JPH0687496B2 - Bipolar integrated circuit - Google Patents

Bipolar integrated circuit

Info

Publication number
JPH0687496B2
JPH0687496B2 JP62007797A JP779787A JPH0687496B2 JP H0687496 B2 JPH0687496 B2 JP H0687496B2 JP 62007797 A JP62007797 A JP 62007797A JP 779787 A JP779787 A JP 779787A JP H0687496 B2 JPH0687496 B2 JP H0687496B2
Authority
JP
Japan
Prior art keywords
opening
layer
epitaxial layer
conductivity type
integrated circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62007797A
Other languages
Japanese (ja)
Other versions
JPS63175465A (en
Inventor
修司 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62007797A priority Critical patent/JPH0687496B2/en
Publication of JPS63175465A publication Critical patent/JPS63175465A/en
Publication of JPH0687496B2 publication Critical patent/JPH0687496B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/07Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common
    • H01L27/0744Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration the components having an active region in common without components of the field effect type
    • H01L27/075Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. lateral bipolar transistor, and vertical bipolar transistor and resistor
    • H01L27/0755Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0772Vertical bipolar transistor in combination with resistors only

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、バイポーラ集積回路に関する。FIELD OF THE INVENTION The present invention relates to bipolar integrated circuits.

〔従来の技術〕[Conventional technology]

最近のメモリ集積回路の大容量比に伴って、ますますト
ランジスタセル設計の微細化が要求されてきた。
With the recent large capacity ratio of memory integrated circuits, miniaturization of transistor cell design has been required more and more.

高速のバイポーラRAMには、ショットキーバリヤダイオ
ードと抵抗の並列接続を負荷としたエミッタ結合形メモ
リセルが広く使用されている。
Emitter-coupled memory cells with a Schottky barrier diode and a resistor connected in parallel are widely used in high-speed bipolar RAM.

第3図は従来のバイポーラメモリセルの一例の等価回路
図である。
FIG. 3 is an equivalent circuit diagram of an example of a conventional bipolar memory cell.

メモリセル15は、二つのコレクタが抵抗RLとショットキ
ーバリヤダイオードSBDとの並列構成の負荷セル13がカ
ソード側にそれぞれ接続し、二つの第1のエミッタが定
電流電源14に共通に接続されているフリップフロップ構
成の一対のバイポーラトランジスタQ1及びQ2から成って
いる。
In the memory cell 15, two collectors are connected in parallel to a resistor R L and a Schottky barrier diode SBD, load cells 13 are respectively connected to the cathode side, and two first emitters are commonly connected to a constant current power supply 14. And a pair of bipolar transistors Q 1 and Q 2 in a flip-flop configuration.

高電位ワード線WTはショットキーバリヤダイオードSBD
のアノード側に共通に接続し、一対のビット線B及び
はトランジスタQ1及びQ2のそれぞれの第2のエミッタに
接線されている。
High potential word line W T is a Schottky barrier diode SBD
Is commonly connected to the anode side of the pair of bit lines B and B and is tangent to the second emitters of the transistors Q 1 and Q 2 , respectively.

定電流源13の電流はトランジスタQ1又はQ2のうちオン状
態の一方のトランジスタのコレクタに接続されたショッ
トキーバリヤダイオードSBDに流れる。
The current of the constant current source 13 flows through the Schottky barrier diode SBD connected to the collector of one of the transistors Q 1 or Q 2 in the ON state.

オフ状態のトランジスタのベース電流は他方のトランジ
スタのコレクタに接続されている負荷抵抗RLに流れるの
で、例えば消費電力1Wの16キロビットRAMの場合に、負
荷抵抗RLの値は約250kΩが必要となる。
Since the base current of the transistor in the off state flows into the load resistance R L connected to the collector of the other transistor, for example, in the case of a 16 kilobit RAM with a power consumption of 1 W, the value of the load resistance R L needs to be about 250 kΩ. Become.

この負荷抵抗RLとしては、従来からシリコンエピタキシ
ャル単結晶膜の拡散抵抗値か又はシリコン酸化膜等の絶
縁膜上に堆積された多結晶シリコン膜が用いられてい
る。
As the load resistance RL , conventionally, a diffusion resistance value of a silicon epitaxial single crystal film or a polycrystalline silicon film deposited on an insulating film such as a silicon oxide film is used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来の一方の例である多結晶シリコン膜を負荷
抵抗RLとして使用する場合には、使用出来る抵抗値に上
限があるという問題があった。
When the polycrystalline silicon film, which is one of the conventional examples described above, is used as the load resistance RL , there is a problem that the usable resistance value has an upper limit.

すなわち回路の設計上、負荷抵抗RLの温度係数の絶対値
を2000ppm/℃以下にする必要があるが、それに相当する
多結晶シリコン膜の層抵抗の上限はたかだか10kΩ/□
迄であるため、前述の200kΩの抵抗値を実現するには、
そのチップ表面の占有面積が通常の幅で80〜150μm
にもなり、二つの負荷抵抗RLの総占有面積は100〜300μ
としてメモリセル15の面積の約20〜40%にも達し
て、高集積化が出来ないという問題があった。
That is, the absolute value of the temperature coefficient of the load resistance R L must be 2000 ppm / ° C or less in the circuit design, but the upper limit of the layer resistance of the polycrystalline silicon film corresponding to that is at most 10 kΩ / □.
Since it is up to, to realize the resistance value of 200 kΩ mentioned above,
The area occupied by the chip surface is 80-150 μm 2 with a normal width
Therefore, the total area occupied by the two load resistors R L is 100 to 300 μ.
The area of the memory cell 15 reaches about 20 to 40% as m 2 and there is a problem that high integration cannot be achieved.

また、他方の拡散抵抗層として、例えばn形導電領域に
p形拡散抵抗層を設ける場合も、前述と同様の理由で抵
抗値の上限が制限されて、同様の問題があり、さらにこ
の場合は、拡散抵抗層を形成するための分離工程や、pn
接合容量による動作速度の遅れなどの問題が加わってい
た。
Also, when the p-type diffusion resistance layer is provided as the other diffusion resistance layer, for example, in the n-type conductive region, the upper limit of the resistance value is limited for the same reason as described above, and there is a similar problem. , A separation process for forming a diffusion resistance layer, and pn
Problems such as delay in operating speed due to junction capacitance were added.

本発明の目的は、負荷抵抗RLとして、半導体ウェーハ9
の開孔部にシリコン埋込体の抵抗体を設けて、小面積で
高抵抗値の負荷抵抗RLを用いた高集積度のバイポーラ集
積回路を提供することにある。
The object of the present invention is to provide the semiconductor wafer 9 as the load resistance R L.
The purpose of the present invention is to provide a resistor of a silicon embedded body in the opening of the above, and to provide a highly integrated bipolar integrated circuit using a load resistance R L having a small area and a high resistance value.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のバイポーラ集積回路は、 (A)一導電形の半導体基板と、該半導体基板に選択的
に形成された逆導電形のコレクタ層と該コレクタ層を含
む全表面に形成された逆導電形のエピタキシャル層と前
記エピタキシャル層の表面を選択的に覆う酸化膜とを有
する半導体ウェーハ、 (B)前記半導体ウェーハの上面から前記コレクタ層の
中間の深さまで選択的に形成された開孔部、 (C)前記開孔部の側壁に設けられた絶縁膜、 (D)前記開孔部内に形成されたシリコン埋込体から成
る抵抗体、 (E)前記エピタキシャル層の露出面の一部に白金珪化
物を設けることにより形成されたショットキーバリヤダ
イオード、 を含んで構成されている。
The bipolar integrated circuit of the present invention comprises: (A) a semiconductor substrate of one conductivity type, a collector layer of the opposite conductivity type selectively formed on the semiconductor substrate, and a conductivity type of the opposite conductivity type formed on the entire surface including the collector layer. (B) a semiconductor wafer having an epitaxial layer and an oxide film selectively covering the surface of the epitaxial layer, and (B) an opening selectively formed from an upper surface of the semiconductor wafer to an intermediate depth of the collector layer, C) An insulating film provided on the side wall of the opening, (D) A resistor made of a silicon embedded body formed in the opening, (E) Platinum silicidation on a part of the exposed surface of the epitaxial layer. And a Schottky barrier diode formed by providing an object.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図(a)〜(b)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図であり、
第3図の等価回路の負荷セル13に対応する。
1 (a) and 1 (b) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a first embodiment of the present invention.
It corresponds to the load cell 13 of the equivalent circuit of FIG.

第1図(a)に示すように、半導体ウェーハ9は、p形
シリコン基板1に約2μmのn形埋込コレクタ層2と、
約1.5μmのn形エピタキシャル層3とシリコン酸化膜
4とを順に重ねて形成されている。
As shown in FIG. 1A, a semiconductor wafer 9 includes a p-type silicon substrate 1 and an n-type buried collector layer 2 having a thickness of about 2 μm.
An n-type epitaxial layer 3 and a silicon oxide film 4 each having a thickness of about 1.5 μm are formed in this order.

その上に、ホトリソグラフィー技術により選択的に形成
したレジスト層10を設け、反応性イオンエッチング法を
用いてレジスト層10をマスクとしてシリコン酸化膜4と
n形エピタキシャル層3とn形埋込コレクタ層2にp形
シリコン基板1までに貫通しないように深さ2.5μmま
でをエッチングして、表面積が約1.0μmの開孔部を
設ける。
A resist layer 10 selectively formed by the photolithography technique is provided thereon, and the silicon oxide film 4, the n-type epitaxial layer 3, and the n-type buried collector layer are formed by using the resist layer 10 as a mask by the reactive ion etching method. 2 is etched to a depth of 2.5 μm so as not to penetrate to the p-type silicon substrate 1, and an opening having a surface area of about 1.0 μm 2 is provided.

次に、第1図(b)に示すように、レジスト層10を酸素
プラズマにて除去した後、全面に厚さ約100nmのシリコ
ン窒化膜を堆積し、次に、反応性イオンエッチング法を
用いて側壁にのみシリコン窒化膜5を残してエッチング
する。
Next, as shown in FIG. 1B, after removing the resist layer 10 by oxygen plasma, a silicon nitride film having a thickness of about 100 nm is deposited on the entire surface, and then reactive ion etching is used. Etching is performed while leaving the silicon nitride film 5 only on the side walls.

次に、第1図(c)に示すように、多結晶シリコン膜を
2μm程度堆積して、表面を平坦化させ、反応性イオン
エッチング法でエッチングして開孔部の内部にのみ多結
晶シリコン埋込体6として残す。
Next, as shown in FIG. 1 (c), a polycrystalline silicon film is deposited to a thickness of about 2 μm, the surface is flattened, and etching is performed by a reactive ion etching method to form polycrystalline silicon only inside the openings. Leave as an embedded body 6.

次に、第1図(d)に示すように、ホトリソグラフィー
技術を用いて、開孔部に隣接するn形エピタキシャル層
3を選択的に露出し、全面に白金膜を約30nmの厚さでス
パッタ被着させ、500〜600℃の温度で白金珪化物を形成
した後、未反応白金膜を熱王水にて除去してショットキ
ー接合S及び多結晶シリコン埋設体6の上にそれぞれシ
ョットキーバリヤダイオードSBDの電極及びオーミック
電極としての二つの白金珪化物層7a及び7bを形成する。
Next, as shown in FIG. 1 (d), the n-type epitaxial layer 3 adjacent to the opening is selectively exposed using a photolithography technique, and a platinum film with a thickness of about 30 nm is formed on the entire surface. After depositing by sputtering and forming a platinum silicide at a temperature of 500 to 600 ° C., the unreacted platinum film is removed by hot aqua regia, and the Schottky junction S and the polycrystalline silicon embedded body 6 are each schottky. Two platinum silicide layers 7a and 7b are formed as electrodes and ohmic electrodes of the barrier diode SBD.

最後に、第1図(e)に示すように、電極8を形成して
ショットキーバリヤダイオードSBD及び負荷抵抗RLの並
列接続の負荷セルが形成される。
Finally, as shown in FIG. 1 (e), the electrode 8 is formed to form a load cell in which the Schottky barrier diode SBD and the load resistor R L are connected in parallel.

ここで負荷抵抗RLの値は、第1図(c)の多結晶シリコ
ン膜を堆積する際の不純物として、リンをドープしてリ
ン濃度を変化して数百kΩの抵抗値まで高く設定出来
る。
Here, the value of the load resistance R L can be set to a high resistance value of several hundred kΩ by doping phosphorus as an impurity when depositing the polycrystalline silicon film of FIG. 1 (c) to change the phosphorus concentration. .

本実施例では埋込体6として多結晶シリコンを用いた
が、代りに単結晶シリコンを堆積成長させてもよい。
In this embodiment, polycrystalline silicon is used as the buried member 6, but single crystal silicon may be deposited and grown instead.

第2図は本発明の第2の実施例の高抵抗値を有する負荷
セルのチップの断面図である。前述の第1図(a)に示
した開孔部11を形成した後、開孔部11の底部にも5〜10
nm程度の厚さの薄酸化膜12を形成して、次に、不純物を
ドープしていない高抵抗値の多結晶シリコン埋込体6を
設ける。
FIG. 2 is a sectional view of a chip of a load cell having a high resistance value according to the second embodiment of the present invention. After forming the opening portion 11 shown in FIG. 1 (a), the bottom portion of the opening portion 11 has 5 to 10 parts.
A thin oxide film 12 having a thickness of about nm is formed, and then a high resistance polycrystalline silicon burying body 6 which is not doped with impurities is provided.

このように、開孔部の底面にも薄酸化膜12を設けると、
以降の製造工程において長時間の高温熱処理が行われて
もn形コレクタ層からの不純物拡散による抵抗値の低下
及びそれによる抵抗値のばらつきが生じないという効果
が得られる。
In this way, if the thin oxide film 12 is also provided on the bottom surface of the opening,
Even if a high-temperature heat treatment is performed for a long time in the subsequent manufacturing process, it is possible to obtain an effect that the resistance value is not lowered by the diffusion of impurities from the n-type collector layer and the resistance value is not varied.

負荷抵抗RLの値は、この薄酸化膜2を抜けるトンネル現
象の洩れ電流によって定まる数MΩと、多結晶シリコン
埋込体6の抵抗値の数MΩの直列の高抵抗値となる。
The value of the load resistance R L is a high resistance value in series of a number MΩ determined by the leakage current of the tunnel phenomenon passing through the thin oxide film 2 and a resistance value MΩ of the polycrystalline silicon embedded body 6.

〔発明の効果〕〔The invention's effect〕

以上、説明したように本発明のバイポーラ集積回路は、
負荷抵抗の占有面積を1セル当り2μm程度として、
従来の1%以下にもすることによって、高集積度化が得
られると同時に、従来は得られない高抵抗値までを有す
る負荷抵抗が容易に得られるという効果がある。
As described above, the bipolar integrated circuit of the present invention,
The area occupied by the load resistance is about 2 μm 2 per cell,
By setting it to 1% or less of the conventional value, there is an effect that a high degree of integration can be obtained and, at the same time, a load resistance having a high resistance value which cannot be conventionally obtained can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)〜(e)は本発明の第1の実施例を説明す
るための工程順に示した半導体チップの断面図、第2図
は本発明の第2の実施例の断面図、第3図は従来のバイ
ポーラ形メモリセルの一例の等価回路図である。 1…p形シリコン基板、2…n形埋込コレクタ層、3…
n形エピタキシャル層、4…シリコン酸化膜、5…シリ
コン窒化膜、6…多結晶シリコン埋込体、7a,7b…白金
珪化物、8…電極、9…半導体ウェーハ、10…レジスト
膜、11…開孔部、12…薄酸化膜、13…負荷セル、14…定
電流電源、15…メモリセル、Q1,Q2…バイポーラトラン
ジスタ、RL…負荷抵抗、S…ショットキー接合、SBD…
ショットキーバリヤダイオード、WB,WT…ワード線。
1A to 1E are sectional views of a semiconductor chip shown in the order of steps for explaining the first embodiment of the present invention, and FIG. 2 is a sectional view of the second embodiment of the present invention. FIG. 3 is an equivalent circuit diagram of an example of a conventional bipolar memory cell. 1 ... p-type silicon substrate, 2 ... n-type buried collector layer, 3 ...
n-type epitaxial layer, 4 ... Silicon oxide film, 5 ... Silicon nitride film, 6 ... Polycrystalline silicon buried body, 7a, 7b ... Platinum silicide, 8 ... Electrode, 9 ... Semiconductor wafer, 10 ... Resist film, 11 ... opening, 12 ... thin oxide film, 13 ... load cell, 14 ... constant current power supply, 15 ... memory cells, Q 1, Q 2 ... bipolar transistor, R L ... load resistor, S ... Schottky junction, SBD ...
Schottky barrier diode, W B, W T ... word line.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】(A)一導電形の半導体基板と、該半導体
基板に選択的に形成された逆導電形のコレクタ層と該コ
レクタ層を含む全表面に形成された逆導電形のエピタキ
シャル層と前記エピタキシャル層の表面を選択的に覆う
酸化膜とを有する半導体ウェーハ、 (B)前記半導体ウェーハの上面から前記コレクタ層の
中間の深さまで選択的に形成された開孔部、 (C)前記開孔部の側壁に設けられた絶縁膜、 (D)前記開孔部内に形成されたシリコン埋込体から成
る抵抗体、 (E)前記エピタキシャル層の露出面の一部に白金珪化
物を設けることにより形成されたショットキーバイヤダ
イオード、 を含むことを特徴とするバイポーラ集積回路。
1. A semiconductor substrate of one conductivity type, a collector layer of opposite conductivity type selectively formed on the semiconductor substrate, and an epitaxial layer of opposite conductivity type formed on the entire surface including the collector layer. And (B) a semiconductor wafer having an oxide film selectively covering the surface of the epitaxial layer, (B) an opening selectively formed from the upper surface of the semiconductor wafer to an intermediate depth of the collector layer, (C) the An insulating film provided on the side wall of the opening, (D) A resistor made of a silicon embedded body formed in the opening, (E) Providing platinum silicide on a part of the exposed surface of the epitaxial layer. A Schottky via diode formed by the above, and a bipolar integrated circuit.
JP62007797A 1987-01-14 1987-01-14 Bipolar integrated circuit Expired - Lifetime JPH0687496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62007797A JPH0687496B2 (en) 1987-01-14 1987-01-14 Bipolar integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62007797A JPH0687496B2 (en) 1987-01-14 1987-01-14 Bipolar integrated circuit

Publications (2)

Publication Number Publication Date
JPS63175465A JPS63175465A (en) 1988-07-19
JPH0687496B2 true JPH0687496B2 (en) 1994-11-02

Family

ID=11675630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62007797A Expired - Lifetime JPH0687496B2 (en) 1987-01-14 1987-01-14 Bipolar integrated circuit

Country Status (1)

Country Link
JP (1) JPH0687496B2 (en)

Also Published As

Publication number Publication date
JPS63175465A (en) 1988-07-19

Similar Documents

Publication Publication Date Title
JPS58212164A (en) Bipolar memory cell
JPS62588B2 (en)
EP0064466B1 (en) Logic structure utilizing polycrystalline silicon schottky diode
JPH0618198B2 (en) Semiconductor device
EP0080730B1 (en) Semiconductor device with wiring layers and method of manufacturing the same
JPH0123949B2 (en)
EP0078220B1 (en) Polycrystalline silicon interconnections for bipolar transistor flip-flop
JPH06105765B2 (en) Process of creating a semiconductor ROM array
JP2605030B2 (en) Quadrature bipolar transistor
US4584594A (en) Logic structure utilizing polycrystalline silicon Schottky diodes
JPS6048111B2 (en) Non-volatile semiconductor memory device
JP2753011B2 (en) High breakdown voltage planar semiconductor device and method of manufacturing the same
JPH0687496B2 (en) Bipolar integrated circuit
JPH07130898A (en) Semiconductor device and manufacture thereof
JPS59149045A (en) Semiconductor device
JPS6158981B2 (en)
JPH01286356A (en) Semiconductor integrated circuit
JPH0380564A (en) Semiconductor integrated circuit device and its manufacture
JPH01133354A (en) Semiconductor integrated circuit and manufacture thereof
IE52012B1 (en) Method of manufacturing a semiconductor device
JPS6248388B2 (en)
JPS5982760A (en) Complementary semiconductor integrated circuit device
JPS6129150B2 (en)
JPH079938B2 (en) Semiconductor integrated circuit
JPS6037621B2 (en) semiconductor storage device