JPS59149045A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS59149045A
JPS59149045A JP58023960A JP2396083A JPS59149045A JP S59149045 A JPS59149045 A JP S59149045A JP 58023960 A JP58023960 A JP 58023960A JP 2396083 A JP2396083 A JP 2396083A JP S59149045 A JPS59149045 A JP S59149045A
Authority
JP
Japan
Prior art keywords
base
transistor
polycrystalline silicon
resistance
isolated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58023960A
Other languages
Japanese (ja)
Other versions
JPH0425711B2 (en
Inventor
Kimimaro Yoshikawa
公麿 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58023960A priority Critical patent/JPS59149045A/en
Publication of JPS59149045A publication Critical patent/JPS59149045A/en
Publication of JPH0425711B2 publication Critical patent/JPH0425711B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0214Particular design considerations for integrated circuits for internal polarisation, e.g. I2L
    • H01L27/0229Particular design considerations for integrated circuits for internal polarisation, e.g. I2L of bipolar structures
    • H01L27/0233Integrated injection logic structures [I2L]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce base resistance by isolating base regions of a plurality of reverse operation vertical type transistors by an insulator and reducing base ineffective areas while the base regions are connected mutually by an extracting electrode consisting of a metallic silicide layer formed in a self-alignment manner. CONSTITUTION:Inverter transistors T1, T2 are isolated by an oxide 41, and an injector transistor T4 is also isolated and made independent. A common base connects the bases 34 of each incerter transistor and a coolsector 36 of an injector by an extracting electrode 34' consisting of polycrystalline silicon remaining through selective oxidation and platinum silicide 34'' formed in a self- alignment manner. Since the extracting electrode has platinum silicide, its resistance can be brought to a very low value, and base series resistance can be reduced. Consequently, a base lateral voltage drop is not generated even by the increase of the number of collectors, and uniform current gains are obtained, thus remarkably improving the speed of switching. Since sections except intrinsic transistor regions are also isolated by oxides in each inverter transistor, parastic capacitance is small, and the ratio of a collector area to a base area is large, thus also improving current gains.

Description

【発明の詳細な説明】 本発明は半導体装置、特にI”L (In tegra
 tedInjection Logic )に関する
2ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor devices, particularly I"L (Integra
tedInjection Logic).

I”Lは通常のバイボー2トランジスタのエミッタとコ
レクタを逆にしたいわゆる逆構造バーチカルトランジス
タからなるインバータ用トランジスタと、このトランジ
スタのベースをコレクタとするこれと相補形のインジェ
クタ用トランジスタの複合構造を有している。またI”
Lは論理振幅が、小さく、高速かつ、低消費電力の動作
が可能であシ、素子分離を要しないため高集積化が可能
で、従来のバイボー2集積回路と同一チップ上に共存で
きるという特徴を有している。
I"L has a composite structure of an inverter transistor, which is a so-called inverted vertical transistor in which the emitter and collector of a normal bivorous 2 transistor are reversed, and a complementary injector transistor, whose collector is the base of this transistor. I'm doing it again.
L has a small logic amplitude, can operate at high speed and with low power consumption, and because it does not require element isolation, it can be highly integrated, and can coexist on the same chip with conventional Bibo 2 integrated circuits. have.

従来ILは第1図(a) 、 (b)に示すように、イ
ンバータとしてのNPN)2ンジスタ’I’、 、 T
l、 T、の共通ベース電極4が入力となシ、キャリヤ
注入用横方向PNP )ランジスタが一体化されている
As shown in Fig. 1(a) and (b), the conventional IL consists of two NPN transistors 'I', , T as an inverter.
The common base electrode 4 of L, T, is input, and a lateral PNP transistor for carrier injection is integrated.

第2図は前記I2Lの等何回路を示すものであるが、ベ
ース電極4からトランジスタが遠くなるにつれて大きな
ベース抵抗r8. r、 、 rsを有している。
FIG. 2 shows the circuit of I2L, and as the transistor becomes farther away from the base electrode 4, the base resistance r8. It has r, , rs.

このため、大電流時にベース横方向電圧降下を生じ、ベ
ースコンタクトからの距離の差によってトランジスタ(
インバータ)の電流利得に差が生じる。また、このベー
ス抵抗のためスイッチング時間が遅くなるという欠点が
あった。さらに、実効的なトランジスタ領域112,3
に対し無効ベース面積5が大きく逆動作NPNの電流利
得を低下させている。
For this reason, a base lateral voltage drop occurs during large currents, and the difference in distance from the base contact causes the transistor (
A difference occurs in the current gain of the inverter). Another drawback is that the base resistance slows down the switching time. Furthermore, the effective transistor area 112,3
On the other hand, the invalid base area 5 is large and reduces the current gain of the reverse operation NPN.

本発明の目的は、従来構造のI2Lの欠点を解決し、(
コレクタ面積)/(ベース面積)比を太きくでき、かつ
ベース抵抗を小さくした構造を提供することにある。か
かる目的を達成するために、本発明では、複数個の逆動
作縦形トランジスタのベース領域を絶縁物で分離して、
ベース無効面積を減少させるとともに、前記ベース領域
を自己整合的に形成された金属シリサイド層からなる引
き出し電極で相互に接続することによシベース抵抗を大
幅に減少させるものである。
The purpose of the present invention is to solve the drawbacks of I2L of conventional structure and (
The object of the present invention is to provide a structure in which the collector area/base area ratio can be increased and the base resistance can be reduced. In order to achieve such an object, the present invention separates the base regions of a plurality of reverse-acting vertical transistors with an insulator, and
In addition to reducing the base effective area, the base resistance is significantly reduced by interconnecting the base regions with extraction electrodes made of metal silicide layers formed in a self-aligned manner.

以下、実施例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be described in detail based on Examples.

第3図(a)及び(b)はそれぞれ本発明をインバータ
トランジスタが2個の場合に適用した一実施例を示す平
面図及び断面図である。
FIGS. 3(a) and 3(b) are a plan view and a sectional view, respectively, showing an embodiment in which the present invention is applied to a case where there are two inverter transistors.

両図において、37はインジェクタ横形PNPトランジ
スタのエミッタ、37′は引き出し電極用P+形多結晶
シリコン、37“は多結晶シリコン上の白金シリサイド
、36はインジェクタ横形PNPトランジスタのコレク
タ、34′は共通ベース入力用P+形多結晶シリコン、
34′は多結晶シリコン上の白金シリサイド、35.3
4はインバータNPNトランジスタP形ベース、31.
32はインバータNPN トランジスタのN+形コレク
タ、32’、31’はコレクタ電極引き出し用多結晶シ
リコン、31N。
In both figures, 37 is the emitter of the injector horizontal PNP transistor, 37' is the P+ type polycrystalline silicon for the extraction electrode, 37'' is platinum silicide on the polycrystalline silicon, 36 is the collector of the injector horizontal PNP transistor, and 34' is the common base. P+ type polycrystalline silicon for input,
34' is platinum silicide on polycrystalline silicon, 35.3
4 is an inverter NPN transistor P type base; 31.
32 is an N+ type collector of an inverter NPN transistor, 32' and 31' are polycrystalline silicon for extracting the collector electrode, and 31N.

32“は多結晶シリコン上の白金シリサイド、32は共
通N十エミッタ、33’、33′は共通エミッタ引き出
し電極用多結晶シリコン及び白金シリサイド、41はフ
ィールド酸化膜、39はN形エピタキシャル層、40は
N+形埋込層、30はP形シリコン基板をそれぞれ示す
〇 図かられかるように、インバータトランジスタT1. 
T、は酸化物41で分離され、インジェクタトランジス
タT4も分離独立している。さらに、共通ベースは選択
酸化によシ残った多結晶シリコンと自己整合的に形成さ
れた白金シリサイドからなる引き出し電極によって各イ
ンバータトランジスタのベース及びインジェクタのコレ
クタ36f:接続している。この引き出し電極は白金シ
リサイドを有するため、非常に低抵抗(〉5Ω)にでき
、ベース直列抵抗を非常に小さくできる。iた、この結
果、コレクタ数の増加によっても、ベース横方向電圧降
下は発生せず、均一な電流利得が得られる。従ってスイ
ッチング速度も著しく改善される。
32'' is platinum silicide on polycrystalline silicon, 32 is a common N1 emitter, 33', 33' are polycrystalline silicon and platinum silicide for common emitter extraction electrodes, 41 is a field oxide film, 39 is an N-type epitaxial layer, 40 As can be seen from the diagram, inverter transistors T1.
T, is separated by an oxide 41, and the injector transistor T4 is also separated and independent. Furthermore, the common base is connected to the base of each inverter transistor and the collector 36f of the injector by an extraction electrode made of platinum silicide formed in self-alignment with the polycrystalline silicon remaining after selective oxidation. Since this extraction electrode contains platinum silicide, it can have a very low resistance (>5Ω), and the base series resistance can be made very small. Additionally, as a result, even with an increase in the number of collectors, no base lateral voltage drop occurs and a uniform current gain can be obtained. The switching speed is therefore also significantly improved.

また各インバータトランジスタも真性トランジスタ領域
以外は酸化物で分離されるため、寄生容量が少なく、(
コレクタ面積)/(ベース面積)比が大きいので、電流
利得も改善される。次に、前記実施例の製造方法を第4
図(81〜(d) ?参照して説明する。
In addition, since each inverter transistor is separated by oxide except for the intrinsic transistor region, parasitic capacitance is small and (
Since the collector area/(base area) ratio is large, the current gain is also improved. Next, the manufacturing method of the above example was applied to a fourth method.
This will be explained with reference to Figures (81 to (d)).

まず、比抵抗0.5〜50ΩαのP形シリコン基板30
0表面に例えばアンチモンを高濃度に含むN+形埋込6
4 (1’拡散形成する。次にこの基板上に厚さ3〜1
0μm、比抵抗0.5〜5Ω儂のN形エピタキシャル層
39を成長させる(第4図(a))。
First, a P-type silicon substrate 30 with a specific resistance of 0.5 to 50Ωα
0 surface with a high concentration of antimony, for example, N+ type embedding 6
4 (1' Diffusion formation. Next, on this substrate, a thickness of 3 to 1
An N-type epitaxial layer 39 with a resistivity of 0 μm and a resistivity of 0.5 to 5 Ω is grown (FIG. 4(a)).

次に化学的気相成長法によって、500Aの薄い酸化膜
の上に、1000〜1500Aのシリコン窒化膜(si
sN4)を形成し、プラズマエツチングによってバター
ニングする。トランジスタ領域を残5− して前記窒化膜を除去し、必要であればシリコンを部分
的にエツチングし、この窒化膜43をマスクに1000
〜1100″Cで熱酸化し、厚さ1.0〜1.5μmの
フィールド酸化膜41を形成する。NPNトランジスタ
のベース領域35.34を形成するため、加速エネルギ
ーIQQkev s注入量1〜5×1014cIrL−
2で7オトレジストヲマスクにボロンのイオン注入を行
う(第4図(b))。
Next, by chemical vapor deposition, a silicon nitride film (1000 to 1500 A) was placed on top of the 500 A thin oxide film.
sN4) and buttering by plasma etching. The nitride film is removed leaving the transistor region 5-3, and if necessary, the silicon is partially etched, and using this nitride film 43 as a mask, a 1000-mm film is etched.
A field oxide film 41 with a thickness of 1.0 to 1.5 μm is formed by thermal oxidation at ~1100″C. To form the base region 35.34 of the NPN transistor, the acceleration energy IQQkevs injection amount is 1 to 5× 1014cIrL-
In step 2, boron ions are implanted into the photoresist mask (FIG. 4(b)).

前記窒化膜及び薄い酸化膜を除去した稜、約500OA
の厚さのポリシリコン44を化学的気相成長法によって
形成する。ついで前記ポリシリコン表面に厚さ500A
の熱酸化膜を形成し、窒化膜45を化学的気相成長法に
よって150OAの厚さに成長する(第4図(C))。
Edge from which the nitride film and thin oxide film were removed, approximately 500 OA
A polysilicon film 44 having a thickness of 100 nm is formed by chemical vapor deposition. Then, the polysilicon surface was coated with a thickness of 500A.
A thermal oxide film is formed, and a nitride film 45 is grown to a thickness of 150 OA by chemical vapor deposition (FIG. 4(C)).

次に、窒化膜ヲハターニングし、これをマスクにした選
択酸化によってポリシリコン’IkJIJ 1.0〜1
.5μ渭の酸化膜42で分離する。ついで、外部ベース
領域35.34及びラテラルPNPのエミッタ37、コ
レクタ36を形成すべき領域のポリシリコン上の窒化膜
及び薄い酸化膜を選択除去し6− て、900°C〜1100°Cでボロンをポリシリコン
を通して拡散し、深さ約0.6μmの上記領域を単結晶
シリコン中に形成し、ポリシリコン表面を酸化する。
Next, the nitride film is patterned, and by selective oxidation using this as a mask, polysilicon 'IkJIJ 1.0 to 1
.. It is separated by an oxide film 42 with a thickness of 5 μm. Next, the nitride film and thin oxide film on the polysilicon in the regions where the external base regions 35 and 34 and the emitters 37 and collectors 36 of the lateral PNP are to be formed are selectively removed, and then boron is heated at 900°C to 1100°C. is diffused through the polysilicon to form a region approximately 0.6 μm deep in the single crystal silicon, and the polysilicon surface is oxidized.

次にI2Lのコレクタ31,32エミツタ33を形成す
べき領域の窒化膜及び薄い酸化膜を除去して900°C
〜1050°Cでリンをポリシリコンを通して拡散し、
深さ約0.4μmのエミッタ及びコレクタを単結晶シリ
コン中に形成する。
Next, the nitride film and thin oxide film in the areas where the I2L collectors 31, 32 and emitters 33 are to be formed are removed, and the temperature is heated to 900°C.
Diffusion of phosphorus through polysilicon at ~1050°C;
Emitters and collectors with a depth of approximately 0.4 μm are formed in single crystal silicon.

次に電極となる領域の酸化膜及び窒化膜を選択除去し、
全面に白金を蒸着して白金シリサイド31“、32′、
33“、34“、37“を自己整合的に形成し、ポリシ
リコン引き出し電極を層抵抗5Ω/口以下の低抵抗にす
る(第4図(d))。
Next, selectively remove the oxide film and nitride film in the area that will become the electrode,
Platinum is deposited on the entire surface to form platinum silicide 31", 32',
33", 34", and 37" are formed in a self-aligned manner, and the polysilicon lead electrode has a low resistance of 5 Ω/hole or less (FIG. 4(d)).

次に、本発明の他の実施例について第5図を参照しと説
明する。
Next, another embodiment of the present invention will be described with reference to FIG.

この実施例は電流源として横形PNPのかわシに不純物
をイオン注入した多結晶シリコンの高抵抗38″tl−
形成したものである。   ゛多結晶シリコン抵抗は酸
化膜の上に形成できるので、寄生容量がなく、さらにス
イッチング速度を速くできる。また、多結晶シリコン上
の白金シリサイドは、選択酸化されない多結晶シリコン
の上にのみ形成されるので、酸化膜上の白金は王水等の
エツチング液で自己整合的に除去される。従ってペース
拡散領域と引き出し電極の間には目合わせは不要である
This example uses a high-resistance 38" tl- of polycrystalline silicon with impurity ions implanted into a horizontal PNP wire as a current source.
It was formed. ``Since the polycrystalline silicon resistor can be formed on an oxide film, there is no parasitic capacitance, and the switching speed can be further increased. Furthermore, since platinum silicide on polycrystalline silicon is formed only on polycrystalline silicon that is not selectively oxidized, platinum on the oxide film is removed in a self-aligned manner with an etching solution such as aqua regia. Therefore, no alignment is required between the pace diffusion region and the extraction electrode.

以上説明したように、本発明によれば、I2Lのインバ
ータを独立に酸化物などの絶縁物で分離し、各トランジ
スタの共通ペースを多結晶シリコンと自己整合した金属
シリサイド層からなる引き出し電極で接続することによ
って、ペース直列抵抗を小さくでき、スイッチング速度
を速くすることができる。
As explained above, according to the present invention, the I2L inverters are independently separated by an insulator such as an oxide, and the common space of each transistor is connected by an extraction electrode made of a metal silicide layer self-aligned with polycrystalline silicon. By doing so, the pace series resistance can be reduced and the switching speed can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)及び(b)はそれぞれ従来のI”Lの平面
図及び断面図、第2図はその等価回路図、第3図(a)
及び(b)はそれぞれ本発明の一実施例の平面図及び断
面図、第4図(a)〜(d)は前記実施例の製法を示す
断面図、第5図は本発明の他の実施例を示す断面図であ
る。 1.2.3・・・・・・コレクタ、4・・・・・・ベー
スコンタクト、5・・・・・・共通ペース領域、6・・
・・・・インジェクタ” t+T11T1・・・・・・
インバータトランジスタ、T4・・・・・・インジェク
タトランジスタ、rl、r2.ra・・・・・・ベース
直列抵抗、30・・・・・・P型シリコン基板、31.
32・・・・・・コレクタ、31’、32’及び31’
、32′・・・・・・コレクタ引き出し電極用の多結晶
シリコン及び白金シリサイド、33・・・・・・共通エ
ミッタ、33′及び33“・・・・・・エミッタ引き出
し電極用の多結晶シリコン及び白金シリサイド、34.
35  ・・・インバー2ベース、34′及び34′・
・・・・ペース引き出し電極用の多結晶シリコン及び白
金シリサイド、36・・・・・インジェクタPNPコレ
クタ、37・・・・・インジェクタPNPエミッタ、3
7′及び37″・・・・・・インジェクタエミッタ引き
出し電極用の多結晶シリコン及び白金シリサイド、38
・・・・・イオン注入の多結晶シリコン抵抗、39・・
・・・・N形エピタキシャル層、40・・・・・・N+
形埋込層、41・・・・・・フィールド9− 酸化膜、42・・・・・・多結晶シリコンの酸化膜、4
3゜45・・・・・・シリコン空化膜、44・・・・・
・多結晶シリコン(ポリシリコン)。 10− 第1図(沈) 娘3図(ω) 捧4図(勾 第4図(b) Δぐ 第4図(C) 第4図rd、) 第5図
Figures 1 (a) and (b) are a plan view and a sectional view of a conventional I"L, respectively, Figure 2 is its equivalent circuit diagram, and Figure 3 (a)
and (b) are respectively a plan view and a sectional view of one embodiment of the present invention, FIGS. 4(a) to (d) are sectional views showing the manufacturing method of the embodiment, and FIG. 5 is a plan view and a sectional view of an embodiment of the present invention. It is a sectional view showing an example. 1.2.3...Collector, 4...Base contact, 5...Common pace area, 6...
...Injector" t+T11T1...
Inverter transistor, T4...Injector transistor, rl, r2. ra... Base series resistance, 30... P-type silicon substrate, 31.
32... Collector, 31', 32' and 31'
, 32'...Polycrystalline silicon and platinum silicide for collector extraction electrode, 33...Common emitter, 33' and 33''...Polycrystalline silicon for emitter extraction electrode and platinum silicide, 34.
35...Invar 2 base, 34' and 34'・
... Polycrystalline silicon and platinum silicide for pace extraction electrode, 36 ... Injector PNP collector, 37 ... Injector PNP emitter, 3
7' and 37''... Polycrystalline silicon and platinum silicide for injector emitter extraction electrode, 38
...Ion-implanted polycrystalline silicon resistor, 39...
...N type epitaxial layer, 40...N+
Shaped buried layer, 41...field 9- Oxide film, 42...polycrystalline silicon oxide film, 4
3゜45...Silicon emptying membrane, 44...
- Polycrystalline silicon (polysilicon). 10- Figure 1 (Shen) Figure 3 (ω) Figure 4 (Figure 4 (b) Figure 4 (C) Figure 4 rd,) Figure 5

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に、絶縁物で分離された複数個の逆動作
縦形トランジスタのベース領域が形成され、前記ベース
領域が多結晶シリコン層及び該多結晶シリコン層表面に
自己整合的に形成された金属シリサイド層からなる引き
出し電極で相互に接続されていることを特徴とする半導
体装置。
Base regions of a plurality of reverse-operating vertical transistors are formed on the surface of a semiconductor substrate, and the base regions are formed of a polycrystalline silicon layer and a metal silicide formed in a self-aligned manner on the surface of the polycrystalline silicon layer. A semiconductor device characterized in that the semiconductor device is interconnected by extraction electrodes made up of layers.
JP58023960A 1983-02-16 1983-02-16 Semiconductor device Granted JPS59149045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58023960A JPS59149045A (en) 1983-02-16 1983-02-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58023960A JPS59149045A (en) 1983-02-16 1983-02-16 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS59149045A true JPS59149045A (en) 1984-08-25
JPH0425711B2 JPH0425711B2 (en) 1992-05-01

Family

ID=12125110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58023960A Granted JPS59149045A (en) 1983-02-16 1983-02-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS59149045A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120354U (en) * 1986-01-22 1987-07-30
US4951102A (en) * 1988-08-24 1990-08-21 Harris Corporation Trench gate VCMOS
US5032529A (en) * 1988-08-24 1991-07-16 Harris Corporation Trench gate VCMOS method of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103740A (en) * 1979-01-31 1980-08-08 Nec Corp Semiconductor device
JPS55125651A (en) * 1979-03-22 1980-09-27 Nec Corp Production of semiconductor integrated circuit
JPS5613020A (en) * 1979-07-13 1981-02-07 Norio Owaki Purifying apparatus of polluted air
JPS56116618A (en) * 1980-02-20 1981-09-12 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103740A (en) * 1979-01-31 1980-08-08 Nec Corp Semiconductor device
JPS55125651A (en) * 1979-03-22 1980-09-27 Nec Corp Production of semiconductor integrated circuit
JPS5613020A (en) * 1979-07-13 1981-02-07 Norio Owaki Purifying apparatus of polluted air
JPS56116618A (en) * 1980-02-20 1981-09-12 Toshiba Corp Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120354U (en) * 1986-01-22 1987-07-30
US4951102A (en) * 1988-08-24 1990-08-21 Harris Corporation Trench gate VCMOS
US5032529A (en) * 1988-08-24 1991-07-16 Harris Corporation Trench gate VCMOS method of manufacture

Also Published As

Publication number Publication date
JPH0425711B2 (en) 1992-05-01

Similar Documents

Publication Publication Date Title
US4038680A (en) Semiconductor integrated circuit device
JPH0123949B2 (en)
US3443176A (en) Low resistivity semiconductor underpass connector and fabrication method therefor
US4322882A (en) Method for making an integrated injection logic structure including a self-aligned base contact
JPH0645537A (en) Manufacture of integrated circuit
JPS59149045A (en) Semiconductor device
JPH07130898A (en) Semiconductor device and manufacture thereof
EP0032016B1 (en) Method of manufacturing a semiconductor device
JP2817210B2 (en) Method for manufacturing semiconductor device
GB1571621A (en) Integrated circuits and their manufacture
JPS6158981B2 (en)
JPH0420263B2 (en)
JPH02251174A (en) Semiconductor device
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
JPH0436578B2 (en)
JP2648027B2 (en) IIL type semiconductor device
JPS6140140B2 (en)
JPH04152531A (en) Manufacture of semiconductor device
JPS5882562A (en) Semiconductor device
JPH03203333A (en) Semiconductor device and manufacture thereof
JPH02161767A (en) Manufacture of semiconductor device
JPS59134B2 (en) Semiconductor integrated circuit device
JPH02276271A (en) Bipolar cmos semiconductor device and manufacture thereof
JPH0454984B2 (en)
JPH0687496B2 (en) Bipolar integrated circuit