reduced. (F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings. 1A and 1B show a semiconductor integrated circuit according to the present invention, wherein (21) is a P-type silicon substrate, (22) is an N + type buried layer provided on the surface of the substrate (21), and (23) ) Is an N-type epitaxial layer formed on the entire surface of the substrate (21), (24) is a P + -type isolation region penetrating the epitaxial layer (23), (2)
5) Epitaxial layer (23) by isolation region (24)
(26) is an island (2
5) Lower electrode region of a P-type or N-type MIS capacitor formed on the surface, (27) a silicon oxide film (SiO 2 ) covering the surface of the epitaxial layer (23), and (28) an exposed lower electrode region A silicon nitride film (Si 3 N) deposited on the surface of (26)
4 ) Dielectric thin film consisting of (29) lower electrode region (26)
Upper electrode consisting of an aluminum layer provided on the surface of
Reference numeral 0) denotes a lower electrode that makes ohmic contact with the lower electrode region (26) through a contact hole (31). The lower electrode region (26) shows an example utilizing a separation region (24) forming step. Although the isolation region (24) is formed by high-impurity-concentration diffusion, the surface concentration is reduced because it is diffused considerably deeply and formed in the first half of the process. Then, the extraction resistance of the lower electrode increases as compared with the conventional example using emitter diffusion, and the MIS
The voltage dependency, frequency dependency, and hysteresis characteristics of the mold capacitor are all deteriorated. Therefore, by arranging the lower electrode (30) in a comb shape as a feature of the present application, the lower electrode (30)
To reduce the take-out resistance and prevent deterioration of various characteristics. According to the structure of the present invention, it is possible to deposit the dielectric thin film (28) before the emitter diffusion by forming the lower electrode region (26) of the MIS capacitor using the isolation region (24). become. Hereinafter, the manufacturing method of the present invention will be described with reference to FIGS. 2A to 2F. First, as shown in FIG. 2A, a surface of a P-type silicon semiconductor substrate (21) is coated with N such as antimony (Sb) or arsenic (As).
An N + -type buried layer (22) is formed by selectively doping type impurities, and an N-type epitaxial layer (23) having a thickness of 5 to 10 μ is laminated on the entire surface of the substrate (21). Next, as shown in FIG. 2B, boron (B) is selectively diffused from the surface of the substrate (21) to form a buried layer (22).
Penetrate the epitaxial layer (23) so as to surround
A P + type isolation region (24) is formed. The epitaxial layer (23) surrounded by the isolation region (24) becomes an island (25) for forming each circuit element. At the same time, the boron (B) in the isolation region (24) diffusion step is also diffused into a region corresponding to the buried layer (22) on the surface of the island (25), and the buried layer (22) is removed from the surface of the epitaxial layer (23). Is formed to reach the lower electrode region (26). The bottom of the lower electrode region (26) is formed so as to be entirely in contact with the buried layer (22), and the buried layer (22) electrically insulates the lower electrode region (26) from the ground potential of the substrate (21). . Therefore, the MIS capacitor is electrically independent, and there is no restriction on the circuit configuration. The diffusion of the isolation region (24) is performed by saturation diffusion. However, since the epitaxial layer (23) is penetrated, the surface concentration of the lower electrode region (26) is 10 18 atoms.
・ It is around cm -2 . Next, as shown in FIG. 2C, boron (B) is selectively ion-implanted or diffused into the surface of the island (25) other than the island (25) in which the lower electrode region (26) is formed, thereby forming an NPN. Base region (3
2) Form At this time, if boron (B) is also diffused to the surface of the lower electrode region (26), the surface concentration of the lower electrode region (26) can be improved. Next, as shown in FIG. 2D, the thermal oxidation or CVD oxide film (27) formed on the surface of the epitaxial layer (23) is selectively removed by etching to expose a part of the surface of the lower electrode region (26). A silicon nitride film (Si 3 N) having a thickness of several hundreds to several hundreds of millimeters is formed on the entire surface of the epitaxial layer (23) using a technique such as a normal pressure CVD method.
4 ) Deposit. Since the silicon nitride film has a higher dielectric constant than the silicon oxide film, a large capacity can be formed. Then, a well-known resist pattern is formed on the surface of the silicon nitride film, and a dielectric thin film (28) covering the surface of the exposed lower electrode region (26) is formed by using a dry etching technique such as RIE. After that, the dielectric thin film (2
An oxide film (27) is deposited by CVD so as to cover 8). Next, as shown in FIG. 2E, an oxide film (27) on the surface of the base region (32) and the surface of the island (25) of the NPN transistor is opened, and phosphorus (P) is formed using the oxide film (27) as a mask. ) Is selectively diffused to form an N + -type emitter region (33) and a collector contact region (34). Next, as shown in FIG. 2F, a resist pattern of a negative or positive photoresist is formed on the oxide film (27), and the oxide film (27) on the dielectric thin film (28) is formed by wet or dry etching. Remove and further oxide film (27)
Contact holes (3
1) Open the hole. Then, an aluminum layer is formed on the entire surface of the epitaxial layer (23) by a well-known vapor deposition or sputtering technique, and the aluminum layer is patterned again to form an electrode (35) having a desired shape and an upper electrode (35) on the dielectric thin film (28). 29) and the lower electrode (30) are formed. According to the manufacturing method of the present invention, since the diffusion region formed by the diffusion step of the isolation region (24) is used as the lower electrode region (26) of the MIS capacitor, the dielectric thin film (28)
Can be arranged before the emitter diffusion step. Then, phosphorus (P) for forming the emitter region (33) is formed.
MIS before drive-in of Rin (P) from deposit
There is no need to arrange a heat treatment for forming the mold capacity, and the NP is immediately changed from the state where phosphorus (P) is initially diffused by the deposit.
A heat treatment (drive-in) process for controlling the hFE (current amplification factor) of the N transistor can be performed. Therefore, variations in the h FE of the NPN transistor is less, can solve the difficulty of h FE control due to the fact that incorporating the MIS-type capacity. In addition, since the heat treatment conditions for the emitter region (33) can be unified regardless of whether the MIS type capacitor is incorporated or not, the process management for each model becomes extremely easy. The lower electrode region (26) of the present application takes various embodiments.
For example, using the upper / lower isolation technology, using only the upper diffusion region of the upper / lower isolation technology, using the P + type diffusion region deeper than the base region (32) with a high impurity concentration and forming the anode of a Zener diode And those using an N-type collector low resistance region for the purpose of reducing the collector resistance of the NPN transistor reaching from the surface of the epitaxial layer (23) to the buried layer (22). Since both are performed before the diffusion of the emitter, the surface concentration is lower than that of the emitter region (33). (G) As described above, according to the present, variations in the h FE of the NPN transistor is not etc. small quantity due to the addition of the MIS capacitor as optional devices according to the present invention, the NPN transistor h
There is an advantage that a method of manufacturing a semiconductor integrated circuit in which FE control is extremely easy can be provided. In addition, the emitter area (33) differs between models that incorporate the MIS type capacitor and models that do not.
Since the processing conditions can be unified, the process management for each model can be simplified, and further, there is an advantage that a small number of models can be produced in a small number, such as heat treatment of wafers of different models in the same diffusion furnace. According to the present application, since the lower electrode (30) has a comb-teeth shape to reduce the extraction resistance of the lower electrode (30), the lower electrode region (26) has a lower surface concentration than the emitter region (33). Despite using the area, MI
It also has the advantage that the deterioration of the characteristics of the S-type capacitor can be prevented.

【図面の簡単な説明】 第1図A及び第1図Bは夫々本発明を説明する為の平面
図及びAA線断面図、第2図A乃至第2図Fは夫々本発明
の製造方法を説明する為の断面図、第3図は従来例を説
明する為の断面図である。 (21)は半導体基板、(26)は下部電極領域、(28)は
誘電体薄膜、(29)は上部電極、(30)は下部電極であ
る。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are a plan view and a sectional view taken along the line AA, respectively, for explaining the present invention, and FIGS. 2A to 2F show a manufacturing method of the present invention, respectively. FIG. 3 is a cross-sectional view for explaining a conventional example. (21) is a semiconductor substrate, (26) is a lower electrode region, (28) is a dielectric thin film, (29) is an upper electrode, and (30) is a lower electrode.

Claims (1)

(57)【特許請求の範囲】 1.一導電型半導体基板の上に形成した逆導電型のエピ
タキシャル層と、 前記基板表面に形成した逆導電型の埋め込み層と、 この埋め込み層を夫々取り囲むようにエピタキシャル層
を分離する一導電型の分離領域と、 該分離領域によって複数個形成したアイランドと、 このアイランド表面に縦型バイポーラトランジスタのエ
ミッタ拡散に先立って形成した一導電型又は逆導電型の
MIS型容量の下部電極領域と、 該下部電極領域を覆うように前記エミッタ拡散に先立っ
て堆積して形成した誘電体薄膜と、 前記下部電極領域の表面にオーミックコンタクトするMI
S型容量の下部電極と、 前記誘電体薄膜を挟んで前記下部電極領域と対向するよ
うに前記誘電体薄膜上に配設した上部電極とを具備し、 前記下部電極領域の表面濃度が前記エミッタ領域の表面
濃度より小さく、且つ前記上部電極と前記下部電極を櫛
歯状に形成したことを特徴とする半導体集積回路。 2.一導電型半導体基板の所望の領域に逆導電型の埋め
込み層を形成する工程、 前記基板の上に逆導電型のエピタキシャル層を形成する
工程、 前記エピタキシャル層を分離して複数個のアイランドを
形成する工程、 1つのアイランド表面にMIS型容量の下部電極となる一
導電型又は逆導電型の下部電極領域を形成する工程、 前記下部電極領域表面の一部の領域を露出し、前記MIS
型容量の誘電体薄膜を堆積して櫛歯状に形成する工程、 前記誘電体薄膜を形成した後、逆導電型の不純物を選択
的に拡散することによって縦型バイポーラトランジスタ
の逆導電型のエミッタ領域を形成する工程、 全面に導電体膜を形成し、前記誘電体薄膜の上に前記MI
S型容量の上部電極を、前記下部電極領域表面には前記
下部電極領域とオーミックコンタクトする電極を、各々
櫛歯状に配設する工程とを具備し、 前記下部電極領域の表面濃度が前記エミッタ領域の表面
濃度より小さいことを特徴とする半導体集積回路の製造
方法。
(57) [Claims] A reverse conductivity type epitaxial layer formed on the one conductivity type semiconductor substrate; a reverse conductivity type buried layer formed on the substrate surface; and a one conductivity type separation for separating the epitaxial layer so as to surround the buried layer, respectively. A plurality of islands formed by the isolation region; and one conductivity type or reverse conductivity type formed on the surface of the island prior to the emitter diffusion of the vertical bipolar transistor.
A lower electrode region of the MIS type capacitor; a dielectric thin film formed by depositing prior to the emitter diffusion so as to cover the lower electrode region; and a MI contacting the surface of the lower electrode region with an ohmic contact.
A lower electrode of an S-type capacitor; and an upper electrode disposed on the dielectric thin film so as to face the lower electrode region with the dielectric thin film interposed therebetween. A semiconductor integrated circuit having a surface concentration lower than that of a region and wherein the upper electrode and the lower electrode are formed in a comb shape. 2. Forming a reverse conductivity type buried layer in a desired region of the one conductivity type semiconductor substrate; forming a reverse conductivity type epitaxial layer on the substrate; forming a plurality of islands by separating the epitaxial layer Forming a one-conductivity-type or reverse-conductivity-type lower electrode region serving as a lower electrode of an MIS-type capacitor on one island surface; exposing a part of the surface of the lower electrode region,
Depositing a dielectric thin film of a type capacitor and forming it in a comb shape; after forming the dielectric thin film, an emitter of the opposite conductivity type of the vertical bipolar transistor by selectively diffusing impurities of the opposite conductivity type. Forming a region, forming a conductive film on the entire surface, and forming the MI on the dielectric thin film.
Arranging an upper electrode of an S-type capacitor, and an electrode in ohmic contact with the lower electrode region on the surface of the lower electrode region in a comb-like shape, wherein the surface concentration of the lower electrode region is equal to the emitter concentration. A method for manufacturing a semiconductor integrated circuit, wherein the surface concentration is lower than a surface concentration of a region.
JP62292418A 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof Expired - Fee Related JP2725773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292418A JP2725773B2 (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292418A JP2725773B2 (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01133354A JPH01133354A (en) 1989-05-25
JP2725773B2 true JP2725773B2 (en) 1998-03-11

Family

ID=17781531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292418A Expired - Fee Related JP2725773B2 (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2725773B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6239491B1 (en) * 1998-05-18 2001-05-29 Lsi Logic Corporation Integrated circuit structure with thin dielectric between at least local interconnect level and first metal interconnect level, and process for making same
US6974744B1 (en) 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6980414B1 (en) 2004-06-16 2005-12-27 Marvell International, Ltd. Capacitor structure in a semiconductor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060253A (en) * 1979-10-01 1981-04-29 Trw Inc MIS Capacitors
JPS58159367A (en) * 1982-03-17 1983-09-21 Matsushita Electronics Corp Mos capacitor device
JPS60166155U (en) * 1984-04-11 1985-11-05 三洋電機株式会社 Junction type capacitor
JPS6113656A (en) * 1984-06-28 1986-01-21 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH01133354A (en) 1989-05-25

Similar Documents

Publication Publication Date Title
JPH10256270A (en) Complementary bipolar transistor and manufacture therefor
JPH0123949B2 (en)
JPS62277745A (en) Semiconductor integrated circuit
JPS6050958A (en) Transistor integrated circuit
EP0451286B1 (en) Integrated circuit device
JP2725773B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JP3099917B2 (en) Field effect transistor
GB1593937A (en) I2l integrated circuitry
JP2740177B2 (en) Semiconductor integrated circuit
JP4534267B2 (en) Manufacturing method of semiconductor device
JPH061806B2 (en) Method for manufacturing semiconductor integrated circuit
JPH01133344A (en) Semiconductor integrated circuit and manufacture thereof
JP2614519B2 (en) Method of manufacturing semiconductor integrated circuit incorporating MIS capacitance element
JPH02137262A (en) Semiconductor integrated circuit and its manufacture
JPH0425711B2 (en)
JPH01130553A (en) Manufacture of semiconductor integrated circuit
JPH061807B2 (en) Method for manufacturing semiconductor integrated circuit
JP2708764B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH0583192B2 (en)
JPH061813B2 (en) Method for manufacturing semiconductor integrated circuit
KR100206579B1 (en) Semiconductor device and manufacture thereof
JPH01133346A (en) Manufacture of semiconductor integrated circuit
JPH061812B2 (en) Method for manufacturing semiconductor integrated circuit
JPH01133350A (en) Manufacture of semiconductor integrated circuit
JPH07120710B2 (en) Method for manufacturing semiconductor integrated circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees