JPH01133344A - Semiconductor integrated circuit and manufacture thereof - Google Patents

Semiconductor integrated circuit and manufacture thereof

Info

Publication number
JPH01133344A
JPH01133344A JP62292406A JP29240687A JPH01133344A JP H01133344 A JPH01133344 A JP H01133344A JP 62292406 A JP62292406 A JP 62292406A JP 29240687 A JP29240687 A JP 29240687A JP H01133344 A JPH01133344 A JP H01133344A
Authority
JP
Japan
Prior art keywords
region
lower electrode
conductivity type
forming
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62292406A
Other languages
Japanese (ja)
Other versions
JPH0583191B2 (en
Inventor
Teruo Tabata
田端 輝夫
Tadayoshi Takada
高田 忠良
Nobuyuki Sekikawa
信之 関川
Yoshiaki Sano
佐野 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP62292406A priority Critical patent/JPH01133344A/en
Priority to KR1019880015179A priority patent/KR910009784B1/en
Publication of JPH01133344A publication Critical patent/JPH01133344A/en
Publication of JPH0583191B2 publication Critical patent/JPH0583191B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To control easily the amplification factor of an electric current in an NPN transistor, by using a lower electrode region which is formed by a diffusion process in an isolation region as a lower electrode where MIS type capacity is formed. CONSTITUTION:Isolation and lower electrode regions 24 and 26 are formed by diffusing selectively boron from the surface of an epitaxial at layer 23 and this lower electrode region 26 is used as a lower electrode of MIS type capacity and a nitriding film is deposited at the surface of the lower electrode region 26 as well and after forming a dielectric thin film 29 of MIS type capacity, the emitter diffusion of an NPN transistor is performed. In this way, as the lower electrode region 26 which is formed by making use of the diffusion process of the isolation regions 24 is used as the lower electrode of MIS type capacity, deposition of the nitriding film is performed prior to an emitter diffusion process and heat-treatment which makes hFE of the NPN transistor disperse after forming an emitter region 30 can be eliminated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はMIS型容量素子を組み込んだ半導体集積回路
の、NPN l−ランジスタのり、制御を容易ならしめ
た製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method of manufacturing a semiconductor integrated circuit incorporating an MIS type capacitive element, which facilitates the mounting and control of an NPN l-transistor.

(ロ)従来の技術 バイポーラ型ICは、コレクタとなる半導体層表面にベ
ース、エミッタを2重拡散して形成した縦型のNPN)
ランジスタを主体として構成詐れている。その為、前記
NPN トランジスタを製造するベース及びエミッタ拡
散工程は必要不可欠の工程であり、コレクタ直列抵抗を
低減する為の高濃度埋込層形成工程やエピタキシャル層
成長工程、各素子を接合分離する為の分離領域形成工程
や電気的接続の為の電極形成工程等と並んでバイポーラ
型ICを製造するのに欠かせない工程(基本工程)であ
る。
(b) Conventional technology Bipolar IC is a vertical NPN in which a base and an emitter are double-diffused on the surface of a semiconductor layer that serves as a collector.
The configuration is incorrect, mainly consisting of transistors. Therefore, the base and emitter diffusion processes for manufacturing the NPN transistor are essential processes, as well as the high-concentration buried layer formation process and epitaxial layer growth process to reduce the collector series resistance, and the junction isolation process for each element. This is an essential process (basic process) for manufacturing bipolar ICs, along with the isolation region forming process and the electrode forming process for electrical connection.

一方、回路的な要求から他の素゛子、例えばPNPトラ
ンジスタ、抵抗、容量、ツェナーダイオード等を同一基
板上に組み込みたい要求がある。この場合、工程の簡素
化という点から可能な限り前記基本工程を流用した方が
好ましいことは言うまでもない。しかしながら、前記ベ
ース及びエミッタ拡散工程はNPN)−ランジスタの特
性を最重要視して諸条件が設定される為、前記基本工程
だけでは集積化が困難な場合が多い。そこで、基本的な
NPNトランジスタの形成を目的とせず、他の素子を組
み込む為もしくは他素子の特性を向上することを目的と
して新規な工程を追加することがある。例えば前記エミ
ッタ拡散によるカソード領域とでツェナーダイオードの
ツェナー電圧を制御するアノード領域を形成する為のP
1拡散工程、ベース領域とは比抵抗が異なる抵抗領域を
形成する為のR拡散工程やインプラ抵抗形成工程、MO
S型よりも大きな容量が得られる窒化膜容量を形成する
為の窒化膜形成工程、NPN)−ランジスタのコレクタ
直列抵抗を更に低減する為のコレクタ低抵抗領域形成工
程等がそれであり、全てバイポーラICの用途や目的及
びコスト的な面から検討して追加するか否かが決定され
る工程(オプション工程)である。
On the other hand, due to circuit requirements, there is a demand for incorporating other elements such as PNP transistors, resistors, capacitors, Zener diodes, etc. on the same substrate. In this case, it goes without saying that it is preferable to utilize the basic steps as much as possible in terms of process simplification. However, since the conditions for the base and emitter diffusion steps are set with the most important consideration being given to the characteristics of the NPN transistor, it is often difficult to integrate the base and emitter diffusion steps using only the basic steps. Therefore, a new process may be added not for the purpose of forming a basic NPN transistor, but for the purpose of incorporating other elements or improving the characteristics of other elements. For example, P is used to form an anode region that controls the Zener voltage of the Zener diode together with the cathode region formed by the emitter diffusion.
1 diffusion process, R diffusion process to form a resistance region with a different resistivity from the base region, implant resistance formation process, MO
This includes the process of forming a nitride film to form a nitride film capacitor that provides a larger capacitance than the S type (NPN) - the process of forming a collector low resistance region to further reduce the collector series resistance of transistors, etc. All bipolar ICs This is a process (optional process) that is determined whether to add it or not after considering its use, purpose, and cost.

上記オプション工程を利用して形成したMIS型容量を
第4図に示す。同図において、(1)はP型半導体基板
、(2)はN型エピタキシ〜ル層、(3)はN+型埋込
層、(4)はP+型分離領域、(5)はアイランド、(
6)はエミッタ拡散によるN0型の下部電極領域、(7
)は高誘電率絶縁体としてのシリコン窒化膜(SiJa
)、(8)はアルミニウム材料から成る上部電極、(9
)は酸化膜、(10)は電極である。
FIG. 4 shows an MIS type capacitor formed using the above optional process. In the figure, (1) is a P-type semiconductor substrate, (2) is an N-type epitaxial layer, (3) is an N+-type buried layer, (4) is a P+-type isolation region, (5) is an island, (
6) is the N0 type lower electrode region by emitter diffusion, (7
) is a silicon nitride film (SiJa) as a high dielectric constant insulator.
), (8) are upper electrodes made of aluminum material, (9
) is an oxide film, and (10) is an electrode.

尚、窒化膜を利用したMIS型容量としては、例えば特
開昭60−244056号公報に記載されている。
Incidentally, an MIS type capacitor using a nitride film is described in, for example, Japanese Patent Laid-Open No. 60-244056.

(ハ)発明が解決しようとする問題点 しかしながら、従来のMIS型容量は下部電極としてN
PN)ランジスタのエミッタ拡散工程を利用している為
、エミッタ領域形成のN型不純物をデボした後に窒化膜
を形成し、その後でN型不純物のドライブインを行なわ
なければならない。
(c) Problems to be solved by the invention However, the conventional MIS type capacitor uses N as the lower electrode.
Since the emitter diffusion process of a PN transistor is used, a nitride film must be formed after the N-type impurity for forming the emitter region is deposited, and then the N-type impurity must be driven in.

すると、窒化膜のデボに使用する800℃前後の熱処理
がエミッタ領域を拡散させる為、NPNトランジスタの
り、t(電流増幅率)のばらつきが大きく、そのコント
ロールが難しい欠点があった。
As a result, the heat treatment at around 800° C. used to deposit the nitride film diffuses the emitter region, resulting in large variations in the NPN transistor thickness and t (current amplification factor), which is difficult to control.

また、窒化膜の形成に必要なオプション工程を追加した
か否かでエミッタ領域の熱処理条件を変更する必要があ
る為、機種別の工程管理が必要であり、管理の共通化が
できない欠点があった。
In addition, it is necessary to change the heat treatment conditions for the emitter region depending on whether or not the optional process necessary for forming the nitride film is added, so process management is required for each model, and there is a drawback that management cannot be standardized. Ta.

(ニ)問題点を解決するための手段 本発明は衛士した欠点に鑑みてなされ、MIS型容量を
組み込んだ半導体集積回路の製造方法において、エピタ
キシャルM(23>表面からポロン(B)を選択拡散す
ることによって分離領域(24)と下部電極領域(26
)を形成し、この下部電極領域(26)をMIS型容量
の下部電極として使用すると共に、下部電極領域(26
)表面に窒化膜(SisNa)を堆積し、MIS型容量
の誘電体薄膜(29)を形成した後にNPNトランジス
タのエミッタ拡散を行うことを特徴とする特 (ネ)作用 本発明によれば、分離領域(24)の拡散工程を利用し
て形成した下部電極領域(26)をMIS型容量の下部
電極に用いたので、エミッタ拡散工程より先に窒化膜の
デボを行うことができ、エミッタ領域(30)形成以後
のNPNトランジスタのり、□をばらつかせるような熱
処理を排除できる。
(d) Means for Solving the Problems The present invention was made in view of the drawbacks, and is a method for manufacturing a semiconductor integrated circuit incorporating an MIS type capacitor, in which poron (B) is selectively diffused from the epitaxial M (23> surface). By doing so, the separation region (24) and the lower electrode region (26
), and this lower electrode region (26) is used as the lower electrode of the MIS type capacitor.
According to the present invention, the special effect is characterized in that the emitter diffusion of the NPN transistor is performed after depositing a nitride film (SisNa) on the surface and forming the dielectric thin film (29) of the MIS type capacitor. Since the lower electrode region (26) formed using the diffusion process of the region (24) is used as the lower electrode of the MIS type capacitor, the nitride film can be deposited before the emitter diffusion process, and the emitter region (24) can be deposited before the emitter diffusion process. 30) It is possible to eliminate heat treatment that would cause variations in the adhesiveness and □ of the NPN transistor after formation.

(へ)実施例 以下、本発明の一実施例を図面を参照しながら詳細に説
明する。
(F) Example Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の半導体集積回路の断面構造を示し、(
21)はP型のシリコン基板、(22)は基板(21)
表面に複数個設けたN1型の埋込層、(23)は基板(
21)全面の上に積層して形成したN型のエピタキシャ
ル層、(24)はエピタキシャル層(23)を貫通する
P+型の分離領域、(25)は分離領域(24)によっ
てエピタキシャル層(23)を島状に形成したアイラン
ド、(26)は1つのアイランド(25)表面に分離領
域(24)の拡散工程を利用して同時に形成したエピタ
キシャル層(23)表面から埋込層(22)まで達する
P4型のMIS型容量の下部1極領域、(27)は他の
アイランド(25)表面に形成したNPN)ランジスタ
のP型のベース領域、(28)はエピタキシャル層(2
3)表面を覆うシリコン酸化膜(SiO*)、(29)
は下部電極領域(26〉の表面に堆積したMIS型容量
の誘電体薄膜、(30)はベース領域(27)表面に形
成したNPN トランジスタのN+型エミッタ領域、(
31)はアイランド(25)表面に形成したNPNトラ
ンジスタのコレクタ取出しの為のN1型コレクタコンタ
クト領域、(32)は各領域にコンタクトホールを介し
てオーミックコンタクトするアルミニウム材料から成る
電極、(33)は誘電体薄膜(29)の上に下部電極領
域(26)と対向するように設けた上部電極である。下
部電極領域(26)の底部は全て埋込層(22)と接す
る様に形成し、埋込JFt(22)によって下部電極領
域(26)を基板(21)の接地電位から電気的に絶縁
する。その為、MIS型容量は電気的に独立するので、
回路構成上の制約が無い。
FIG. 1 shows the cross-sectional structure of the semiconductor integrated circuit of the present invention, (
21) is a P-type silicon substrate, (22) is a substrate (21)
A plurality of N1 type buried layers are provided on the surface, (23) is the substrate (
21) An N-type epitaxial layer laminated on the entire surface, (24) a P+ type isolation region penetrating the epitaxial layer (23), and (25) an epitaxial layer (23) formed by the isolation region (24). An island (26) formed in the form of an island reaches from the surface of the epitaxial layer (23) formed simultaneously on the surface of one island (25) using the diffusion process of the isolation region (24) to the buried layer (22). (27) is the P-type base region of the NPN) transistor formed on the surface of the other island (25); (28) is the epitaxial layer (2);
3) Silicon oxide film (SiO*) covering the surface, (29)
(30) is the dielectric thin film of the MIS type capacitor deposited on the surface of the lower electrode region (26), (30) is the N+ type emitter region of the NPN transistor formed on the surface of the base region (27), (
31) is an N1 type collector contact region for extracting the collector of the NPN transistor formed on the surface of the island (25), (32) is an electrode made of aluminum material that makes ohmic contact with each region via a contact hole, and (33) is an electrode made of aluminum material that makes ohmic contact with each region through a contact hole. This is an upper electrode provided on the dielectric thin film (29) so as to face the lower electrode region (26). The entire bottom of the lower electrode region (26) is formed so as to be in contact with the buried layer (22), and the lower electrode region (26) is electrically insulated from the ground potential of the substrate (21) by the buried JFt (22). . Therefore, since the MIS type capacitor is electrically independent,
There are no restrictions on circuit configuration.

衛士した本願の構造によれば、MIS型容量の下部電極
として分離領域(24)と同時形成した下部電極領域(
26)を使用したので、誘電体薄膜(29)の形成工程
をエミッタ拡散工程の前に配置することができる。
According to the structure of the present application, the lower electrode region (24) formed simultaneously with the separation region (24) serves as the lower electrode of the MIS type capacitor.
26), the dielectric thin film (29) formation process can be placed before the emitter diffusion process.

以下、本願の製造方法を第2図A乃至第2図Fを用いて
説明する。
Hereinafter, the manufacturing method of the present application will be explained using FIGS. 2A to 2F.

先ず第1図Aに示す如く、P型のシリコン半導体基板(
21)の表面にアンチモン(sb)又はヒ素(As)等
のN型不純物を選択的にドープしてN+型埋込Jl(2
2)を形成し、基板(21)全面に厚さ5〜10μのN
型のエピタキシャル層(23)を積層する。
First, as shown in FIG. 1A, a P-type silicon semiconductor substrate (
21) is selectively doped with N-type impurities such as antimony (sb) or arsenic (As) to form an N+-type buried Jl (2
2) with a thickness of 5 to 10 μm on the entire surface of the substrate (21).
A mold epitaxial layer (23) is deposited.

次に第1図Bに示す如く、基板(21)表面からボロン
(B)を選択的に拡散することによって、埋込層(22
)を夫々取囲むようにエピタキシャル層(23)を貫通
するP+型の分離領域(24〉を形成する。分離領域(
24)で囲まれたエピタキシャル層(23)が夫々の回
路素子を形成する為のアイランド(25)となる。と同
時に、分離領域(24)拡散工程のボロン(B)をアイ
ランド(25)表面の埋込層(22)に対応する領域に
も拡散し、エピタキシャル層(23)表面から埋込Ji
 (22)に到達する下部電極領域(26)を形成する
0分離領域(24)は飽和拡散で形成する為、下部電極
領域(26)の表面濃度は10 ”atoms−cm−
”前後となり、MIS型容量の下部電極として十分使用
に耐え得る。
Next, as shown in FIG. 1B, by selectively diffusing boron (B) from the surface of the substrate (21), the buried layer (22
A P+ type isolation region (24) penetrating the epitaxial layer (23) is formed so as to surround each of the isolation regions (
The epitaxial layer (23) surrounded by 24) becomes an island (25) for forming each circuit element. At the same time, boron (B) from the separation region (24) diffusion process is also diffused into the region corresponding to the buried layer (22) on the surface of the island (25), and the buried JI is diffused from the surface of the epitaxial layer (23).
Since the zero separation region (24) forming the lower electrode region (26) reaching (22) is formed by saturated diffusion, the surface concentration of the lower electrode region (26) is 10"atoms-cm-
``It can be used as a lower electrode of MIS type capacitor.

次に第1図Cに示す如く、下部電極領域(26)を形成
したアイランド(25)とは別のアイランド(25)の
表面にボロン(B)を選択的にイオン注入又は拡散する
ことによってNPN トランジスタのベースとなるベー
ス領域(27)を形成する。
Next, as shown in FIG. 1C, boron (B) is selectively ion-implanted or diffused into the surface of an island (25) different from the island (25) on which the lower electrode region (26) is formed. A base region (27) that will become the base of the transistor is formed.

次に第1図りに示す如く、エピタキシャル層(23)表
面の酸化膜(28)を選択的にエツチング除去して下部
電極領域(26)表面の一部を露出させ、エピタキシャ
ル層(23)全面に常圧CVD法等の技術を用いて膜厚
数百〜千般百人のシリコン窒化膜(Si。
Next, as shown in the first diagram, the oxide film (28) on the surface of the epitaxial layer (23) is selectively etched away to expose a part of the surface of the lower electrode region (26), and the entire surface of the epitaxial layer (23) is etched. A silicon nitride (Si) film with a film thickness of several hundred to 1,000 layers is produced using techniques such as atmospheric pressure CVD.

N、)を堆積させる。シリコン窒化膜はシリコン酸化膜
よりも高い誘電率を示すので、大容量を形成することが
可能である。そして、前記シリコン窒化膜表面に周知の
レジストパターンを形成し、ドライエッチ等の技術を利
用して前記露出した下部電極領域(26)の表面を覆う
誘電体薄膜(29)を形成する。その後、誘電体薄膜(
29)を覆う様にCVD法による酸化膜(28)を堆積
させる。
N,) is deposited. Since a silicon nitride film exhibits a higher dielectric constant than a silicon oxide film, it is possible to form a large capacitance. Then, a well-known resist pattern is formed on the surface of the silicon nitride film, and a dielectric thin film (29) is formed to cover the surface of the exposed lower electrode region (26) using a technique such as dry etching. After that, dielectric thin film (
An oxide film (28) is deposited by the CVD method so as to cover (29).

次に第1図Eに示す如く、NPNトランジスタのベース
領域(27〉表面とアイランド(25)表面の酸化膜(
28)を開孔し、この酸化膜(28)をマスクとしてリ
ン(P)を選択拡散することによりN+型のエミッタ領
域(30)とコレクタコンタクト領域(31)を形成す
る。
Next, as shown in FIG. 1E, the oxide film (
28) A hole is opened and phosphorus (P) is selectively diffused using the oxide film (28) as a mask to form an N+ type emitter region (30) and a collector contact region (31).

次に第1図Fに示す如く、酸化膜(28)上にネガ又は
ポジ型のフォトレジストによるレジストパターンを形成
し、誘電体薄膜(29)上の酸化膜(28)を除去し、
さらにウェット又はドライエツチングによって袖化膜(
28〉の所望の部分に電気的接続の為のコンタクトホー
ルを開孔する。そして、基板(21〉全面に周知の蒸着
又はスパッタ技術によりアルミニウム層を形成し、この
アルミニウム層を再度パターニングすることによって所
望形状の電極(32)と誘電体薄膜(29)上の上部電
極(33)を形成する。
Next, as shown in FIG. 1F, a resist pattern of negative or positive photoresist is formed on the oxide film (28), and the oxide film (28) on the dielectric thin film (29) is removed.
Furthermore, by wet or dry etching, the sleeve-forming film (
28>, a contact hole for electrical connection is opened at a desired portion. Then, an aluminum layer is formed on the entire surface of the substrate (21) by a well-known vapor deposition or sputtering technique, and this aluminum layer is patterned again to form an electrode (32) in a desired shape and an upper electrode (33) on the dielectric thin film (29). ) to form.

衛士した本願の製造方法によれば、MIS型容量を形成
する下部電極として分離領域(24)の拡散工程によっ
て形成した下部電極領域(26)を使用したので、誘電
体薄膜(29)の製造工程をエミッタ拡散工程の前に設
置することができる。すると、エミッタ領域(30)形
成用のリン(P)のデポジットからリン(P)のドライ
ブインの間にMIS型容量形成の為の熱処理を配置する
必要が無く、デポジットによってリン(P)が初期拡散
された状態から即NPNトランジスタのh□(電流増幅
率)コントロールの為の熱処理(ドライブイン)工程を
行なうことができる。その為、NPNトランジスタのh
□のばらつきが少なく、MIS型容量を組み込んだこと
によるhFI!コントロールの難しさを解消できる。ま
た、MIS型容量を組み込んだ機種とそうでない機種と
でエミッタ領域(30)の熱処理条件を一本化すること
ができるので、機種別の工程管理が極めて容易になる。
According to the manufacturing method of the present application, since the lower electrode region (26) formed by the diffusion process of the separation region (24) is used as the lower electrode forming the MIS type capacitor, the manufacturing process of the dielectric thin film (29) is can be installed before the emitter diffusion process. Then, there is no need to perform heat treatment for forming the MIS type capacitor between the phosphorus (P) deposit for forming the emitter region (30) and the phosphorus (P) drive-in, and the phosphorus (P) is A heat treatment (drive-in) process for controlling h□ (current amplification factor) of the NPN transistor can be performed immediately from the diffused state. Therefore, h of NPN transistor
hFI with little variation in □ and incorporating MIS type capacitance! It can eliminate the difficulty of control. Furthermore, since the heat treatment conditions for the emitter region (30) can be unified for models that incorporate MIS type capacitors and models that do not, process management for each model becomes extremely easy.

本発明は第1図の実施例に限らず、上下分離の技術を利
用した半導体集積回路にも応用が可能である。さらに、
上下分離技術を用いたものにおいて、上下共に利用する
のでは無く第3図の第2の実施例の様に上下分離領域(
ハ)の上側拡散!(35)のみを利用して下部電極領域
(26〉を形成することも考えられる。この場合は、下
部電極領域(26)が埋込W(22)までは達しないの
で基板(21)との電気的絶縁が行える。
The present invention is not limited to the embodiment shown in FIG. 1, but can also be applied to semiconductor integrated circuits using upper and lower separation techniques. moreover,
In the case where the upper and lower separation technology is used, instead of using both the upper and lower areas, the upper and lower separation areas (
C) Upper diffusion! It is also possible to form the lower electrode region (26>) using only (35). In this case, the lower electrode region (26) does not reach the buried W (22), so it is not connected to the substrate (21). Can provide electrical insulation.

(ト)発明の詳細 な説明した如く、本発明によればMIS型容量をオプシ
ョンデバイスとして追加したことによるNPN トラン
ジスタのh□のばらつきが僅んど無いので、NPNトラ
ンジスタのh□のコントロールが極めて容易な半導体集
積回路の製造方法を提供できる利点を有する。また、M
IS型容量を組み込んだ機種とそうでない機種とでエミ
ッタ領域(30〉の処理条件を一本化できるので、機種
別の工程管理を簡略化でき、さらには異る機種のウェハ
ーを同一拡散炉内で熱処理するといった多機種少量生産
が可能になる利点をも有する。そして更に、本願によれ
ば分離領域(24)の拡散工程を利用して下部電極領域
(26)を形成したので、工程の簡略化が可能であり、
第1の実施例では埋込層(22)を利用したので簡単に
基板(21)との電気的絶縁が可能である利点をも有す
る。
(G) As described in detail, according to the present invention, there is little variation in h□ of NPN transistors due to the addition of MIS type capacitors as optional devices, so it is extremely possible to control h□ of NPN transistors. This method has the advantage of providing an easy method for manufacturing semiconductor integrated circuits. Also, M
Processing conditions for the emitter area (30) can be unified for models with IS-type capacitance and models without, simplifying process management for each model, and even allowing wafers of different models to be placed in the same diffusion furnace. Furthermore, according to the present application, since the lower electrode region (26) is formed using the diffusion process of the separation region (24), the process can be simplified. It is possible to
Since the first embodiment uses the buried layer (22), it also has the advantage that electrical insulation from the substrate (21) can be easily achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を説明する為の断面図、第2図A乃至第
2図Fは本発明の製造方法を説明する為の断面図、第3
図は本発明の第2の実施例を説明する為の断面図、第4
図は従来例を説明する為の断面図である。 (21)はP型半導体基板、 (26)はMIS型容量
の下部電極領域、 (27)はNPN トランジスタの
P型ベース領域、 (29)は誘電体薄膜、 (30)
はNPN )ランジスタのN+型エミッタ領域、  (
33)はMIS型容量の上部電極である。
FIG. 1 is a cross-sectional view for explaining the present invention, FIGS. 2A to 2F are cross-sectional views for explaining the manufacturing method of the present invention, and FIG.
The figure is a sectional view for explaining the second embodiment of the present invention.
The figure is a sectional view for explaining a conventional example. (21) is a P-type semiconductor substrate, (26) is the lower electrode region of the MIS type capacitor, (27) is the P-type base region of the NPN transistor, (29) is the dielectric thin film, (30)
is the N+ type emitter region of the transistor (NPN), (
33) is the upper electrode of the MIS type capacitor.

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の上に形成した逆導電型のエ
ピタキシャル層と、前記基板表面に形成した逆導電型の
埋込層と、この埋込層を夫々取囲むようにエピタキシャ
ル層を分離した一導電型の分離領域と、該分離領域によ
って複数個形成したアイランドと、1つのアイランド表
面に前記分離領域と同一工程で形成した一導電型のMI
S型容量の下部電極領域と、該下部電極領域表面の一部
の領域を覆うように設けた誘電体薄膜と、該誘電体薄膜
を挾んで前記下部電極領域と対向するように設けた前記
MIS型容量の上部電極と、他のアイランド表面に形成
した縦型バイポーラトランジスタの一導電型のベース領
域と、このベース領域の表面に形成した逆導電型のエミ
ッタ領域とを具備することを特徴とする半導体集積回路
(1) An epitaxial layer of the opposite conductivity type formed on a semiconductor substrate of one conductivity type, a buried layer of the opposite conductivity type formed on the surface of the substrate, and the epitaxial layers are separated so as to surround each of the buried layers. an isolation region of one conductivity type, a plurality of islands formed by the isolation region, and an MI of one conductivity type formed on the surface of one island in the same process as the isolation region.
A lower electrode region of an S-type capacitor, a dielectric thin film provided to cover a part of the surface of the lower electrode region, and the MIS provided to face the lower electrode region with the dielectric thin film sandwiched therebetween. A vertical bipolar transistor includes an upper electrode of a type capacitor, a base region of one conductivity type of a vertical bipolar transistor formed on the surface of another island, and an emitter region of an opposite conductivity type formed on the surface of this base region. Semiconductor integrated circuit.
(2)一導電型の半導体基板表面に逆導電型の埋込層を
形成する工程、 前記基板の上に逆導電型のエピタキシャル層を形成する
工程、 前記エピタキシャル層表面から一導電型の分離領域を形
成して複数個のアイランドを形成すると共に、前記分離
領域の形成工程によって1つのアイランド表面にMIS
型容量の下部電極領域を形成する工程、 他のアイランド表面に一導電型の不純物を選択的に導入
して縦型バイポーラトランジスタのベース領域を形成す
る工程、 前記下部電極領域表面の一部の領域を露出し、前記MI
S型容量の誘電体薄膜を堆積して形成する工程、 前記誘電体薄膜を形成した後、逆導電型の不純物を選択
的に拡散することによって前記縦型バイポーラトランジ
スタのエミッタ領域を形成する工程、 全面に導電体膜を形成し、前記誘電体薄膜の上に前記M
IS型容量の上部電極を、所望の領域には各領域とオー
ミックコンタクトする電極を配設する工程とを具備する
ことを特徴とする半導体集積回路の製造方法。
(2) A step of forming a buried layer of an opposite conductivity type on the surface of a semiconductor substrate of one conductivity type, a step of forming an epitaxial layer of an opposite conductivity type on the substrate, an isolation region of one conductivity type from the surface of the epitaxial layer. A plurality of islands are formed by forming a MIS on the surface of one island by the step of forming the isolation region.
forming a base region of a vertical bipolar transistor by selectively introducing impurities of one conductivity type into another island surface; a part of the surface of the lower electrode region; and the MI
a step of depositing and forming a dielectric thin film of S-type capacitance; a step of forming an emitter region of the vertical bipolar transistor by selectively diffusing impurities of opposite conductivity type after forming the dielectric thin film; A conductive film is formed on the entire surface, and the M
1. A method of manufacturing a semiconductor integrated circuit, comprising the step of providing an upper electrode of an IS type capacitor in desired regions, and an electrode that makes ohmic contact with each region.
JP62292406A 1987-11-17 1987-11-19 Semiconductor integrated circuit and manufacture thereof Granted JPH01133344A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62292406A JPH01133344A (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacture thereof
KR1019880015179A KR910009784B1 (en) 1987-11-17 1988-11-17 Method of fabrication for semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292406A JPH01133344A (en) 1987-11-19 1987-11-19 Semiconductor integrated circuit and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH01133344A true JPH01133344A (en) 1989-05-25
JPH0583191B2 JPH0583191B2 (en) 1993-11-25

Family

ID=17781371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292406A Granted JPH01133344A (en) 1987-11-17 1987-11-19 Semiconductor integrated circuit and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01133344A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109388A (en) * 1978-02-15 1979-08-27 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit
JPS621259A (en) * 1985-06-26 1987-01-07 Sharp Corp Forming method for semiconductor resistance element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109388A (en) * 1978-02-15 1979-08-27 Matsushita Electric Ind Co Ltd Semiconductor integrated circuit
JPS621259A (en) * 1985-06-26 1987-01-07 Sharp Corp Forming method for semiconductor resistance element

Also Published As

Publication number Publication date
JPH0583191B2 (en) 1993-11-25

Similar Documents

Publication Publication Date Title
JPH10256270A (en) Complementary bipolar transistor and manufacture therefor
JPS62277745A (en) Semiconductor integrated circuit
JPH0123949B2 (en)
JPS6050958A (en) Transistor integrated circuit
JPH02101747A (en) Semiconductor integrated circuit and manufacture thereof
JP2725773B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH01133344A (en) Semiconductor integrated circuit and manufacture thereof
JP2740177B2 (en) Semiconductor integrated circuit
JPH01130553A (en) Manufacture of semiconductor integrated circuit
JPH01133346A (en) Manufacture of semiconductor integrated circuit
JPH01133345A (en) Semiconductor integrated circuit and manufacture thereof
JPH02135770A (en) Semiconductor integrated circuit
JPH01133350A (en) Manufacture of semiconductor integrated circuit
JPH01133347A (en) Semiconductor integrated circuit and manufacture thereof
JPH02137257A (en) Semiconductor integrated circuit
JP2614519B2 (en) Method of manufacturing semiconductor integrated circuit incorporating MIS capacitance element
JPH02137258A (en) Manufacture of semiconductor integrated circuit device
KR910009784B1 (en) Method of fabrication for semiconductor integrated circuit
JPH0425711B2 (en)
JPH061807B2 (en) Method for manufacturing semiconductor integrated circuit
JP2708764B2 (en) Semiconductor integrated circuit and method of manufacturing the same
JPH01161749A (en) Manufacture of semiconductor integrated circuit
JPH01133349A (en) Manufacture of semiconductor integrated circuit
JPH061812B2 (en) Method for manufacturing semiconductor integrated circuit
JPH061813B2 (en) Method for manufacturing semiconductor integrated circuit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term