JPH0425711B2 - - Google Patents

Info

Publication number
JPH0425711B2
JPH0425711B2 JP58023960A JP2396083A JPH0425711B2 JP H0425711 B2 JPH0425711 B2 JP H0425711B2 JP 58023960 A JP58023960 A JP 58023960A JP 2396083 A JP2396083 A JP 2396083A JP H0425711 B2 JPH0425711 B2 JP H0425711B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
base
transistor
forming
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58023960A
Other languages
Japanese (ja)
Other versions
JPS59149045A (en
Inventor
Kimimaro Yoshikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP58023960A priority Critical patent/JPS59149045A/en
Publication of JPS59149045A publication Critical patent/JPS59149045A/en
Publication of JPH0425711B2 publication Critical patent/JPH0425711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]

Description

【発明の詳細な説明】 本発明は半導体装置、特にI2L(Integrated
Injection Logic)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, particularly I 2 L (Integrated
Injection Logic).

I2Lは通常のバイポーラトランジスタのエミツ
タとコレクタを逆にしたいわゆる逆構造バーチカ
ルトランジスタからなるインバータ用トランジス
タと、このトランジスタのベースをコレクタとす
るこれと相補形のインジエクタ用トランジスタの
複合構造を有している。またI2Lは論理振幅が、
小さく、高速かつ、低消費電力の動作が可能であ
り、素子分離を要しないため高集積化が可能で、
従来のバイポーラ集積回路と同一チツプ上に共存
できるという特徴を有している。
I 2 L has a composite structure of an inverter transistor, which is a so-called inverted vertical transistor in which the emitter and collector of a normal bipolar transistor are reversed, and a complementary injector transistor, whose collector is the base of this transistor. ing. Also, I 2 L has a logic amplitude of
It is small, high-speed, and can operate with low power consumption, and because it does not require element isolation, it can be highly integrated.
It has the feature that it can coexist on the same chip with conventional bipolar integrated circuits.

従来I2Lは第1図a,bに示すように、インバ
ータとしてのNPNトランジスタT1,T2,T3
共通ベース電極4が入力となり、キヤリヤ注入用
横方向PNPトランジスタが一体化されている。
Conventional I 2 L, as shown in Fig. 1a and b, has a common base electrode 4 of NPN transistors T 1 , T 2 , T 3 as an inverter as an input, and a lateral PNP transistor for carrier injection is integrated. There is.

第2図は前記I2Lの等価回路を示すものである
が、ベース電極4からトランジスタが遠くなるに
つれて大きなベース抵抗γ1,γ2,γ3を有してい
る。
FIG. 2 shows an equivalent circuit of the above-mentioned I 2 L, and as the transistor becomes farther from the base electrode 4, the base resistances γ 1 , γ 2 , and γ 3 become larger.

このため、大電流時にベース横方向電圧降下を
生じ、ベースコンタクトからの距離の差によつて
トランジスタ(インバータ)の電流利得に差が生
じる。また、このベース抵抗のためスイツチング
時間が遅くなるという欠点があつた。さらに、実
効的なトランジスタ領域1,2,3に対し無効ベ
ース面積5が大きく逆動作NPNの電流利得を低
下させている。
Therefore, a voltage drop occurs in the lateral direction of the base at the time of a large current, and the current gain of the transistor (inverter) varies depending on the distance from the base contact. Another drawback is that the base resistance slows down the switching time. Furthermore, the invalid base area 5 is large compared to the effective transistor areas 1, 2, and 3, reducing the current gain of the reverse operation NPN.

本発明の目的は、従来構造のI2Lの欠点を解決
し、(コレクタ面積)/(ベース面積)比を大き
くでき、かつベース抵抗を小さくした構造を提供
することにある。かかる目的を達成するために、
本発明では、複数個の逆動作縦形トランジスタの
ベース領域を絶縁物で分離して、ベース無効面積
を減少させるとともに、前記ベース領域を自己整
合的に形成された金属シリサイド層からなる引き
出し電極で相互に接続することによりベース抵抗
を大幅に減少させるものである。
An object of the present invention is to solve the drawbacks of the conventional structure I 2 L, to provide a structure in which the (collector area)/(base area) ratio can be increased and the base resistance can be reduced. In order to achieve this purpose,
In the present invention, the base regions of a plurality of reverse-acting vertical transistors are separated by an insulator to reduce the base ineffective area, and the base regions are interconnected by an extraction electrode made of a metal silicide layer formed in a self-aligned manner. By connecting it to the base, the base resistance can be significantly reduced.

以下、実施例に基づき本発明を詳細に説明す
る。第3図a及びbはそれぞれ本発明をインバー
タトランジスタが2個の場合に適用した一実施例
を示す平面図及び断面図である。
Hereinafter, the present invention will be explained in detail based on Examples. FIGS. 3a and 3b are a plan view and a sectional view, respectively, showing an embodiment in which the present invention is applied to a case where there are two inverter transistors.

両図において、37はインジエクタ横形PNP
トランジスタのエミツタ、37′は引き出し電極
要P+形多結晶シリコン、37″は多結晶シリコン
上の白金シリサイド、36はインジエクタ横形
PNPトランジスタのコレクタ、34′は共通ベー
ス入力用P+形多結晶シリコン、34″は多結晶シ
リコン上の白金シリサイド、35,34はインバ
ータNPNトランジスタP形ベース、31,32
はインバータNPNトランジスタのN+形コレク
タ、32′,31′はコレクタ電極引き出し用多結
晶シリコン、31″,32″は多結晶シリコン上の
白金シリサイド、32は共通N+エミツタ、3
3′,33″は共通エミツタ引き出し電極用多結晶
シリコン及び白金シリサイド、41はフイールド
酸化膜、39はN形エピタキシヤル層、40は
N+形埋込層、30はP形シリコン基板をそれぞ
れ示す。
In both figures, 37 is the injector horizontal PNP
Emitter of transistor, 37' is P + type polycrystalline silicon for extraction electrode, 37'' is platinum silicide on polycrystalline silicon, 36 is horizontal injector
Collector of PNP transistor, 34' is P + type polycrystalline silicon for common base input, 34'' is platinum silicide on polycrystalline silicon, 35, 34 is P type base of inverter NPN transistor, 31, 32
is the N + type collector of the inverter NPN transistor, 32' and 31' are polycrystalline silicon for extracting the collector electrode, 31'' and 32'' are platinum silicide on polycrystalline silicon, 32 is a common N + emitter, 3
3' and 33'' are polycrystalline silicon and platinum silicide for the common emitter extraction electrode, 41 is a field oxide film, 39 is an N-type epitaxial layer, and 40 is a
30 represents an N + type buried layer and a P type silicon substrate, respectively.

図からわかるように、インバータトランジスタ
T1,T2は酸化物41で分離され、インジエクタ
トランジスタT4も分離独立している。さらに、
共通ベースは選択酸化により残つた多結晶シリコ
ンと自己整合的に形成された白金シリサイドから
なる引き出し電極によつて各インバータトランジ
スタのベース及びインジエクタのコレクタ36を
接続している。この引き出し電極は白金シリサイ
ドを有するため、非常に抵抗抗(>5Ω)にで
き、ベース直列抵抗を非常に小さくできる。ま
た、この結果、コレクタ数の増加によつても、ベ
ース横方向電圧降下は発生せず、均一な電流利得
が得られる。従つてスイツチング速度も著しく改
善される。
As you can see from the diagram, the inverter transistor
T 1 and T 2 are separated by an oxide 41, and the injector transistor T 4 is also separated and independent. moreover,
The common base connects the base of each inverter transistor and the collector 36 of the injector by an extraction electrode made of platinum silicide formed in self-alignment with the polycrystalline silicon left after selective oxidation. Since this extraction electrode contains platinum silicide, it can be made to have a very high resistance (>5Ω), and the base series resistance can be made very small. Furthermore, as a result, even with an increase in the number of collectors, no base lateral voltage drop occurs, and a uniform current gain can be obtained. The switching speed is therefore also significantly improved.

また各インバータトランジスタも真性トランジ
スタ領域以外は酸化物で分離されるため、寄生容
量が少なく、(コレクタ面積)/(ベース面積)
比が大きいので、電流利得も改善される。次に、
前記実施例の製造方法を第4図a〜dを参照して
説明する。
In addition, since each inverter transistor is separated by oxide except for the intrinsic transistor region, parasitic capacitance is small, and (collector area) / (base area)
Since the ratio is large, the current gain is also improved. next,
The manufacturing method of the above embodiment will be explained with reference to FIGS. 4a to 4d.

まず、比抵抗0.5〜50ΩcmのP形シリコン基板
30の表面に例えばアンチモンを高濃度に含む
N+形埋込層40を拡散形成する。次にこの基板
上に厚さ3〜10μm、比抵抗0.5〜50ΩcmのN形エ
ピタキシヤル層39を成長させる(第4図a)。
First, the surface of a P-type silicon substrate 30 having a specific resistance of 0.5 to 50 Ωcm contains a high concentration of antimony, for example.
An N + type buried layer 40 is formed by diffusion. Next, an N-type epitaxial layer 39 having a thickness of 3 to 10 .mu.m and a resistivity of 0.5 to 50 .OMEGA.cm is grown on this substrate (FIG. 4a).

次に化学的気相成長法によつて、500Åの薄い
酸化膜の上に、1000〜1500Åのシリコン窒化膜
(Si3N4)を形成し、プラズマエツチングによつ
てパターニングする。トランジスタ領域を残して
前記窒化膜を除去し、必要であればシリコン部分
的にエツチングし、この窒化膜43をマスクに
1000〜1100℃で熱酸化し、厚さ1.0〜1.5μmのフ
イールド酸化膜41を形成する。NPNトランジ
スタのベース領域35,34を形成するため、加
速エネルギー100kev、注入量1〜5×1014cm-2
フオトレジストをマスクにボロンのイオン注入を
行う(第4図b)。
Next, a 1000-1500 Å silicon nitride film (Si 3 N 4 ) is formed on the 500 Å thin oxide film by chemical vapor deposition, and patterned by plasma etching. The nitride film is removed leaving the transistor region, and if necessary, the silicon is partially etched, using this nitride film 43 as a mask.
Thermal oxidation is performed at 1000 to 1100° C. to form a field oxide film 41 with a thickness of 1.0 to 1.5 μm. In order to form the base regions 35 and 34 of the NPN transistors, boron ions are implanted using a photoresist as a mask at an acceleration energy of 100 keV and an implantation amount of 1 to 5.times.10.sup.14 cm.sup. -2 (FIG. 4b).

前記窒化膜及び薄い酸化膜を除去した後、約
5000Åの厚さのポリシリコン44を化学的気相成
長法によつて形成する。ついで前記ポリシリコン
表面に厚さ500Åの熱酸化膜を形成し、窒化膜4
5を化学的気相成長法によつて1500Åの厚さに成
長する(第4図c)。
After removing the nitride film and thin oxide film, approximately
Polysilicon 44 with a thickness of 5000 Å is formed by chemical vapor deposition. Next, a thermal oxide film with a thickness of 500 Å is formed on the polysilicon surface, and a nitride film 4 is formed.
5 was grown to a thickness of 1500 Å by chemical vapor deposition (FIG. 4c).

次に、窒化膜をパターニングし、これをマスク
にした選択酸化によつてポリシリコンを厚さ1.0
〜1.5μmの酸化膜42で分離する。ついで、外部
ベース領域35,34及びラテラルPNPのエミ
ツタ37、コレクタ36を形成すべき領域のポリ
シリコン上の窒化膜及び薄い酸化膜を選択除去し
て、900℃〜1100℃でボロンをポリシリコンを通
して拡散し、深さ約0.6μmの上記領域を単結晶シ
リコン中に形成し、ポリシリコン表面を酸化す
る。
Next, the nitride film is patterned, and polysilicon is deposited to a thickness of 1.0 mm by selective oxidation using this as a mask.
It is separated by an oxide film 42 of ~1.5 μm. Next, the nitride film and thin oxide film on the polysilicon in the areas where the external base regions 35, 34 and the emitter 37 and collector 36 of the lateral PNP are to be formed are selectively removed, and boron is passed through the polysilicon at 900°C to 1100°C. Diffusion is performed to form the above region with a depth of about 0.6 μm in single crystal silicon, and the polysilicon surface is oxidized.

次にI2Lのコレクタ31,32エミツタ33を
形成すべき領域の窒化膜及び薄い酸化膜を除去し
て900℃〜1050℃でリンをポリシリコンを通して
拡散し、深さ約0.41μmのエミツタ及びコレクタ
を単結晶シリコン中に形成する。
Next, the nitride film and thin oxide film in the area where I 2 L collectors 31, 32 and emitters 33 are to be formed are removed, and phosphorus is diffused through the polysilicon at 900°C to 1050°C to form emitters with a depth of about 0.41 μm. A collector is formed in single crystal silicon.

次に電極となる領域の酸化膜及び窒化膜を選択
除去し、全面に白金を蒸着して白金シリサイド3
1″,32″,33″,34″,37″を自己整合的
に形成し、ポリシリコン引き出し電極を層抵抗5
Ω/口以下の低抵抗にする(第4図d)。
Next, the oxide film and nitride film in the area that will become the electrode are selectively removed, and platinum is deposited on the entire surface to form platinum silicide 3.
1″, 32″, 33″, 34″, and 37″ are formed in a self-aligned manner, and polysilicon lead electrodes are formed with layer resistance 5.
The resistance should be low, less than Ω/mm (Fig. 4 d).

次に、本発明の他の実施例について第5図を参
照しと説明する。
Next, another embodiment of the present invention will be described with reference to FIG.

この実施例は電流源として横形PNPのかわり
に不純物をイオン注入した多結晶シリコンの高抵
抗38を形成したものである。
In this embodiment, a high resistance 38 made of polycrystalline silicon into which impurity ions are implanted is formed instead of a horizontal PNP as a current source.

多結晶シリコン抵抗は酸化膜の上に形成できる
ので、寄生容量がなく、さらにスイツチング速度
を速くできる。また、多結晶シリコン上の白金シ
リサイドは、選択酸化されない多結晶シリコンの
上にのみ形成されるので、酸化膜上の白金は王水
等のエツチング液で自己整合的に除去される。従
つてベース拡散領域と引き出し電極の間には目合
わせは不要である。
Since the polycrystalline silicon resistor can be formed on an oxide film, there is no parasitic capacitance, and the switching speed can be further increased. Furthermore, since platinum silicide on polycrystalline silicon is formed only on polycrystalline silicon that is not selectively oxidized, platinum on the oxide film is removed in a self-aligned manner with an etching solution such as aqua regia. Therefore, no alignment is required between the base diffusion region and the extraction electrode.

以上説明したように、本発明によれば、I2Lの
インバータを独立に酸化物などの絶縁物で分離
し、各トランジスタの共通ベースを多結晶シリコ
ンと自己整合した金属シリサイド層からなる引き
出し電極で接続することによつて、ベース直列抵
抗を小さくでき、スイツチング速度を速くするこ
とができる。
As explained above, according to the present invention, I 2 L inverters are independently separated using an insulator such as an oxide, and the common base of each transistor is connected to an extraction electrode made of a metal silicide layer self-aligned with polycrystalline silicon. By connecting the two, the base series resistance can be reduced and the switching speed can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbはそれぞれ従来のI2Lの平面図
及び断面図、第2図はその等価回路図、第3図a
及びbはそれぞれ本発明の一実施例の平面図及び
断面図、第4図a〜dは前記実施例の製法を示す
断面図、第5図は本発明の他の実施例を示す断面
図である。 1,2,3……コレクタ、4……ベースコンタ
クト、5……共通ベース領域、6……インジエク
タ、T1,T2,T3……インバータトランジスタ、
T4……インジエクタトランジスタ、γ1,γ2,γ3
……ベース直列抵抗、30……P型シリコン基
板、31,32……コレクタ、31′,32′及び
31″,32″……コレクタ引き出し電極用の多結
晶シリコン及び白金シリサイド、33……共通エ
ミツタ、33′及び33″……エミツタ引き出し電
極用の多結晶シリコン及び白金シリサイド、3
4,35……インバータベース、34′及び3
4″……ベース引き出し電極用の多結晶シリコン
及び白金シリサイド、36……インジエクタ
PNPコレクタ、37……インジエクタPNPエミ
ツタ、37′及び37″……インジエクタエミツタ
引き出し電極用の多結晶シリコン及び白金シリサ
イド、38……イオン注入の多結晶シリコン抵
抗、39……N形エピタキシヤル層、40……
N+形埋込層、41……フイールド酸化膜、42
……多結晶シリコンの酸化膜、43,45……シ
リコン窒化膜、44……多結晶シリコン(ポリシ
リコン)。
Figures 1a and b are a plan view and a cross-sectional view of a conventional I 2 L, respectively, Figure 2 is its equivalent circuit diagram, and Figure 3a
and b are respectively a plan view and a cross-sectional view of one embodiment of the present invention, FIGS. 4 a to d are cross-sectional views showing the manufacturing method of the above-mentioned embodiment, and FIG. be. 1, 2, 3...Collector, 4...Base contact, 5...Common base region, 6...Injector, T1 , T2 , T3 ...Inverter transistor,
T 4 ... Injector transistor, γ 1 , γ 2 , γ 3
...Base series resistance, 30...P-type silicon substrate, 31, 32...Collector, 31', 32' and 31'', 32''...Polycrystalline silicon and platinum silicide for collector extraction electrode, 33...Common Emitters, 33' and 33''...Polycrystalline silicon and platinum silicide for emitter extraction electrodes, 3
4, 35...Inverter base, 34' and 3
4″...Polycrystalline silicon and platinum silicide for base extraction electrode, 36...Injector
PNP collector, 37... Injector PNP emitter, 37' and 37''... Polycrystalline silicon and platinum silicide for injector emitter extraction electrode, 38... Ion-implanted polycrystalline silicon resistor, 39... N-type epitaxial Layer, 40...
N + type buried layer, 41...field oxide film, 42
...Polycrystalline silicon oxide film, 43, 45...Silicon nitride film, 44...Polycrystalline silicon (polysilicon).

Claims (1)

【特許請求の範囲】[Claims] 1 インジエクタ用トランジスタおよびインバー
タ用トランジスタを有し、これらトランジタが埋
込絶縁膜で分離され、さらに前記インバータ用ト
ランジスタは互いに埋込絶縁膜で分離された複数
のベース領域を有する半導体装置の製造方法にお
いて、前記埋込絶縁膜を形成した後に前記ベース
領域を形成し、その後全面に多結晶シリコン層を
形成し、前記多結晶シリコン層を選択的に酸化す
ることにより前記ベース領域間を結ぶ第1の多結
晶シリコンパターンと各ベース領域にそれぞれ接
触する複数の第2の多結晶シリコンパターンとを
酸化膜で分離形成し、前記第1の多結晶シリコン
パターンに不純物を導入してベース配線を形成
し、前記第2の多結晶シリコンパターンに不純物
を導入して各ベース領域にコレクタ領域を形成
し、金属を全面に蒸着し熱処理することにより各
多結晶シリコンパターン上に前記酸化膜で分離さ
れた金属シリサイド層を形成することを特徴とす
る半導体装置の製造方法。
1. A method for manufacturing a semiconductor device having an injector transistor and an inverter transistor, these transistors being separated by a buried insulating film, and the inverter transistor having a plurality of base regions separated from each other by a buried insulating film. , forming the base region after forming the buried insulating film, then forming a polycrystalline silicon layer on the entire surface, and selectively oxidizing the polycrystalline silicon layer to form a first base region connecting the base regions. forming a polycrystalline silicon pattern and a plurality of second polycrystalline silicon patterns in contact with each base region, separated by an oxide film, and introducing impurities into the first polycrystalline silicon pattern to form a base wiring; A collector region is formed in each base region by introducing impurities into the second polycrystalline silicon pattern, and metal silicide separated by the oxide film is formed on each polycrystalline silicon pattern by vapor depositing metal over the entire surface and heat-treating it. A method for manufacturing a semiconductor device, comprising forming a layer.
JP58023960A 1983-02-16 1983-02-16 Semiconductor device Granted JPS59149045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023960A JPS59149045A (en) 1983-02-16 1983-02-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023960A JPS59149045A (en) 1983-02-16 1983-02-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59149045A JPS59149045A (en) 1984-08-25
JPH0425711B2 true JPH0425711B2 (en) 1992-05-01

Family

ID=12125110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023960A Granted JPS59149045A (en) 1983-02-16 1983-02-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59149045A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06820Y2 (en) * 1986-01-22 1994-01-05 株式会社日立製作所 Active matrix substrate
US4951102A (en) * 1988-08-24 1990-08-21 Harris Corporation Trench gate VCMOS
US5032529A (en) * 1988-08-24 1991-07-16 Harris Corporation Trench gate VCMOS method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103740A (en) * 1979-01-31 1980-08-08 Nec Corp Semiconductor device
JPS55125651A (en) * 1979-03-22 1980-09-27 Nec Corp Production of semiconductor integrated circuit
JPS5613020A (en) * 1979-07-13 1981-02-07 Norio Owaki Purifying apparatus of polluted air
JPS56116618A (en) * 1980-02-20 1981-09-12 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103740A (en) * 1979-01-31 1980-08-08 Nec Corp Semiconductor device
JPS55125651A (en) * 1979-03-22 1980-09-27 Nec Corp Production of semiconductor integrated circuit
JPS5613020A (en) * 1979-07-13 1981-02-07 Norio Owaki Purifying apparatus of polluted air
JPS56116618A (en) * 1980-02-20 1981-09-12 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS59149045A (en) 1984-08-25

Similar Documents

Publication Publication Date Title
US5017503A (en) Process for making a bipolar transistor including selective oxidation
JPH0123949B2 (en)
US4322882A (en) Method for making an integrated injection logic structure including a self-aligned base contact
JPS6050958A (en) Transistor integrated circuit
JPH0582986B2 (en)
JPH0425711B2 (en)
JPH07130898A (en) Semiconductor device and manufacture thereof
KR100208645B1 (en) Optical semiconductor device
EP0032016B1 (en) Method of manufacturing a semiconductor device
JPH0436578B2 (en)
KR900008818B1 (en) Manufacture method of a particle in bipolar integrated circuit
JPS6140140B2 (en)
KR930004299B1 (en) I2l device and method of manufacturing of the same
GB1571621A (en) Integrated circuits and their manufacture
JP3158404B2 (en) Method for manufacturing semiconductor device
JP3135615B2 (en) Semiconductor device and manufacturing method thereof
JP2927843B2 (en) Semiconductor integrated circuit
JPH0361343B2 (en)
JPS59134B2 (en) Semiconductor integrated circuit device
JPH0157506B2 (en)
JPS644351B2 (en)
JPS6329585A (en) Semiconductor integrated circuit device
JPH0454984B2 (en)
JPH0317374B2 (en)
JPS62235766A (en) Manufacture of semiconductor device